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Abstract 

One of the main limitations of computer-systems’ performance has been for 

almost three decades the speed gap between processors and memory, known as memory 

wall. Despite the slow improvement in memory’s speed, the requirements for larger 

memory capacity are continuously growing. A costly solution, both in terms of area and 

power dissipation, is to increase the physical memory capacity. In alternative, the same 

physical space could be maintained, if the data were stored in a more efficient way; in 

other words if they were stored more densely by exploiting lossless compression 

techniques. However, such techniques need to encode data before storing them in 

memory and decode compressed data before accessing them. Therefore, the encoding 

and decoding operations may add further delay to the already long memory latency 

resulting in potential performance losses, as the memory access time becomes longer. 

Thus, a trade-off between the benefits in memory space (measured using 

compressibility) and losses in performance (typically measured in execution time) is 

often needed when considering memory compression solutions. 

This master thesis makes a motivational analysis of using a Huffman-based 

compression approach in the main memory. We first trace and record the memory 

footprint when executing different applications from the SPEC2006 benchmark suite. 

Based on the obtained trace, we dynamically establish the value frequency distributions 

and generate Huffman coding to evaluate the potential of footprint’s compressibility. 

The thesis studies the impact of parameters in statistical compression’s design space 

such as data granularity, value frequency and encoding efficiency through time. A first 

finding is that value locality varies little over time despite the large amount of data 

stored in the main memory level. This means that once Huffman coding has been 

established, it works sufficiently for a long execution time (on the order of milliseconds) 

without any update, corroborating to a previous study on cache compression. We also 

evaluate different compressibility monitoring approaches as well as losses in 

compression efficiency when applying fixed-size compressed memory pages to address 

the impact of memory fragmentation problem. Overall, it is found that a high 

compression factor (CF) of 3.115X, on average, and up to 7.840X is possible.  

 

Keywords: Memory, Lossless Data Compression, Statistical Compression 

Memory Scheme, Huffman Coding, Value Locality. 
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1. Introduction 

The performance of computational systems is dominated by core and memory 

architecture. Despite the enormous technology advancement through the technology 

scaling, the complexity as well as the workload requirements of the computational tasks 

are also growing in an enormous pace. As a result, memory with higher speed and 

larger capacity as well as more advanced processors are still the key solutions.  

Memory wall, which is the speed gap between processor and memory, has been 

growing for almost three decades, as is illustrated in Figure 1.1 [1]. The latency of one 

memory access is now three orders of magnitude longer than executing an instruction in 

the processor. Thus memory has become the major bottleneck in computer 

performance. 

 

Figure 1.1: Memory wall: The speed difference between processors and memory [2].  

This increasing speed gap makes the requirement of fast and large memory even 

more urgent. On the top of that, the limiting power budget constrains the demands for 

larger physical memories. Therefore, applying techniques that enhance memory’s 

efficiency while keeping low area, power and economic costs are of high importance. 

One such technique is data compression. Lossless data compression techniques 

have a huge potential to improve the utilization of main-memory resources [3]. As such 

techniques target to store more data in memory, the overall memory capacity is virtually 

increased. As a result, more accesses are handled by the memory (less page faults), 

instead of accessing the disk that may require even three orders of magnitude more time 
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(order of μs). Another advantageous effect is the efficiency in power as power 

requirement can be kept in low levels.  

The main drawback of compression is that compressed data must be 

decompressed before being used. One implication of this is that extra latencies may be 

imposed, potentially affecting overall system’s performance as decompression must be 

applied to data that are requested by the processor (i.e., a critical access) [4]. In addition, 

compressors and decompressors will introduce power overheads. Therefore it is crucial 

to consider the trade-off between compressibility and performance/power cost when 

designing a compression mechanism in the context of caches/memories. Apart from 

some fast but inefficient algorithms, the statistical compression cache/memory schemes 

have a great potential compressibility at the expense of high latencies. Thus, they would 

be good compression candidates if modifications can be made on the 

compression/decompression process to address the performance losses problem.  

This master thesis makes a motivational analysis of statistical compression 

algorithms, such as Huffman coding, in memory compression and studies the impact of 

several design parameters (mainly data- and algorithmic- related) on memory’s content 

compressibility. Our results show that Huffman compression can highly improve the 

utilization of memory resources when applied on that level. The simulation results for 7 

applications from the SPEC2006 benchmark suite show that a high compression ratio 

of 3.115X on average and up to 7.840X is possible. Besides, the thesis studies the 

impact of compression granularity (1 byte, 2 bytes and 4 bytes). Another contribution 

of this thesis is it evaluates the impact on compressibility when establishing Huffman 

coding with value frequency tables (VFTs) of different sizes. The smaller VFT 

introduces fewer values to be compressed trading off compressibility for reduced 

performance overheads due to smaller compression/decompression latency. The results 

are promising, as despite using a small VFT, a relatively high compression ratio is 

possible. This observation shows a great potential of practicality for Huffman coding 

technique on the main memory level. 

We demonstrate that during the execution of benchmark applications, the value 

locality on the main memory varies little over time (on the order of hundreds of 

millions of committed instructions) which means once a Huffman tree has been 

established and the encoding has been generated, the same encoding can be used over 

millions of memory accesses without any update. It is meaningful to say that the impact 

of value granularity, VFT size as well as the duration of sampling (prior code 

generation) have been studied in prior works in value-aware caches [5, 6]. This thesis 

extends those studies in main memory, while many of the findings corroborate with or 

complement prior works. We also make experiments to evaluate the compressibility 
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reduction when considering the memory fragmentation problem by applying fixed-size 

page compression.  

The thesis first discusses the background and theory in Chapter 2. In Chapter 3, the 

experimental setup of this thesis is explained. Chapter 4 presents the experimental 

results based on different design parameters together with the result analysis. The 

conclusion of the thesis is made in Chapter 5.    
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2. Background and Theory  

In this chapter, the background in memory hierarchies is first discussed to define 

the problem that this thesis studies (Section 2.1). Then, a review of the most important 

previous works about memory compression techniques is presented (Section 2.2). 

Finally, Section 2.3 discusses Huffman encoding and decoding, how it is generated and 

the advantages and disadvantages. 

2.1 Principle of Locality and Memory Hierarchy 

Memory space is needed during program execution to store data that are produced 

and data that are going to be used. Despite the technology advancement of processors 

and memory hierarchies, the program demands for more memory space are increasing 

too. Thus, larger and more efficient memory capacity is tightly bonded to high 

performance computing. 

The great success of memories (both off-chip and on-chip) is due to the principle 

of locality that characterizes the data distribution in programs [7]. It can be divided into 

1) temporal locality, which describes the likelihood of accessed data to be accessed 

again in the near future and 2) spatial locality, which states that once a piece of data is 

accessed, nearby data are likely to be referenced later.    

The principle of locality led to the appearance of memory hierarchy which is 

organized into several levels. Figure 2.1 [2] shows the typical structure of memory 

hierarchy. 

 

Figure 2.1: The typical structure of memory hierarchy in computer system. 

As illustrated in Figure 2.1, there are 4 levels of memory in the hierarchy, from the 

register level to the hard disk level. The level closer to CPU saves data that were 

recently used or modified and data that may be probably used soon. For these reasons it 
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is fast but has small capacity and is more expensive in comparison to lower level 

memories. The access time between adjacent levels typically differs by two orders of 

magnitude, while the difference can even be three or four between the main memory 

level and the hard disk.  

When a piece of data is requested from the processor, it will be retrieved from the 

highest level (closest to the processor). If the data is not found, or in other words a miss 

occurs (in memories it is called page fault), the request is propagated further to the 

lower levels until the data is eventually located [8]. Thus, the large capacity and 

efficient utilization of the main memory can lead to fewer disk accesses thus saving 

millions of CPU cycles [9].  

One way to increase the memory space without adding extra physical resources is 

by using compression techniques. Data compression shrinks the stored data and 

increases the effective memory capacity thus creating fewer misses (in cache space) or 

fewer page faults (in main memory) and possibly improving overall performance. Data 

compression can be used in all the levels of the memory hierarchy in Figure 2.1, but 

aiming in different gains.  

Next section discusses the most important previous work in cache/memory 

compression. Our study applies the compression approach on the main memory level. 

2.2 Previous Studies  

Applying data compression to the cache and memory can increase their virtual 

capacity without adding extra area and increasing the power overheads. However, 

compression does not come for free as it may introduce extra latencies in the critical 

path possibly affecting performance as well as power overheads due to compression 

and decompression processes. Another obstacle of integrating compression in 

cache/memory is changes in the design and verification process that are required. 

Therefore simplicity is another important characteristic.  

Previous studies are focusing on proposing in most of cases simple compression 

schemes targeting to improve the utilization of memory resources but trading off high 

compressibility for design simplicity and short decompression latency. On the other 

hand, this study explores the potential of using more complex statistical compression 

approaches, such as Huffman coding that can deliver superior compression ratios. The 

rest of this section discusses related works by classifying them based on the 

compression algorithms they employ. 
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Significance-based compression:  

Alameldeen and Wood proposed a significance-based compression scheme called 

Frequent Pattern Compression (FPC) [10] in the cache level. FPC mainly targets to 

eliminate small values that are represented as big data due to fixed-size representations, 

by replacing them with fewer bits. That is because the few least-significant bits are 

enough to record all the information. This work defines 8 patterns that are common in 

cache data and can be represented with a 3-bit prefix. Once a word (32 bits) in the cache 

line matches one of the patterns, it will be encoded and stored with its prefix. For 

example, prefix 001 means the 32-bit word is a small signed integer that can be stored 

into 4 bits. Then only 7 bits (3 bits for prefix and 4 bits for data) are needed instead of 

32 bits. The compression factor ( 
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑐𝑎𝑐ℎ𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑐𝑎𝑐ℎ𝑒
 ) achieved is less than 1.5X, on 

average, and ideally no more than 2X. 

Ekman and Stenstrom exploit a variation of FPC (zero-based) [3] on the main 

memory level. They found that 55% of all bytes in the memory are zero for SPEC2K 

and few database workloads and target to eliminate zero bytes or null blocks by 

efficiently storing them. They also propose a small TLB-like structure that is used to 

quickly locate compressed blocks and pages. 

Value-based compression: 

Lots of previous studies on data compression can be categories as value-based 

compression schemes.  

Yang et al. proposed a simple scheme called Frequent value compression (FVC) 

[11, 12] where they try to squeeze two cache blocks into one line based on the 

observation that during the execution of a program, a small number of values that is 

predefined using profiling occupies about 50% of references for the integer 

applications of SPEC95. The FVC scheme exploits this observation by compressing 

some most frequent 32-bits values into smaller size. For example, the 7 most frequent 

32-bits values are encoded into 3 bits from 000 to 110. The other infrequent values are 

presented with the tag 111. 

On the other hand, the Base-Delta-Immediate (BDI) compression scheme, which 

was proposed by Pekhimenko et al., exploits spatial value locality [13] to compress 

cache blocks [14] and recently memory space [15]. BDI compresses cache blocks that 

contains nearby values using delta encoding. For example, a cache block may contain 

the following data values 0xafaf8890, 0xafaf8898, 0xafaf8845, etc.  FPC (or similar) 

could not compress these values, as they don’t follow an exact pattern. However, BDI 

uses one of them as a base and represents the rest using their difference (delta) from the 
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selected base. BDI increase the cache capacity by 1.53X, on average, and ideally by 2X 

improving slightly vs. FPC.  

Dictionary-based compression: 

Dictionary-based compression approaches encode common values using pointers 

to dictionaries which keep those values. A simple dictionary-based cache compression 

scheme was proposed by Molina et al. [16] achieving an overall compression factor of 

less than 1.4X due to the overheads of the large dictionary.  

A popular variation of dictionary-based compression algorithms is LZ77 [17]. 

Assuming there is a sequence of data to be compressed. A virtual window (dictionary) 

is defined with a constant length and added into the head of the sequence. That means 

the window is part of the sequence and its content changes due to its movement in the 

sequence. During the compression process, the window moves forward in the data 

sequence and keeps comparing the sequence data behind the window with its own 

content for the longest match. A match occurs when a data sequence behind the window 

is as same as part of its content. The matched data are encoded for compression purpose 

by using the corresponding pointer information of the window. For example, there is a 

sequence of character MFABCABCEDF. Define the length of window to be 4. While 

the window moves to the second character of the sequence, its content is FABC. The 

window searches for the match from the first character behind it which is A. In this case, 

the first 3 characters behind the window (ABC) is as same as part of its content which is 

the longest match. Then a combination of (1, 3, E) is used to represent ABC. Where 1 is 

the pointer of A in the window (as the pointer of F is 0), 3 presents the length of the 

matched data ABC, E is the first unmatched character behind the window. In the next 

step, the dictionary moves forwards to be ABCE and searches for a new match from 

character D. 

IBM company realized a scheme called MXT which is a parallelized derivative 

of LZ77 [18]. Typically, each 1-KB uncompressed data blocks are divided into 256B 

parts which are operated by 4 independent compression engines. Each engine contains 

a 255B content-addressable memory (CAM) while all the engines use the same 

dictionary for compressing the data in different parts. In this way, the compression 

process is speed up by four times. The compression factor of MXT is close to 2X. 

This is the only commercial example of memory compression.  
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Statistical compression: 

Huffman coding is a typical statistical compression algorithm. Huffman coding 

eliminates data redundancy using the statistical properties of data values, or in other 

words by encoding densely those data values that appear more frequently. After coding, 

more frequent values have narrower or at least equal length codewords (CWs) than less 

frequent values. A counter effect of Huffman coding is that, some infrequent values 

may have codewords longer than their original code. For example, it is possible for a 

16-bits value to be encoded using 20 bits. As a result, the compressibility of Huffman 

coding depends on the value distribution. To make it more concrete, the compression 

result would be better if fewer values occupy higher fraction of the total frequency. In 

this thesis, we focus on applying Huffman coding on main memory level.  

2.3 Huffman Coding 

Generally, one value is stored with fixed width related to its data type. For 

example, one integer value (defined as int in C++) occupies 32 bits no matter the value 

is 0 or 0xffffffff. Huffman coding can densely compress data by assigning narrower 

codewords to more frequent values and wider codewords to less frequent values. As a 

result, the total code length after encoding is shorter than the original one.  

Huffman codes are prefix codes which means it is impossible for one code to be the 

prefix of any other codes. Huffman coding is based on two observations of optimal 

prefix codes [19]: 

1. In an optimal prefix code, more frequent symbols will have shorter (or at least 

the same length) codewords than symbols that occur less frequently. 

2. In an optimal prefix code, the two least frequent symbols have the same length. 

Huffman code is proved to be optimal prefix code for a given set of symbols.  

2.3.1 Huffman Coding Algorithm  

Huffman coding is generated by first building the Huffman tree, which is a binary 

tree, using a particular methodology. Once the tree is built, the codeword assignment of 

all symbols is done. An example is made by using the data in Table 2.1.  
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Table 2.1 Information of the sequence to be compressed 

Symbol Weight(frequency of occurrence) Fixed-size code 

E 2 100 

C 3 010 

B 8 001 

A 10 000 

D 12 011 

F 14 101 

Assume a sequence including 6 different symbols which are sorted by their 

frequencies of occurrence (weight) in Table 2.1. As 2 bits can only represent 4 

possibilities, then at least 3 bits are needed to represent 6 symbols when using the codes 

of same length. The third column in Table 2.1 shows an example of fixed-size 

representation. The total code length of the sequence is 3*(2+3+8+10+12+14) = 147 

bits.  

Now consider using Huffman coding to represent the same sequence. Before 

building Huffman tree, all the symbols are sorted in ascending order by their weight to 

be a list which is already done in Table 2.1. In every step of establishing the Huffman 

tree, two symbols with the lowest weight are deleted from the list and added into the 

tree. A new node is generated in the tree as the combination of these two symbols and 

becomes the parent node of them. The combination node is written back to the list as a 

new symbol with the total weight of its two children so that the list remains sorted. 

Obviously, the number of symbols in the list is reduced by 1 after each step. The 

procedure continues until the list contains one symbol, the root of the tree.  

Figure 2.2 illustrates the algorithm of building the Huffman tree by using the data 

in Table 2.1. The adjacent steps are connected with arrows in the figure. In the first step, 

the two least frequent symbols in Table 2.1, E and C are added to the tree and their 

combination is represented as a new node with their total weight of 5. The new symbol 

called EC is written back to the list. When step 2 begins, the two least frequent symbols 

are B and EC. Thus, EC and B are combined together. A new node called ECB is 

generated in the tree while its corresponding symbol ECB is added into the list. The 

construction of Huffman tree follows the left-right, bottom-up rule. Left-right means in 

each step, the symbol with lower weight is always set to a consistent side of the branch 

(for example, left) and assigned with a consistent binary value (in this case, 0) as one bit 

of its Huffman codeword. As a result, the other symbol with greater weight is put on the 
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other side (right) with the rest binary value (1). Bottom-up rule means the Huffman 

codeword for each symbol is generated from the least significant bit to the most 

significant bit. In specific, as shown in Figure 2.2, after step 2 the least significant 2 bits 

of the Huffman codeword of symbol C are figured out as 01 (bold fonts with 

underline). Similarly, for symbol B, the least significant bit of its Huffman codeword is 

1 (italic fonts with underline).  

 

Figure 2.2: Algorithm of building Huffman tree. 

After 5 steps, the tree is generated and the assignment of Huffman codeword is 

done as shown in Table 2.2. 

 

 

 

 

 

 



 

11 

 

Table 2.2 Comparison between uncompressed/compressed symbols. 

Symbol Weight 
fixed-size 

code 

Total length of 

fixed-size codes 

(weight*code 

length) 

Huffman 

codeword 

Total length of 

Huffman codewords 

(weight*codeword 

length) 

E 2 100 6 1000 8 

C 3 010 9 1001 12 

B 8 001 24 101 24 

A 10 000 30 00 20 

D 12 011 36 01 24 

F 14 101 42 11 28 

Total 49  147  116 

The total length of the sequence by using Huffman codewords is 116, the 

compression factor (
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
) is 147/116=1.267X which means the 

representation of the sequence by using fix-size codes is 1.267 times long as the one 

using Huffman codewords. To evaluate the performance of a compression scheme, one 

way is making comparison between the compression result and ideal compression 

limitation. With the help of principle entropy, the compression limitation of the 

sequence can be calculated with Equation 2.1:  

 Limitation of sequence length = −∑WAi
∗ logb

WAi

Wtotal
 (2.1) 

W means weight (frequency of occurrence) of symbols while b is the unit of scale 

which can be set to 2 as we use binary code for representation. The limitation of 

compression size in this case is: 

−(2log2
2

49
+ 3log2

3

49
+ 8log2

8

49
+ 10log2

10

49
+ 12log2

12

49
+ 14log2

14

49
) = 114.8241 

That means at least 114.8241 bits are required to represent the sequence. As the 

length of the sequence by using Huffman codewords is 116 which is close to the 

compression limitation 114.8241, we demonstrate that Huffman-based compression 

approach has a high potential compressibility. 
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2.3.2 Drawbacks of Huffman Coding and Considerations 

Although Huffman coding has a great potential compressibility, several 

drawbacks of it may diminish its practicality in the context of memory compression. 

The thesis studies the impact of the main disadvantages of Huffman coding and 

explores the related questions as followed: 

1) Time cost for establishing value statistics: as Huffman codewords are based on 

the data distribution (are data-dependent), extra time is required prior 

compression to establish the data value statistics. Moreover, the value statistics 

should reflect the value distribution of the application accurately for building an 

efficient Huffman tree. The question is how many values are needed to be 

collected for building an effective Huffman tree. In Section 4.4, the compression 

experiments of building Huffman tree based on 7 million write memory accesses 

are implemented to explore this question. 

2) Overhead for storing VFT: the information of data distribution or the Huffman 

tree is necessary for decompression thus should be kept in the memory. Storing 

this information may introduce a significant area/power overhead. To address 

this problem, the thesis evaluates Huffman coding with the value frequency table 

(VFT) of different sizes. VFT stores the data distribution information of memory 

in which the values in memory are stored with their frequency of occurrence. 

Despite VFT-all which includes all the values in memory, the so called 

VFT-X-mfv only contains the X most frequent values. The values outside the 

table are infrequent values which are not compressed by Huffman coding scheme. 

By using VFT-X-mfv, fewer values are kept in the table thus introduce a smaller 

overhead and the memory capacity can be saved. Thus the second drawback of 

Huffman coding is alleviated. Another benefit of using VFT-X-mfv is that it may 

simplify the compression process. Assume a value to be encoded. The encoding 

program should search the value in the value-codeword table to find its 

corresponding Huffman codeword. Obviously it is easier to search a value in a 

small table than in a big one. Since VFT-X-mfv can introduce small 

value-codeword table than VFT-all, it may reduce the workload of table-scanning 

thus speeds up the compression process. The drawback of using a VFT-X-mfv is 

that the compression performance may degrade as less data values are encoded. 

In Section 4.3, we try different VFT sizes to find the best option for compression.  

3) Latency of decompression: as the decompression process is on the critical access 

path, the latency comes from the decompression must be kept low. In a regular 

Huffman scheme, the decoding time varies based on the codeword length. For 

app:ds:reflect
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example, a 10-bits codeword requires double decoding time than 5-bits codeword. 

However, the work on this thesis assumes a decompressor that is based on 

canonical Huffman coding [6]. This way, the decoding process is accelerated as 

it's broken in two pipelined stages: one detects a valid codeword (of any length) 

and the second retrieves the value using the previously detected codeword as 

index. The work of accelerating the decompression process is not discussed in 

this thesis. 

4) Inefficiency problem: Huffman coding may be inefficient according to improper 

design parameters, such as compression granularity which is the width of the 

value under compression. For Huffman coding, it is possible for an infrequent 

symbol to have a wider Huffman codeword than its original representation. The 

improper granularity selection may lead most values assigned with longer 

codewords which means time and power are wasted for meaningless or even 

pernicious coding. This problem is studied by looking at 3 different compression 

granularities (1 byte, 2 bytes and 4 bytes) in Section 4.2. Our results show that as 

the granularity size increases, less and less values are assigned with codewords 

longer than their original representations thus the potential compressibility is 

improved. 

5) Impact of value variation: as the application runs, the value distribution keeps 

changing. The compressibility of a static Huffman coding may degrade to an 

unacceptable low level during the execution of program, thus dynamic or 

semi-adaptive Huffman coding may be more suitable approaches. We study this 

issue by exploring the impact of value locality variation on compressibility which 

is introduced Section 4.4. 

2.4 Summary 

In this chapter, the typical memory hierarchy of 4 levels is first introduced. The 

lossless compression schemes can be implemented on all the levels of memory for 

different purposes while this thesis focuses on compressing data in the main memory. In 

Section 2.2, we discuss several important compression algorithms on cache/main 

memory levels with their performance comparisons. Unlike most prior proposed 

compression schemes which are fast but inefficient, this thesis studies the statistical 

compression algorithms such as Huffman coding which have a high potential 

compressibility at the expense of high latencies. In Section 2.3, the theory and an 

example of Huffman coding are presented. The main drawbacks of Huffman coding 

algorithm together with several questions considered in this thesis are also discussed in 
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this section. Based on these questions, we implement different experiments to explore 

the characteristics of our Huffman coding compression algorithm on main memory 

level which are discussed in the later chapters.   
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3. Experimental Setup  

This Chapter discusses the experimental setup of this thesis. The requirements of 

the experiment are first introduced. Later, we detail the methodology followed in order 

to setup our experimental environment combining different tools and writing our own 

tools. Moreover, it is explained how this setup is adapted when different parameters 

which this thesis analyzes, are included.  

Typically, the setup required to generate Huffman coding mainly consists of 4 

steps, as shown in Figure 3.1. Firstly the selected benchmark application is executed 

while the information of memory accesses during the execution are collected (Step1). 

Next, the memory footprint is generated in Step2 according to the collected data from 

Step1. In Step3, VFT of different sizes and granularities are established which store the 

value distribution information of memory footprint. In the last step, Huffman 

codewords are generated based on VFT and the compression experiments are 

implemented for evaluating the potential compressibility of the scheme.  

 

Figure 3.1: The typical Huffman coding experiment process. 

Each step of the experiment is discussed in a unique section. Step1 is introduced in 

Section 3.1. To make a reliable evaluation of Huffman coding scheme, a suitable set of 

applications are needed as the compression targets. In Step1, 7 benchmark applications 

are selected and executed and the memory access operations during the executions are 

traced and recorded in time order. The memory accesses information obtained in this 

step is needed for establishing the data value statistics which is necessary for building 

Huffman tree.  

Section 3.2 describes Step2 of the experiment. The data in memory keeps 

changing during the execution of application, while the dynamic value distribution is 

needed for building Huffman tree. Memory footprint is referred to the amount 
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of memory (on the page granularity) that has been accessed by the application for a 

specified execution period and is used to establish the value distribution statistics 

required. Hence in Step2, memory footprint is established according to the memory 

trace files from Step1. To make it more concrete, the addresses and data of the accessed 

blocks are used to build memory pages or modify them by reading the memory trace 

files from the beginning of an execution phase. Reading from the trace can stop at any 

possible time instance to perform analytical studies.  

While the memory footprint is being established, we can start extracting the value 

distribution information using the format of the Value Frequency Table (VFT). This is 

the goal of Step3. The VFT keeps all the values and their frequencies of occurrence as 

they appear in the memory footprint. Step1 records the memory footprint, i.e., the 

addresses requested by the application and the corresponding data content of the virtual 

page (the access address is aligned to) in sequence of bytes. The study investigates 

several value granularities. Thus in Step3, we read the footprint and establish VFTs 

with 3 different value granularities which are 1 byte, 2 bytes and 4 bytes. This step is 

presented in Section 3.3. 

VFT is the premise of building Huffman tree. As VFT is generated in Step3, the 

Huffman tree can be established then. In Step4, we first establish the Huffman tree with 

different parameters, such as the granularity, VFT size and different execution time 

points of the applications. Based on the generated Huffman codewords, the potential 

compressibility of the compression scheme is evaluated. Section 3.4 makes a brief 

introduction of this step while more details together with the experimental results and 

analysis are introduced in Chapter 4. 

The flow chart that depicted in Figure 3.1 is the main experimental flow that is 

followed in the different experiments of this thesis. However, extra steps may be 

included for some experiments depending on particular requirements.  

3.1 Step1: Data Collection  

The main work of Step1 is executing an application and tracing its memory 

accesses during the execution. More specifically, this step can be divided into 3 parts as 

shown in Figure 3.1. First, a suitable application is selected and executed (Section 

3.1.1). Then, the memory accesses information of the execution is traced (Section 3.1.2) 

and recorded (Section 3.1.3).  

 

http://en.wikipedia.org/wiki/Random_access_memory
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3.1.1 Benchmark Execution  

To make a reliable evaluation of Huffman coding scheme, a suitable set of 

applications are needed as the compression targets. Six integer and one floating point 

applications from the SPEC2006 benchmark suite are selected in this thesis. Different 

benchmarks are for different kinds of calculating tasks. For example, the benchmark 

mcf is used for simulating the vehicle scheduling by using a network simplex algorithm. 

As a result, the value distribution varies hugely between different benchmarks which 

make our compression results to be more universal.  

SPEC2006 benchmark workloads have execution times on the order of hundreds 

of billions of instructions, while some of them have memory footprints on the order of 

GBs. Simulating or tracing for their whole execution requires significant amounts of 

time and space resources. The SimPoint methodology is adopted in this thesis to reduce 

the size of workloads by tracing in particular representative execution phases. For each 

application, two simulation points (simpoints) are used; each one has an interval of 109 

committed instructions. For leslie3d, 12 simpoints of interval size of 250-M committed 

instructions are used instead due to lack of 1-B simpoints for this application. The 

simpoints are assigned with different weight according to their contribution to 

particular performance metrics, mainly CPI (cycles per instruction). By using the 

SimPoint methodology, we focus on the result of simpoints instead of observing the 

whole benchmark application. The interval decided by one simpoint is called one phase. 

The Huffman-based memory compression experiments are implemented in each 

phase-unit. The detail information of each phase for seven applications is shown in 

Table 3.1 

Table 3.1 Information about each phase in 7 applications. 

Benchmark-phase Start instruction
th

 End instruction
th

 Weight 

xalan-p1 187000000579 188000000584 0.339176 

xalan-p2 969000003110 970000003111 0.660824 

omnetpp-p1 23999999635 24999999636 0.0179533 

omnetpp-p2 342000000749 343000000750 0.982047 

astar-p1 133000000644 134000000648 0.619289 

astar-p2 343000002234 344000002237 0.380711 

mcf-p1 25000000144 26000000145 0.285266 



 

18 

 

mcf-p2 161000000751 162000000752 0.714734 

bzip2-p1 92000000550 93000000570 0.924051 

bzip2-p2 210000001282 211000001288 0.0759494 

hmmer-p1 31000000510 32000000512 0.786268 

hmmer-p2 379000006210 380000006250 0.213732 

leslie3d-p1 181250010845 181500010874 0.0666848 

leslie3d-p2 219750013126 220000013155 0.123551 

leslie3d-p3 325250019699 325500019701 0.0627301 

leslie3d-p4 329750019982 330000019992 0.0807309 

leslie3d-p5 564000034050 564250034064 0.11046 

leslie3d-p6 729250044718 729500044723 0.0754125 

leslie3d-p7 873500053660 873750053707 0.109914 

leslie3d-p8 916750056165 917000056173 0.084822 

leslie3d-p9 1007500061678 1007750061683 0.0842766 

leslie3d-p10 1033500063389 1033750063401 0.0724124 

leslie3d-p11 1096750067162 1097000067164 0.062321 

leslie3d-p12 1156750070773 1157000070775 0.0666848 

3.1.2 Pin Instrumentation 

In the experiment, we need to accurately trace and record all the memory accesses 

during the phase execution. That is because of the methodology we used in the thesis 

for evaluating our Huffman-based compression scheme. To be more specific, there are 

2 ways to evaluate the performance of the compression scheme on different benchmark 

applications. The first and straightforward way is implementing Huffman-based 

compression/decompression for all the memory accesses during the execution and 

observing how much memory space could be saved. There are 2 disadvantages of this 

approach. First and most important, implementing encoding/decoding for the whole 

execution phase introduces a vast number of calculations which is time/power 

consuming. The second drawback is that the differences between two program runs 

may introduce different value distribution making it difficult to verify the correctness 
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and guarantee the reliability of the experiment. For example, the same compression 

scheme may provide different compression results, possibly influencing the 

performance evaluation.  

The second way that is applied in this thesis is a simulation approach in which the 

Huffman coding is generated using a record of the application’s traced data. In 

particular, the benchmark application executes only once. During the execution, every 

memory access is traced and recorded. After the execution, we review the record files 

and the process of value variation in memory during the execution can be simulated. 

Thus, we can simulate that execution process and evaluate our Huffman-based memory 

compression scheme on it. To evaluate the compression performance, it is no need to 

implement encoding/decoding anymore which is time-consuming but necessary in the 

first methodology we mentioned. In this way, the length of each Huffman codeword 

(CL) is used to calculate the compressed size of its corresponding value. Thus the 

compressed size of each memory page can be worked out by adding all the CLs of the 

values in the page together. As a result, the evaluation task is finished without 

encoding/decoding which is helpful for time saving. Besides, the compression would 

not be influenced by the different program runs anymore since the record provides a 

static value statistics. However, the way applied in the thesis makes it extremely 

important to trace and record the memory accesses accurately. If the recorded 

information is different from the real situation, all the experimental results could be 

meaningless. For that reason, a professional tool is needed for tracing the application 

execution.      

Pin tool—a dynamic binary instrumentation tool developed by Intel Company [20] 

is applied for the instrumentation of the benchmark applications. Pin enables the 

analysis at the instruction level. Thus, every memory accesses can be traced by Pin 

without any influence on the execution.  

Figure 3.2 shows how the Pin program traces each memory accesses in a phase 

(phase is introduced in Section 3.1.1). During the execution of the application, once 

there is a new instruction, the instruction counter in Pin is added by 1 and the simpoint 

situation is checked. If the instruction is included in the range of any simpoints (phases), 

the function for tracing and recording will be activated, otherwise it is kept in sleep 

mode.  

In the next step, if the instruction is in any phase and it results in any memory 

accesses, the memory accesses must be traced and recorded. One memory access can be 

classified as 4 types: 
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1. New read: this is a read access, and the address is in a new physical memory 

page which has never been accessed before.  

2. Old read: this is a read access, but the address reads from an old page.  

3. New write: this is a write access, and the address is in a new memory page. 

4. Old write: this is a write access, but the address writes in an old page.  

The program records the access differently based on its access type. As the 

working environment of this thesis is Linux OS which organizes memory resource in 

pages of 4KB, the information of all the pages touched by the program need to be 

recorded for establishing memory footprint in the next step of the experiment (Step2). 

Thus, if the access is new (read/write), the program should record the information of the 

new accessed page of 4KB. The read access does not change the content of memory. 

Hence, to save space the program records nothing about an old read access. When it 

comes to a write access, normally several bytes in the memory are rewrote which need 

to be recorded by the program.   
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Figure 3.2: The process of Pin instrumentation. 

As shown in Figure 3.2, the accesses of large size (more than 8 bytes) are handled 

specially. The biggest data type in C++ is ‘long long int’ which is 8 bytes. Thus for the 

accesses larger than 8 bytes, it is necessary for the program to use a loop to instrument 

the accesses byte by byte. It must be mentioned here that as data are manipulated by 

X86 ISAs using little-endianness, another loop is needed to inverse the sequence of 

bytes before storing it into the record file. 

The size of record files should be kept smaller than 67MB which is the size limit 

for reading by the software tool protocol buffer in the next part of the experiment 

(Section 3.1.2). Thus, a counter is set to estimate the size of the file. Once the counter 

reaches its upper bound, the current file will be closed and a new empty file will be 

generated. Thus, thousands of small record files are generated instead of a huge file. 
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By following the process as shown in Figure 3.2, all the memory accesses in the 

phases can be traced and recorded accurately. However, as the record files have a huge 

total size, some modifications should be done for saving the space. Despite the 

overlook of old read accesses, a modification for recording the new accessed pages is 

applied in the program. That is, when a new page is accessed, we only record the 

address of the page head followed with 4KB value information instead of recording 

addresses of every single byte in the page. 

To further reduce the size of record files, a software tool called protocol buffer is 

applied in this thesis which is introduced in section 3.1.3.   

3.1.3 Protocol Buffer  

As mentioned in section 3.1.1, each phase includes 1 Billion (10
9
) instructions. 

Although not all the instructions introduce memory accesses, there are still millions of 

memory accesses need to be recorded increasing the size of record files. To save the 

space, the Google protocol buffer [21] is used to store the data in an efficient way. The 

protocol buffer applies a scheme which stores smaller values with smaller size to meet 

the compression purpose. Another benefit of using protocol buffer is that the data after 

converting into protocol buffer type are well structured and easily to be managed.  

To convert the regular record files into protocol buffer type, one message file is 

necessary to define the parameters in the record file as shown in Figure3.3. 

 

Figure 3.3: Parameters used in record file. 

In the memory accesses record files, 4 parameters which are access address, 

access type, access size and access value are used to record the information of a 
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memory access. To convert them into protocol buffer type, their data type should be 

defined in the message file. It is meaningful to say that there are two types of values 

defined in the message file as shown in Figure 3.3 which are value1 and value2 with 

different data types of unit64 and string, respectively. That is because the large-size 

access problem introduced in Section 3.1.2 also occurs when processing the recorded 

data using protocol buffers. To address this problem, value2 is defined for converting 

the access values larger than 8 bytes since string type has an unlimited upper bound of 

size. For the access smaller than 8 bytes, value1 is used for converting the access value 

as its data type is unit64 (unsigned 64 bits integer).   

In Step1 of the experiments, the application, Pin tool and protocol buffer execute 

in parallel. Thus, at the end of the step, we obtain thousands of record files of memory 

accesses in protocol buffer type. 

3.2 Step2: Memory Footprint   

After getting the record files of memory accesses, the next work is constructing 

the memory footprint defined as Step2 in Figure 3.1. The memory footprint is basically 

which addresses that processor requests have been touched so far by the program. In the 

thesis, we defined memory footprint as the memory pages touched and the 

corresponding data at the end of the phase since data are organized in pages in the 

memory.  

The memory footprint is constructed by reading all the memory accesses in the 

access time order. In particular, we first generate a data structure like a big matrix to 

represent the memory which is null at the beginning. Next, we review the history of 

data changes in memory during the execution by reading the record files from Step1. 

When there is an access of new type (new read/new write), we add the information of 

the whole page into the matrix. As the content of memory is altered by every write 

access, we need to modify the certain part of the matrix to emulate the changes in 

memory by the write accesses. To build the footprint, we should read all the memory 

accesses in the phase for updating the matrix. 

To manage the value updates efficiently, the program was developed using the 

software library called Standard Template Library (STL) in C++ programming. The 

dedicated data structures in STL called containers as vector and map are efficient in 

sorting and searching. Here, the program uses the matrix-like structure as below to 

represent the content in memory, where m1 is the name of a set of map containers: 
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map < unsigned long int, vector<short unsigned int> > m1; 

    

The map implements a hash. One map element has two parameters which are key 

and value. To make it clear, we rename the value of the map element to be weight. 

Different map elements must have different keys. Thus, the key can be used to represent 

the address of one specific page in the memory and the weight is used to store the 4KB 

values in the page. Thus in m1, the weight is a vector which includes 4096 short 

unsigned integer values to store each byte in a page. In practice, once a new access 

occurs, its address information will be read first by the program. The most significant 

bits of the address as its page address will be compared with all the existing keys. If 

there is no key the same as this page address, it means the access occurs on a new page. 

Thus, a new map element will be generated with the key value of this page address. The 

weight of the new map element is set to be 4096 zero-bytes first, and then is updated by 

this access. On the other hand, if the access occurs on an old page, its page address will 

be found in the group of map elements. In this case, several bytes in the weight of that 

certain element will be rewrote according to this access.  

Google protocol buffer is still needed in Step2 for reading the record files in 

protocol buffer type. However, as the memory footprints are usually small, they can be 

stored regularly without the compression by protocol buffer. At the end of Step2, the 

footprint for each phase is obtained.  

3.3 Step3: VFT Statistics 

As shown in Figure 3.1, we obtain the footprint at the end of Step2. In Step3, the 

value frequency table (VFT) as the premise of building Huffman tree can be generated 

base on the footprint. VFT records all the values appear in the memory footprint and 

sorts them in ascending order of their frequencies of occurrence. In other words, VFT 

shows the value distribution information of the memory footprint.  

In the footprint, the content of each memory page is recorded byte by byte. For 

Huffman coding, the granularity which is the width of the value under compression 

could vary. Thus in Step3, VFTs of three different granularities, 1 byte, 2 bytes and 4 

bytes, are generated from the same footprint. Despite the statistics of 1 byte value, the 

program should combine the certain number of nearby bytes for making the statistics of 

2 bytes or 4 bytes values. For example, the first to fourth byte in the page are selected 

and combined together as a value of 4 bytes. Then the program turns to the next 4 bytes 
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and so on. Endianess is taken into consideration when forming values of granularities 

larger than 1 byte.  

Similarly to Section 3.2, the map container of STL is used again to manage the 

values in memory footprint and their frequencies of occurrence. In this case, the key is 

used to present one specific value in the memory and the weight is used to present the 

frequency of the key. Each newly generated value is compared with the previously 

obtained keys. If it is different from those existed values, the value will be added as a 

new map element with the weight of 1. Otherwise, when there is an element with the 

same key as the value, its weight will be added by 1.  

As the program scans through the memory footprint, all the values appear in the 

memory footprint with their frequencies are worked out. After that, the program applies 

the bubble sort scheme to sort the values in ascending order of their frequencies of 

occurrence. It must be mentioned here that when the VFT is made based on the whole 

footprint at the end of the simulation phase, the value distribution statistics correspond 

to the memory content of that time instance. As the content in memory keeps changing 

during the execution, the data distribution may differ if we obverse the memory at 

another time point of the phase. For example, some values may be saved in memory for 

few cycles and then disappear during the application execution. Thus, they will not 

exist in the final footprint. 

3.4 Brief Introduction of Step4: Huffman Coding 

In Step4, the Huffman tree is established using the algorithm introduced in Section 

2.3.1 based on VFT. All the values in VFT are assigned with Huffman codewords 

following the rule that the values with higher frequencies are assigned with narrower 

codewords. The information of the values with their corresponding codewords is stored 

in a table. Next, the table is used for the performance evaluation experiments of 

Huffman-based memory compression scheme. In this thesis, the compression factor 

(CF,
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
 ) is used to evaluate the scheme performance. To calculate CF, it 

is no need to implement encoding/decoding on the compression target such as memory 

footprint. Instead, we calculate the compressed size with the information of codewords 

length then estimate the final compression factor, decreasing the time consumption. 

More details will be introduced in Chapter 4. 

 

 

app:ds:brief
app:ds:introduction


 

26 

 

3.5 Conclusion 

This chapter introduces the experimental setup in the thesis. Four main steps of the 

experiment are presented separately in details. The experiment need to be implemented 

in the order of steps because later steps always based on the result of previous steps. 

Several software tools and libraries are applied in this thesis. Some of them are essential 

in making the experiments more efficient.   
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4. Experimental Results and Analysis 

This Chapter presents the results of our study after running different Huffman 

coding experiments together with the detailed analysis on the obtained results. It begins 

with the investigation of the potential compressibility based on the memory footprint 

using VFT of unlimited size (VFT-all), in Section 4.1. In Section 4.2, the impact of 

compression granularity is evaluated. In Section 4.3, as VFT-all is expected to occupy 

too much memory space, we study the impact of a reduced VFT size (VFT-X-mfv) on 

potential compressibility. To address the problem, the impact of different VFT sizes on 

the established value statistics and consequently on the generated Huffman coding is 

studied. Until Section 4.3, all the Huffman coding is based on the memory footprint at 

the end of each execution phase. To make our scheme more practical, in Section 4.4 we 

build the Huffman tree at the beginning of each simulation phase of each application. 

The Huffman codewords are generated after counting 7M write accesses in the obtained 

trace and are used for compressing the data in the rest part of application. The interval 

of 7M write accesses corresponds to approximately 50M committed instructions, as 

one store instructions occurs every 5-6 instructions. In Section 4.5, the thesis discusses 

the fixed-size compression to address the fragmentation problem in compression. It 

must be mentioned here that the impact of value granularity, VFT size as well as the 

duration of sampling (prior code generation) have been studied in prior works in 

value-aware caches [5, 6]. This thesis extends those studies in main memory, while 

many of the findings corroborate with or complement prior works. 

4.1 Potential Compressibility of Huffman Coding  

As shown in Figure 3.1, the experiment process is divided into 4 steps. After the 

first 3 steps, VFT is generated. In Step4, the Huffman tree is established based on VFT. 

The values with higher weights (frequencies of occurrence) in VFT are assigned with 

narrower Huffman codewords as shown in Figure 4.1. 
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Figure 4.1: Huffman codewords assignment for xalan phase1, granularity of 4 bytes. 

Figure 4.1 presents the Huffman codewords of 5 most frequent and 5 least frequent 

values in VFT of application xalan phase 1. In this case, Huffman coding is based on 

the granularity of 4 bytes. As shown in Figure 4.1, the value 0x0(means 0 in 

hexadecimal) has the highest frequency of 13234620 occupying 42.33% space of 

footprint, thus assigned with the shortest Huffman codeword 0 which is only 1 bit long. 

As the original representation of a 4 bytes value is 32 bits long, the compression ratio of 

value 0x0 is 32X. From Figure 4.1 we can see that the value 0x43d only appears 1 time 

in the footprint and assigned with the longest Huffman codeword of 25 bits which is 

still narrower than 32 bits. In other words, all the values can be compressed into a 

smaller size by the scheme. This happens because the example value granularity is 

relatively coarse. Although 4 bytes (32 bits) can represent 232 values, only a smaller 

number of values appear in the memory according to the experiment’s findings. Later 

experiments show that for granularities of 1 byte and 2 bytes, the Huffman codewords 

of some values are longer than their original representations.  

The selected granularity is also important as it may affect the value distribution 

thus encoding. For example, if the granularity selected is 1 byte, the frequencies of most 

values follow uniform distribution resulting in fixed coding that has similar width to the 

original representation’s one. The maximum length of Huffman codewords is also 

highly related to the value distribution. For example, if the value probabilities follow 

the Fibonacci sequence, the depth of a Huffman tree with N values is N-1 [22], resulting 

in much larger codewords than the actual data width. On the other hand, Huffman 

coding is optimal when value probabilities are negative powers of 2.  

From this discussion, we could expect that the granularity of 4 bytes is a more 

suitable option for statistical compression than finer granularities. On the other hand, 

coarser granularities allow more value representations possibly increasing the 

(area/processing) requirements when establishing the value statistics. This is an 
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interesting trade-off that was studied in value-aware caches [6] and also is studied by 

this thesis in main memories.  

As the Huffman codewords are obtained, in the next step we evaluate the 

compression performance based on these codewords. In this section, we make the 

experiments by using the memory footprint at the end of each phase as the compression 

target. The value granularity selected is 4 bytes. Based on the length of each Huffman 

codeword, we can calculate the compressed size of each 4KB memory page in the 

footprint. This way, the generated coding is optimal as the used value frequency is 

measured using the final data content of the memory footprint. Hence, we can establish 

the upper bound of the compressed memory footprint for the examined applications and 

investigate the full potential for compression. Later in the thesis, we explore the 

compressibility of the memory footprint but using more practical ways of sampling and 

establishing the value frequencies.  

We use the Compression Factor (CF,  
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠
) metric to present the 

compressibility of Huffman coding. As one memory page is 4096 bytes large, the CF of 

page can be defined as  
4096

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑝𝑎𝑔𝑒
 . The total CF for the whole memory 

can be calculated as 𝐶𝐹𝑤/𝑜 𝑉𝐹𝑇 =
4096∗𝑛

∑𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑝𝑎𝑔𝑒
  , where n is the number of 

pages in the memory footprint. However, we should consider the cost of metadata for 

storing the VFT. For each value stored in the VFT, assuming 4-byte granularity, 8 bytes 

are needed to store the information: 4 bytes for storing the value and 4 bytes for the 

frequency. This way, CF is calculated using the following formula: 

 𝐶𝐹𝑤𝑖𝑡ℎ 𝑉𝐹𝑇 =
4096∗𝑛

8∗𝑛𝑣+∑  𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑝𝑎𝑔𝑒
 (4.1) 

Where 𝑛𝑣 is the number of values in the VFT. We evaluate the Huffman-based 

memory compression scheme on 7 benchmark applications. As mentioned in Section 

3.1.1, for leslie3d, 12 simpoints of interval size of 250-M committed instructions are 

used instead due to lack of 1-B simpoints. The results are shown in Figure 4.2. As the 

12 phases of leslie3d have similar compression results (measured in CF), we only 

present phase 1 and phase 2 of leslie3d in the figure. Besides, the workloads of 

calculating mcf-phase2 are too heavy due to the huge VFT in this phase. Thus, the result 

for mcf-phase2 is missing. More details about the compression are provided in Table 

4.1.  
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Figure 4.2: Compression factors with and without metadata of VFT for granularity of 4 bytes. 

As shown in Figure 4.2, the best compression result without considering metadata 

is almost 9X in the second phase of astar. Besides, the footprint of all the applications 

can be compressed into smaller size than their original representations. However, there 

is significant compressibility degradation when the overhead due to metadata is 

considered by using equation 4.1. For astar phase 2, the compression factor is reduced 

by 28% (CF decrease of 2.5X units), while the highest CFwith VFT of all the phases is 

obtained in mcf phase 1 instead. Moreover, the CFwith VFT of both phases in bzip2 is 

lower than 1X which means the compressed size of the footprint is even larger than 

uncompressed size. Hence, the compression for bzip2 is harmful for saving memory 

space. In conclusion, the impact of metadata on the compressibility is significant.  

 Table 4.1 Information about VFT and compression – Granularity: 4 bytes. 

Benchmark- 

phase 

Top10 

Occurrence 

Number of 

unique values 

VFT size 

(MB) 
CFw/o VFT CFwith VFT 

xalan-p1 52% 3235506 24.6850 3.8725 2.1495 

xalan-p2 29% 2885387 22.0138 3.4731 2.3916 

omnetpp-p1 67% 1590773 12.1366 4.9920 2.9206 

omnetpp-p2 63% 2738376 20.8922 4.6500 2.7613 

astar-p1 13% 71677 0.5469 2.4137 2.2794 

astar-p2 82% 638161 4.8688 8.9179 6.5050 

mcf-p1 81% 183045 1.3965 7.0717 7.0250 
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mcf-p2 74% 27431156 209.2831 NA NA 

bzip2-p1 1% 726036 5.5392 1.6724 0.5850 

bzip2-p2 <1% 1569030 11.9707 1.5796 0.5113 

hmmer-p1 3% 272263 2.0772 1.8454 1.0588 

hmmer-p2 3% 288733 2.2029 1.8370 1.1391 

leslie3d-p1 35% 649200 4.9530 2.3539 1.9611 

leslie3d-p2 35% 751143 5.7308 2.3274 1.9358 

Geometric 

mean 
  7.1561 3.0890 1.7530 

From the results we make the following observations: 

1. High potential compressibility: Huffman coding has a high 

potential compressibility when compared to other compression schemes. 

According to Table 4.1, the average CF of the 7 benchmarks with and 

without VFT consideration are 2.8749X and 3.8627X, respectively. We 

will later see that the former CF can be close to the latter after some 

modifications. As most previous studies report a compression factor of 

less than 2X, this result is quite promising. 

2. Impact of value distribution: Huffman coding is data dependent 

and the potential compressibility of it highly depends on the established 

value distribution. The values in the second column of Table 4.1 are the 

proportion of the most 10 frequent values in each benchmark application 

phase which is calculated by dividing the total frequency of top 10 

frequent values by total frequency of all the values and can be considered 

as a standard of value distribution. For example, in astar phase 2 and mcf 

phase1, the top 10 frequent values occupy more than 80% of the memory 

footprint after running the entire 1 billion instructions. As a result, 

Huffman coding achieves extremely high compression factors. To be more 

specific, the CF in astar phase 2 is 8.9179X if the metadata of VFT is not 

considered. On the other hand, if we use the equation 4.1 to calculate the 

CF with considering metadata, the CFwith VFT of astar phase 2 degrades to 

6.5050X and mcf phase1 achieves the highest CFwith VFT of 7.025X among 

all the applications. For the application bzip2, the top 10 frequent values 

occupy only 1% of the memory footprint, resulting in a negligible CF. In 

such cases, when accounting for the size of the VFT, the CF is reduced to 
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less than 1X, meaning that the overheads due to metadata were larger than 

the compression benefits. In such cases (bzip2 and hmmer), it may be 

better if compression is avoided.       

3. Impact of metadata overhead: as shown in Table 4.1, the 

potential compressibility (in terms of CF) is seriously degraded when we 

consider the overhead due to metadata. Fitting all the unique values appear 

in memory would require many MBs for the VFT. In particular, the phase 

2 of mcf has more than 27 million unique values that require a huge VFT 

of 209MB. Moreover, the workload of building a Huffman tree including 

27M values is prohibitive in terms of execution time as well as 

computational resources. The latter is the reason CF is not calculated for 

the second phase of mcf. There are two options to reduce the size of VFT. 

First, we can choose smaller granularity than 4 bytes. For example, if we 

consider the granularity of 2 bytes, there are at most 65536 (2 6 ) 

combinations, thus the size of VFT is no larger than 400KB. This option is 

tested in Section 4.2. In alternative, only the most frequent values are 

compressed and the rest are saved uncompressed instead. This way, less 

metadata is required due to VFT. This part of work is described in Section 

4.3. 

4.2 Impact of Compression Granularity 

In the previous section, we observe that the Huffman-based compression approach 

performs well with the granularity of 4 bytes. However, we find that the VFT of 4 bytes 

may introduce prohibitive overheads due to metadata that have a negative impact on the 

potential of compressibility. Using smaller value granularities can help reducing the 

size of metadata. For example, a value of 2 bytes has only 2 6 = 65536 possibilities 

or even 1-byte values result in 256 combinations. If we use 4 bytes to store the weight 

information, then the upper bound of VFT size for 2-byte granularity is(2 + 4)bytes ∗

65536 = 384KB. Similarly, the upper bound of 1-byte VFT is 1.25KB. Consequently, 

coding with different granularities is a meaningful work for exploring the characteristic 

of the compression scheme. 

We study 3 different granularities for Huffman coding on the same benchmarks. 

The results are shown in Figure 4.3 and Table 4.2. 



 

33 

 

 

(a) xalan 

 

(b) omnetpp 

 

(c) astar 
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(d) mcf 

 

(e) bzip2 

 

(f) hmmer 
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(g) leslie3d 

Figure 4.3: Compression factors with and without metadata of VFT for granularity of 1 byte, 2 

bytes and 4 bytes. 

 

Table 4.2 Information about compression granularity, value distribution and compression 

result of each phase  

Benchmark 

-phase 

Granularity 

(byte) 

Top10 

Occurrence 
CFwith VFT 

CFw/o 

VFT 

Number of values has 

wider codewords / 

Number of values 

(percentage) 

xalan-p1 

1 70% 2.1867 2.1867 206/256 (80.47%) 

2 60% 2.7260 2.7028 62221/65536 (94%) 

4 52% 3.8725 2.1495 0/3235506 (0%) 

xalan-p2 

1 73% 2.1301 2.1300 224/256 (87.5%) 

2 60% 2.6862 2.6703 63389/65536 (96.72%) 

4 29% 3.4731 2.3916 0/2885387 (0%) 

omnetpp-p1 

1 76% 2.5367 2.5366 208/256 (81.25%) 

2 71% 3.3502 3.3163 39434/45589 (86.5%) 

4 67% 4.9919 2.9205 0/1590773 (0%) 

omnetpp-p2 1 73% 2.3686 2.3686 204/256 (79.69%) 
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2 67% 3.1223 3.0968 58459/65536 (89.2%) 

4 63 % 4.6500 2.7613 0/2738376 (0%) 

astar-p1 

1 63% 1.5767 1.5766 213/256 (83.2%) 

2 58% 1.9216 1.8821 31342/42791 (73.24%) 

4 13% 2.4137 2.2794 0/71677 (0%) 

astar-p2 

1 92% 4.4834 4.4832 224/256 (87.5%) 

2 88% 6.5024 6.2697 58490/65536 (89.25%) 

4 82% 8.9178 6.5049 0/638161 (0%) 

mcf-p1 

1 89% 2.9814 2.9814 248/256 (96.88%) 

2 86% 4.6363 4.6322 44389/49178 (90.26%) 

4 81% 7.0717 7.0251 0/183045 (0%) 

mcf-p2 

1 82% 2.3576 2.3576 247/256 (96.48%) 

2 75% 3.2302 3.2279 59793/63485 (94.18%) 

4 74 % NA NA NA 

bzip2-p1 

1 44% 1.2382 1.2378 216/256 (84.38%) 

2 41% 1.3867 1.2556 61166/65536 (93.33%) 

4 1% 1.6723 0.5850 0/726036 (0%) 

bzip2-p2 

1 10% 1.0092 1.0090 32/256 (12.5%) 

2 1% 1.0253, 0.9996 26717/65536 (40.77%) 

4 <1% 1.5796 0.5113 0/1569030 (0%) 

hmmer-p1 

1 51% 1.3687 1.3683 216/256 (84.38%) 

2 49 % 1.5867 1.4226 60635/65536 (92.52%) 

4 3% 1.8454 1.0588 0/272263 (0%) 

hmmer-p2 

1 51% 1.3641 1.3637 216/256 (84.38%) 

2 49% 1.5863 1.4553 60876/65536 (92.89%) 

4 3% 1.8370 1.1391 0/288733 (0%) 

leslie3d-p1 1 38% 1.2266 1.2266 214/256 (83.59%) 
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2 34% 1.4524 1.4389 57618/65536 (87.92%) 

4 35% 2.3539 1.9611 0/649200 (0%) 

leslie3d-p2 

1 38% 1.2253 1.2253 220/256 (85.94%) 

2 34% 1.4539 1.4419 57852/65536 (88.28%) 

4 35% 2.3207 1.9358 0/751143 (0%) 

Interestingly, if we look at the CF without consideration of metadata due to the 

VFT (expressed as CFw/o VFT) as the ideal potential compressibility, then for all the 

benchmark applications, Huffman coding in larger granularity always has higher 

compression potential than the one in smaller granularity. In other words, G4 

(granularity of 4 bytes) is the best option for compression while G1 (granularity of 1 

byte) is the worst. We don’t explore coarser granularities (e.g., 8-byte) as data are 

typically processed in 4 bytes or smaller units in typical X86 ISAs. Thus compression 

with 8-byte or larger granularity would not achieve good result.   

CFw/o VFT establishes a high potential compressibility for 4-byte granularity. 

However, the cost of metadata must be taken into account to make for more practical 

cases. Smaller granularity can reduce the metadata overhead. Unlike the situation of 

4-byte granularity, we can see from Figure 4.3 that the compression factors with and 

without calculating the VFT size are extremely close when the granularity is 1-byte or 

2-byte. That means the impact of metadata is negligible when granularity is small. As 

a result, 4 of 7 benchmarks have the highest CFwith VFT (CF with consideration of 

metadata) when the granularity is 2-byte. Besides, astar has similar compression 

results between 2-byte and 4-byte granularities. In other words, in most applications 

2-byte is the best compression granularity option according to its low metadata 

overhead.  

Our third conclusion in this section is that for all the value granularities, the data 

distribution is always important to the compression performance. The data in the third 

column of Table 4.2 demonstrate that higher value of top 10 occurrences typically 

results in higher CFw/o VFT for all the compression granularities.    

Another interesting observation is shown in the last column of Table 4.2. When 

the granularity is 1-byte or 2-byte, many values in the VFT are assigned to longer 

Huffman codewords than their original representations. On the other hand, when the 

compression granularity is set to 4-byte, it is observed that all the codewords become 

narrower than 4 bytes. As granularity becomes finer, we observe that: (1) the number 
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of unique values appear in the memory grows (higher percentage of appeared unique 

values with reference to the total number of representable values -- Table 4.2) and (2) 

the amount of efficient
1
 Huffman coding is further constrained, as the bit-width of the 

original binary representation becomes shorter. For example, in astar-p2-g2 despite 

the high CFwith VFT of 6.27X, 90% of values in VFT are replaced by wider than 16-bits 

codewords. Therefore the compression algorithm builds a deep Huffman tree based on 

the VFT-all. As a result many values in the tree are associated to wider codewords 

than the initial representation! That is one of the reason that the CFw/o VFT of larger 

granularity is always better than smaller one. However, even if we can make all the 

codewords in G2 compression to be no wider than 16 bits, it is still hard for G2 to 

achieve a high CFw/o VFT as G4 if the application has a high potential for compressing. 

That is because although most values in G2 are assigned with wider codewords, their 

total frequency is low and the width of codewords is no wider than 18 or 19 bits in 

most cases. Even if all the wide codewords can be narrowed to 16 bits, the space freed 

up is much smaller than the saved space by applying G4 compression. The reason 

behind is G4 has advantage than G2 in compressing frequent values. For example, for 

G4 compression, 32 bits can be compressed to 1 bit while at least 2 bits are needed for 

G2 compression. For the applications which have high compression potentials, several 

most frequent values occupy most space of the footprint. As a result, G4 compression 

can benefit a lot from the concentrated value distribution and achieve a much higher 

CF than G2. However, high compressibility is not always guaranteed with coarser 

value granularity when metadata is considered. 

In conclusion, 1-byte granularity is not a good choice as it has lowest 

compression potential in the 3 granularity alternatives. 2-byte granularity is 

competitive since it has a much smaller VFT overhead than 4-byte one. For 4-byte 

granularity, it has the highest compression potential due to its good performance in 

compressing all the values in VFT. The overhead of keeping VFT in memory is a big 

problem but also means there is a potential for modification. To reduce the metadata 

overhead, the VFT-X-mfv can be considered which only includes top X frequent 

values keeping a small size. Another reason for considering VFT-X-mfv is based on 

the observation that for small granularities, most values are assigned with wider 

codewords when the VFT-all is used. Thus keeping those values out of VFT may 

benefit in time and power at the expense of a negligible performance losses. An 

attempt of VFT-X-mfv is done in the next section.  

                                                 

1 by efficient here we mean denser than the original representation’s width 
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In general, selecting the appropriate value granularity in statistical compression is 

not straightforward as there are many implications. This section as well as the next 

one explore this problem and analyze the implications. Another implication that is not 

discussed, as is beyond the scope of this thesis, is that the number of 

compressed/decompressed values in a block or a page increases, as the granularity 

becomes finer. This not only affects compression, as was previously discussed, but it 

may also affect the processing time, energy and throughput of the memory system 

when (de)compressing.  

4.3 Huffman Coding with VFTs of Different Sizes 

As discussed in Section 4.2, there are 3 drawbacks of using a full-size VFT for 

Huffman coding. First, it leads to a huge overhead for storing the information of VFT. 

Second, compressing all the values is not efficient when most of the codewords are 

wider than their original representations. Third, the processing overheads for encoding 

and decoding may grow due to the big VFT tables.  

On the other hand, the VFT-X-mfv can be considered. In a VFT-X-mfv, only a 

number of most frequent values are included. As a result, only these values are encoded 

using Huffman coding. Infrequent values that are not tracked by VFT are kept as 

uncompressed. Applying such algorithm can result in several benefits. First, less 

overhead due to metadata are needed. Second, the processing overheads of building the 

Huffman tree as well as encoding and decoding can be reduced. This may happen as 

searching for the corresponding codeword of a value in a small table takes less time 

than in a big table which includes thousands of entries. Finally, since the number of 

values decreases, the maximum and average lengths of codewords become narrower 

which may simplify the decoding work. The last benefit is based on the regular 

Huffman coding scheme which need to decode the codewords bit by bit. As mentioned 

in Section 2.3.2, a well-designed decompressor can accelerate the process and decode 

the codewords of any length in the same time. Thus, the decoding time cannot be 

reduced by shortening the average codeword length.  

 There are two main issues by using VFT-X-mfv: (1) distinguish between 

compressed and uncompressed values and (2) selecting an appropriate VFT size that 

will reduce the metadata without trading off the high compressibility potential.  

The first issue is tackled by using a unique code as prefix for all the uncompressed 

values to differentiate from other compressed values. As same as other Huffman 

codewords, the unique code should not be any other codewords’ prefix. Figure 4.4 is an 
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example of Huffman coding based on a VFT-128-mfv which only includes 128 values 

for 2-byte granularity. To be more specific, only the top 127 frequent values are 

assigned with Huffman codewords. The other infrequent values are saved 

uncompressed by preceding them with the same unique code. During the encoding 

process, frequent values are replaced by their corresponding codewords when stored. 

The infrequent values are stored with the prefix (unique code) and followed with their 

original representations. For decoding, when the decompressor detects the unique code, 

it will read the following 2 bytes for the information of that infrequent value. 

 

 

Figure 4.4: Huffman coding on VFT-128-mfv. 

In Figure 4.4, we can see that all the uncompressed values are stored with the prefix 

of 01. When the program detects 01, the next 16 bits (2 bytes) will be read. The total 

length of a compressed value is 2+16=18 bits which is 2 bits wider than its original 

representation. The unique code (prefix) for uncompressed values is calculated in the 

same way as other values in VFT. When building the Huffman tree, we combine all the 

infrequent values together as a new value. The frequency of the new value is the sum of 

all the infrequent values’ frequencies (subtracting the total count of the frequent values 

from the total values stored in the current memory footprint). In this case, the total 

frequency of infrequent values is high thus the prefix is only 2 bits long. Therefore, the 

more the infrequent values the narrower codewords are used to expand them.  

The second issue is which VFT size is ideal to be used for compression. We 

experimentally study this issue by using different VFT sizes to establish the frequency 

distribution of value sub-sets and therefore limiting set codewords. The results are 

shown in Figure 4.5 and Table 4.3. As G1 (granularity of 1 byte) is proved as a bad 

compression option, we focus on the comparison between G2 (granularity of 2 bytes) 

and G4 (granularity of 4 bytes). In each sub-figure of Figure 4.5, there are 6 curves for 

these two granularities. For each granularity, there are 2 curves for CFs (with and 

without accounting for the VFT size) and a third curve that illustrates the probability of 

weight of values that are kept uncompressed. As the size of VFT grows, the probability 

of uncompressed values is reduced until becoming zero 0. 
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(a) xalan-phase 1 

 

(b) xalan-phase 2 

Both phases of xalan show similar results. That is, when the VFT size is small, the 

CFwith VFT for G2 is higher than G4. As the size of VFT increases, the CF for G4 catches 

up then exceeds CF for G2. As the size of VFT become huge (more than 64K-entry for 

G4), the CFwith VFT degrades significantly due to the high metadata overload. 
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(c) omnetpp-phase 1 

 

(d) omnetpp-phase 2 

 

(e) astar-phase 1 
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(f) astar-phase 2 

 

(g) mcf-phase 1 

(h) mcf- phase 2 
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The applications xalan, astar, omnetpp and mcf have similar results. G4 can 

achieve the best compression result if the VFT-X-mfv is applied. On the other hand, 

the VFT-all introduces big overhead due to metadata and leads to a significant 

degradation of compressibility for G4 while the impact of metadata is much smaller 

for G2. That is why CF for G2 is higher than G4 for VFT-all in most cases.   

 

(i) bzip2-phase 1 

 

(j) bzip2-phase 2 
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(k) hmmer-phase 1 

 

(l) hmmer-phase 2 

 

(m) leslie3d-phase 1 
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(n) leslie3d-phase 2 

Figure 4.5: Compression factor and probability of uncompressed data vs. VFT size. 

For the applications with low compression potentials such as bzip2, hmmer and 

leslie3d, the benefit of applying bigger VFT is much smaller than in other applications. 

As a result, the curves of CF keep stable with the growing of VFT size in Figure 

4.5(i)-(n). More details about the compression are shown in Table 4.3.   

 

Table 4.3 Comparison between the compression results by applying different VFT sizes. 

Benchmark 

-phase 
Granularity 

Peak 

CFwith VFT 

CFwith VFT 

for VFT-all 

VFT size for 

peak CF with VFT 

/VFT-all (percentage) 

xalan-p1 
2 2.7165 2.7029 16384/65536 (25%) 

4 3.2433 2.1495 65536/3235506 (2.03%) 

xalan-p2 
2 2.6796 2.6703 16384/65536 (25%) 

4 3.1083 2.3916 65536/2885387 (2.27%) 

omnetpp-p1 
2 3.3371 3.3164 16384/45589 (35.94%) 

4 4.0387 2.9206 65536/1590773 (4.12%) 

omnetpp-p2 
2 3.1136 3.0968 16384/ 65536 (25%) 

4 3.8820 2.7613 131072/2738376 (4.79%) 

astar-p1 2 1.8883 1.8821 32768/42791 (76.58%) 
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4 2.2870 2.2794 65536/71677 (91.43%) 

astar-p2 
2 6.4816 6.3697 8192/65536 (12.5%) 

4 7.8401 6.5050 65536/ 638161 (10.27%) 

mcf-p1 
2 4.6342 4.6322 16384/49178 (33.32%) 

4 7.0457 7.0251 65536/183045 (35.8%) 

mcf-p2 
2 3.2290 3.2279 32768/63485 (51.62%) 

4 3.8609 3.8579* 65536/ 131072 (50%)2 

bzip2-p1 
2 1.3837 1.2557 256/65536 (0.39%) 

4 0.9875 0.5850 16384/726036 (2.26%) 

bzip2-p2 
2 1.0035 0.9835 8192/ 65536 (12.5%) 

4 0.9820 0.5113 16384/1569030 (1.04%) 

hmmer-p1 
2 1.5809 1.4226 256/65536 (256/65536) 

4 1.1939 1.0588 131072/272263 (48.14%) 

hmmer-p2 
2 1.5822 1.4553 256/65536 (256/65536) 

4 1.2438 1.1391 131072/ 288733 (45.4%) 

leslie3d-p1 
2 1.4444 1.4389 1024/65536 (1.56%) 

4 1.9611 1.9611 649200/649200 (100%) 

leslie3d-p2 
2 1.4473 1.4419 1024/65536 (1.56%) 

4 1.9358 1.9358 751143/751143 (100%) 

 

An exciting observation is found that for most of the applications the highest (peak) 

CFwith VFT is achieved with the VFT-X-mfv instead of the VFT-all. To be more specific, 

all the curves in Figure 4.5 show similar trend. That is, the compression factor is at a 

low level when VFT is small. As the number of values in VFT increases, CFwith VFT 

grows until it reaches the peak value. If we further increase the VFT size, the metadata 

overhead of VFT outweighs the gain of compression. Thus, CFwith VFT begin to decrease 

although CFw/o VFT still keeps increasing as more and more values are included in VFT 

                                                 

2
 For application mcf phase2, we only evaluate the compression results for VFT smaller 

than 131K-entry. 
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and therefore compressed. By using VFT-X-mfv, we can close the difference between 

CFwith VFT and CFw/o VFT. As a result, the average CFwith VFT for all the applications are 

2.6087X for G2 and 3.1150X for G4, respectively. In particular, the astar-p2 has the 

highest CFwith VFT of 6.4816X and 7.8401X for G2 and G4, respectively.  

By applying smaller VFT, most applications obtain the highest CFwith VFT by using 

the granularity of 4 bytes. However, for the applications with low compression 

potentials such as hmmer and bzip2, G2 achieves the best compression result. That is 

because the values in such applications distribute evenly which results in a poor 

compressibility for G4 compression. On the other hand, as G2 has much fewer value 

possibilities than G4 which introduces a relatively concentrated value distribution as 

shown in Table 4.2, the compression result for G2 is better than G4 in this way.   

As discussed in the beginning of the section, if different Huffman coding 

introduces close compression factors, the one with smaller Huffman tree and fewer 

values compressed is preferred since it can reduce the computational overheads of 

encoding and decoding. If we explore Figure 4.5 carefully, in most situations a 

16K-entry VFT (expressed as VFT-16K-mfv) which includes 16384 values is enough 

to achieve a CFwith VFT close to the peak CFwith VFT for G4 Huffman coding. VFT 

requirements can be further reduced without substantially compromising compression. 

For example, VFT-1K-mfv introduces the CFwith VFT 0.3911X (15.21%) lower than the 

one for VFT-16K-mfv. For G2, the CFwith VFT grows slightly as the VFT size increases. In 

most cases, the compression result is close to the peak value when the most frequent 8K 

values are kept in VFT. In general, the VFT of 128 and 8K values are two good 

alternatives for G2 compression. In particular, the CFwith VFT for VFT-128-mfv on 

average is 2.4372X which is 6.25% lower than the CFwith VFT (2.5894X) for 

VFT-8K-mfv. 

Another interesting finding is that when the application has a low compression 

potential (smaller than 2X), G2 is the best granularity option for compression. For 

example, G2 has a significant advantage than G4 for the compression of bzip2 (Figure 

4.5(a)(b)) and xalan (Figure 4.5(i)(j)). When it comes to the applications with high 

compression potential, two situations should be considered separately. If VFT is small, 

for example less than 1K-entry (including 1024 values), G2 may achieve better 

compression result than G4 as shown in Figure 4.5(d)(g)(h)). As VFT size grows, G4 

becomes the best granularity option and results in the peak CF for the application. It 

must be mentioned here that when CF for G2 and G4 are close, G4 is a better choice 

since it compress and decompress double size of data than G2 at one time which speeds 

up the encoding/decoding process.  



 

49 

 

4.4 Huffman Coding Based on 7M Write Accesses 

In the previous sections, in all experiments, Huffman coding is generated based on 

the value distribution of the footprint established at the end of the simulation phase 

(Simpoint). As mentioned in Section 2.3.1, for a given set of values and based on the 

value frequency distribution, Huffman coding can be so optimal that when used in 

memory compression the footprint size can be significantly reduced.  However, it is 

almost impossible in practice, to use optimal codewords in real-time compression, as 

the memory content and the used value-set changes. As the applications execute, the 

value distribution in memory keeps changing and static Huffman codewords may 

become more and more inefficient for compression. Thus, the compression 

performance during the execution should be monitored. If the compression factor 

decreases to an unacceptable level, say a set threshold, the new coding must be 

regenerated.  

In this section, we evaluate Huffman coding in a more practical approach and 

study how memory compressibility is affected through time. Another dimension of this 

problem is the amount of memory accesses needed to be recorded for establishing an 

accurate data distribution statistics and building an efficient Huffman tree. In previous 

experiments, the footprint, at the end of each application phase, is used instead but this 

way the value distribution depends on all the memory accesses during the phase. In 

reality, the time cost for data collection should be concerned. The amount of data to be 

collected should be enough to reflect the data distribution of the most frequently 

appeared values, but at the same time it must small enough for reducing the overhead of 

building Huffman tree.       

Based on above considerations, a new type of experiment is designed and applied 

in the following steps: 

1. Read the memory trace files (obtained in Step1 of a typical experiment as 

mentioned in Section 3.1) for a certain interval of the simulation phase and monitor 

the value statistics of the accessed pages in this interval. Instead of establishing the 

statistics and generating Huffman coding at the end of the phase, it is now done after 

having executed 7M write accesses. The interval of 7M write accesses corresponds to 

approximately 50M committed instructions, as one store instructions occurs every 5-6 

instructions.   

2. Generate VFT based on the accessed pages’ data after executing 7M write 

accesses. 

3. Generate Huffman coding based on the VFT. 
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4. This step can be divided into 2 parts to evaluate two intervals (7M-write accesses 

/ the rest part) of the phase. 

a) Evaluate the compressibility of the 7M write accesses interval of the 

phase. Unlike previous experiments, Huffman coding is not applied on 

the accessed pages in footprint but on each page accessed. For each 

access (read/write of an address that requires a new allocated page or a 

modification of an existing page), the compressed size of the page where 

the access appears is calculated and recorded. In previous experiments, 

the compression of each page in the footprint was monitored only once. 

In this experiment, it is possible for one page to be calculated for its 

compressed size for as many times as it is touched by the application
3
. 

This way, we monitor all the possible attempts of compressing each page. 

We calculate the compressed page size for each access during the interval, 

and the average CF can be calculated with the equation 4.2: 

     𝐶𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑛𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠∗4𝐾𝐵

𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎+∑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑎𝑔𝑒
 (4.2) 

 

Metadata is the VFT size, naccesses is the number of accesses in any 

interval we select. For example, we can calculate the CFaverage for the 

beginning part of the phase which includes one million accesses, thus 

naccesses is 1M. For calculating the CFaverage of the interval of 7M write 

accesses, naccesses is sum of the number of write accesses (7M) and all the 

new read accesses(defined in Section 3.1.2) which occur in the new pages 

that have never been touched by the program before. The CFaverage of the 

interval of 7M write accesses is used as a compression performance 

reference to see how much compression deteriorates when the same 

Huffman codewords are used for compression in the rest part of the 

phase. 

b) In step (b), we evaluate the compressibility of the rest part of the 

simulation phase using the Huffman codewords generated from step (a). 

As same as step (a), for each access we track the compressed size of that 

accessed page. According to equation 4.2, the changes of CFaverage from 

the beginning to the end of the interval can be monitored. Thus, the 

impact of data distribution variation on the compression performance can 

be evaluated.    

                                                 

3 For read accesses, the compressed size is calculated only for the first read that brings the page to memory. 
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5. In step 4(b), we focus on the global changing trend of the compressibility during 

the execution. Global compressibility is based on all the accesses appear in the phase. 

For example, when we select a time point to check the compressibility, the CFaverage 

until that time point is used to measure the compression performance which is 

calculated by counting all the compressed page sizes from the first access in the 

interval to the last access at the time point. If the CFaverage is high, we assume that the 

Huffman codewords are still efficient and there is no need for updating. However, it is 

possible that the Huffman codewords are not suitable anymore for compressing while 

this situation is covered up by the average compression result. Thus, in addition to 

how global compressibility changes, a local CFaverage is calculated as well. Local 

CFaverage is calculated after dividing the whole interval in smaller chunks. Thus, the 

Local CFaverage of one chunk is only based on the access in that chunk. In this way, if 

the global CFaverage is stable but the local CFaverage of a small interval (chunk) has a 

significant fluctuation, it may be important to generate new encoding to improve the 

compression performance, especially if the deviation from the reference compression 

keeps up growing for the next intervals. In this step, two types of local CFaverage have 

been calculated. First, we divide the whole interval into small chunks of 1M accesses 

and calculate the CFaverage of each 1M chunk. Second, as monitoring the whole 

process may be expensive in practice, we use a method of sampling instead. For each 

100K accesses, we only evaluate CFaverage of 10K accesses. In this way, 90% of 

compression monitoring can be saved.  

Due to time and simulation-resource limitations, we pick five of the seven 

applications for this experiment which include applications with different 

compression potentials (high/medium/low) and the experimental results are shown in 

Table 4.4. For omnetpp phase 1, there are few accesses during the phase thus we take it 

out of the experiment. Based on our previous discussion, for G4 granularity, we choose 

VFT-1K-mfv and VFT-16K-mfv instead of the VFT-all. For G2, the two alternatives 

are VFT-128-mfv and VFT-8K-mfv. 
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Table 4.4 Comparison between CFaverage for both intervals (7M/rest) of each phase, range of 

sampling of CFaverage monitoring and CFwith VFT (from Section 4.3)   

Benchmark-phase 

-granularity-VFT size 

CFaverage for 

the 7M write 

accesses 

interval 

CFaverage for 

the rest part 

of the phase 

Peak/bottomCFa

verage when  

sampling the 

compressibility 

monitoring 

CFwith VFT 

(result from 

Section 4.3) 

xalan-p1-g2-128 2.3870 2.3832 2.9355/1.5870 2.5877 

xalan-p1-g2-8192 2.3364 2.3232 3.1038/1.6041 2.7000 

xalan-p1-g4-1024 2.1652 2.1564 3.4005/2.1315 3.1786 

xalan-p1-g4-16384 2.5150 2.5060 3.4005/2.4319 3.2274 

xalan-p2-g2-128 1.9756 2.0012 2.8311/1.8577 2.5939 

xalan-p2-g2-8192 2.2126 2.2296 2.9297/2.0837 2.6717 

xalan-p2-g4-1024 2.8168 2.8329 3.4014/2.2273 3.0518 

xalan-p2-g4-16384 2.8925 2.8883 3.4577/2.3200 3.1000 

omnetpp-p2-g2-128 2.4624 2.4612 2.8042/2.3451 2.7832 

omnetpp-p2-g2-8192 2.5944 2.5787 2.9763/2.4594 3.1036 

omnetpp-p2-g4-1024 2.5814 2.5514 3.3983/2.3609 3.6145 

omnetpp-p2-g4-16384 2.8132 2.7770 3.5135/2.5920 3.7629 

astar-p1-g2-128 2.5786 2.5910 2.8009/2.5379 1.7661 

astar-p1-g2-8192 2.6131 2.6147 2.8011/2.5681 1.8644 

astar-p1-g4-1024 2.5309 2.5052 2.7648/2.3202 1.2560 

astar-p1-g4-16384 2.8125 2.7723 2.9930/2.6343 2.2731 

astar-p2-g2-128 4.0814 4.0723 6.2230/.5173 5.7936 

astar-p2-g2-8192 4.3423 4.3352 6.9536/3.8496 6.4816 

astar-p2-g4-1024 4.1029 4.0962 6.7555/3.5348 6.2595 

astar-p2-g4-16384 4.6422 4.6255 8.5006/4.0094 7.7442 

mcf-p1-g2-128 4.0583 4.0079 4.1342/3.6821 4.3082 

mcf-p1-g2-8192 4.2385 4.1751 4.3046/3.7765 4.6142 
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mcf-p1-g4-1024 4.3923 4.1911 4.6044/3.6090 4.6279 

mcf -p1-g4-16384 5.5592 5.3348 5.7487/4.4178 6.7911 

mcf -p2-g2-128 2.1952 2.1970 2.5233/2.0548 2.9761 

mcf -p2-g2-8192 2.2627 2.2611 2.7053/2.0871 3.1811 

mcf -p2-g4-1024 2.2031 2.2069 2.5237/2.0477 3.2348 

mcf -p2-g4-16384 2.2645 2.2663 2.6741/2.0891 3.6797 

bzip2-p1-g2-128 1.4831 1.1845 2.8406/1.0475 1.5269 

bzip2-p1-g2-8192 1.4669 1.1807 2.8068/1.0464 1.5119 

bzip2-p1-g4-1024 1.3091 1.1111 1.9641/0.9706 0.9849 

bzip2-p1-g4-16384 1.2797 1.0966 1.7761/0.9743 1.0086 

bzip2-p2-g2-128 1.2540 1.2290 1.6381/1.1412 1.0793 

bzip2-p2-g2-8192 1.2845 1.2709 1.5791/1.1805 1.1608 

bzip2-p2-g4-1024 1.2778 1.2176 1.7108/1.1016 1.1395 

bzip2-p2-g4-16384 1.3584 1.2983 1.7089/1.1048 1.1510 

 

The most important finding from the experiment is that the compression 

performance for static Huffman codewords keeps in a stable level during the execution 

of application. As shown in the second and third columns in Table 4.4, the CFaverage of 

the two parts (7M write accesses/rest) are close. Moreover, for the application xalan 

phase 2, the Huffman codewords based on the first 7M write accesses achieve better 

result for compressing the rest part of the phase. 

In most of cases, there is a small compressibility loss when applying Huffman 

coding, which is generated based on the first 7M write accesses of the phase, to the rest 

part of the phase. Figure 4.6 to Figure 4.14 show the results of 5 applications. 



 

54 

 

 

(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv  

 

 

(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv  
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(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv  

 

 

(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv  

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv  
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(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv  

 

 

(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.6: Compression based on accesses for xalan phase1.  

Figure 4.6 illustrates the compressibility changes for four different VFT size and 2 

granularities for xalan phase1. Figure 4.6(g)(h) express the compressibility changes by 

time for G4-VFT-16K-mfv. In Figure 4.6(g), the ‘X’ mark on the Y-axis shows the 

CFaverage of the first 7M write accesses interval. As we use the same codewords to 

compress the rest part of the phase, the global CFaverage keeps stable which is about 0.1X 

lower than the X mark as the circle solid curve shows. The rolling diamond solid curve 

is the local CFaverage of every 1M accesses chunk. Figure 4.6(h) presents the sampling of 

CFaverage monitoring. The curve has many peaks in a rough range of 0.1−
+ X for the 

application xalan phase1 while there is a peak CF which is 35.7% higher than the 

CFaverage for the whole interval.  
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(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

 

(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 
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(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 

 

 

(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.7: Compression based on accesses for xalan phase2. 

 

Xalan phase2 shows similar result as phase1. The difference of CFaverage between 2 

intervals (7M write accesses/rest) is 0.0136X (0.55%) on average.  
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(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

 

(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 
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(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 

 

 

(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.8 Compression based on accesses for omnetpp phase 2. 
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(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

 

(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 
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(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 

 

 

(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.9: Compression based on accesses for astar phase1. 

 

As shown in Figure 4.9(a), for astar-p1-g2-128, the CFaverage of the second 

interval (after 7M write accesses) of the phase is slightly higher than the CFaverage of 

the first interval by using the same Huffman coding from the first interval. That is 

because more values that are densely compressed with the established coding appear 

in the execution later. 

 

 

(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 
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(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

 

(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 
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(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.10: Compression based on accesses for astar phase 2. 

 

As shown in Figure 4.10, the applications with high compression potential such 

as astar-phase 2 introduce significant fluctuation of sampling of CFaverage monitoring. 

For example, as shown in Figure 4.10(h), the maximum value of CFaverage when 

sampling the compressibility monitoring is 8.5X which is 83.12% higher than 

CFaverage of the whole interval. Moreover, the CFwith VFT obtained from previous 

experiment in Section 4.3 which can be considered as ideal compression result is 

3.1187X (67.42%) higher than CFaverage in this case. It implies that Huffman coding in 

this case is inefficient. Hence, the Huffman codewords for astar phase 2 should be 

regenerated. 

 

 

(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 
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(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

 

(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 
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(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.11: Compression based on accesses for mcf phase1. 

 

 

 

 

(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 
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(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

 

(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 

 



 

74 

 

 

(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.12: Compression based on accesses for mcf phase2. 

 

 

 

 

(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 
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(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 

 



 

77 

 

 

(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.13: Compression based on accesses for bzip2 phase1. 

 

 

 

 

(a) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-128-mfv 
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(b) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-128-mfv 

 

 

(c) Global and local CFaverage vs. time, granularity of 2 bytes, VFT-8192-mfv 

 

 

(d) Sampling of CFaverage monitoring vs. time, granularity of 2 bytes, VFT-8192-mfv 
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(e) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(f) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-1024-mfv 

 

 

(g) Global and local CFaverage vs. time, granularity of 4 bytes, VFT-16384-mfv 
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(h) Sampling of CFaverage monitoring vs. time, granularity of 4 bytes, VFT-16384-mfv 

Figure 4.14: Compression based on accesses for bzip2 phase2. 

For all the applications, the sampling of CFaverage monitoring changes mostly less 

than 0.6X ( 0.3−
+ 𝑋 around the total CFaverage). Thus, it is no need to update the Huffman 

tree frequently. In conclusion, the static Huffman tree works sufficiently without update 

in most phases. This implies that the data distribution varies little during the execution 

of applications which is good news for Huffman coding compression. Besides, the 

deviation between global and local CFaverage can be used to define the threshold of 

regenerating the Huffman code.  

Moreover, we demonstrate that the information including 7M write accesses is 

enough for establishing an efficient Huffman coding. This conclusion is based on the 

result of the comparison between the CFaverage from this section and CFwith VFT from 

Section 4.3. The CFwith VFT is the ideal compression result based on the optimal 

codewords for compressing the footprint. Thus it can be used as the compression 

performance reference for comparing. The comparison result shows that the CFaverage is 

a little lower than CFwith VFT in most cases. The compression performance losses on 

average is 13.2 %( i.e.,
∑CF𝑤𝑖𝑡ℎ 𝑉𝐹𝑇

∑CF𝑎𝑣𝑒𝑟𝑎𝑔𝑒
− 1). However, it must be noted here the Huffman 

codewords for astar phase2 are inefficient that introduce 67.42% compressibility losses. 

Hence, the Huffman codewords for astar phase2 should be regenerated. In conclusion, 

the Huffman codewords according to 7M write accesses are efficient in most phases. 

However, the significant compressibility losses may happen in particular cases such as 

astar phase 2. Thus, it is necessary for monitoring the local compressibility during the 

execution. 
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4.5 Fixed-size Compression  

In previous experiments, the memory pages can be compressed to any possible 

sizes. This way of compression may increase the complexity of the memory 

management as the space freed up by compression has variable size which is hard to be 

used for storing other information efficiently. That is, as the sizes of compressed pages 

keeps changing during the execution, the size of freed up space (fragmentation) also 

changes. If the fragmented space is fully exploited by storing other compressed pages, 

storage problems may be introduced once the size of a compressed page grows. To deal 

with the fragmentation problem, fixed-size page compression can be used instead.  

In this section, we define five fixed-size frames to fit compressed pages 

(uncompressed page = 4KB): 4KB, 2KB, 1KB, 512B and 256B corresponding to the 

fixed-CF of 1X, 2X, 4X, 8X and 16X respectively. A page can be only compressed to 

one of these five fixed-sizes. If the actual CF of one page is between two of the 

fixed-CF, it is compressed by the smallest factor. For example, if a page has a CF of 

3.2X, it should be compressed by the factor of 2X but not 4X by using this scheme. This 

way, the fragmentation in memory due to compression has fixed size and can be 

handled easier and more efficiently. In Section 4.4, we calculate the compressed page 

size for each access and count all the compressed size for the CFaverage. In this section, 

we do the similar experiment but using the fixed-CF for compressing each accessed 

page. The experimental results for 5 applications are presented in Table 5.1. 

Table 4.5 Comparison between CFaverage (from Section 4.4) and CFfixed-size by applying 

fixed-size compression, the CF distribution of pages for fixed-size compression. 

Benchmar

k-phase-gr

anularity-

VFT size 

CFavera

ge 

CFfixed-siz

e 

Total 

accesses 

Number of pages (percentage) compressed 

with Fixed-CF of 

1X, 2X, 4X, 8X, 16X 

4
omnetpp-p2

-g2-128 
2.4612 1.8466 

166313233 

13816001(8.3072%), 152496395(91.6923%), 

837(0.0005%), 0(0%), 0(0%) 

omnetpp-p2-

g2-8192 
2.5787 1.8466 

13816002(8.3072%), 152494677(91.6912%), 

2554(0.0015%), 0(0%), 0(0%) 

omnetpp-p2-

g4-1024 
2.5514 1.8894 

13816001(8.3072%), 144332864(86.7838%), 

8164368(4.9090%), 0(0%), 0(0%) 

                                                 

4 As omnetpp-phase 1 includes few memory accesses, we exclude it from this experiment. 
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omnetpp-p2-

g4-16384 
2.7770 1.9056 

13816001(8.3072%), 141336088(84.9819%), 

11161144(6.7109%), 0(0%), 0(0%) 

xalan-p1-g2-

128 
2.3832 1.9925 

69169855 

462720(0.669%), 68339695(98.7998%), 

294857(0.4263%), 72583(0.1049%), 0(0%) 

xalan-p1-g2-

8192 
2.3232 1.9941 

429997(0.6217%), 68335736(98.7941%), 

330999(0.4785%), 73123(0.1057%), 0(0%) 

xalan-p1-g4-

1024 
2.1564 2.0007 

314930(0.4553%), 68302763(98.7464%), 

347481(0.5024%), 144638(0.2091%), 

60043(0.0868%) 

xalan-p1-g4-

16384 
2.5060 2.0033 

246541(0.3564%), 68327328(98.7819%), 

390818(0.565%), 144936(0.2095%), 

60232(0.0871%) 

xalan-p2-g2-

128 
2.0012 1.1716 

83890314 

59372345(70.7738%), 24393950(29.0784%), 

124019(0.1478%), 0(0%), 0(0%) 

xalan-p2-g2-

8192 
2.2296 1.6557 

17522752(20.8877%), 66212043(78.9269%), 

155519(0.1854%), 0(0%), 0(0%) 

xalan-p2-g4-

1024 
2.8329 2.0027 

372881(0.4445%), 82611237(98.4753%), 

782177(0.9324%), 124019(0.1478%), 0(0%) 

xalan-p2-g4-

16384 
2.8883 2.0026 

374759(0.4467%), 82609253(98.4729%), 

782283(0.9325%), 124019(0.1478%), 0(0%) 

mcf-p1-g2-1

28 
4.0079 3.2539 

217752746 

0(0%), 49922558(22.9263%), 

167830188(77.0737%), 0(0%), 0(0%) 

mcf-p1-g2-8

192 
4.1751 3.2558 

0(0%), 49766998(22.8548%), 

167985748(77.1452%), 0(0%), 0(0%) 

mcf-p1-g4-1

024 
4.1911 3.2426 

0(0%), 50855038(23.3545%), 

166897708(76.6455%), 0(0%), 0(0%) 

mcf 

-p1-g4-1638

4 

5.3348 3.2559 
20(0%), 49764213(22.8535%), 

167988513(77.1464%), 0(0%), 0(0%) 

mcf 

-p2-g2-128 
2.1970 1.5412 

31570405 

9424651(29.8528%), 22106206(70.0219%), 

4781(0.0151%), 34767(0.1101%), 0(0%) 

mcf 2.2611 1.5413 9424651(29.8528%), 22103761(70.0142%), 
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-p2-g2-8192 7226(0.0229%), 34767(0.1101%), 0(0%) 

mcf 

-p2-g4-1024 
2.2069 1.5401 

9451217(29.9370%), 22084363(69.9527%), 

58(0.0002%), 34767(0.1101%), 0(0%) 

mcf 

-p2-g4-1638

4 

2.2663 1.5410 
9428439(29.8648%), 22106634(70.0233%), 

565(0.0018%), 34767(0.1101%), 0(0%) 

astar-p1-g2-

128 
2.5910 1.7003 

121847816 

21612698(17.7375%), 99972386(82.0469%), 

262732(0.2156%), 0(0%), 0(0%) 

astar-p1-g2-

8192 
2.6147 1.7061 

21120968(17.3339%), 

100464116(82.4505%), 262732(0.2156%), 

0(0%), 0(0%) 

astar-p1-g4-

1024 
2.5052 1.6946 

22088350(18.1278%), 99496560(81.6564%), 

262906(0.2158%), 0(0%), 0(0%) 

astar-p1-g4-

16384 
2.7723 1.8490 

10086764(8.2782%), 111494761(91.5033%), 

266291(0.2185%), 0(0%), 0(0%) 

astar-p2-g2-

128 
4.0723 2.3826 

106378293 

4082661(3.8379%), 66008821(62.0510%), 

24201735(22.7506%), 12085076(11.3605%), 

0(0%) 

astar-p2-g2-

8192 
4.3352 2.4982 

3748643(3.5239%), 64135624(60.2901%), 

15631069(14.6939%), 22862957(21.4921%), 

0(0%) 

astar-p2-g4-

1024 
4.0962 2.4403 

4134215(3.8863%), 65376177(61.4563%), 

17287965(16.2514%), 19579936(18.4060%), 

0(0%) 

astar-p2-g4-

16384 
4.6255 3.7596 

4096072(3.8505%), 7697260(7.2357%), 

68221033(64.1306%), 26360142(24.7796%), 

3786(0.0036%) 

bzip2-p1-g2-

128 
1.1845 1.0131 

63068975 

61473322(97.47%), 1534017(2.4323%), 

61636(0.0977%), 0(0%), 0(0%) 

bzip2-p1-g2-

8192 
1.1807 1.0127 

61485620(97.4895%), 1578330(2.5025%), 

5025(0.00805), 0(0%), 0(0%) 

bzip2-p1-g4-

1024 
1.1111 1.0053 

62499385(99.0969%), 387344(0.6142%), 

161434(0.2560%), 20809(0.0330%), 3(0%) 
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bzip2-p1-g4-

16384 
1.0966 1.0037 

62640221(99.3202%), 363338(0.5761%), 

60662(0.0962%), 4754(0.0075%), 0(0%) 

bzip2-p2-g2-

128 
1.2290 1.0035 

116452964 

115671513(99.3290%), 717627(0.6162%), 

63824(0.0548%), 0(0%), 0(0%) 

bzip2-p2-g2-

8192 
1.2709 1.0026 

115852560(99.4844%), 600404(0.5156%), 

0(0%), 0(0%), 0(0%) 

bzip2-p2-g4-

1024 
1.2176 1.0114 

115852560(99.4844%), 600404(0.5156%), 

0(0%), 0(0%), 0(0%) 

bzip2-p2-g4-

16384 
1.2983 1.0113 

115852560(99.4844%), 600404(0.5156%), 

0(0%), 0(0%), 0(0%) 

Average 2.5981 1.8772   

In conclusion, the fixed-size compression scheme results in a significant 

compressibility loss. The compressibility degradation is 38.4% from 2.5981X which is 

the CFaverage from Section 4.4 to 1.8872X, on average. The main reason for this 

degradation of compressibility is because more than 30% of the pages are actually 

compressed by less than a factor of 2X, thus they are eventually stored uncompressed. 

Unfortunately, a high potential of compressibility is traded off for easier placement of 

compressed pages using fixed size frames. In addition, only a negligible amount of 

pages (0.005%) can be compressed by the factor of 16X making this fixed-size CF 

option unnecessary to consider. Interestingly, increasing the VFT size or granularity 

can hardly improve the compressibility, in contrast to the findings from our previous 

experiments. We further explore this phenomenon by dividing each fixed-CF option 

into 4 regions to get more details about the distribution of compressibility. The detail 

information of CF regions is summarized in Table 4.6.  

Table 4.6 Information of regions for each fixed-CF. 

Fixed-CF Low Mid-low Mid-high High 

1X <1X 1.0X-1.5X 1.5X-1.8X 1.8X-2.0X 

2X 2.0X-2.5X 2.5X-3X 3.0X-3.5X 3.5X-4.0X 

4X 4.0X-5.0X 5.0X-6.0X 6.0X-7.0X 7.0X-8.0X 

8X 8.0X-10X 10X-12X 12X-14X 14X-16X 

16X >16X 
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The variation of compressibility distribution due to the different granularities and 

VFT sizes are tested and the results are shown from Figure 4.15 to Figure 

4.23.Moreover, we investigate the CFfixed-size changes if extra fixed-CF options of 1.5X 

and 3X are allowed. The results are shown from Table 4.7 to Table 4.15. 

 

(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.15: CF distribution of pages by fixed-size compression for xalan phase1. 

 

More details about the fixed-size compression in xalan phase1 are shown in 

Table 4.7. The percentage of pages in each region (corresponding each pattern of each 

bar in the figure) of the Fixed-size CF options is listed in the table. As bigger VFT 

size and granularity are applied, some pages have compressibility improvement from 

the 2X-2.5X region to 2.5X-3X region. As a result, allowing compression by extra 

factor options of 1.5X and 3X introduces negligible improvement of 0.46% on the 

average CF as shown in the last column of Table 4.7.   
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Table 4.7 CF distribution of all compressed pages for xalan phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

69169855 

G2-128 

1X 
3599(0.78%), 150751(32.58%), 

227982(49.27%), 80388(17.37%) 

1.9925 2.0024 

2X 
67654004(99.00%), 274174(0.40%), 

97395(0.14%), 314122(0.46%) 

4X 
101681(34.48%), 52613(17.84%), 

29393(9.97%), 111170(37.70%) 

8X 
7664(10.56%), 10735(14.79%), 

9262(12.76%), 44922(61.89%) 

16X 0(0%) 

G2-8192 

1X 
3599(0.84%), 148473(34.53%), 

194753(45.29%), 83172(19.34%) 

1.9941 2.0031 

2X 
67668808(99.02%), 274534(0.40%), 

100773(0.15%), 291621(0.43%) 

4X 
137290(41.48%), 52829(15.96%), 

29633(8.95%), 111247(33.61%) 

8X 
7936(10.85%), 10772(14.73%), 2269(3.10%), 

52146(71.31%) 

16X 0(0%) 

G4-1024 

1X 
3599(1.14%), 58829(18.68%), 

176829(56.15%), 75673(24.03%) 

2.0007 2.0100 

2X 
67587197(98.95%), 245353(0.36%), 

234225(0.34%), 235988(0.35%) 

4X 
243469(70.07%), 30861(8.88%), 

63013(18.13%), 10138(2.92%) 

8X 
130835(90.46%), 2054(1.42%), 

10512(7.27%), 1237(0.86%) 

16X 60043(100%) 
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G4-16384 

1X 
2907(1.18%), 58752(23.83%), 

78441(31.82%), 106441(43.17%) 

2.0033 2.0115 

2X 
61943054(90.66%), 5901713(8.64%), 

204218(0.30%), 278343(0.41%) 

4X 
257383(65.86%), 35714(9.14%), 

78293(20.03%), 19428(4.97%) 

8X 
96083(66.29%), 36965(25.50%), 

6258(4.32%), 5630(3.88%) 

16X 60232(100%) 

 

 

 

(a) 2-byte granularity, VFT-128-mfv 
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(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.16: CF distribution of pages by fixed-size compression for xalan phase2. 

 

More details about the fixed-size compression in xalan phase 2 are shown in 

Table 4.8. As bigger VFT size and granularity are applied, most pages can be 

compressed by the fixed factor of 2X. Besides, as most pages have actual CF in the 

region of 1.5-2X for G2-VFT-128-mfv, there is a significant compressibility 

improvement of 42.9% by allowing extra fixed-CF option of 1.5X. 

 

 

Table 4.8 CF distribution of all compressed pages for xalan phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

83890314 
G2-128 

1X 
11008(0.02%), 0(0%), 37716538(63.53%), 

21644799(36.46%) 

1.1716 1.6742 

2X 
4637152(19.01%), 9578054(39.26%), 

9397556(38.52%), 781188(3.20%) 

4X 0(0%), 0(0%), 124019(100.00%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 1X 11008(0.06%), 0(0%), 348085(1.99%), 1.6557 1.9482 
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17163659(97.95%) 

2X 
45386060(68.55%), 10233901(15.46%), 

8736259(13.19%), 1855823(2.80%) 

4X 
31500(20.25%), 0(0%), 124019(79.75%), 

0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
11008(2.95%), 0(0%), 318882(85.52%), 

42991(11.53%) 

2.0027 2.2716 

2X 
15985358(19.35%), 37602795(45.52%), 

18567508(22.48%), 10455576(12.66%) 

4X 1439(0.18%), 0(0%), 780738(99.82%), 0(0%) 

8X 124019(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 
10688(2.85%), 320(0.09%), 320302(85.47%), 

43449(11.59%) 

2.0026 2.2888 

2X 
9457858(11.45%), 42462216(51.40%), 

18172896(22.00%), 12516283(15.15%) 

4X 
1355(0.17%), 190(0.02%), 780738(99.80%), 

0(0%) 

8X 124019(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 
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(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.17: CF distribution of pages by fixed-size compression for omnetpp phase2. 

 

More details about the fixed-size compression in omnetpp phase 2 are shown in 

Table 4.9.  
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Table 4.9 CF distribution of all compressed pages for omnetpp phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

166313233 

G2-128 

1X 
6(0.00%), (0.00%), 3815991(100.00%), 

0(0%) 

1.8466 1.9815 

2X 
79775073(52.31%), 63586128(41.70%), 

9126790(5.98%), 8404(0.01%) 

4X 837(100.00%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
8(0.00%), 1(0.00%), 4(0.00%), 

13815989(100.00%) 

1.8466 2.1176 

2X 
78554462(51.51%), 32449628(21.28%), 

40656673(26.66%), 833914(0.55%) 

4X 2554(100.00%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
6(0.00%), 4(0.00%), 13815991(100.00%), 

0(0%) 

1.8894 2.2277 

2X 
78552437(54.42%), 13254552(9.18%), 

22994690(15.93%), 29531185(20.46%) 

4X 8164284(100.00%), 84(0.00%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 
6(0.00%), 4(0.00%), 13815991(100.00%), 

0(0%) 

1.9056 2.2415 
2X 

11315969(8.01%), 79232643(56.06%), 

17916649(12.68%), 32870827(23.26%) 

4X 11161050(100.00%), 94(0.00%), 0(0%), 
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0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

 

 

(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.18: CF distribution of pages by fixed-size compression for astar phase1. 

 

More details about the fixed-size compression in astar phase1 are shown in 

Table 4.10. For most pages, the CF improvement due to larger VFT size and 

granularity is not enough for the pages to be compressed by 4X from 2X. As a result, 

the CFfixed-size for different granularities and VFT sizes are almost the same. On the 

other hand, extra fixed-CF option of 3X is helpful to improve the compressibility. As 

a result, the CF1.5+3X for G4-16K-mfv is 38.13% higher than the one for G2-128-mfv.     
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Table 4.10 CF distribution of all compressed pages for astar phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

121847816 

G2-128 

1X 
0(0%), 34422(0.16%), 21104290(97.65%), 

473986(2.19%) 

1.7003 1.8906 

2X 
937486(0.94%), 98917503(98.94%), 

117374(0.12%), 23(0.00%) 

4X 262156(99.78%), 576(0.22%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
0(0%), 360056(1.70%), 10567381(50.03%), 

10193531(48.26%) 

1.7061 1.8899 

2X 
1100594(1.10%), 99230993(98.77%), 

132408(0.13%), 121(0.00%) 

4X 262156(99.78%), 576(0.22%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
2073993(9.39%), 17291733(78.28%), 

2167127(9.81%), 555497(2.51%) 

1.6946 2.2342 

2X 
527074(0.53%), 275903(0.28%), 

98691933(99.19%), 1650(0%) 

4X 
7(0.00%), 262312(99.77%), 11(0.00%), 

576(0.22%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 
49809(0.49%), 2107582(20.89%), 

984149(9.76%), 6945224(68.85%) 
1.8490 2.6114 

2X 
11003298(9.87%), 963722(0.86%), 

99216344(88.99%), 311397(0.28%) 
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4X 
265586(99.74%), 129(0.05%), 576(0.22%), 

0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

 

 

(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.19: CF distribution of pages by fixed-size compression for astar phase 2. 

 

More details about the fixed-size compression in astar phase 2 are shown in 

Table 4.11. As shown is Figure 4.19(d), the compression for G4-VFT-16K-mfv 

introduces many pages to be compressed in 4X which leads a significant improvement 

of CFfixed-size(CF by applying fixed-size compression). 
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Table 4.11 CF distribution of all compressed pages for astar phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

106378293 

G2-128 

1X 
527(0.01%), 26520(0.65%), 

3981115(97.51%), 74499(1.82%) 

2.3826 3.2124 

2X 
523352(0.79%), 4432833(6.72%), 

3044101(4.61%), 58008535(87.88%) 

4X 
8334061(34.44%), 1648752(6.81%), 

3720749(15.37%), 10498173(43.38%) 

8X 
12077441(99.94%), 7635(0.06%), 0(0%), 

0(0%) 

16X 0(0%) 

G2-8192 

1X 
0(0%), 6362(0.17%), 72782(1.94%), 

3669499(97.89%) 

2.4982 3.2124 

2X 
390485(0.61%), 1987844(3.10%), 

4196406(6.54%), 57560889(89.75%) 

4X 
9475372(60.62%), 1702893(10.89%), 

1316601(8.42%), 3136203(20.06%) 

8X 
22655281(99.09%), 207676(0.91%), 0(0%), 

0(0%) 

16X 0(0%) 

G4-1024 

1X 
1114(0.03%), 133244(3.22%), 45292(1.10%), 

3954565(95.65%) 

2.4403 3.3105 

2X 
226585(0.35%), 4431674(6.78%), 

3006870(4.60%), 57711048(88.28%) 

4X 
8476574(49.03%), 1470704(8.51%), 

1702715(9.85%), 5637972(32.61%) 

8X 
9709058(49.59%), 9758700(49.84%), 

106744(0.55%), 5434(0.03%) 

16X 0(0%) 
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G4-16384 

1X 
2200(0.05%), 122461(2.99%), 31438(0.77%), 

3939973(96.19%) 

3.7596 4.1049 

2X 
40287(0.52%), 1326624(17.24%), 

3915045(50.86%), 2415304(31.38%) 

4X 
61074666(89.52%), 5170931(7.58%), 

1062511(1.56%), 912925(1.34%) 

8X 
1601783(6.08%), 17746550(67.32%), 

6774867(25.70%), 236942(0.90%) 

16X 3786(100%) 

 

 

(a) 2-byte granularity, VFT-128-mfv 
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(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 

 



 

103 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.20: CF distribution of pages by fixed-size compression for mcf phase 1. 

 

More details about the fixed-size compression in mcf phase 1 are shown in Table 

4.12. The difference between CFfixed-size and CF1.5+3X is small due to the lack of extra 

fixed-CF option in the region of 4-8X.  

 

Table 4.12 CF distribution of all compressed pages for mcf phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

217752746 

G2-128 

1X 0(0%), 0(0%), 0(0%), 0(0%) 

3.2539 3.6810 

2X 
697(0.00%), 3367587(6.75%), 

46391263(92.93%), 163011(0.33%) 

4X 167830188(100.00%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 0(0%), 0(0%), 0(0%), 0(0%) 

3.2558 3.6795 2X 
2788123(5.60%), 802617(1.61%), 

46168807(92.77%), 7451(0.01%) 

4X 167984419(100.00%), 1329(0.00%), 0(0%), 
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0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 0(0%), 0(0%), 0(0%), 0(0%) 

3.2426 3.5571 

2X 
2788123(5.48%), 12468650(24.52%), 

34502741(67.85%), 1095524(2.15%) 

4X 
122274820(73.26%), 44549276(26.69%), 

73612(0.04%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 0(0%), 0(0%), 0(0%), 20(100.00%) 

3.2559 3.6628 

2X 
2788119(5.60%), 2422052(4.87%), 

44549323(89.52%), 4719(0.01%) 

4X 
510783(0.30%), 11286933(6.72%), 

93040667(55.39%), 63150130(37.59%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 
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(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.21: CF distribution of pages by fixed-size compression for mcf phase2. 

 

More details about the fixed-size compression in mcf phase 2 are shown in Table 

4.13.  

 

Table 4.13 CF distribution of all compressed pages for mcf phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

31570405 

G2-128 

1X 
0(0%), 0(0%), 9424528(100.00%), 

123(0.00%) 

1.5412 1.8232 

2X 
11552447(52.26%), 10408187(47.08%), 

27219(0.12%), 118353(0.54%) 

4X 4781(100.00%), 0(0%), 0(0%), 0(0%) 

8X 34767(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
0(0%), 0(0%), 3645072(38.68%), 

5779579(61.32%) 
1.5413 1.8584 

2X 
14147628(64.01%), 5849002(26.46%), 

2107131(9.53%), 0(0%) 
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4X 7226(100.00%), 0(0%), 0(0%), 0(0%) 

8X 34767(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
0(0%), 0(0%), 1521421(16.10%), 

7929796(83.90%) 

1.5401 1.8295 

2X 
10412098(47.15%), 11133935(50.42%), 

410113(1.86%), 128217(0.58%) 

4X 58(100.00%), 0(0%), 0(0%), 0(0%) 

8X 34767(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 
0(0%), 0(0%), 229024(2.43%), 

9199415(97.57%) 

1.5410 1.8459 

2X 
14779204(66.85%), 5893444(26.66%), 

963721(4.36%), 470265(2.13%) 

4X 565(100.00%), 0(0%), 0(0%), 0(0%) 

8X 34767(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

 

 

 

(a) 2-byte granularity, VFT-128-mfv 
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(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.22: CF distribution of pages by fixed-size compression for bzip2 phase 1. 

 

More details about the fixed-size compression in bzip2 phase 1 are shown in 

Table 4.14. By applying fixed-size compression, most pages keep as uncompressed 

due to their low actual compressibility (<2X). 

 

Table 4.14 CF distribution of all compressed pages for bzip2 phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

63068975 

G2-128 

1X 
1352662(2.20%), 46900132(76.29%), 

12408273(20.18%), 812255(1.32%) 

1.0131 1.0917 

2X 
782624(51.02%), 285540(18.61%), 

212862(13.88%), 252991(16.49%) 

4X 61636(100.00%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 
1X 

1419104(2.31%), 47439364(77.16%), 

11825550(19.23%), 801602(1.30%) 1.0127 1.0878 

2X 785196(49.75%), 282553(17.90%), 
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220855(13.99%), 289726(18.36%) 

4X 5025(100.00%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
17206594(27.53%), 43683582(69.89%), 

1365993(2.19%), 243216(0.39%) 

1.0053 1.0143 

2X 
199267(51.44%), 85347(22.03%), 

58511(15.11%), 44219(11.42%) 

4X 
72959(45.19%), 38874(24.08%), 

28372(17.57%), 21229(13.15%) 

8X 
10484(50.38%), 4629(22.25%), 

3251(15.62%), 2445(11.75%) 

16X 3(100.00%) 

G4-16384 

1X 
16498136(26.34%), 45235371(72.21%), 

715908(1.14%), 190806(0.30%) 

1.0035 1.0089 

2X 
143762(39.57%), 93759(25.80%), 

77629(21.37%), 48188(13.26%) 

4X 
48613(80.14%), 5506(9.08%), 3731(6.15%), 

2812(4.64%) 

8X 3825(80.46%), 929(19.54%), 0(0%), 0(0%) 

16X 0(0%) 
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(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.23: CF distribution of pages by fixed-size compression for bzip2 phase 2. 

 

More details about the fixed-size compression in bzip2 phase 2 are shown in 

Table 4.15. Similarly as bzip2 phase 1, most pages keep uncompressed. As most 

pages have actual compressibility lower than 1.5X, the extra fixed-CF options of 1.5X 

and 3X don’t make sense in this case. 
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Table 4.15 CF distribution of all compressed pages for bzip2 phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

116452964 

G2-128 

1X 
21596227(18.67%), 91366413(78.99%), 

1866813(1.61%), 842060(0.73%) 

1.0026 1.0114 

2X 
627838(87.49%), 45343(6.32%), 

26792(3.73%), 17654(2.46%) 

4X 
23801(37.29%), 15829(24.80%), 

11326(17.75%), 12868(20.16%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
20900261(18.04%), 91785769(79.23%), 

2098873(1.81%), 1067657(0.92%) 

1.0114 1.0119 

2X 
501743(83.57%), 47591(7.93%), 

26471(4.41%), 24599(4.10%) 

4X 0(0%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
21226846(18.64%), 81943159(71.97%), 

10042689(8.82%), 640907(0.56%) 

1.0113 1.0446 

2X 
1175940(46.22%), 773681(30.41%), 

562716(22.12%), 31752(1.25%) 

4X 
28651(51.83%), 16407(29.68%), 

10216(18.48%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 
1X 

20931274(18.38%), 69640159(61.15%), 

20331642(17.85%), 2974556(2.61%) 1.0035 1.0854 

2X 1173584(46.62%), 794589(31.56%), 
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524164(20.82%), 25232(1.00%) 

4X 
30535(52.86%), 16969(29.38%), 

10260(17.76%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

 

The reason of the negligible impact of granularity and VFT size on the 

compressibility can be found from Figure 4.15 to Figure 4.23. That is, increasing VFT 

size or applying larger granularity indeed improves the potential compressibility of 

each page. The significant variation of compressibility distribution of pages can be 

easily seen when comparing the sub-figures of each picture. The problem is the 

compressibility improvement normally is not enough for the page to reach the next 

fixed-CF level. For example, even if the actual CF of one page is improved from 2.1X 

to 3.9X, the page is still compressed with fixed-CF of 2X. That is why the granularity 

and VFT size have negligible impact on CF in this experiment.  

In conclusion, the improvement due to bigger VFT and granularity is 

unfortunately skewed by using coarser fixed-CF options. If we can define more fixed 

compression size options, as we did in this experiment, allowing the page to be 

compressed by the factor of 1.5X and 3X, the average CF could be improved by 15% 

on average. Thus, the trade-off between data placement and compressibility should be 

concerned.  

The similar compression experiments are implemented for footprint at the end of 

each phase. The results are presented in Table 4.16. 

 

Table 4.16 Comparison between CFwith VFT (from Section 4.2) and CFfixed-size by applying 

fixed-size compression on footprint, the CF distribution of pages for fixed-size compression. 

Benchmark-phase 

-granularity-VFT 

size 

CFwith VFT CFfixed-size 
Total 

pages 

Number of pages(percentage) 

compressed with fixed-CF of 

1X, 2X, 4X, 8X, 16X 

omnetpp-p2-g2-128 2.7832 2.0004 

36360 

107(0.2943%), 36023(99.0732%), 

228(0.6271%), 2(0.0055%), 0(0%) 

omnetpp-p2-g2-8192 3.1036 2.0155 
78(0.2145%), 35520(97.6898%), 

759(2.0875%), 3(0.0083%), 0(0%) 
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omnetpp-p2-g4-1024 3.6145 2.1999 

107(0.2943%), 29426(80.9296%), 

6824(18.7679%), 1(0.0028%), 

2(0.0055%) 

omnetpp-p2-g4-16384 3.7629 2.3368 

75(0.2063%), 25528(70.2090%), 

10754(29.5765%), 1(0.0028%), 

2(0.0055%) 

xalan-p1-g2-128 2.5877 1.9371 

30529 

1009(3.3051%), 29487(96.5869%), 

25(0.0819%), 8(0.0262%), 0(0%) 

xalan-p1-g2-8192 2.7000 1.9549 
705(2.3093%), 29779(97.5433%), 

37(0.1212%), 8(0.0262%), 0(0%) 

xalan-p1-g4-1024 3.1786 2.0864 

562(1.8409%), 26312(86.1869%), 

3644(11.9362%), 6(0.0197%), 

5(0.0164%) 

xalan-p1-g4-16384 3.2274 2.1015 

430(1.4085%), 26168(85.7152%), 

3920(12.8403%), 6(0.0197%), 

5(0.0164%) 

xalan-p2-g2-128 2.5939 1.9575 

43283 

942(2.1764%), 42334(97.8075%), 

7(0.0162%), 0(0%), 0(0%) 

xalan-p2-g2-8192 2.6717 1.9781 
467(1.0789%), 42792(98.8656%), 

24(0.0554%), 0(0%), 0(0%) 

xalan-p2-g4-1024 3.0518 1.9884 
314(0.7255%), 42839(98.9742%), 

125(0.2888%), 5(0.0116%), 0(0%) 

xalan-p2-g4-16384 3.1000 1.9868 
292(0.6746%), 42855(99.0112%), 

130(0.3003%), 6(0.0139%), 0(0%) 

mcf-p1-g2-128 4.3082 3.9872 

381032 

12(0.0031%), 1186(0.3113%), 

379833(99.6853%), 1(0.0003%), 

0(0%) 

mcf-p1-g2-8192 4.6142 3.9868 
14(0.0037%), 1176(0.3086%), 

379842(99.6877%), 0(0%), 0(0%) 

mcf-p1-g4-1024 4.6279 3.9850 

1(0.0003%), 1424(0.3737%), 

379606(99.6258%), 1(0.0003%), 

0(0%) 
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mcf -p1-g4-16384 6.7911 3.9833 

165(0.0433%), 976(0.2561%), 

379890(99.7003%), 1(0.0003%), 

0(0%) 

mcf -p2-g2-128 2.9761 2.0000 

428292 

2(0.0005%), 428289(99.9993%), 

0(0%), 1(0.0002%), 0(0%) 

mcf -p2-g2-8192 3.1811 1.9999 
2(0.0005%), 428287(99.9988%), 

2(0.0005%), 1(0.0002%), 0(0%) 

mcf -p2-g4-1024 3.2348 1.9999 
20(0.0047%), 428259(99.9925%), 

11(0.0026%), 1(0.0002%), 0(0%) 

mcf -p2-g4-16384 3.6797 2.0004 
7(0.0016%), 427984(99.9283%), 

299(0.0698%), 1(0.0002%), 0(0%) 

astar-p1-g2-128 1.7661 1.0967 

5734 

4724(82.3858%), 1006(17.5445%), 

4(0.0698%), 0(0%), 0(0%) 

astar-p1-g2-8192 1.8644 1.1018 
4690(81.7928%), 964(16.8120%), 

80(1.3952%), 0(0%), 0(0%) 

astar-p1-g4-1024 1.2560 1.1514 
4677(81.5661%), 147(2.5637%), 

910(15.8702%), 0(0%), 0(0%) 

astar-p1-g4-16384 2.0749 1.4850 
2381(41.5242%), 2440(42.5532%), 

913(15.9226%), 0(0%), 0(0%) 

astar-p2-g2-128 5.7936 3.7588 

29966 

261(0.8710%), 4205(14.0326%), 

19368(64.6333%), 6132(20.4632%), 

0(0%) 

astar-p2-g2-8192 6.4816 4.8961 

124(0.4138%), 3591(11.9836%), 

7260(24.2275%), 18991(63.3752%), 

0(0%) 

astar-p2-g4-1024 6.2595 4.4217 

270(0.9010%), 3907(13.0381%), 

10624(35.4535%), 

15163(50.6007%), 2(0.0067%) 

astar-p2-g4-16384 7.7442 5.2985 

249(0.8309%), 3103(10.3551%), 

3976(13.2684%), 22627(75.5089%), 

11(0.0367%) 

bzip2-p1-g2-128 1.3834 1.0054 1276 1262(98.9028%), 14(1.0972%), 
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0(0%), 0(0%), 0(0%) 

bzip2-p1-g2-8192 1.3564 0.9961 
1262(98.9028%), 14(1.0972%), 

0(0%), 0(0%), 0(0%) 

bzip2-p1-g4-1024 0.9856 1.0097 
1257(98.5110%), 4(0.3135%), 

7(0.5486%), 8(0.6270%), 0(0%) 

bzip2-p1-g4-16384 0.9875 0.9853 
1257(98.5110%), 5(0.3918%), 

14(1.0972%), 0(0%), 0(0%) 

bzip2-p2-g2-128 0.9568 1.0029 

2317 

2304(99.4389%), 11(0.4748%), 

2(0.0863%), 0(0%), 0(0%) 

bzip2-p2-g2-8192 1.0035 0.9959 
2312(99.7842%), 5(0.2158%), 

0(0%), 0(0%), 0(0%) 

bzip2-p2-g4-1024 0.9811 1.0024 
2305(99.4821%), 7(0.3021%), 

3(0.1295%), 2(0.0863%), 0(0%) 

bzip2-p2-g4-16384 0.9820 0.9897 
2303(99.3958%), 10(0.4316%), 

4(0.1726%), 0(0%), 0(0%) 

average 3.1018 2.2134   

 

Figure 4.24 to Figure 4.32 and Table 4.17 to Table 4.25 show the variation of 

page compressibility due to different VFT sizes and granularities for footprint 

compression of 5 applications. 
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(a) 2-byte granularity, VFT-128-mfv 

 

(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.24: Compressibility distribution of pages in xalan phase 1. 

 

More details about the fixed-size compression in xalan phase 1 are shown in 

Table 4.17.  

 

Table 4.17 CF distribution of all compressed pages for xalan phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

30529 

G2-128 

1X 
19(1.88%), 12(1.19%), 601(59.56%), 

377(37.36%) 

1.9371 2.0845 

2X 
10414(35.32%), 14345(48.65%), 

4173(14.15%), 555(1.88%) 

4X 17(68.00%), 4(16.00%), 2(8.00%), 2(8.00%) 

8X 2(25.00%), 2(25.00%), 3(37.50%), 1(12.50%) 

16X 0(0%) 

G2-8192 

1X 
19(2.70%), 11(1.56%), 234(33.19%), 

441(62.55%) 
1.9549 2.1404 

2X 
6676(22.42%), 16336(54.86%), 

5675(19.06%), 1092(3.67%) 



 

120 

 

4X 25(67.57%), 8(21.62%), 2(5.41%), 2(5.41%) 

8X 2(25.00%), 2(25.00%), 2(25.00%), 2(25.00%) 

16X 0(0%) 

G4-1024 

1X 
19(3.38%), 8(1.42%), 226(40.21%), 

309(54.98%) 

2.0864 2.6114 

2X 
863(3.28%), 8879(33.75%), 10970(41.69%), 

5600(21.28%) 

4X 
3429(94.10%), 209(5.74%), 4(0.11%), 

2(0.05%) 

8X 3(50.00%), 0(0%), 3(50.00%), 0(0%) 

16X 5(100.00%) 

G4-16384 

1X 
2(0.47%), 21(4.88%), 161(37.44%), 

246(57.21%) 

2.1015 2.6713 

2X 
801(3.06%), 7599(29.04%), 11525(44.04%), 

6243(23.86%) 

4X 
3709(94.62%), 202(5.15%), 8(0.20%), 

1(0.03%) 

8X 3(50.00%), 0(0%), 2(33.33%), 1(16.67%) 

16X 5(100.00%) 

 

(a) 2-byte granularity, VFT-128-mfv 
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(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.25: Compressibility distribution of pages in xalan phase2. 

 

More details about the fixed-size compression in xalan phase 2 are shown in 

Table 4.18.  

 

Table 4.18 CF distribution of all compressed pages for xalan phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

43283 

G2-128 

1X 
9(0.96%), 12(1.27%), 475(50.42%), 

446(47.35%) 

1.9575 2.1800 

2X 
15390(36.35%), 15252(36.03%), 

11573(27.34%), 119(0.28%) 

4X 1(14.29%), 3(42.86%), 2(28.57%), 1(14.29%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
10(2.14%), 9(1.93%), 186(39.83%), 

262(56.10%) 
1.9781 2.2143 

2X 
12068(28.20%), 17623(41.18%), 

12996(30.37%), 105(0.25%) 
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4X 17(70.83%), 4(16.67%), 1(4.17%), 2(8.33%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
9(2.87%), 10(3.18%), 99(31.53%), 

196(62.42%) 

1.9884 2.4663 

2X 
1571(3.67%), 16566(38.67%), 

15585(36.38%), 9117(21.28%) 

4X 12(9.60%), 1(0.80%), 111(88.80%), 1(0.80%) 

8X 3(60.00%), 1(20.00%), 1(20.00%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 
8(2.74%), 5(1.71%), 70(23.97%), 

209(71.58%) 

1.9868 2.5123 

2X 
926(2.16%), 15161(35.38%), 16175(37.74%), 

10593(24.72%) 

4X 18(13.85%), 1(0.77%), 111(85.38%), 0(0%) 

8X 4(66.67%), 0(0%), 2(33.33%), 0(0%) 

16X 0(0%) 

 

 

 

(a) 2-byte granularity, VFT-128-mfv 
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(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.26: Compressibility distribution of pages in omnetpp phase2. 

 

More details about the fixed-size compression in omnetpp phase 2 are shown in 

Table 4.19.  

 

Table 4.19 CF distribution of all compressed pages for omnetpp phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

36360 

G2-128 

1X 7(6.54%), 14(13.08%), 86(80.37%), 0(0%) 

2.0004 2.1245 

2X 
1926(5.35%), 27905(77.46%), 5327(14.79%), 

865(2.40%) 

4X 226(99.12%), 1(0.44%), 0(0%), 1(0.44%) 

8X 0(0%), 1(50.00%), 1(50.00%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
9(11.54%), 10(12.82%), 3(3.85%), 

56(71.79%) 

2.0155 2.5037 
2X 

32(0.09%), 14510(40.85%), 16388(46.14%), 

4590(12.92%) 

4X 758(99.87%), 1(0.13%), 0(0%), 0(0%) 
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8X 1(33.33%), 1(33.33%), 1(33.33%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 7(6.54%), 15(14.02%), 1(0.93%), 84(78.50%) 

2.1999 3.0526 

2X 
3(0.01%), 1904(6.47%), 8996(30.57%), 

18523(62.95%) 

4X 6470(94.81%), 352(5.16%), 2(0.03%), 0(0%) 

8X 1(100.00%), 0(0%), 0(0%), 0(0%) 

16X 2(100.00%) 

G4-16384 

1X 
7(9.33%), 15(20.00%), 36(48.00%), 

17(22.67%) 

2.3368 3.2019 

2X 
12(0.05%), 411(1.61%), 6435(25.21%), 

18670(73.14%) 

4X 
10334(96.09%), 418(3.89%), 2(0.02%), 

0(0%) 

8X 1(100.00%), 0(0%), 0(0%), 0(0%) 

16X 2(100.00%) 

 

 

 

(a) 2-byte granularity, VFT-128-mfv 
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(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.27: Compressibility distribution of pages in astar phase1. 

 

More details about the fixed-size compression in xalan phase 1 are shown in 

Table 4.20.  

 

Table 4.20 CF distribution of all compressed pages for astar phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

5734 

G2-128 

1X 
0(0%), 388(8.21%), 4309(91.22%), 

27(0.57%) 

1.0967 1.5783 

2X 
63(6.26%), 49(4.87%), 838(83.30%), 

56(5.57%) 

4X 1(25.00%), 3(75.00%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
0(0%), 519(11.07%), 2754(58.72%), 

1417(30.21%) 
1.1018 1.5616 

2X 
67(6.95%), 51(5.29%), 27(2.80%), 

819(84.96%) 
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4X 77(96.25%), 3(3.75%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
2796(59.78%), 1241(26.53%), 509(10.88%), 

131(2.80%) 

1.1514 1.2031 

2X 108(73.47%), 36(24.49%), 3(2.04%), 0(0%) 

4X 
22(2.42%), 805(88.46%), 80(8.79%), 

3(0.33%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 
0(0%), 709(29.78%), 947(39.77%), 

725(30.45%) 

1.4850 1.7430 

2X 
2257(92.50%), 100(4.10%), 49(2.01%), 

34(1.39%) 

4X 344(37.68%), 566(61.99%), 3(0.33%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

 

 

 

(a) 2-byte granularity, VFT-128-mfv 
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(b) 2-byte granularity, VFT-8192-mfv 

 

 

(c) 4-byte granularity, VFT-1024-mfv 
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(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.28: Compressibility distribution of pages in astar phase2. 

 

More details about the fixed-size compression in astar phase 2 are shown in 

Table 4.21.  

 

Table 4.21 CF distribution of all compressed pages for astar phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

29966 

G2-128 

1X 
3(1.15%), 23(8.81%), 198(75.86%), 

37(14.18%) 

3.7588 3.9421 

2X 
308(7.32%), 2144(50.99%), 830(19.74%), 

923(21.95%) 

4X 
1937(10.00%), 1031(5.32%), 3968(20.49%), 

12432(64.19%) 

8X 
6115(99.72%), 15(0.24%), 1(0.02%), 

1(0.02%) 

16X 0(0%) 

G2-8192 1X 
1(0.81%), 13(10.48%), 74(59.68%), 

36(29.03%) 
4.8961 5.3106 
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2X 
151(4.20%), 795(22.14%), 1957(54.50%), 

688(19.16%) 

4X 
2052(28.26%), 974(13.42%), 924(12.73%), 

3310(45.59%) 

8X 
18613(98.01%), 376(1.98%), 1(0.01%), 

1(0.01%) 

16X 0(0%) 

G4-1024 

1X 
4(1.48%), 108(40.00%), 13(4.81%), 

145(53.70%) 

4.4217 4.6716 

2X 
78(2.00%), 1971(50.45%), 1050(26.87%), 

808(20.68%) 

4X 
1925(18.12%), 898(8.45%), 1496(14.08%), 

6305(59.35%) 

8X 
12204(80.49%), 2754(18.16%), 194(1.28%), 

11(0.07%) 

16X 2(100.00%) 

G4-16384 

1X 
5(2.01%), 98(39.36%), 61(24.50%), 

85(34.14%) 

5.2985 5.7958 

2X 
24(0.77%), 461(14.86%), 1635(52.69%), 

983(31.68%) 

4X 
1378(34.66%), 1366(34.36%), 624(15.69%), 

608(15.29%) 

8X 
1498(6.62%), 14310(63.24%), 6382(28.21%), 

437(1.93%) 

16X 11(100.00%) 
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(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.29: Compressibility distribution of pages in mcf phase1. 

 

More details about the fixed-size compression in mcf phase 1 are shown in Table 

4.22.  
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Table 4.22 CF distribution of all compressed pages for mcf phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

381032 

G2-128 

1X 0(0%), 0(0%), 0(0%), 12(100.00%) 

3.9872 3.9874 

2X 
547(46.12%), 629(53.04%), 0(0%), 

10(0.84%) 

4X 379833(100.00%), 0(0%), 0(0%), 0(0%) 

8X 1(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 0(0%), 0(0%), 0(0%), 14(100.00%) 

3.9868 3.9874 

2X 
397(33.76%), 716(60.88%), 61(5.19%), 

2(0.17%) 

4X 379841(100.00%), 0(0%), 0(0%), 1(0.00%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 0(0%), 0(0%), 0(0%), 1(100.00%) 

3.9850 3.9919 

2X 
410(28.79%), 21(1.47%), 0(0%), 

993(69.73%) 

4X 374872(98.75%), 4734(1.25%), 0(0%), 0(0%) 

8X 0(0%), 1(100.00%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 0(0%), 0(0%), 0(0%), 165(100.00%) 

3.9833 3.9905 

2X 
266(27.25%), 1(0.10%), 30(3.07%), 

679(69.57%) 

4X 
52(0.01%), 3239(0.85%), 256592(67.54%), 

120007(31.59%) 

8X 0(0%), 1(100.00%), 0(0%), 0(0%) 
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16X 0(0%) 

 

(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.30: Compressibility distribution of pages in mcf phase2. 

 

More details about the fixed-size compression in mcf phase 2 are shown in Table 

4.23.  
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Table 4.23 CF distribution of all compressed pages for mcf phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

428292 

G2-128 

1X 0(0%), 0(0%), 2(100.00%), 0(0%) 

2.0000 2.0266 

2X 
710(0.17%), 410752(95.91%), 16825(3.93%), 

2(0.00%) 

4X 0(0%), 0(0%), 0(0%), 0(0%) 

8X 1(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 0(0%), 0(0%), 2(100.00%), 0(0%) 

1.9999 2.9820 

2X 
576(0.13%), 4714(1.10%), 422997(98.76%), 

0(0%) 

4X 2(100.00%), 0(0%), 0(0%), 0(0%) 

8X 1(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 0(0%), 0(0%), 2(10.00%), 18(90.00%) 

1.9999 2.9861 

2X 
2725(0.64%), 1429(0.33%), 414204(96.72%), 

9901(2.31%) 

4X 11(100.00%), 0(0%), 0(0%), 0(0%) 

8X 1(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 0(0%), 0(0%), 2(28.57%), 5(71.43%) 

2.0004 2.9862 

2X 
676(0.16%), 3426(0.80%), 15820(3.70%), 

408062(95.35%) 

4X 299(100.00%), 0(0%), 0(0%), 0(0%) 

8X 1(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 
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(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.31: Compressibility distribution of pages in bzip2 phase1. 

 

More details about the fixed-size compression in bzip2 phase 1 are shown in 

Table 4.24.  
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Table 4.24 CF distribution of all compressed pages for bzip2 phase 1. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

1276 

G2-128 

1X 
207(16.40%), 30(2.38%), 1020(80.82%), 

5(0.40%) 

1.0054 1.3782 

2X 0(0%), 5(35.71%), 3(21.43%), 6(42.86%) 

4X 0(0%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
207(16.40%), 75(5.94%), 978(77.50%), 

2(0.16%) 

0.9961 1.3394 

2X 0(0%), 5(35.71%), 3(21.43%), 6(42.86%) 

4X 0(0%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
1224(97.37%), 31(2.47%), 1(0.08%), 

1(0.08%) 

1.0097 1.0106 

2X 1(25.00%), 0(0%), 3(75.00%), 0(0%) 

4X 1(14.29%), 4(57.14%), 2(28.57%), 0(0%) 

8X 2(25.00%), 1(12.50%), 2(25.00%), 3(37.50%) 

16X 0(0%) 

G4-16384 

1X 
835(66.43%), 399(31.74%), 22(1.75%), 

1(0.08%) 

0.9853 0.9915 

2X 1(20.00%), 2(40.00%), 1(20.00%), 1(20.00%) 

4X 5(35.71%), 3(21.43%), 1(7.14%), 5(35.71%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 
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(a) 2-byte granularity, VFT-128-mfv 

 

 

(b) 2-byte granularity, VFT-8192-mfv 
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(c) 4-byte granularity, VFT-1024-mfv 

 

 

(d) 4-byte granularity, VFT-16384-mfv 

Figure 4.32: Compressibility distribution of pages in bzip2 phase2. 

 

More details about the fixed-size compression in bzip2 phase 2 are shown in 

Table 4.25.  
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Table 4.25 CF distribution of all compressed pages for bzip2 phase 2. 

Number of 

compressed 

pages 

Granularity 

-VFT size 

Fixed-size 

CF option 

Number of pages (percentage) with actual 

CF in the region of 

low, mid-low, mid-high, high 

CFfixed-size CF1.5+3X 

2317 

G2-128 

1X 
2209(95.88%), 90(3.91%), 3(0.13%), 

2(0.09%) 

1.0029 1.0038 

2X 6(54.55%), 3(27.27%), 1(9.09%), 1(9.09%) 

4X 0(0%), 2(100.00%), 0(0%), 0(0.00% 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G2-8192 

1X 
1462(63.24%), 844(36.51%), 5(0.22%), 

1(0.04%) 

0.9959 0.9968 

2X 3(60.00%), 2(40.00%), 0(0%), 0(0%) 

4X 0(0%), 0(0%), 0(0%), 0(0%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-1024 

1X 
2071(89.85%), 233(10.11%), 1(0.04%), 

0(0%) 

1.0024 1.0026 

2X 4(57.14%), 2(28.57%), 1(14.29%), 0(0%) 

4X 2(66.67%), 1(33.33%), 0(0%), 0(0%) 

8X 2(100.00%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 

G4-16384 

1X 
1396(60.62%), 899(39.04%), 6(0.26%), 

2(0.09%) 

0.9897 0.9910 

2X 3(30.00%), 5(50.00%), 1(10.00%), 1(10.00%) 

4X 2(50.00%), 0(0%), 0(0%), 2(50.00%) 

8X 0(0%), 0(0%), 0(0%), 0(0%) 

16X 0(0%) 
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The experimental result of fixed-size compression for footprint is similar as the 

result of fixed-size compression based on each access. On average, the compression 

factor by applying fixed-CF is 2.2134X while the CFwith VFT of footprint is 3.1018X. 

In other words, 40.1% compressibility (i.e.,
𝐶𝐹𝑤𝑖𝑡ℎ 𝑉𝐹𝑇

𝐶𝐹𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑−𝑠𝑖𝑧𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
− 1) is subtracted 

due to the fixed-size compression approach. By allowing extra fixed-CF options of 

1.5X and 3X, the improvement of average CF of fixed-size compression is 14.48%. 

One interesting finding is the application bzip2 which has a poor compression 

potential can benefit by applying fixed-CF for compression. That is, some pages with 

actual CF lower than 1X can be kept uncompressed. Thus the average CF of 

fixed-size compression is even higher than the CFwith VFT for bzip2.    

In conclusion, fixed-size compression scheme leads to more than 35% 

compressibility reduction. Besides, increasing VFT size or applying larger granularity 

contributes negligibly to the compressibility improvement due to the setting of the 

fixed-size compression options. Thus, the trade-off between data placement and 

compressibility is an important design consideration.  

4.6 Conclusions  

In this chapter we study and analyze the impact of different design parameters on 

the compressibility of Huffman-based compression scheme. We first illustrate the high 

compression potential of the scheme by applying Huffman coding on the footprint of 

seven benchmark applications. We study different ways targeting for low overhead due 

to metadata and the suitable granularity and VFT size options are proposed. This 

Chapter also discusses the impact of data variation on compressibility. We prove that 

the static Huffman codewords are efficient for compression over a long execution time 

of millions of instructions since the value distribution varies little during the execution 

in most cases. Finally, we evaluate the performance reduction by applying fixed-size 

compression scheme to better handle the memory fragmentation. 
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5. Conclusion  

This thesis studies and discusses statistical compression algorithms, such as 

Huffman coding in memory compression. Several design parameters like compression 

granularity, VFT overhead, value distribution variation are concerned and explored in 

this thesis. Our experimental results show that the Huffman-based scheme has a 

promising compressibility and high potential of practicality in main memory 

compression. 

5.1 Contributions and Findings 

The first contribution of this thesis comes from the observation that 

Huffman-based compression can highly improve the utilization of memory resources. 

For seven applications from SPEC2006 benchmark suite, the memory footprint can be 

compressed by a factor of 3.86X, on average, and up to 8.92X when the metadata of 

Value Frequency Table (VFT) is not accounted for. This result is promising as most 

previous works report an ideal compression factor of less than 2X.  

The thesis studies the impact of compression granularity on the compression 

performance. By investigating three granularity options of 1 byte (G1), 2 bytes (G2) 

and 4 bytes (G4), we demonstrate that G4 has the highest potential compressibility at 

the expense of big overhead for storing the VFT. G2 is competitive due to its small 

metadata and is suitable for compressing such applications with relatively low 

compression potentials in which the value distribution for G2 is much more 

concentrated than G4. G1 is found as an unsuitable compression granularity option due 

to its poor compression potential. That is, the maximum compression ratio for G1 is 8X 

which is 4 times smaller than G4 (32X). 

To make the evaluation of Huffman-based compression scheme to be more 

practical, the metadata of VFT must be concerned. Our results show that the 

compressibility degrades seriously due to metadata. To address this problem, the thesis 

studies different VFT sizes trading high compressibility for reduced overhead. The 

exciting observation shows that by applying smaller VFT, most applications can 

achieve better compression factor than capturing all the unique values (VFT-all). In 

particular, the difference between CFwith VFT and CFw/o VFT (considered as ideal potential 

compressibility) is narrowed by 32.11% for G4 compression by applying smaller VFT. 

Finally, the CFwith VFT for G2 and G4 are 2.6087X and 3.1150X, respectively. Another 
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encouraging result shows that by using really small VFT, a relatively high compression 

ratio is possible which implies a great potential of practicality. 

Another contribution of the thesis is based on the analysis of the impact of value 

distribution variation on the compressibility. Our finding shows that in most cases the 

value distribution in memory varies little during a large execution phase (10
9
 

committed instructions or few hundreds of milliseconds) of application. This means 

that static Huffman coding can work sufficiently over a long execution time of millions 

of instructions without update. Besides, we present that sampling the value frequency 

distributions only for short phase (7M write accesses, approximately 50M committed 

instructions) is enough to establish representative enough and efficient Huffman 

coding.  

At the last part of the thesis, we investigate the fixed-size compression scheme to 

address the fragmentation and location problems in compression. Our results show that 

the compressibility degrades seriously by 30%, on average, when only allowing 

fixed-size compressed pages. Moreover, the compressibility improvement by applying 

larger VFT size and granularity may be reduced by the fixed-size CF options. One 

promising solution is subdividing the fixed-size CF into more intervals to allow the 

page to be compressed to more different sizes. However, it may introduce more 

complexity for memory management.     

In conclusion, Huffman-based compression scheme has a high potential for more 

efficient utilizations of main memory resources. By modifications like choosing proper 

granularity and VFT size, it is competitive in memory compression.      

5.2 Future Work 

Further interesting directions in this study are summarized as future work: 

1. Impact of data variation to compression for longer execution phases. 

2. More fixed-size CF options to improve the compression performance. 

3. Collection of less information to build Huffman codewords (3M write 

accesses or even less). 

4. Monitoring compressibility using different interval sizes to study the impact 

of sampling on monitoring. 

5. Use of semi-adaptive Huffman coding for higher compressibility. 
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