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ABSTRACT
The aerodynamics of a wind turbine is governed by the flow

around the rotor, where the prediction of air loads on rotor
blades in different operational conditions and its relation to ro-
tor structural dynamics is one of the most important challenges
in wind turbine rotor blade design. Because of the unsteady
flow field around wind turbine blades, prediction of aerodynamic
loads with high level of accuracy is difficult and increases the
uncertainty of load calculations.

A free vortex wake method, based on the potential, invis-
cid and irrotational flow, is developed to study the aerodynamic
loads. Since it is based on the potential, inviscid and irrotational
flow, it cannot be used to predict viscous phenomena such as
drag and boundary layer separation. Therefore it must be cou-
pled to the tabulated airfoil data to take the viscosity effects into
account. The results are compared with the Blade Element Mo-
mentum (BEM) [1] method and the GENUVP code [2] (see also
the acknowledgments).

NOMENCLATURE
h Perpendicular distance
t time
c Airfoil chord
Kv Correction factor
CL Lift coefficient
α Angle of attack−→
V tot Total velocity vector

−→
V ind Induced velocity vector
Γ Circulation
−→r Position vector
rcore Vortex core radius−→
V ∞ Upstream flow velocity vector
Ω Rotational velocity
−→n Normal unit vector−→
L Lift force−→
D Drag force−→
L′ Lift force per blade span−→
Ft Tangential force−→
Fn Normal force
α0 Zero lift angle of attack
ρ Air density
γ Vorticity distribution
CD Drag coefficient

INTRODUCTION
The methods for predicting wind turbine performance are

similar to propeller and helicopter theories. There are different
methods for modelling the aerodynamics of a wind turbine with
different levels of complexity and accuracy, such as the BEM
theory and solving the Navier-Stokes equations using CFD.

The vortex theory, which is based on the potential, inviscid
and irrotational flow, can also be used to predict the aerodynamic
performance of wind turbines. It has been widely used for aero-
dynamic analysis of airfoils and aircrafts. Although the standard
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method cannot be used to predict viscous phenomena such as
drag and boundary layer separation, its combination with tabu-
lated airfoil data makes it a powerful tool for the prediction of
fluid flow. Compared with the BEM method, the vortex method
is able to provide more physical solutions for attached flow con-
ditions using boundary layer corrections, and it is also valid over
a wider range of turbine operating conditions. Although it is
computationally more expensive than the BEM method, it is still
feasible as an engineering method.

In vortex methods, the trailing and shed vortices are mod-
eled by either vortex particles or vortex filaments moving either
freely, known as free wake [2–4] or restrictedly by imposingthe
wake geometry, known as prescribed wake [5,6]. The prescribed
wake requires less computational effort than the free wake,but it
requires experimental data to be valid for a broad range of oper-
ating conditions. The free wake model, which is the most com-
putationally expensive vortex method, is able to predict the wake
geometry and loads more accurately than the prescribed wake
because of less restrictive assumptions. Therefore, it canbe used
for the load calculations, especially for the unsteady flow envi-
ronment. However, its application is limited to the attached flow
and it must be linked to the tabulated airfoil data to predictthe
air loads in the presence of the drag and the flow separation.

Wind turbines always operate in the unsteady flow condi-
tion. The unsteadiness sources are classified according to the
atmospherical conditions, e.g. wind shear, turbulent inflow and
wind gusts together with the turbine structure such as yaw mis-
alignment, rotor tilt and blade elastic deformation [7] which are
considered as perturbations of the local angle of attack andthe
velocity field. Since the variation in frequency of these sources
may be high, the quasi-static aerodynamic is no longer valid
[8, 9]. As a consequence, a dynamic approach must be intro-
duced to modify the aerodynamic coefficients for unsteady oper-
ating conditions. This approach which is called Dynamic Stall,
adjusts the lift, the drag and the moment coefficients for each
blade element on the basis of the 2D static airfoil data together
with the correction for the separated flow.

In steady flow, when the angle of attack for some blade re-
gions exceeds from the critical angle of attack (αstall), which
is equivalent to the maximum lift coefficient (CL,max), the flow
is separated. This phenomenon is called static stall. This phe-
nomenon, for an airfoil in unsteady flow, is associated with so-
called dynamic stall where its major effect is stall delay and an
excessive force (see Fig.(1)). In other words, when an airfoil or a
lifting surface is exposed to time-varying pitching, plunging and
incident velocity, the stall condition happens at an angle of at-
tack higher than the static stall angle which means that the flow
is separated at a higher angle of attack than in steady flow. When
stall occurs there is a sudden decrease in lift. By decreasing the
angle of attack, the flow re-attaches again (stall recovery), but
at a lower angle than the static stall angle [10]. This scenario,
which is called dynamic stall, occurs around the stall angleand

the result is hysteresis loops and a sudden decrease of the lift
coefficient. Hence, the dynamic stall describes a series of event
resulting in dynamic delay of stall to angles above the static stall
angle and it provides the unsteady evolution of lift, drag and mo-
ment coefficients along the rotor blade. Because of the dynamic
stall, the predicted aerodynamic coefficients may result innotice-
able errors [8] in comparison with the static ones.

Although the unsteady aerodynamics is mostly referred to
the dynamic stall, but it might be generated on the lifting sur-
faces even in the absence of the dynamic stall [8], a dynamic stall
model for the unsteady aerodynamic loads prediction is therefore
crucial for the wind turbine technology development. In this pa-

FIGURE 1. HYSTERESIS LOOP AROUND THE STALL ANGLE

per, an in-house time-marching vortex lattice free wake is used
for the simulation where its potential solution is coupled to the
tabulated airfoil data for the wind turbine load calculation. In ad-
dition, a semi-empirical model, called Extended ONERA model
is added to account for the dynamic stall effects. The results us-
ing the three different free vortex methods are compared, namely
standard potential method, 2D static airfoil data model andthe
dynamic stall model.

Theory
Vortex flow theory is based on assuming incompressible

(∇ ·−→V = 0) and irrotational (∇×−→
V = 0) flow at every point ex-

cept at the origin of the vortex, where the velocity is infinite [11].
A region containing a concentrated amount of vorticity is called
a vortex, where a vortex line is defined as a line whose tangent
is parallel to the local vorticity vector everywhere. Vortex lines
surrounded by a given closed curve make a vortex tube with a
strength equal to the circulationΓ. A vortex filament with a
strength ofΓ, is represented as a vortex tube of an infinitesimal
cross-section with strengthΓ.
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According to the Helmholtz theorem, an irrotational motion
of an inviscid fluid which started from rest remains irrotational.
Also, a vortex line cannot end in the fluid. It must form a closed
path, end at a solid boundary or go to infinity; this implies that
vorticity can only be generated at solid boundaries. Therefore, a
solid surface may be considered as a source of vorticity. Hence
the solid surface in contact with fluid is replaced by a distribution
of vorticity.

For an irrotational flow, a velocity potential,Φ, can be de-
fined as

−→
V = ∇Φ, where in order to find the velocity field, the

Laplace’s equation,∇2Φ = 0, is solved using a proper boundary
condition for the velocity on the body and at infinity. In addition,
in vortex theory, the vortical structure of a wake can be modeled
by either vortex filaments or vortex particles, where a vortex fil-
ament is modeled as concentrated vortices along an axis witha
singularity at the center.

The velocity induced by a straight vortex filament can be
determined by the Biot-Savart law as

−→
V ind =

Γ
4π

−→
dl ×−→r
| −→r |3 (1)

which can also be written as

−→
V ind =

Γ
4π

(r1 + r2)(−→r 1×−→r 2)

(r1r2)(r1r2 +−→r 1 ·−→r 2)
(2)

whereΓ denotes the strength of the vortex filament and−→r1 , −→r2

are the distance vectors from the beginning,A, and end,B, of a
vortex segment to an arbitrary pointC, respectively (see Fig.(2)).

FIGURE 2. SCHEMATIC FOR THE BIOT-SAVART LAW

The Biot-Savart law has a singularity when the point of eval-
uation (C) of induced velocity is located on the vortex filament

axis (
−→
L ). Also, when the evaluation point is very near to the

vortex filament, there is an unphysically large induced velocity
at that point. The remedy is either to use a cut-off radius,δ [12],
or to use a viscous vortex model with a finite core size by multi-
plying a factor to remove the singularity [13].

The Biot-Savart law correction based on the viscous vortex
model can be made by introducing a finite core size,rc, for a
vortex filament [14].

Here, for simplicity, a constant viscous core size model,
which is one of the general approaches using desingularizedal-
gebraic profile, is applied for the induced velocity calculations.
A general form of a desingularized algebraic swirl-velocity pro-
file for stationary vortices is proposed by Vasitas [15] as

Vθ (r) =
Γ
2π

(

r

(r2n
c + r2n)1/n

)

(3)

Bagai [16] suggested the velocity profile based on Eq.(3) for
n = 2 for the rotor tip vortices. Therefore, in order to take into
account the effect of viscous vortex core, a factor ofKv must be
added to the Biot-Savart law as [16]

−→
V ind = Kv

Γ
4π

(r1 + r2)(−→r 1×−→r 2)

(r1r2)(r1r2 +−→r 1 ·−→r 2)
(4)

where

Kv =
hn

(r2n
c +h2n)1/n

(5)

andh is defined as the perpendicular distance of the evaluation
point (see Fig.(2)).

FactorKv desingularizes the Biot-Savart equation when the
evaluation point distance tends to zero and prevents a high in-
duced velocity in the vicinity region of the vortex core radius.

Assumptions
Each engineering model is constructed based on some as-

sumptions. Here, some of those are discussed. The upstream
flow is set to be uniform, both in time and space, and is perpen-
dicular to the rotor plane (parallel to the rotating axis). However,
it can be either uniform or non-uniform (varying both in time
and space). Blades are assumed to be rigid, so the elastic effect
of the blades is neglected. Because of the large circulationgra-
dients (dΓ/dr) near the tip and the root of the rotor blade, the
cosine rule for the blade radial segmentation [17] is used where
the blade elements, in the chordwise direction, are distributed at
equi-distant increments.
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In the vortex lattice free wake model, a finite number of vor-
tex wake elements move freely based on the local velocity field,
and contrary to the prescribed wake model, allowing wake ex-
pansion as well. Each vortex wake element contains two points,
one at the head (A), and another at the tail (B) (see Fig.(2)),
which are known as Lagrangian markers, where the induced ve-
locity components are calculated using the Biot-Savart law; their
movements give rise to the wake deformation. The vortex flow
theory assumes that the trailing and shed wake vortices extend to
infinity. However, since the effect of the induced velocity field by
the far wake is small on the rotor blade, the wake in the present
study extends only to four diameters downstream of the wind
turbine rotor plane.

Vortex Lattice Free Wake (VLFW)

FIGURE 3. LIFTING SURFACE AND VORTEX PANELS CON-
STRUCTION

The vortex lattice method (VLM) is based on the thin lifting
surface theory of vortex ring elements [18], where the bladesur-
face is replaced by vortex panels that are constructed basedon
the airfoil camber line of each blade section (see Fig.(3)).The
solution of Laplace’s equation with a proper boundary condition
gives the flow around the blade resulting in an aerodynamic load
calculation, generated power and thrust of the wind turbine. To
take the blade surface curvature into account, the lifting surface is
divided into a number of panels both in the chordwise and span-
wise directions, where each panel contains a vortex ring with
strengthΓi, j in which i and j indicate panel indices in the chord-
wise and spanwise directions, respectively. The strength of each
blade bound vortex ring element,Γi, j , is assumed to be constant
over the panel and the positive circulation is defined on the ba-
sis of right-hand rotation rule. In order to fulfill the 2D Kutta
condition (which can be expressed asγT.E. = 0 in terms of the
strength of the vortex sheet) the leading segment of a vortexring
is located at the 1/4 panel length (see Fig.(5)). The control point

FIGURE 4. SCHEMATIC OF VORTEX LATTICE FREE WAKE

FIGURE 5. NUMBERING PROCEDURE

of each panel is located at 3/4 of the panel length meaning that
the control point is placed at the center of the panel’s vortex ring.

Generally, the wake vortices are modeled as vortex ring el-
ements that are trailed and shed, based on the time-marching
method, from the trailing edge; in the wake they induce a ve-
locity field around the blade.

To find the blade bound vortices’ strength, the flow tangency
condition at each blade control point must be specified by es-
tablishing a system of equations. Therefore, the normal vector
at each control point must be defined (see Fig.(5)). The ve-
locity components at each blade control point includes the free
stream(

−→
V ∞), rotational(Ω−→r ), blade vortex rings self-induced

(
−→
V ind,bound) and wake induced(

−→
V ind,wake) velocities. The blade

induced component is known as influence coefficientai j and is
defined as the induced velocity of aj th blade vortex ring with a
strength equal to one on theith blade control point given by

ai j =
(−→

V ind,bound

)

i j
·−→n i (6)
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If the blade is assumed to be rigid, then the influence coefficients
are constant at each time step, which means that the left-hand
side of the equation system is computed only once. However, if
the blade is modeled as a flexible blade, they must be calculated
at each time step. Since the wind and rotational velocities are
known during the wind turbine operation, they are transferred to
the right-hand side of the equation system. In addition, at each
time step, the strength of the wake vortex panels is known from
the previous time step, so the induced velocity contribution by
the wake panels is also transferred to the right-hand side. There-
fore, the system of equations can be expressed as











a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm





















Γ1

Γ2
...

Γm











=











RHS1

RHS2
...

RHSm











(7)

wherem is defined asm= M ×N for a blade withM spanwise
andN chordwise panels and the right-hand side is computed as

RHSk = −
(−→

V ∞ +Ω−→r +
−→
V ind,wake

)

k
·−→n k (8)

The blade bound vortex strength (Γi, j ) is calculated by solving
Eq.(7) at each time step. At the first time step (see Fig.(6) and

FIGURE 6. SCHEMATIC OF GENERATION AND MOVING OF
WAKE PANELS AT EACH TIME STEP

(7)), there are no free wake elements. At the second time step
(see Fig.(6) and (8)), when the blade is rotating, the first wake
panels are shed. Their strength is equal to the bound vortex cir-
culation of the last row of the blade vortex ring elements (Kutta

condition), located at the trailing edge, at the previous time step
(see Fig.(6)), which means thatΓWt2

= ΓT.E.,t1, where theW
andT.E. subscripts represent the wake and the trailing edge, re-
spectively. At the second time step, the strength of the blade
bound vortex rings is calculated by specifying the flow tangency
boundary condition where, in addition to the blade vortex ring
elements, the contribution of the first row of the wake panelsis
considered.

This methodology is repeated, and the vortex wake elements
are trailed and shed at each time step, where their strengths
remain constant (Kelvin theorem) and their corner points are
moved based on the governing equation (Eq.(9)) by the local ve-
locity field, including the wind velocity and the induced velocity
by all blade and wake vortex rings (see Fig.(7) and (8)).

FIGURE 7. SCHEMATIC OF WAKE EVOLUTION AT THE FIRST
TIME STEP

The governing equation for the wake geometry is

d−→r
dt

=
−→
V (−→r , t) −→r (t = 0) = −→r0 (9)

where−→r ,
−→
V and t denote the position vector of a Lagrangian

marker, the total velocity field and time, respectively, andthe
total velocity field, expressed in the rotating reference frame i.e.,−→
V rot = 0, can be written as

−→
V =

−→
V ∞ +

−→
V ind,bound+

−→
V ind,wake (10)

Different numerical schemes may be used for Eq.(9) such
as the explicit Euler method, the implicit method, the Adams-
Bashforth method and the Predictor-Corrector method. The nu-
merical integration scheme must be considered in terms of the
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FIGURE 8. SCHEMATIC OF WAKE EVOLUTION AT THE SEC-
OND TIME STEP

accuracy, stability and computational efficiency. Here, the first-
order Euler explicit method is used as

−→r t+1 = −→r t +
−→
V (−→r t)∆t (11)

where
−→
V is taken at the old time step.

Load Calculation
In the vortex flow, the only force acting on the rotor blades

is the lift force which can be calculated either by the Kutta-
Jukowski theory or the Bernoulli equation where the viscousef-
fects such as the skin friction and the flow separation are not
included. Therefore, in order to take into account the viscous
effects and the flow separation, it must be combined with the
aerodynamic coefficients through the tabulated airfoil data along
with the dynamic stall model to model the unsteady effects.

The currently developed model is based on the thin lifting
surface theory of vortex ring elements, where the body is part of
the flow domain. Therefore, the effective angle of attack is calcu-
lated based on the dynamic approach (force field) by projecting
the lift force acting on rotor blades into the normal and tangen-
tial directions with respect to the rotor plane. Since the predicted
angle of attack, computed on the basis of the potential flow so-
lution (i.e., the lifting surface theory), is always greater than that
calculated by the viscous flow, it cannot be directly used as entry
to look up the tabulated airfoil data to provide the aerodynamic
coefficients.

In the standard potential method, the airfoil characteristic
of each spanwise section is not taken into account. Therefore,
in the 2D static airfoil data method, the new angle of attack is
calculated by using the tabulated airfoil data where it is directly
connected to the both tabulated airfoil data and the potential so-

lution parameter (Γ). This angle of attack is used as the entry to
look-up the airfoil table and then we are able to calculate the lift,
drag and moment coefficients giving the lift and drag forces for
each blade element. These two methods, the standard potential
method and the 2D static airfoil data method, are based on the
quasi-static assumption.

In the fully unsteady condition, since the lift, drag and mo-
ment coefficients are not following the tabulated airfoil data
curve, as it was described in the introduction, they should be cor-
rected and this is done by a dynamic stall model. Generally, the
aim of the dynamic stall model is to correct the aerodynamic co-
efficients under the different time-dependent events whichwere
described in the introduction. In case of uniform, steady inflow
condition and in the absence of the blade aeroelastic motion, it is
not necessary to use the dynamic stall model. However, it should
be noted that even though in the steady state condition, the in-
duced velocity field by the blade and the wake elements vary
during the wake evolution, hence using the dynamic stall model
for the load calculation is unavoidable.

The Standard Potential Method In the VLFW
method, when the position of all the Lagrangian markers is calcu-
lated in each time step, we are able to compute the velocity field
around the rotor blade where, as a consequence, the lift force can
be calculated according to the Kutta-Jukowski theorem which in
differential form reads as

−→
dL = ρ−→V ×Γ

−→
dl (12)

whereρ,
−→
V , Γ and

−→
dl denote air density, velocity vector, vor-

tex filament strength and length vector, respectively. The Kutta-
Jukowski theorem is applied at the mid-point of the front edge of
each blade vortex ring and gives the potential lift force where the
lift force of each spanwise blade section is calculated by sum-
ming up the lift force of all panels along the chord. The lift force
for each blade panel except the first row near the leading edgeis
computed by

−→
L i, j = ρ−→V tot,i, j × (Γi, j −Γi−1, j)∆−→y i, j (13)

For the blade panels adjacent to the leading edge, Eq.(13) can be
written as

−→
L 1, j = ρ−→V tot,1, j ×Γ1, j∆−→y 1, j (14)

where
−→
V tot,i, j is computed as

−→
V tot,i, j =

−→
V und,i, j +

−→
V ind,wake,i, j +

−→
V ind,bound,i, j (15)
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The total lift of each blade section in the spanwise direction is
obtained as

−→
L j =

N

∑
i=1

−→
L i, j (16)

whereN denotes the number of chordwise sections. Decompo-
sition of the lift force for each blade spanwise section intothe
normal and tangential directions with respect to the rotor plane
(see Fig.(9)) gives the effective potential angle of attackfor each
section.

α = tan−1 (Ft/Fn)−θt −θp (17)

whereα, Ft , Fn, θt and θp represent the effective angle of at-
tack, tangential force, normal force, blade section twist and blade
pitch, respectively.

FIGURE 9. POTENTIAL LOAD DECOMPOSITION

2D Static Airfoil Data Method In the potential flow,
the lift coefficient, expressed by the thin airfoil theory, is a linear
function of angle of attack with constant slope equal to 2π. This
means that for the thick airfoil, commonly used in wind turbine
blades, the thin airfoil theory is not valid. In addition, because of
this linear relation of the lift coefficient and the angle of attack,
the higher the lift the higher the angle of attack. Hence, consid-
erable lift reduction due to flow separation at higher anglesof
attack cannot be predicted.

According to the Kutta-Jukowski theory, the magnitude of
the lift force per unit spanwise length,L′, is proportional to the
circulation,Γ, and it is given by

L′ = ρVtotΓ (18)

whereρ, Vtot denote the air density and the total velocity magni-
tude, respectively. The circulation for each spanwise section is
equal to the bound vortex circulation of the last row vortex ring
element, located at the trailing edge. In addition, in the linear
airfoil theory, the lift coefficient is expressed by

CL = m(α−α0) (19)

wherem= 2π, α andα0 indicate the slope, the angle of attack
and the zero-lift angle of attack, respectively. The lift coefficient
is generally defined as

CL =
L′

0.5ρV2
totc

(20)

where c denotes the airfoil chord length. Combination of
Eqs.(18), (19) and (20) gives the modified angle of attack as

α =
2Γ

mVtotc
+α0 (21)

For an arbitrary airfoil, bothm andα0 are determined according
to theCL vs. α curve where the constant lift coefficient slope,m,
is computed over the linear region (attached flow). The modified
angle of attack based on the Eq.(21) is used as entry to calculate
the lift, the drag and the moment coefficients through the tab-
ulated airfoil data. As a result, the lift and the drag forcesare

FIGURE 10. VISCOUS LOAD DECOMPOSITION

computed for each blade element in the spanwise section giving
the tangential and the normal forces acting on the rotor blade (see
Fig.(10)).
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Dynamic Stall Method The semi-empirical dynamic
stall model, called the Extended ONERA is used to predict the
unsteady lift, drag and moment coefficients for each blade span-
wise section based on 2D static airfoil data. In this model, the
unsteady airfoil coefficients are described by a set of differen-
tial equations including the excitation and the response variables,
where they are applied separately for both the attached and the
separated flows.

In the initial version of the ONERA model, the excitation
variable is the angle of attack with respect to the chord line
whereas in the extended version, the excitation variables areW0

andW1, the velocity component perpendicular to the chord and
the blade element angular velocity for the pitching oscillation,
respectively.

Furthermore, compared with the initial version of ONERA
model, in the extended model, instead of the lift coefficient(CL),
the circulation (Γ) which is responsible for producing lift is the
response variable. Also, the variation of the wind velocityis
included in the extended model which does not exist in the early
version [9].

In the extended ONERA model, the lift (L) and the drag (D)
forces are written as

L =
ρc
2

[

Vtot (Γ1L +Γ2L)+
SLc
2

Ẇ0 +
KLc
2

Ẇ1

]

(22)

and

D =
ρc
2

[

V2
totCD,Lin +

σDc
2

Ẇ0 +VtotΓ2D

]

(23)

whereρ, c, Vtot, Γ1L, Γ2L, W0, W1, Γ2D andCD,Lin denote the air
density, blade element chord length, total velocity, linear circula-
tion related to the attached flow lift, non-linear circulation related
to the separated flow lift, total velocity component perpendicular
to the chord, blade section rotational velocity due to the pitch-
ing oscillation and non-linear circulation related to the separated
flow drag and linear drag coefficient, respectively. For the de-
tailed description of other coefficients in Eqs.(22) and (23), see
appendix A.

RESULTS
The 5MW reference wind turbine [19] is used in the simu-

lations. Table (1) shows the operating conditions in which the
simulations have been done. In the vortex method simulations
made with VLFW and GENUVP, the blade is discretized with
M = 25 spanwise sections (see Fig.(11)) with fine tip resolution
andN = 8 equally spaced chordwise sections. 10 degrees in the
azimuthal direction is employed for the wake segmentation and
the wake length is truncated after 4 rotor diameters. It is assumed

Case No. V∞ [m/s] Ω [rad/s] Pitch angle [deg]

1 5 0.627 0.0

2 6 0.753 0.0

3 7 0.878 0.0

4 8 1.003 0.0

5 9 1.129 0.0

6 10 1.255 0.0

7 11 1.267 0.0

8 12 1.267 4.0

9 13 1.267 6.65

10 14 1.267 8.70

11 15 1.267 10.46

TABLE 1. NREL TURBINE OPERATING CONDITIONS

that the wake vortex filament core radius is constant and is equal
to 1[m]. The free stream is assumed to be uniform, steady and
perpendicular to the rotor plane. Moreover, all coefficients in the
dynamic stall calculations are taken according to the flat plat and
the mean profile values.

FIGURE 11. RADIAL DISTRIBUTION OF BLADE ELEMENTS

Figures (12), (13) and (14) show the effective angle of at-
tack along the blade. As can be seen, the potential angle of at-
tack is greater than the viscous one which is consistent withthe
higher power production, predicted by the potential solution. The
blade of the 5MW NREL machine is constructed by the differ-
ent airfoil profiles [19]. Computing the lift coefficient slope in
the linear region (attached flow) for each airfoil profiles, shows
that this slope is larger than the slope for the thin airfoil theory
(m= 2π). By looking at Eq.(21), it is found out that the larger
the lift coefficient slope (m), the lower the angle of attack.There-
fore, the modification of the potential angle of attack by coupling
to the 2D airfoil data influences the load and power predictions.
Figures (15), (16) and (17) show the tangential force along the

blade with respect to the rotor plane. Three different solutions
of the VLFW method are compared together. The predicted tan-
gential force by the potential solution is significantly larger near
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FIGURE 12. DISTRIBUTION OF THE ANGLE OF ATTACK
ALONG THE BLADE FOR CASE 2, : POTENTIAL, :
VISCOUS
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FIGURE 13. DISTRIBUTION OF THE ANGLE OF ATTACK
ALONG THE BLADE FOR CASE 6, : POTENTIAL, :
VISCOUS

the blade tip making more power in comparison with the vis-
cous and the dynamic stall solutions. In addition, the tangential
force calculated by the viscous solution gives larger values than
the potential solution near the blade root region. The difference
between the potential and the viscous solution for the tangen-
tial force, close to the blade root, considerably increasesfor the
higher wind velocity where the turbine is pitch regulated topre-
vent the turbine operating above the rated power. The dynamic
stall solution which modifies the aerodynamic coefficients due to
the time variation of the total velocity and the effective angle of
attack lies between the potential and the viscous solution,coin-
cided with the viscous solution for half of the blade toward the
blade tip and with the potential solution toward the blade root.
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FIGURE 14. DISTRIBUTION OF THE ANGLE OF ATTACK
ALONG THE BLADE FOR CASE 10, : POTENTIAL,

: VISCOUS
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FIGURE 15. DISTRIBUTION OF THE TANGENTIAL FORCE
ALONG THE BLADE FOR CASE 2, : POTENTIAL, :
VISCOUS, : DYNAMIC STALL

Figures (18) shows the power curve for the 5MW NREL tur-
bine. For the attached flow region (no pitch regulation), where
the wind velocity is less than the 11m/s, the VLFW potential so-
lution, predicts more power than the VLFW viscous solution,the
VLFW dynamic stall solution and the BEM method. Also, for
the wind velocity higher than 11m/s(pitch regulated zone) where
the viscosity effect is significant, the potential solutionpredicts
the less power than the viscous solution.

Figures (19) displays the thrust curve for the 5MW NREL
turbine. By increasing the upstream flow, the wind turbine thrust
linearly increases where it suddenly drops when the blade pitch
angle is increased. The different methods approximately provide
the equivalent results.
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FIGURE 16. DISTRIBUTION OF THE TANGENTIAL FORCE
ALONG THE BLADE FOR CASE 6, : POTENTIAL, :
VISCOUS, : DYNAMIC STALL
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FIGURE 17. DISTRIBUTION OF THE TANGENTIAL FORCE
ALONG THE BLADE FOR CASE 10, : POTENTIAL,

: VISCOUS, : DYNAMIC STALL

SUMMARY AND CONCLUSIONS
A time-marching vortex lattice free wake is used for pre-

diction of aerodynamic loads on rotor blades. It is based on the
potential, inviscid and irrotational flow where its potential solu-
tion is coupled to the tabulated airfoil data and a semi-empirical
model to take into account the viscosity and the dynamic stall
effects, respectively. Three different methods called thestan-
dard potential method, the 2D static airfoil data method and
the dynamic stall method are introduced and they are compared
with the Blade Element Momentum (BEM) [1] method and the
GENUVP code [2]. The results show that for more accurate load
and power prediction, coupling to the tabulated airfoil data seems
to be necessary. Moreover, the small difference for the power
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FIGURE 18. POWER CURVE FOR THE NREL TURBINE, :
VLFW POTENTIAL, : VLFW VISCOUS, : VLFW
DYNAMIC STALL, : BEM, : GENUVP POTENTIAL,

: GENUVP VISCOUS, : GENUVP DYNAMIC STALL
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FIGURE 19. THRUST CURVE FOR THE NREL TURBINE,
: VLFW POTENTIAL, : VLFW VISCOUS, :

VLFW DYNAMIC STALL, : BEM, : GENUVP
POTENTIAL, : GENUVP VISCOUS, : GENUVP
DYNAMIC STALL

production between the different methods, at low wind velocity,
implies that the potential, inviscid and irrotational assumptions
of the vortex flow are relevant. Finally, the dynamic stall method
standing between the other load calculation methods represents
the dynamic response of the blade load to the wake evolution in
time.
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Appendix A: Extended ONERA Model
In Eqs.(22) and (23),SL, KL andσD are airfoil dependent

coefficients. However, in case of no wind tunnel measurement
data, the flat plate values are applied asSL = π andKL = π/2 for
small Mach number. The termσD is expressed by

σD = σ0Dα+σ1D | ∆CL | (24)

where for the flat plate,σ0D = 0 andσ1D = 0. Moreover,∆CL =
CL,Lin −CL,Stat where theLin andStat subscripts represent the
linear region and the static condition, respectively (see Figs.(20)
and (21)). The linear circulation concerning the attached flow
lift ( Γ1L) is calculated by the first-order differential equation as

Γ̇1L +λL
2V
c

Γ̇1L = λL
2V
c

(

dCL

dα

)

(W0−Vα0)+λL
2V
c

σLW1

+

(

αL

(

dCL

dα

)

+dL

)

Ẇ0 +αLσLẆ1 (25)

whereV,
dCL

dα
andα0 are the total velocity component parallel

to the airfoil chord, slope of theCL vs. α curve in the linear
region and the zero-lift angle of attack of each blade element,
respectively.

11 Copyright c© 2014 by ASME



FIGURE 20. DEFINITION OF THE LIFT COEFFICIENT PARAM-
ETERS IN THE ONERA MODEL

FIGURE 21. DEFINITION OF THE DRAG COEFFICIENT PA-
RAMETERS IN THE ONERA MODEL

The non-linear circulation concerning the stall correction of
lift ( Γ2L) is calculated by the second-order differential equation
as

Γ̈2L +aL
2V
c

Γ̇2L +rL

(

2V
c

)2

Γ2L =−rL

(

2V
c

)2

V∆CL−eL
2V
c

Ẇ0

(26)
Furthermore, the non-linear circulation concerning the stall cor-
rection of drag (Γ2L) is given by the second-order differential
equation as

Γ̈2D+aD
2V
c

Γ̇2D+rD

(

2V
c

)2

Γ2D =−rD

(

2V
c

)2

V∆CD−eD
2V
c

Ẇ0

(27)

In Eqs.(22), (25), (26) and (27), the symbol(̇) denotes the deriva-
tion with respect to the real time.

In the above equations,λL, σL andαL depend on the specific
airfoil type and they must be determined from the experimental
measurements. If the experimental data for a particular airfoil is
not available, these coefficients take the flat plate values as λL =
0.17, σL = 2π, αL = 0.53. dL in Eq.(25) and the coefficients in
Eqs.(26) and (27) are functions of∆CL due to the flow separation
and they are defined as

dL = σ1L | ∆CL |
aL = a0L +a2L(∆CL)

2

aD = a0D +a2D(∆CL)
2

√
rL = r0L + r2L(∆CL)

2

√
rD = r0D + r2D(∆CL)

2

eL = e2L(∆CL)
2

eD = e2D(∆CL)
2

(28)

The coefficients in Eq.(28) are airfoil dependent. In case ofno
wind tunnel measurements, the values for a mean airfoil may
be taken and the flat plate values cannot be used. For the mean
airfoil, σ1L = 0.0, a0L = 0.1, a2L = 0.0, r0L = 0.1, r2L = 0.0,
e2L = 0.0, a0D = 0.0, a2D = 0.0, r0D = 0.1, r2D = 0.0 ande2D =
0.0.
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