
Tree topology networks in
WebRTC
An investigation into the feasibility of supernodes in
WebRTC video conferencing

JOHAN GRÖNBERG

ERIC MEADOWS-JÖNSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, May 2014

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that
the Work does not contain text, pictures or other material that violates copy-
right law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of Tech-
nology and University of Gothenburg store the Work electronically and make it
accessible on the Internet.

Tree topology networks in WebRTC
An investigation into the feasibility of supernodes in WebRTC video conferen-
cing

JOHAN GRÖNBERG
ERIC MEADOWS-JÖNSSON

c© JOHAN GRÖNBERG, May 2014.
c© ERIC MEADOWS-JÖNSSON, May 2014.

Examiner: LAURA KOVACS

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2014

Abstract

Video conferencing is important in today’s society, but most popular solutions

require a user to install a program, plugin or similar. With the release of

Web Real-Time Communications - WebRTC it has become easy to create video

conferencing solutions that work with WebRTC supported browsers, such as

Chrome, Firefox, or Opera without any addons. However due to the peer to peer

nature of WebRTC it becomes difficult to scale as the technical requirements

on all clients grow with each participant.

This report aims to examine how to use supernodes in WebRTC based video

conferencing to shift CPU and networking load within a network and how this

affects service quality. It then examines the theory behind WebRTC and super-

nodes to be able to implement solutions that use these concepts within a video

conferencing solution. This project starts from an existing WebRTC project

and implements a statistics gathering algorithm as well as two implementations

using supernodes.

By utilizing the results of the statistics gathering the original service is compared

with results from the supernode service to evaluate the impacts on bandwidth

and video resolution. We show that networks using supernodes do redistribute

bandwidth and can achieve higher resolution quality in conferences given proper

supernode selection. Finally, we have identified needs for further research into

optimal supernode selection to achieve ping optimization, TURN usage minim-

ization and other efficiencies.

Acknowledgements

We would like to thank our friends for always giving helpful advice and acting

as a sounding board whenever we needed it. Our families for their support and

understanding while writing this thesis. We would like to thank Svein Willasen

for proposing our thesis topic as well as being a great guide and tester whenever

we needed it, also all the developers at appear.in for answer our many questions.

Many thanks are also given to Thomas Grönberg and Marianne Söderberg for

giving feedback on the report. We are also grateful to our examiner Laura

Kovacs for all the help and insight that she has provided us. Finally we wish to

thank our opponent Jakob Kallin.

Contents

1 Introduction 7

1.1 Problem Statement and Purpose 7

1.2 Methodology . 9

1.3 Related works . 10

1.4 Report structure . 11

2 Background 11

2.1 Peer-to-peer . 11

2.2 Network topology . 12

2.2.1 Complete Graph topology 12

2.2.2 Tree topology . 12

2.2.3 Supernodes . 12

2.3 Session description protocol . 13

2.4 Web Real-Time Communications - WebRTC 13

2.5 Network connectivity . 14

2.5.1 Network address translation (NAT) 14

2.5.2 Establishing a connection 14

2.5.3 SSRC . 15

3 Problem Description and Statement 15

3.1 Problem Description . 15

3.2 Purpose . 16

3.3 Ethical and social considerations 18

3.4 Limitations . 18

4 Theory 18

4.1 Network . 18

4.1.1 Nodes . 19

4.1.2 Supernode selection schemes 19

4.2 Media capture . 20

4.3 WebRTC . 21

4.3.1 Peer connections . 21

4.3.2 Statistics . 22

5 Method 22

5.1 Research . 22

5.2 Development . 22

5.3 Technology used . 23

5.4 Testing . 24

6 Implementation 24

6.1 Reference implementation . 25

6.2 Selection scheme . 26

6.3 Naive tree-construction . 26

6.4 Opt-in supernode implementation 29

6.5 Architectural changes . 34

6.6 Benchmarking . 35

7 Results 35

7.1 Background survey . 35

7.2 Tester interview . 37

7.3 Appear.in results . 38

7.4 Reference results . 38

7.5 Tree topology implementations 39

7.6 Validation . 41

7.7 Analysis of experimental results 42

7.7.1 Reference results . 42

7.7.2 Tree topology implementations 43

7.7.3 Drop out nodes . 45

7.7.4 Super node selection . 46

7.7.5 Ad-hoc topology change 46

8 Discussion 47

9 Social and Ethical Aspects 48

10 Conclusions 50

Glossary

DHT Distributed hash table, A distributed system that provides mappings

between values similar to a normal hash map. The responsibility for

maintaining the different mappings is however distributed amongst the

clients..

ICE Interactive Connectivity Establishment, A protocol used for NAT traversal

for protocols that use the offer/answer model..

MCU Multipoint control unit, a device that bridges two or more clients to-

gether in a video conference..

NAT Network address translation, is the translation of a global IPv4 address

to another address which can be used on a local network..

STUN Session Traversal Utilities for NAT, STUN is a protocol that is used by

other protocols in the NAT traversal process..

TURN Traversal Using Relays around NAT, an Extension of the STUN pro-

tocol to allow for Relays..

W3C World Wide Web Consortium, A consortium that produces and publishes

international standard and works for the growth of the Internet..

WEBRTC Web real time communications, A specification aimed at bringing

telecom functionality to the web. This standard contains APIs as well as

other standards and protocols..

1 Introduction

Most people today are in contact with some form of video conferencing at some

point in their life. People have started traveling more and over a wider area

than before. With the use of video conferencing people who are traveling, or

people who live in different parts of the world and want to keep in touch are

able to do so face to face. With the increased usage and also improvements

in technology we can today use video conferencing software in our tablets, cell

phones, and even our cars, an achievement that would not have been possible

even just a few years ago. Video conferencing is also important for businesses,

it is frequently used to conduct remote interviews, to talk to colleagues that are

travelling and to conduct meetings with remote offices.

The applications used for private and professional video conferencing differ quite

widely, mainly because of different usage patterns and demands from the mar-

kets. The private market wants something that is easy to use and requires no

setup, has good quality and just works. The professional market on the other

hand is not as concerned with setup and usage, but is more concerned with

reliability and security. This is so because there might be catastrophic results if

something were to fail, and even worse if the conference or the computer system

were to be compromised.

Today video conferencing continues to grow. Recently Web Real-Time Com-

munications - WebRTC was released which made it possible to have real time

communications in any browser that supports WebRTC, without the need for

any plugins or third party software. WebRTC makes video conferencing avail-

able to anyone that has a modern web browser and makes it easier for people

to use. Also, the release of this technology makes it easier for independent

developers and companies to develop custom conferencing solutions.

1.1 Problem Statement and Purpose

There are many problems for smaller companies trying to make WebRTC based

products marketed at consumers. While WebRTC is inherently peer to peer

there is still some server infrastructure needed. The servers needed are for

signaling, as the WebRTC specification only states that signaling is preformed

by unspecified means [1]. The signaling sets up the call between all participants

7

and also handles events, such as a participant leaving the call. There will also

be clients that cannot connect by themselves and will need a server to relay all

information to and from them. This is a major cost for service owners as there

will be a lot information to relay.

Since WebRTC is also inherently peer to peer, the straight forward implement-

ation of the product uses a complete graph topology in which every client is

connected to all other clients, as can be seen in Figure 1 below. Nodes in the

graph in Figure 1 denote clients and edges denote connections between clients.

In a complete graph topology each client has to send a copy of their stream to

every other client in the conference. This places a very high demand on all cli-

ents for conferences with more than a few participants. The demand is in both

processing power and bandwidth. Since clients do not have unlimited band-

width and processing power this will cause a decline in the users experience, or

even stop the service from working when certain thresholds are reached.

Figure 1: A complete graph; all four peers are connected to each other.

The increased performance requirements on the frontend and hardware and

bandwidth requirements on the backend leads to that a video conference service

becomes hard to scale. It is hard to scale for the company in regards to server

costs. It is also hard to scale the user since users with lower bandwidth and

perhaps even lower end computers might be excluded from conferences due to

performance issues.

The purpose of this report is to explore and evaluate solutions to front end

scalability without negatively impacting backend scalability. This is done in

8

order to allow WebRTC services to be used by more people on more devices

while still trying to keep as much of the peer to peer nature as possible, so

as to not have to create a larger infrastructure than is needed to support the

service.

1.2 Methodology

This project aims at evaluating the impact of changing the network topology

used by traditional WebRTC services from the complete graph topology in Fig-

ure 1 to a tree topology graph. As can be seen in Figure 2 a tree is formed by

all nodes in the graph being connected to each other without having any cycles

in the graph.

Figure 2: A tree topology graph constructed from Figure 1.

By changing the topology of the graph, as in Figure 2, we think that it would

be possible to change and improve on the scalability for both the backend and

the user.

Starting from an already existing product, namely https://appear.in, two dif-

ferent prototypes will be developed and then evaluated against the standard

implementation. First a very naive proof of concept implementation will be

implemented. Other implementations will be based upon this but use different

algorithms to construct the tree. All options will then be evaluated and con-

clusions drawn about what algorithms are good, and which problem areas they

9

address.

The developed prototypes will be compared to the original implementation in

these respects:

• Bandwidth usage

• Video resolution

• Perceived latency

• Service usability

Some of these points are very subjective while others are purely data points that

can be extracted and viewed. Data will be gathered directly from WebRTC in

the browser without affecting the user experience and there will also be a verbal

follow up with all testers about the subjective data points.

1.3 Related works

In the summer of 2013, there was a bachelor project at the Delft University of

Technology in the Netherlands using WebRTC to implement a browser based

game [2]. This project used supernodes to build the network that was used

to communicate between nodes. It was aimed at gaining an understanding of

WebRTC and using it to implement a game rather than to explore the effect

and the impacts of supernodes on a WebRTC network. Furthermore this was

a pure data network while our report describes a network used specifically for

video conferences.

Another related approach to our work is a software solution called Licode [3]

that can be used to communicate between multiple clients and create video

conferences similar to the ones in this project. In the same way as in this

project, the usage of licode takes some work away from clients since the clients

only have to upload one stream no matter the number of participants. However,

as opposed to using supernodes, licode uses a multipoint control unit(MCU).

The MCU solution requires a dedicated server to relay streams and adds to

the backend load. Our project however is focused on distributing that effort

amongst clients in the conference themselves such as to alleviate load on nodes

as well as not adding any load on the backend.

10

1.4 Report structure

This report consists of ten main chapters. In Chapter 2 the technical background

for the project is explained, mostly focusing on the technology used, specifically

WebRTC, but also the basic graph concepts used in this report. In Chapter

3 the problem description and purpose presented in Section 1.1 is developed

giving a more thorough explanation of the actual problem. Both a high level

and a detailed description is provided. The purpose of this project is also

explained in greater detail, as to why this has been done, and why performing

this comparison is of interest. Further theory needed to conduct this project

is explained in Chapter 4. In Chapter 5 the method applied in the project is

explained. There are a few different aspects that are covered, the development,

the technology used in this report, as well as how the testing and gathering of

data is undertaken. The different implementations that have been developed

over the course of this project are described in Chapter 6 while Chapter 7

provides the results gathered as well as analysis of them. Chapter 8 discusses

our results, Chapter 9 discusses social and ethical aspects of this thesis, and

Chapter 10 concludes this report.

2 Background

This chapter overviews the technical background of the thesis, including peer-to-

peer communications, network topologies, session protocols, network connectiv-

ities and WebRTC.

2.1 Peer-to-peer

Peer-to-peer is a decentralized form of network communication. There are many

types of Internet communication where a client connects to a central server.

HTTP, which is used when accessing a website, is one example of that; a client,

the browser, connects to a server, the website. With peer-to-peer communication

there is no centralized server. All clients connect directly to each other without

going through a server.

11

2.2 Network topology

In graph theory, there are many different graph topologies. There are however

two basic topologies that have a very relevant connection to this report.

2.2.1 Complete Graph topology

A complete graph is a very simple graph topology in which every two nodes

are connected to each-other [5]. This topology can occur in both directed and

undirected graphs. In complete directed graphs every two nodes are connected

via two edges, one for each direction, whereas in undirected graphs there is

only one edge that connects the nodes in both directions. There is one distinct

complete graph for every number of nodes. In Figure 1 the complete graph for

four nodes is represented. This is also referred to as K4.

2.2.2 Tree topology

A tree graph is a graph where all nodes in the graph are connected, meaning

that it is possible to get from any node, to any other node in the graph, and

in which there are also no cycles. A cycle is when it is possible to go from one

node and back to that node without using the same edge twice. An example of

a such a tree is shown in Figure 2.

2.2.3 Supernodes

In an application that uses a graph representation, and thus uses nodes, a

supernode is a node that is given a special role within the network. As described

in [6] there are many different uses for supernodes in applications today. How

much extra responsibility or power that is given to the supernode also varies

greatly. In peer to peer applications such as Skype [7], Kazaa[8], supernodes

are used to store information about the network and other nodes in order to aid

in searching through a large network. Supernodes can also be used to forward

data from one node to another. This is very close to the usage of supernodes in

this project, except that instead of only forwarding information, the node also

uses the information itself in order to display video.

12

2.3 Session description protocol

In establishing a session between two parties a great deal of information is

needed from both parties to establish the content and terms of the session.

The session description protocol (SDP) provides a standard way of representing

and presenting this information. There is however no transport or negotiation

protocol included in SDP, and as such the transport and negotiation of a session

using SDPs has to be done separately [9].

2.4 Web Real-Time Communications - WebRTC

WebRTC, which stands for Web Real-Time Communications, is a collection of

multiple standards that aim at providing real time communications on the web.

These standards contains protocols, specifications and APIs [10]. WebRTC is

very new and still under development, therefore it is not implemented in all

browsers. It is however implemented in working condition in Firefox, Chrome,

and Opera. While this technology is not supported by all major browsers, from

the data in Table 1 it can be seen that WebRTC is available to approximately

52.8% of web users through these three browsers alone. The WebRTC standards

are being maintained by W3C, and are widely available online. A part of the

WebRTC standards is dedicated to provide a Javascript API that gives easy

access to a computers media, as well as peer connection right in the browser.

WebRTC does not only aim at making real time communications functionality

available in the browser, but also the other way around, to make web function-

ality more available for telecommunications.

Browser Market share(Percent)
Chrome 37.2

Internet Explorer 18.3
Firefox 18.1
Safari 16.6
Opera 2.9

Table 1: Browser market shares in March 2014, gathered from over 74000 web-
sites [11]

13

2.5 Network connectivity

This Section explains how to establish connections to other peers with WebRTC

and the protocols required to traverse NATs.

2.5.1 Network address translation (NAT)

Network Address Translation (NAT) is the process of modifying the address

of an IP packet while in transit. With IPv4 there are often multiple machines

sharing a single IP address on the Internet. A router handles address rewriting

of packets to send them to the correct machine on the local network. The

router maps an internal IP and port pair to an external port when the first

outgoing packet arrives. It is hard to connect to a peer behind a NAT because

the mapping is set up for outgoing packets, and hence the router does not know

which internal peer an incoming packet should be sent to unless a mapping has

been set up.

2.5.2 Establishing a connection

To establish a connection around NAT, WebRTC uses a series of protocols. The

first protocol is called STUN [12] and is a protocol that is designed to aid in the

act of NAT traversal. A computer system can contact a server running a STUN

software and the STUN server will return an IP address and a port number.

This address and port number can then be used by others to try and connect

to this computer as described in Section 2.5.1.

This will however not always work as some NATs cannot be connected in this

manner. Therefore the second protocol used by WebRTC is called TURN[13]

and is by name an extension to the STUN protocol. TURN allows the IP and

port candidates to not point to the calling computer, but instead to a TURN

server that will relay all information between two clients in a connection. A

TURN server is easy to run as there are available open source implementations

based on the standard, there is however a significant cost associated with the

bandwidth consumed by the server.

STUN and TURN are however not complete NAT traversal solutions but are

instead aimed to be used by other protocols to achieve NAT traversal. There-

fore WebRTC uses a third protocol called ICE [14] to establish an connection.

14

The ICE agent in WebRTC gathers connection candidates consisting of an IP

address, a port and a transport protocol such as TCP or UDP. These are ex-

changed via the signaling channel as well as SDPs in an offer/answer fashion.

Once offers, answers, and candidates have been exchanged, the ICE agent in

both clients sort the candidates and goes through the list and performs a con-

nection check until a connection can be established.

2.5.3 SSRC

Within an SDP session description there is a value called SSRC that contains

an ID which is the ID of the stream source. This ID helps track and correlate

a single stream in multiple locations [15].

3 Problem Description and Statement

The following sections describe the problem that is addressed by this thesis as

well as explain why this problem needs to be addressed. Further, the limitations

placed on the report are also discussed and presented.

3.1 Problem Description

Video conferencing is important today and it only continues to grow. With the

release of WebRTC it became possible for new actors to simply and cheaply

develop applications that make video conferencing in browsers possible. There

are different solutions that consumers can easily use to set up video conferences,

for example Facetime, Google Hangouts, and Skype. However, all of these have

downsides. Google Hangouts requires a plugin to be installed, Facetime can only

be used with Apple devices and only supports two people, and Skype requires

the users to install a program on their system.

Therefore it should be possible to create a service that is easier to use, and

requires less setup than either of the above options using WebRTC. However,

as explained in Section 1.1 WebRTC is inherently peer to peer and constructs a

complete graph. This means that this type of conference is not very scalable, as

each node will need to send and receive video from all others. A video stream

of good quality usually uses over one megabit per second of data [10]. If a

15

conversation is to maintain good quality with many members it will require a

large amount of bandwidth from each participant. Having to send and receive

this many streams will also place other strains on the clients, such as increased

CPU workload from encoding and decoding.

While Internet connections are always getting faster it can be noted that the

average Internet connection speed was only 3.6 megabits per second as of 2013

[16]. To reach as wide of an audience as possible, it is then of importance to

keep bandwidth requirements as low as possible. There are many ways of doing

this, for example Google hangouts directs all traffic over their servers where it

is mixed into one video to maintain quality [10]. There are similar solutions

already for WebRTC, such as Licode, described in Section 1.3, which is a server

that handles all connections.

These solutions however put strain on the backend infrastructure of a service.

With the amount of bandwidth used for each stream, video conferencing will

require a backend with a great deal of bandwidth and a large amount of pro-

cessing power for any large service. These requirements makes it hard to have

a scalable service, as well as for new services to enter the market as they will

not have the server resources to use. It does not matter if the backend is on

physical on virtual devices because this still places a strain on the company to

pay for the required bandwidth and processing power.

In order to find a solution that works well from the consumer end, which allows

multiple participants without too much strain on them, and scalable from the

service owners standpoint without the need for a big backend, this project wishes

to explore the prospect of changing the network topology from complete graph

to tree topology by using supernodes. This should allow for all connections

to remain peer to peer, as well as re-distribute the workload within the graph

by moving parts of the load from nodes to supernodes while not adding any

significant server load.

3.2 Purpose

As described above, WebRTC video conferences in their common implementa-

tion have scalability issues both for the peers and the service. The peers need

a lot of available computing power and bandwidth to be in a conference with

many participants. The service needs a big backend to make the service as

16

smooth as possible for the peers.

The purpose of this project is to explore the feasibility of using supernodes with

a WebRTC based video conferencing system. Addressing the scalability issue is

important from both the peer and the service owners point of view. For the peer

this might not seem significant if they are used to conferences with only two or

three participants. However,peers might still need to have a larger conversation

sometime, and then they should still be able to, even if their connection or

computer is not at the highest standards. From the service owners viewpoint

it is however about minimizing the backend power, and therefore reducing the

economic cost of launching a competitive service using WebRTC.

This report will answer related questions that arise in the usage and implement-

ation of supernodes in a WebRTC based video conference, as well as suggest a

way in which to use supernodes for such services. The report will address the

following questions:

• Are tree topology networks a feasible and usable alternative to fully con-

nected topologies?

• What is required for supernodes to work in a common WebRTC system?

• Do supernodes impact on how many peers can participate in a conversa-

tion?

• Do supernodes increase the perceived quality of a conversation?

• What is the relation between upload and download speed in conventional

user systems?

• What is the impact of node drop outs?

The purpose of answering the above questions is mainly to gain an understand-

ing of how supernodes can be used to change the network topology of a WebRTC

video conferencing system. The results and conclusions of this thesis can also

serve as a baseline for others who are evaluating this technology, who wish to

implement it by themselves or aim to do further investigations into the usage

of supernodes within WebRTC based video conferences.

17

3.3 Ethical and social considerations

By reducing the bandwidth and performance requirements on clients, more cli-

ents should be able to use a video-conferencing service in scenarios where it

has not been possible before. Further, this might also make is easier for mul-

tiple services to co-exist. By placing extra load on supernode clients there are

however several ethical concerns that arise. For example, is it justifiable to use

extra resources from supernode clients? Also, if a solution is too liberal with

whom can be used as a supernode there security of information might also be a

concern.

3.4 Limitations

This project is limited to the functionality that is currently exposed to de-

velopers through Javascript APIs in browsers.

WebRTC is a new standard, it is not yet fully implemented in browsers and

has a largely undocumented implementation. There are numerous things that

do not correspond between the implementations and the specification, making

it time consuming to develop with WebRTC. This fact coupled with the time

frame for the project limited the report to studying and implementing only

two solutions and performing a comparison against a reference solution. Other

possible solutions are left to further investigations.

4 Theory

This chapter overviews the technical theory used when implementing the solu-

tions. It includes the supernode selection schemes and more in-depth explana-

tions of WebRTC and related APIs.

4.1 Network

Within the context of a network are clients correspond to nodes. This section

supernode selection schemes and the differences between nodes that can be used

together with the supernode selection schemes.

18

4.1.1 Nodes

If all the nodes in a peer to peer network had been exactly the same or very

similar, a network using supernodes would not be a good solution to the stated

problem of this report, as nodes would not be able to help each other. Since

in a fully connected topology all peers would process the same amount of data,

if one node is overloaded, all nodes should be overloaded since they are all the

same.

However, in the introduction to his doctoral thesis, J. Sacha [17] talks about

nodes in peer to peer networks. For these types of networks, all the nodes are

different from each other in many different ways. The node differences that are

most important for our purposes are the processing power and the bandwidth, as

the supernodes will have to forward a lot of packets which will take processing

power and bandwidth. As mentioned in Section 3.1 the average connection

speed is 3.6 megabits per second, which would not support many video streams

at the highest quality. The network would still work, but in lower quality, as

WebRTC scales the quality of streams by available bandwidth. Bandwidth and

processing power usually does not vary by small percentages between nodes,

but by one, or even several orders of magnitude. This fact suggests that there

should be a good candidates for supernodes in our network.

Another important property of nodes is if they are behind a NAT which cannot

be traversed and will need to be relayed to be able to be connected. Otherwise,

connections can be established directly.

4.1.2 Supernode selection schemes

To select a supernode from a set of nodes many different selection schemes can

be used. The schemes can be grouped into four separately distinct groups [17].

The simplest type of supernode selection scheme is when the selection is not a

collaborative effort or a distributed decision, but rather performed by a central

server, a higher level application, hard coded or even performed manually. This

very simple type of selection is amongst others used by Skype.

The second type is a type of distributed decision where the set of nodes is broken

down into smaller subsets depending on varying conditions such as location.

These subgroups then elect one or multiple supernodes within their own group.

19

This makes supernode selection easier since it can be split into many supernode

selection problems on all the new smaller sets. These new smaller problems can

then be solved individually. Systems with this solutions usually differ on how

they construct these smaller sets. This approach is used in an algorithm called

PopCorn which was used in the bachelor thesis described in Section 1.3.

Distributed hash tables (DHT) are also sometimes used to select supernodes.

This is done somewhat similarly as the previous method, since nodes are broken

down into groups based on proximity in DHT space and they internally choose a

supernode for that group. The work of J. Sacha [17] notes that one disadvantage

of this method is however that running a DHT protocol may introduce significant

overhead on the peers. Therefore this is not viewed as an appropriate solution

for this project.

The last method described in the thesis of J. Sacha [17] is the so-called Adaptive

systems method. In this method, super nodes are elected by a set of rules

or values which are important to that specific implementation. This could for

instance be that each node has to connect to two supernodes or that a supernode

has to have a certain percentage of up time.

4.2 Media capture

The Media Capture and Streams [18] standard maintained by W3C defines

several APIs to request media streams from a device. In this project only a small

part of this specification is however used. The main usage is the getUserMedia()

function which, if successful, returns a mediaStream object which is then used

with WebRTC as described in Section 4.3.

Another part of the standard that is important to this project is the concept

of mediaTracks. A mediaStream object usually consist of several mediaTracks

objects, both audio and video which are the individual audio and video compon-

ents of the stream. These tracks also have a disabled and enabled state that is

reachable and changeable from the API. This makes it possible to control what

can be seen and heard, and also to make sure of what kind of media is actually

present. Video feeds from getUserMedia can also scale and re-size themselves

to better fit the conditions in which they are being used.

20

4.3 WebRTC

This Section explains which APIs are of the most importance for this project,

what they do, and how they are used in this project. There are two main areas of

the WebRTC API that are of importance, RTCPeerConnection for connection

handling and getStats() for getting statistics.

The WebRTC standard also extends upon the mediaStreams discussed in Section

4.2 so that they can be used over networks, and not only locally. The main

extension that is of importance for this project is that each mediaStream object

is now assigned an ID upon creation.

The fact that WebRTC uses media streams does mean that the stream can

be automatically scaled due to a lack of bandwidth or processing power. This

however only mask a problem instead of solving it. If streams start being down-

scaled, a lower quality in the video-conference is obtained. This however should

be avoided, since it decreases the quality of the service.

4.3.1 Peer connections

There are two main sections to the WebRTC API, one is peer to peer connection

while the other is data connections. In this project the peer to peer connections

API is used. The sending of streams could also be done with a data connec-

tion, but a peer to peer connection turned out to be the best choice for this

project.

The peer to peer API is exposed through the RTCPeerConnection object. Peer

connections use the session description protocol in an offer and answer model

to establish a session between two peers. Since no connection is started, the

answer and offer has to be sent between the clients in a separate signaling

channel.

The main reason peer connections are used for video conferences is the ease with

which mediaStream objects can be added and removed from the connections.

Addition and removal of streams are done with one separate API call each. If

successful, it will also trigger an event on the other client informing it about the

new stream. Further, as the session has now changed, it will also require a new

SDP offer and answer sequence. As many streams as possible can be added to

a single peer connection object.

21

4.3.2 Statistics

The WebRTC standard specifies a statistics model that can be used to gather

statistics. This statistic model exposes a JavaScript function called getStats()

to developers. This method is to be called with a selector which the developer

wishes to gather statistics about. When the method is called upon a peer-

Connection object with an appropriate selector, a RTCStatsReport is returned

which is a map between IDs and RTCStats objects. In Chrome, statistics are

shown in Chrome://webrtc-internals to help debugging WebRTC applications

as well as seeing current connections.

5 Method

This chapter describes the research and development methods. Additionally it

describes the techonologies used and how testing was performed.

5.1 Research

This project revolves around the WebRTC standard and how to use it. Therefore

a significant amount of time in the beginning of the project was spent reading

and understanding the specification to understand how WebRTC works and

which parts are of most importance to this project.

Since this project is based on the existing service https://appear.in, a significant

amount of time has also been spent to understand the codebase of appear.in.

This is important for several reasons. The project members needed to gain in-

sight into the structure of the service to understand what needs to be changed or

expanded upon and also how this could best be accomplished. Since the project

is performed against an existing service, it is also important to understand the

service in such a way that the result of the project conforms to the standards

and style used within that service.

5.2 Development

While gaining an understanding of WebRTC, small solutions and examples us-

ing WebRTC were implemented to test different functionalities needed for this

22

project. This was done to explore how the browser implementations of WebRTC

conforms with the standard as specified by W3C as well as to test small scale

solutions.

All Web browsers have API differences between them, which pose several im-

portant problems to solve. Firefox for example does not support re-negotiations

within peer connections as described in Section 4.3.1. This means that it is not

possible to add or remove streams from peer connections. For simplicity, the

solutions described in this report only work under Chrome; however extend-

ing these solutions to other browsers, including, Firefox is an interesting task

for future work. It might also be fixed automatically be changes in browser

implementations.

In the beginning of the project, the choice was made to keep the code base of

this project up to date with the code base of the appear.in service by regularly

merging the two. This decision was however later reversed as it was found to be

too time consuming to keep up to date against an actively developed product

when conducting several experiments that change an underlying nature of the

service. We are of the opinion that if this project was to be done again, it would

either construct a small service from scratch to test and evaluate, or simply

work from a snapshot of the original service with no further interaction with

it.

In the sequel, different implementations using supernodes will be described and

evaluated against a reference implementation. Results will be collected to draw

conclusions about the usage of supernodes, benefits of algorithms as well as

suggesting future work.

5.3 Technology used

There are many outside technologies and third party packages used to minimize

the amount of unnecessary work that has to be done during the course of the

present project.

The main technology used by this project is socket.io for the signaling channel

described in chapter 4.3.1, and AngularJS to easily be able to change the front

end while using data binding between the front and backend.

23

5.4 Testing

In the end of this project, the developed implementations were compared against

the original appear.in implementation that uses a fully connected graph topo-

logy. In Section 3.2 certain points on which the implementations are to be

evaluated are stated. These points are both data that can be gathered from

the service itself, such as amount of bandwidth used, but also very subjective

points, such as perceived quality.

To test this and gather the data that is needed, at first a general survey about

video-conferences was sent out. To measure the perceived quality, a verbal

follow up was performed with testers to gather information about the different

implementations. In order to measure other aspects of the different implementa-

tions a statistics gathering algorithm was implemented, as described in Chapter

6. By combining these sources of information the project compared different

aspects.

Data is gathered by tests that are preformed by the implemented solutions

being used by users as they would use the original service. As such it is believed

that the test data is representative of normal service usage. However, as this

is a test of supernodes and not supernode selection, a suitable supernode is

always used, either by entering the conference first or by opting-in first. All

tests were preformed by the same computers on the same networks. Further, in

order to avoid any differences in implementations in the getStats() API between

browsers, all tests were in Google Chrome.

6 Implementation

In order to evaluate the impact of supernodes on a WebRTC network three

different tests were implemented and preformed. All the tests are based on the

same code from the appear.in service.This is to rule out any outside influence

on the values gathered by the implementations described in this chapter. The

implementations were all ran on a virtual cloud server with both STUN and

TURN servers used in configurations. This chapter provides details of each im-

plementation in a separate section. Starting with the reference implementation

and then tree-topology implementations. Lastly, it also described architechural

changes needed for the algorithms to work.

24

6.1 Reference implementation

The first implementation in this report is a reference implementation to get data

to compare against the other implementations. The reference implementation

is based on the appear.in project as it was in the start of this project. A new al-

gorithm for data gathering, as shown in Algorithm 1, was implemented to gather

the data needed to draw a baseline. Algorithm 1 goes through every stream that

is being uploaded and records the resolution and the reason for any limitations.

Further, it also accumulates the amount of bandwidth all streams use together

and records this number. While Algorithm 1 is relatively simple, it has some

bandwidthAccumulator = 0;
response = null;
foreach peerConnection pc do

pc.getStats(function(response){this.response = response});
foreach report in response do

if report is not an SSRC report then
return;

end
if The report is about data being received then

return;
end
resolution = {report.stat(”frameHeightSent”) ,
report.stat(”frameWidthSent”)};
limitedBy = get limitation from report;
bytesSent = report.stat(”bytesSent”);
bandwidthAccumulator += average bytes/s sent by this
connection since last check ;
send {resolution, limitedBy} to analytics engine;

end

end
send bandwidthAccumulator to analytics engine;

Algorithm 1: Basic algorithm for gathering data from peerConnections.

peculiarities. We are only interested in data about streams and not general

WebRTC data, which is why we are only interested in the SSRC reports. As of

writing this report, we discovered that the the information about downloaded

data was not accurate when adding several streams to one RTCPeerConnection

object. It was found that in fact it seems like the data about older streams is

sometimes not counted after the addition of new streams. Due to this incon-

sistency, only the upload data is collected. Also, download bandwidth was not

25

a vital statistic for this project as it, unlike upload bandwidth, does not change

between implementations.

6.2 Selection scheme

Section 4.1.2 discussed several different selection schemes for supernodes . In

this project, we decided to use the supernode selection scheme with a centralized

decision. In this case the decision is performed by the signaling server since this

server already has connections with all nodes and can easily choose between

them and distribute the result of said choice.

The scheme was chosen in this report because in a video conference set up time

is important and with a central authority making the decision with information

it already possesses without the need to collaborate with others the decision

can be made fast. If the decisions are made by the central server it is also

easier for it to alter the network topology as needed when nodes connect and

disconnect. Another important aspect of the topology is that it should only be

changed when needed. Unlike a network that is only used for data that might

be changed to fit current conditions better, any change in the network will cause

re-connections, re-negotiations of streams and therefore interrupt the service for

users.

6.3 Naive tree-construction

In [10], the author proposes using the first node that enters a conference as

supernode. Expanding on this idea, the naive implementation assumes equal

weight of all nodes in the network and therefore sees all nodes as potential

supernodes. Thus when the first node enters a conference it is immediately

chosen as supernode, because the server sees it as a good candidate.

As the service will need to handle conferences of all sizes there is a need for

multiple supernodes. Otherwise the single supernode will get overloaded since

the amount of work placed on it would increase quadratically for each new node

connected to it. Therefore a mechanism to create a new supernode on demand is

needed. There are a few different algorithms that run both on the server and on

the client. Since all nodes are considered equal the algorithm can assign a node

to any supernode it wishes, which in the naive implementation implementation

26

is the first supernode with available spots for new nodes. Additionally a new

node can be made supernode if no others are available, and then simply connect

it to an existing supernode to get all the information in the conference. This

is illustrated in Algorithm 2. If a supernode has too many children, it might

experience a load that is greater than it is able to handle. Since appear.in has

a limit of eight nodes in the network at the moment, the maximum number of

children was chosen as three. There will never be more than two supernodes in

the network. Setting the number at four would have left one supernode under-

utilized. When nodes disconnect there are several scenarios to handle for the

let n be the number of nodes in the network;
n++;
let k be the number of supernodes in the network;
if k == 2 or n/k <= 3 then

find supernode with free space for another node;
assign current node to that supernode;

else
make the new node supernode;
k++;
connect to other supernode;

end
Algorithm 2: Server side algorithm for clients connecting in naive imple-
mentation.

server. A disconnecting node can either be a supernode or a regular node. If it

is a supernode it might either have children, or it might due to a variety of cir-

cumstances not have children. If a supernode that currently has children leaves

the conference, its children need to be alerted to the change. The algorithm

used to handle a node disconnection is provided in Algorithm 3. Therefore

a new signal needs to be added to the signaling channel in order to tell the

nodes that they should connect to a new supernode, and who that supernode is.

27

let k be the disconnecting node;

if k is a supernode then

if k has children then

pick one of children of k, let this be j;

de-register j as a child of k ;

make j a supernode ;

transfer all of k’s children to be children of j ;

attach j to the other supernode if there is one; use signal to inform

all affected nodes of a new supernode ;

else

disconnect k from other supernode;

remove k from the network graph;

end

else

remove the node from the network graph;

end

inform all nodes of the disconnect;
Algorithm 3: Server side algorithm for clients disconnecting in naive imple-

mentation.

Note that Algorithm 2 and 3 run on the server to set up and change the network

as needed. There is also an algorithm needed on the client side to setup the

conversation according to the instructions received from the server. When a

node connects, its supernode needs to update his local cached version of the

network graph with the new information. Furthermore the supernode needs to

set up forwarding of this nodes stream to all other nodes it is responsible for.

This is described in Algorithm 4.

28

let s be the signal received;

let k be the node described in s;

if s is about a new supernode then

set up connection with all current streams to k;

if this node is a supernode then

set up relay of all streams received from k to all children;

end

end

if s is about a disconnecting client then

remove clients video feed on the screen;

if this node is a supernode then

remove all streams received from k from all other connections;

dispose of all old connections with k;

start renegotiation of all changed connections;

end

end

if s is about a connecting client then

if this node is a supernode then

if k has been assigned as our child then

setup connection with all current streams to k;

set up relay of streams received from k to all other connections;

start renegotiation of all other connections;

end

end

end
Algorithm 4: Client side algorithm for naive implementation.

6.4 Opt-in supernode implementation

This Opt-in implementation relies on clients opting in to being supernodes.

This implementation was chosen for several reasons, the first being to evaluate

solutions in which all nodes are not viable supernodes. Further, with this im-

plementation, clients themselves have the power to decide who wants to be or

not be supernode. The clients should be able to pick the most suitable super-

nodes and the people who do not want to be supernode can make sure that they

are not. The option is presented to the clients as a button. The codebase of

29

appear.in already has a small menu that will open as seen in Figure 3. This solu-

tion will have to be able to function both with and without supernodes, and be

able to switch between the two mid conference. If there are no nodes who opt-in

to being a supernode, the functionality is exactly the same as the original fully

connected graph, while if all nodes opt-in, the implementation will be as the

one described in Section 6.3 as all nodes are eligible to be supernodes. Another

reason for choosing and opt-in implementation is that it is believed that there

may not be a suitable supernode candidate in every conversation. Therefore a

solution which can work both with and without supernodes is explored to form

a basis for future solutions.

Figure 3: The appear.in options menu in which a supernode consent button will
be inserted.

When changing between topologies in the middle of a conversation there needs

to be another signal added, a signal telling the client to go back to a fully

connected topology. When the network changes from a tree topology to a fully

connected one and vice versa all nodes need to reconnect to each other. The

difficulty with WebRTC’s offer and answer session negotiation is that if both

nodes try to connect to each other they both might end in an unexpected state,

30

receiving an offer when they are expecting an answer. The best way to handle

this situation is for the signaling channel to tell the nodes how they should

connect to each other, because if this is decided by a single authority then there

can be no conflicting information. So by opting for the signaling server to decide

it can be ensured that the new network is connected without problems.

The solution is also a step towards other solutions where more advanced heur-

istics could be used to determine if a node is suitable to be a supernode or not.

In solutions that do not see all nodes as suitable supernodes a few special cases

arise when a tree needs to be rebuilt into another topology to work. This can

happen under a few different conditions. When a supernode leaves and there

are not any suitable supernodes to replace it or too many nodes connect and

there are not enough suitable supernodes to build a functioning tree topology

network. This behaviour is split into two algorithms. When a node connects it

can either be put into the existing graph, or force a change in network topology.

This behaviour is specified in Algorithm 5.

let k be the node connecting if conference is currently in tree topology
mode then

if there are enough viable supernodes to support k then
put k into the network and signal nodes as needed;

else
change to a fully connected topology;
tell Nodes to change topology;
let a be set of nodes in conference foreach node n in conference
do

remove n from set a;
tell n to connect to all nodes in set a;

end

end

else
since all nodes are considered non eligible from the start we just add
it;
connect k to network and tell others of new node;

end
Algorithm 5: Server side connection algorithm for opt-in implementation.

When a node disconnects it can either be simply removed as a regular node, or

force a rebuild of the network if it is a supernode. This behaviour is specified

in Algorithm 6. There is also need for a signal when a node opts-in to being a

supernode. This can also cause a rebuild in the network, which however is not

31

included in Algorithm 5 as it is a trivial build of a tree network.

let k be the node disconnecting;
if conference is currently in tree topology mode then

if k is a supernode then
if there are enough supernodes, or eligible supernodes to rebuild
the tree then

rebuild the tree;
signal the nodes affected by the change;
signal all nodes about disconnection;

else
change to a fully connected topology;
tell nodes to change topology;
let a be set of nodes in conference;
foreach node n in conference do

remove n from set a ;
tell n to connect to all nodes in set a;

end

end

else
remove k from the network;
signal all nodes about the disconnection;

end

else
remove the node from the network;
inform all nodes of disconnection;

end
Algorithm 6: Server side disconnection algorithm for opt-in implementation.

On the client-side there are issues of dealing with changing topology in the

middle of the conversation. This change is preformed by a signaling handling

algorithm on the client side.This is described in Algorithm 7 and is however

made simpler by keeping the logic for how nodes will connect to each other on

the signaling server. This way the nodes only need to concern themselves with

connecting to nodes they are told to connect to. Therefore Algorithm 7 is sim-

ilar to the client side algorithm of Algorithm 4, except for the aforementioned

addition(which is reflected in the last else-branch of Algorithm 7).

32

let s be the signal received;
let k be the nodes described in s;
if s is a signal about a new supernode then

set up connection with all current streams to k;
if this node is a supernode then

set up relay of all streams received from k to all children;
end

end
if s is a signal about a disconnecting client then

remove clients video feed on the screen ;
if this node is a supernode then

remove all streams received from k from all other connections;
dispose of all old connections with k;
start renegotiation of all changed connections;

end

end
if s is a signal about a connecting client then

if this node is a supernode then
if k has been assigned as our child then

setup connection with all current streams to k;
set up relay of streams received from k to all other connections;
start renegotiation of all other connections;

end

end

end
if s is a signal about switching to fully connected then

remove local representation of tree network;
foreach node in k do

if this node is already connected to k then
remove all streams that are not produced locally from
connection;

else
initiate connection with k with all local streams;

end

end

end
Algorithm 7: Client side algorithm for opt-in implementation.

33

6.5 Architectural changes

In WebRTC a signaling channel is needed to transport all sorts of information

and this information needs to reach the correct node and the correct connection

on that node. Since a signaling channel needs to be set up, it is also sometimes

used to transport other information about a stream, such as status updates.

When supernodes are used, it is not certain that a stream is arriving to a client

from its actual origin. To be able to handle signalling messages, concerning

streams, originating from a client, a mapping between clients and streams is

required to be kept on each client.

In an application with supernodes it is easy to keep a list of the streams that the

node is supposed to forward so that they can easily be accessed if a new clients

joins. Since in WebRTC there is no special event for capturing when a stream

stops, it is easiest to use the signaling channel for alerting clients that a stream

has ended. When a conference only has one supernode, dealing with stopped

streams becomes trivial as the supernode only needs to remove that stream from

the stream list. However, in a conference with more supernodes, two distinct

cases appear. When the disconnecting node is not a supernode the stream can

simply be removed from the list of all supernodes. When the disconnecting node

is a supernode however, all streams received from that supernode need to be

removed, not only the ones originating from that node. This is because when a

new tree is constructed, the old supernode will try to relay streams it does not

actually have to the supernode. Therefore a table of which streams are received

from which nodes is also needed.

When the tree construction algorithms select a new supernodes in an already

active conference, multiple nodes may try connecting to this node. Depending

on the latency to all nodes these connection attempts might come in rapid

succession. When a connection is established and a stream is received over this

connection, the supernode will relay this stream over all other connections. This

is a problem since if all connections started at a similar time some might still be

in the offer/answer sequence of session negotiation. Therefore, adding streams

to those connections will result in a bad state since the session would now differ

from the session being negotiated. This race condition can be resolved by only

adding streams to connections that are established while waiting until other

connections are established to add them.

34

6.6 Benchmarking

When implementing Algorithms 1-7, benchmarking solutions have also been

evaluated to see if benchmarks such as connection speed or CPU could be used

as a heuristic for supernode selection in an implementation for this project.

It has however been found that performance benchmarking from a browser is a

benchmark of the browsers Javascript engine and not of the computer. Therefore

similar results were found from different computers.

For benchmarking connection speeds a program could count packets being sent

and what rate they are being sent at to calculate upload speeds. For accurate

measurements however, packets should be sent over a longer time such that an

average result can be statistically significant.

7 Results

This chapter presents the results from the survey and benchmarking of the

implementations. The results are compared and analyzed. The particulars and

effects of drop out nodes, supernode selection, and ad-hoc topology changes are

discussed.

7.1 Background survey

One important parameter in video-conferences is how many people are involved

in the average conference. When this question was posed to 50 people, in our

survey there were options between two and ten people to choose from. The

answers are presented in Table 2 below. What can be seen is that the answers

are quite confined to the lower part of the scale: 35 answers stated that only

two people take part of the average video conference. Further, the average of

all the obtained answers was 2.76 participants.

Members 2 3 4 5 6 7 8 9 10

Answers 35 6 5 0 2 0 1 0 1

Table 2: The answer rate for the question ”How many people usually participate

in your video-conferences”.

35

Furthermore, the respondents were asked what usage pattern is common when

using a video-conference service. In Table 3 scenario A means that everyone

enters the conference when it starts and leaves the conference when it ends.

Scenario B described the situation when the conference members enter and

leave at different times. Scenario C is similar to scenario B with the difference

that the conference host never leaves. As can be seen from the answers most

conferences have a starting and ending point where people come and go.

Scenario A 45
Scenario B 2
Scenario C 1

Other 2

Table 3: The commonality of different usage scenarios when using video-
conferences.

In Section 6.4 an implementation using a button to opt-in to becoming a super-

node was discussed and implemented into a solution. To expand on this reas-

oning the respondents were asked how many of them would understand what

being a supernode implied without any further explanation. 19 people respon-

ded that they would understand, while the majority, 31 people responded that

they would not understand if such an option was offered to them. When an

explanation was provided as to what it entailed to be a supernode for a video-

conference, 39 people answered that they would opt-in to being a supernode

while 11 would not.

The final question of the survey was about the upload and download speed of the

respondents Internet connection in megabits per second. As can be seen below

in Table 4, 40 and 38 percent respectively were not aware of their upload or

download speed. This table also adheres quite well to that node characteristics

are separated by a large margin as described in Section 4.1.1. The answers

regarding download speeds are also in general higher than the upload speeds,

making most of these connections asymmetric in speed with the download speed

being higher. From the online speed measurement site Ookla [19] it is viewable

that the average connetion speed of people who measure their broadband with

Ookla is a download speed of 18.3 Mbps and upload speed is 8.2 Mbps as of the

writing of this report.

36

Speed in Mbpss Upload download

<0.5 3 0

0.5 0 0

1 6 2

2 2

3 0 2

4 1 1

5 0 1

7 0 0

10 8 4

15 0 0

20 0 2

25 1 1

40 0 1

50 0 6

100 8 9

Do not Know 20 19

Table 4: The upload and download speed of respondents.

7.2 Tester interview

After all tests had been concluded, the tester were asked for their opinion on

the overall service quality and service usability of the reference, naive and opt-

in implementations that they had tried compared to each other. While there

were some varied answers on the usability and quality of the reference service all

the opinions about the naive and opt-in implementations were quite unanimous.

The service usability stayed the same through all three implementations as there

was nothing changed from a users points of view. However, all testers agreed

that the quality on the tree topology implementations had suffered a little,

and the reason given for this was increased latency between the clients in any

conference with more than two participants. As audio and video are sent as a

part of the same stream however there will never be a latency difference between

audio and video.

37

7.3 Appear.in results

To further substantiate how common different conference sizes are, data was

extracted from the live service of appear.in. This data was gathered by looking

at the time spent in conferences of different sizes. By looking at data for the

months of March and April 2014 that is presented in Table 5 it is noted that

more than 76% of all conferences are conducted with 2 participants while only

15.5% are conducted with three. From appear.in it is also seen that almost

30% of connections made via the service have to be relayed via a TURN server.

Conference size Percentage
2 76.9%
3 15.5%
4 5.5%
5 1.5%
6 0.6%

Table 5: The relative number of participants in a video-conference on the ap-
pear.in service.

7.4 Reference results

The first data that was collected for the reference implementation was band-

width data in order to observe the tendencies of bandwidth consumption as

well as how our test systems could cope with the demands put on them. To be

able to observe tendencies it was only deemed necessary to go as high as four

simultaneous participants in the conference. The results are presented in Table

6. As can be seen the increase in bandwidth from one to two streams is as high

as 77%. However, from two to three streams the bandwidth usage stays almost

the same.

Conference size # of streams Average upload speed(Bytes/s)
2 1 237570
3 2 420964
4 3 410378

Table 6: The average bandwidth usage in a video-conference on the reference
implementation.

38

It is described in Section 4.2 that the resolution on streams can scale auto-

matically. As can be seen in Table 7 a conference with two participants always

maintains its original resolution in the tests performed with this implementation.

For three participants 90% maintain the original resolution while a smaller frac-

tion has its resolution downsized. However, for four participants these change

by a large margin. For four participants only 58% of the streams maintain their

original resolution while the rest are downsized, which explains the decrease in

average bandwidth from three participants in Table 6.

Conference size 640x480 480x360 320x240
2 100% 0% 0%
3 90% 7% 3%
4 58% 29% 13%

Table 7: The resolutions distributions for different sized conferences on the
reference implementation.

According to the statistical report it is possible to get a limited stream resolu-

tion. It can either be limited because there is not enough available bandwidth

to use for sending or receiving, or because there is not enough processing power

to encode a stream at a higher resolution. In Table 8 the reason for downscaling

is listed for each resolution as well as conference size. The three columns with

a scaling reason display the percentage of streams that had this specific restric-

tion. As can be seen none of the streams for the two participants conferences

are downscaled. However, of the streams downscaled to 480x360 resolution a

majority of them are downscaled due to bandwidth restrictions while all of the

streams downscaled to 320x240 resolution are downscaled due to bandwidth re-

strictions. A stream can only be reported as limited to it’s current resolution by

one factor, and that is the factor that caused the downsizing. So even though

there may not have been enough bandwidth nor CPU for a 640x480 resolution

stream, the factor that first caused the downsizing is reported as the limiting

factor of the resulting 480x360 resolution stream.

7.5 Tree topology implementations

After the implementation with an opt-in button had been tested and confirmed

to be working correctly, the data from it was combined with the data from

the naive tree implementation. This is because when the naive and opt-in

39

Limitation
Conference size Video resolution None CPU Bandwidth

2 640x480 100% 0% 0%
3 640x480 100% 0% 0%
3 480x360 0% 38% 62%
3 320x240 0% 0% 100%
4 640x480 100% 0% 0%
4 480x360 0% 43% 57%
4 320x240 0% 0% 100%

Table 8: The limitation on a streams resolution on the reference implementation.

implementations both use supernodes they work in the same way and as such

it was deemed unnecessary to have two separate sets of results as they would

be largely similar. As the larger data set given by the two together provides a

better indication of the characteristics of networks using supernodes.

For the tree topology implementations the average bandwidth is presented in

Table 9. When the conference only has two participants there is as before a case

where both participants send one stream to each other. When there are three

nodes there is however a difference, where the regular nodes use almost the same

bandwidth as for the case with two participants but the supernodes use close

to double the bandwidth. The same can be seen in conferences with four nodes

where normal nodes use less and supernodes use more bandwidth. The streams

column shows the number of uploaded streams including the number of relayed

streams.

Conference size # of streams Average upload speed(Bytes/s)
2 1 234717
3 1 215995
3 4 496746
4 1 182627
4 9 785398

Table 9: The average bandwidth usage in a video-conference on the tree topology
implementation.

With tree topology networks, conferences with two participants only yielded

640x480 pixel resolutions as can be seen in Table 10. For conferences with

three participants 92% of the conferences retained their earlier resolution while

the remaining were downsized to 480x360 resolution. When there where four

40

participants in the conferences the numbers who had to be downsized however

rose quite sharply. 24% were downsized to 480x360 resolution while 7% were

downsized all the way to 320x240 resolution. The rest of the streams maintained

their original resolution.

Conference size 640x480 480x360 320x240
2 100% 0% 0%
3 92% 8% 0%
4 69% 24% 7%

Table 10: The resolution distributions for different sizes of conferences on the
tree topology implementations.

The streams in conferences with two participants were as can be seen in Table

11 never limited by anything and as such were never scaled. For three parti-

cipants 47% of the 480x360 resolution streams were limited by CPU and the

rest by bandwidth. However, for four participants 61% of the 480x360 resolu-

tion streams were limited by CPU and the rest by bandwidth, while all streams

at an even lower resolution were limited by bandwidth.

Conference size Video resolution None CPU Bandwidth
2 640x480 100% 0% 0%
3 640x480 100% 0% 0%
3 480x360 0% 47% 53%
4 640x480 100% 0% 0%
4 480x360 0% 61% 39%
4 320x240 0% 0% 100%

Table 11: The limitation on a streams resolution on the tree topology imple-
mentations

7.6 Validation

The implemented solutions have been manually validated using log files and

chromes built in WebRTC monitoring site chrome://webrtc-internals to mon-

itor connections between clients and make sure the correct topology is reached

without any unnecessary connections being made. Data on the solutions have

also been gathered from the browser Google Chrome by using the built in get-

Stats API and thereby getting the access to the values calculated internally in

the browser about connections and streams.

41

7.7 Analysis of experimental results

The following sections provide an analysis of the results gathered from the ref-

erence and the tree topology implementations.

7.7.1 Reference results

From the data gathered both from the answer from the survey that is presented

in Table 2 and the data gathered from appear.in that is presented in Table

5 it can be seen that the majority of users only use video conferences with

four or less participants. In fact, in the appear.in case 97.9% of all conferences

have less than five members. This may indicate that video conferences are

used mostly for personal conversation and not as much for meetings between

multiple individuals. It may however be that most conferences have less than

five participants because clients cannot handle conferences larger than this or

that larger video conferences feel impractical. This fact solidifies that data only

being presented for up to four users is representative of how video conference

systems are used.

In Table 6 it is shown how the bandwidth consumption increases as the confer-

ence increases in size. What is of extra interest in Table 6 is that the bandwidth

requirement for three participants is very similar to the requirement for four par-

ticipants. Once Table 6 is compared to Table 7 and Table 8 it can be seen that

this is because with four participants many of the streams have reduced video

resolution because of both CPU and bandwidth limitations. This accounts for a

non increase in total bandwidth since lower quality streams use less bandwidth

each.

There is evidence that even for conferences with only four participants some

clients start to reach their limit as either the CPU struggles or the network

cannot send the amount of information required. This causes a downscaling

of resolution which leads to a decrease in service quality. The speed of 410378

bytes per second as recorded with four participants also equates to 3.28 Mb/s

which is similar to the global average connection speed as discussed in chapter

3.1. From this information it is apparent that larger conversations will have a

decline in quality for most clients as the required bandwidth and CPU usage

will exceed what is available and thus causing streams to scale down as well

42

as placing a lot of strain on the computer reducing its ability to perform other

simultaneous tasks.

7.7.2 Tree topology implementations

With the tree topology tests it can be seen in Table 10 that for two and three

participant conferences there is not a big difference between the supernode im-

plementations and the reference implementation. The biggest difference is that

there are no 320x240 resolution streams in the supernode version, as these were

all caused by bandwidth limitations as can be seen in Table 8. This shows an

increase in resolution due to less bandwidth required by most nodes in the tree

topology implementations.

As can be seen in Table 9 the upload speed required by the supernodes for

conferences with three participants is quite similar to the requirements for every

node in the reference case. However, when a supernode is connected to two

nodes, it is uploading four streams which shows a slight reduction in stream

quality since a similar amount of bandwidth is used for three streams in the

reference case. When a supernode is connected to three nodes it requires an

upload of nine streams, which does not show a doubling in the amount of data

sent, but still an increase. This points to more reductions in quality than in the

three participant case. The nodes that are not chosen as supernodes maintain

a similar amount of upload bandwidth usage regardless of conference size. This

is also evident when looking at Table 10 where it is noticeable that, for four

participant conferences, more streams now retain a higher resolution than they

did for the reference implementation while still having a substantial increase

from the three participant case. If mobile devices are used in a conference as

non-supernodes this will be of great help as they do not have the same resources

as computer for processing and uploading multiple streams. To always keep

them at a single stream to upload it should enable better performance with

mobile devices.

In the three participant conferences a slight decrease in 480x360 resolution

streams is detected. As can be seen in Table 11 more streams of this resol-

ution are limited by CPU than in the reference case while bandwidth limited

streams have gone down. When the conference reaches a size of four clients a

larger increase in original quality streams is recorded over the reference case.

With the streams downscaled to 480x360 resolution 61% of streams are down-

43

scaled due to CPU limitations. Since the amount of streams encoded and sent

on most clients is decreased from three to one this is seen as either a difficulty for

certain nodes to receive, decode and display all the streams in the conference or

too much load placed on supernodes. Because there were no bandwidth limited

streams in the reference solution with two participant conferences it is unlikely

that non-supernodes in the tree topology implementations have bandwidth lim-

itations due to upload speed since they use the same amount of upload. They

could however not have enough download for three full resolution streams and

thus cause a downscaling. The bandwidth limited streams are also caused by

the increased bandwidth requirements put on the nodes that have been selected

as supernodes in these solutions. This is however not surprising since there were

bandwidth limited streams for the cases where a node sent two or three streams

in the reference case as well. However, the amount of reduced streams as well

as the portion of the reductions caused by bandwidth help alleviate bandwidth

issues for nodes that previously faced them.

As has been shown the upload bandwidth required was decreased for most nodes

in the conference. The download bandwidth will however not be changed since

all nodes still need to download all the streams that are to be shown. But

as can be seen from Table 4 as well as in data from the online broadband

measurement service ookla [19], on an average connection there is asymmetric

behaviour between download and upload speed, with connections often having

higher download than upload speeds. Therefore it is of greater importance

to reduce the amount of upload speed needed than the amount of download

speed.

The proper selection of supernodes is however imperative in the creation of tree

topology networks, while the naive selection methods implemented in this report

will not always be successful. In the tests conducted, the testers have always

joined with the best node first and only opted in to being a supernode with

the most suitable nodes. If an unsuited node was chosen to be a supernode, all

streams relayed via that node would have reduced resolution, as it could not

handle the increased load. This reduction would propagate through the entire

network leading to a diminished user experience for all participants. Because of

this, a very naive solution, such as the one described in Section 6.3, should only

be used for comparisons and exploration. In a live service a better supernode

selection scheme will be required.

44

As can be seen by the answers to the interviews mentioned in Section 7.2 one

point that was noticeable was the increased latency in the implementations with

tree topology networks. However this is a problem that will always occur with

tree topology networks as the stream is sent from node A to node B and finally

to node C instead of being sent from node A to node C directly. This will

always add latency, although the latency increase could probably be minimized

through improved selection of supernodes.

There will always be some CPU power needed to encode the streams emanating

from a client itself and there is no way to reduce that. There will also be the need

for download speed as well as the CPU needed to decode and display streams.

The two latter can be improved, but only by downscaling streams or mixing

them together into a single stream that is smaller than all the other streams

together. As such there will always have to be some information loss to improve

these parameters.

7.7.3 Drop out nodes

Previously in Table 3 it is shown that almost all users stay for the duration

of a conference. With this knowledge the consequences of drop out nodes is

already reduced since all nodes will leave at the same time and as such will not

experience any consequences.

However, there will always be a problem with nodes disconnecting during the

middle of a conference e.g. due to network issues. The naive and opt-in im-

plementations have been implemented with this in mind and represent two cat-

egories of network. The naive implementations represent the networks that are

always tree topology and the opt-in implementation represents hybrid networks

were a supernode are only used if there are eligible choices for supernodes.

In all discussed algorithms, the consequences of a regular node drop out are the

same, namely the expected event that this node is disconnected from and will

have to manually reconnect later. In networks that are always tree topology

the consequences of a supernode dropout will result in a disconnection of all

the supernode’s children. In the case of a conversation with more than one

supernode this is only a subset of the clients. The clients will then experience

a brief pause in the service when a new supernode is selected and all affected

nodes are re-connected to the new supernode. In a solution that always requires

45

a supernode this can also bring a decline in quality if none of the remaining nodes

are well enough suited to being a supernode.

7.7.4 Super node selection

In the data gathered in this report it is indicated that tree topology networks

reduce the load on the majority of nodes while not adding any significant load to

any central server, only a few added signals and lightweight algorithms. How-

ever, due to improper selection of supernodes, the backend server load could

actually increase. This would happen if a node that needs to use TURN for all

of its connections is chosen as supernode because then even more streams will

be relayed via a TURN server which will create more traffic over the TURN

server. On the other hand, with proper selection of supernodes, less TURN

server usage can greatly help scalability of the service by reducing the amount

of streams that need to be relayed via a TURN server.

7.7.5 Ad-hoc topology change

As can be seen in Tables 2 and 5, most conferences only consist of two members

and will, as a consequence, not benefit from the assignment of supernodes as no

load can be decreased. By trying to connect from both nodes, the TURN server

usage can be minimized. Therefore a solution could use tree topology networks

only in conferences with more than three members and where a problem is

detected that could be fixed by changing topology in the network. This means a

hybrid network as described by the opt-in implementation in this report.

A change in network topology can be performed first when problems in the

network arise. This approach reduces any unnecessary load caused by super-

node selection by only executing the associated algorithms and signaling when

needed. For example a potential problem is discovered when a node discovers

unnecessary TURN usage, reduced resolution or other problems defined by a

service.

This solution will enable clients to use the original service until an option that

could improve their experience is discovered. Then there would be a brief pause

while re-connecting the new network which will hopefully lead to an improved

experience.

46

8 Discussion

There are many additional evaluations that can be conducted as future work and

that would be of interest in this field. For example, further investigations are

needed to determine if a node can handle the additional load of being selected as

a supernode. Also, dynamically adding more supernodes is an interesting task

for future work, whenever the current supernode is starting to show evidence of

being overloaded.

In Section 7.2 it is described how testers thought the added latency of supernodes

decreased the quality of conferences. There are several techniques for supernode

selection with latency as a concern today, see for example [17]. In Section

1.3 a bachelor project which used an algorithm called popCorn with vivaldi

coordinates was used to implement supernode networks with an aim at low

latency. Evaluating this algorithm for use with WebRTC video conferences is

of interest to see what effect this brings to the added latency of tree topology

networks compared to the standard fully connected networks and tree topology

networks without this improvement.

Section 6.2 describes how the implementations evaluated in this report use a

centralized approach to supernode selection as opposed to the distributed ap-

proaches described in Section 4.1.2. Implementing a different selection scheme

and evaluating the effect on set up time of a conference as well as re-build time

of the network to determine which selection scheme offer better results is of

interest for future implementations of tree topology networks in WebRTC video

conferencing.

The reduction of TURN server usage is a big step in reducing required backend

infrastructure and therefore increasing scalability for service owners. Currently,

almost 30% of all connection made via appear.in are relayed via a TURN server

as described in Section 7.3. In the work of [10], it is described how approximately

8% of all clients require a TURN server in order to achieve connection. The

22 percentage point difference between the two numbers is quite big, hence

it would be of interest to test supernode selection techniques to reduce TURN

server usage in order to evaluate how much this can be reduced and how close to

the described limit of 8% a WebRTC video conferencing service can come.

In order to minimize the impact of drop out nodes a redundant, non-active

connection could be set up and not used until needed. When a supernode drops

47

out, such connections could be activated to quickly re-establish the conference

again. Exploration of such methods would be of interest to see how much the

impact of drop out nodes can be reduced, and if setting up redundant network

is always viable or if there are cases where the network cannot handle it.

At the moment WebRTC is still a relatively new and changing standard. There-

fore implementing solutions in WebRTC often take longer than expected and it

is easy to set goals too high before starting to work. While this project has tried

to follow the standard as published by the W3C there are still many features

that are not implemented, or differ in their implementation from the standard.

As the standard and implementations grow more mature it is however the hope

that they will be more consistent, as this will make development easier.

There are features from the standard that remain unimplemented or undocu-

mented. Therefore a significant amount of time has to be spent finding work-

arounds around these issues and finding solutions to bugs that occur, since the

implementation or how it works is undocumented or the documentations often

is hard to find. Through these difficulties this report however aims to be general

about WebRTC from the point of the W3C specification and not mention work-

arounds needed to combat non compliant implementations as these are believed

to be changed in the future.

9 Social and Ethical Aspects

Society today is changing at a rapid pace and globalization is also moving for-

ward. Technology is emerging in markets that have previously not seen it.

Reducing what is needed by a service owner to start a service makes it easier

for new actors to emerge onto these new markets and bring the technology to

them. If the service requires more initial investment and hardware for it to

work, emergence on these markets can be severely delayed or even not happen

as small actors might not be able to set up the service.

The quality of Internet connections and computers tend to vary across different

parts of the worlds. Reducing the requirements to partake in video conferences

could enable people who otherwise would have been unable to use the technology

to do so and communicate with friends and family around the world. This could

also easily, with some small modification or without modifications be used for

48

educational purposes. With a teacher having a reliable computer and connection

he or she could be able to connect to all students. Students, on the other hand

could see and could be seen by the teacher on a much lower quality setup.

The emergence of video conferences also improves the conditions for employees

and companies, where previously, employees would have to travel to physically

attend a meeting. Now meetings can be held virtually and/or physically by

connecting two meeting rooms via a video-conference. This will still allow for

face to face discussions which is important during meetings, but save companies

time and money by not having its employees travel and stay at hotels. Since

employees would not have to travel as much, there will also be the added benefit

of reduced environmental impact.

While the social implications of using supernodes are mostly positive there are

also ethical implications to take into consideration. If supernodes are just used

as in the naive model implemented in this project, then it has to be asked if it is

justifiable to use someones computer and bandwidth without informing them,

or asking for their consent. It might perhaps be the case that most clients would

accept more CPU and bandwidth usage in order to help others in need. When

it comes to bandwidth however, there are users who pay for what they use, or

have a limit to how much they can use. In such cases, it would not be justifiable

to use all the bandwidth they have available since it’s their money on the line.

There are many aspects to consider when choosing a supernode, not only from

the technical point of view, but also from the ethical.

Even if the issue above was not present and there were unlimited resources, there

are still other ethical aspects to consider. Even though a client has allowed that

the service use the amount of resources needed to conduct the conference, is it

really justifiable to use more than absolutely necessary so that others might be

helped? This question is a part of the reason why in Section 6.4 there was a

solution that needed consent in order to use additional resources thus leaving

the choice up to the client. While some service owners might worry that not

enough people would use such an option, or that they might forget, we feel that

it is also ethically justifiable to use an opt-out approach, as long as it is properly

explained, as the choice is still left up to the users. As can be seen in Section 7.1

there might not be many nodes that opt-in unless an explanation is provided.

Therefore service owners have to be careful to provide a good explanation as to

what opting in means. If a service cannot do this but feels it is important to get

49

as many supernode candidates as possible, they might wish to use an opt-out

approach instead.

In all implementations of supernodes in WebRTC considered in this report cli-

ents only get access to information that would otherwise be available to them,

as they only relay video and audio that they are already receiving and display-

ing themselves. If this is however not the case and clients in other conferences

were used as supernodes, there could be leaks or theft of information as it is

handled by clients who should not otherwise have access to it. This might even

lead to others being able to eavesdrop and peek on a conference. Due to the

sensitivity of the service, as it involves private conversations between two or

more people, the information should never be sent to a third party, even if it

is believed to be safe. With eavesdropping being an important topic in today’s

society, it is our opinion that the information in a conference should never leave

the conference enviroment, thus minimizing the possibilities for eavesdropping

and peeking.

A large responsibility rests on the shoulders of the service owners though, as

they are granted a right to use extra resources from a clients computer. This is

so,because in most cases the clients will not know how much extra the service

will have to use to accomplish what it needs. What is then to stop the service

owners from also diverting a bit of resources from the clients computer for their

own purposes. This would usually not be visible to clients, but could be very

dangerous as their computer and/or connection could be used for anything from

calculations to illegal activities.

10 Conclusions

This thesis investigated supernode selection schemes, as well as how tree topo-

logy networks influence the quality of WebRTC based video conferencing.

Tree topology networks are feasible in WebRTC based video conferences as an

alternative to the standard fully connected mesh networks. As described in the

discussion tree topology networks lower the load on most nodes and thereby

also increase the overall resolution of streams in the conference. Since the load

on most nodes in a conference becomes lower in a tree topology network, the

amount of clients that can participate in the conference increases since more

50

clients are needed to experience the same load as before. This assumes that

a client has enough download bandwidth, as the download speed will not be

reduced by changing topology, it will only be reduced by video scaling. It can

also decrease the usage of a TURN server which will decrease cost from the

service owner and thereby increase scalability for the service owner as well as

the user.

The present thesis shows that the quality of conferences was slightly lowered by

tree topology networks because of increased latency. This is however contrasted

by that the actual resolution of streams was improved from the fully connected

case. Higher latency is unavoidable when adding an intermediate step in a

connection, it is however believed that future efforts could reduce the extra

latency to points were the benefit of increased stream resolution will outweigh

the added latency.

In a standard fully connected implementation of a WebRTC video conference the

upload and download speed required are the same or very similar while in tree

topology solutions they are asymmetric with a lower upload speed. Therefore,

the thesis concludes that tree topology networks are seen as a better for most

users since the average connection has lower upload speed.

Supernode selection in WebRTC is believed to be very subjective to the service

and the purpose of their selection. Some services may want to select supernodes

to minimize TURN server usage while others care more about minimizing added

latency. This area would however benefit from further research and comparison

to investigate the differences between these approaches. No matter if latency,

reduced TURN usage or something else is chosen as main criteria for choosing

a supernode the most important is still that a supernode will be able to handle

the increased load. No matter how many supernodes are selected as a means

to distribute the load there will always be root node in a tree that will have a

greater load than the others as it will have to connect all other supernodes to

each other.

Drop out nodes do not pose any major problem as addressed in the discussion.

It only requires a very brief reconnection and this pause can also be made

shorter by having redundant connections that are disabled until they are needed.

However in our opinion this adds unnecessary complexity to the network. It is

however our opinion that with regard to drop out nodes hybrid networks preform

better since they will not put the increased load on any that cannot handle it

51

but instead distribute the load on the entire network if there is no suitable

supernode.

52

References

[1] A. Bergkvist ,et. al. WebRTC 1.0: Real-time Communication Between

Browsers. [online] , http://www.w3.org/TR/2013/WD-webrtc-20130910/

(Accessed: 20 January 2014)

[2] J Abbink, et. al, Final report : Dynamic peer to peer game networks us-

ing WebRTC. [Online] ,http://repository.tudelft.nl/assets/uuid:04082eb3-

bb8c-4077-9ec2-0855da97a645/final report webrtc.pdf (Accessed: 5 april

2014)

[3] How it works : Overview of Licode and its components [Online],

http://lynckia.com/licode/architecture.html (Accessed: 7 april 2014)

[4] M.H, Willebeek-Lemair, et. al, On multipoint control units for videoconfer-

encing, in Local Computer Networks, 1994. Proceedings., 19th Conference

on, Minneapolis, MN, USA, 2-5 October, 1994, pp 356-364

[5] J.P Rodrigue, Graph Theory: Definition and Properties in The geography

of transport systems, 3rd edition, New york, Routledge, 2013, Appendix

[6] L. Virginia, et. al, Scalable Supernode Selec-

tion in Peer-to-Peer Overlay Networks. [Online],

http://csis.pace.edu/ marchese/CS865/Papers/lo scalable-supernode-

selection-in.pdf (Accessed: 21 February 2014)

[7] S. A. Baset and H Schulzrinne, An Analysis of the Skype Peer-to-Peer In-

ternet Telephony Protocol, Computer science department, Columbia Uni-

versity, New York, 2004

[8] J. Liang, et. al, Understanding KaZaA, Polytechnic University, Brooklyn,

NY

[9] M. Handley, et. al. SDP: Session Description Protocol. [online]

,http://tools.ietf.org/html/rfc4566.html (Accessed: 4 February 2014)

[10] I. Grigorik , ”WebRTC” in High Performance Browser Networking, 1st

edition. Sebastopol , O’Reilly , 2013, ch. 18

[11] W3Counter(2014, March) March 2014 Market Share, [Online] , ht-

tps://www.w3counter.com/globalstats.php (Accessed: 5 April 2014)

53

[12] J. Rosenberg , et. al. Session Traversal Utilities for NAT (STUN) [online] ,

http://tools.ietf.org/html/rfc5389 (Accessed: 7 February 2014)

[13] R. Mahy, et. al. Traversal Using Relays around NAT (TURN) [online]

,http://tools.ietf.org/html/rfc5766 (Accessed: 7 February 2014)

[14] J. Rosenberg, et. al. Interactive Connectivity Establishment (ICE) [online]

, https://tools.ietf.org/html/rfc5245 (Accessed: 10 February 2014)

[15] J. Lennox, et. al. Source-Specific Media Attributes in the Session De-

scription Protocol (SDP) ,avalible : http://tools.ietf.org/html/rfc5576 (Ac-

cessed: 19 February 2014)

[16] Statista, [Online] , http://www.statista.com/statistics/204954/average-

internet-connection-speed-worldwide/ (Accessed: 28 March 2014)

[17] J. Sacha, Exploiting Heterogeneity in Peer-to-Peer Systems Using Gradient

Topologies, Ph. D Dissertation, Comp. Sci, Trinity College, Dublin, 2009.

[18] D. C. Burnett, Et. Al, Media Capture and Streams. [Online] ,

http://dev.w3.org/2011/webrtc/editor/getusermedia.html (Accessed: 4

February 2014)

[19] Net index, Global Broadbad. [Online] avalible :

http://www.netindex.com/download/allcountries/ (Accessed: 9 May

2014)

54

