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Abstract—In this paper, we derive the Cramér-Rao lower
bound (CRLB) on the position error for an RFID tag localiza-
tion system exploiting multipath on backscatter radio channels.
The backscatter channel is modeled with a hybrid determinis-
tic/stochastic channel model. In this way, both the geometry of the
deterministic multipath components (MPCs) and the interfering
diffuse multipath are taken into account. Computational results
show the influence of the room geometry on the bound and the
impact of the diffuse multipath. Time reversal (TR) processing on
the uplink channel is analyzed using the deterministic MPCs to
overcome the degenerate nature of the backscatter channel. The
CRLB shows the potential gain obtained from TR processing
as well as its strong dependence on the geometry. Such TR
processing has been proposed for TX waveform adaptation in
the perception-action cycle of a cognitive radar. The results of
this paper illustrate that it can indeed influence beneficially the
measurement noise of the received signal, yielding control over
the localization system.

I. INTRODUCTION

Ultra-wideband signals are promising candidates for lo-

calization in harsh indoor multipath environments, due to

fine time-resolution enabled by large bandwidth. Nevertheless,

indoor positioning is still a challenging task, in particular

due to errors caused by non-line-of-sight (NLOS) propagation

conditions. These problems are even stronger on backscatter

channels employed by RFID systems.

Performance bounds such as the Cramér-Rao lower bound

(CRLB) can yield valuable insights on the influence of the

channel parameters on the localization accuracy. In [1], [2] the

CRLB given by the information inequality is derived directly

from the received signal rather than from specific features

extracted from the signal. Multipath components (MPCs) as-

sociated to strong reflections can increase accuracy of the po-

sition estimation, if prior floor-plan knowledge is available [3].

These MPCs can be seen as originating from so-called virtual

anchors (VAs) as shown in Fig. 1, hence a deterministic model

is available for these MPCs. A key difference of [3], compared

to [1], [2], is the stochastic modeling of the diffuse multipath

(DM) which acts as interference for these useful geometry-

related components. The theoretical results from [3] were

verified using data from an extensive indoor measurement

campaign [4]. For conventional “non-backscatter” channels,

the feasibility of multipath-assisted tracking algorithms was

demonstrated in [5] for real channel measurements.

This work was partly supported by the Austrian Science Fund (FWF) within
the National Research Network SISE project S10610.
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Fig. 1. Top: Floorplan with a transmitter (TX) and receiver (RX) radar node
and a subset of corresponding VAs. The up-link is the channel between TX
and the target at position ℓ along a trajectory, the down-link is the channel
between the target and RX. Bottom: Backscatter model as concatenation of
up- and down-link channels.

The contribution of this paper is the extension of the

theoretical framework in [3] to the localization error bound

of a radar target using a backscatter channel model. It is

well-known that the channel in backscatter radio systems is a

degenerate pinhole channel [6], formed by the concatenation of

the channels from the transmitter (TX) to the target and from

the target to the receiver (RX). In our work we assume that

the signal received through the RFID tag can be distinguished

from the signal coming directly from the environment, due to

the modulation of the RFID tag.

Time-reversal processing (TR) [7], [8] for backscatter chan-

nels has been motivated in [9], to focus the energy onto RFID

tags at certain positions and to separate the up- and down-

link channels from one another. We analyze the impact of TR

processing on the CRLB for multipath-assisted RFID local-

ization in this paper. Common TR processing uses the entire

reversed complex conjugate channel. This is not resilient w.r.t.

imperfect channel knowledge, as any errors cause incoherent

summation of paths and thereby loss of focusing of the energy.

Therefore, we only use a limited set of deterministic MPCs

that can be modeled geometrically, as these have been shown

to carry a large fraction of the channel energy [4]. Such

TR processing has been proposed for TX processing in the



perception-action cycle of a cognitive radar [9]. Quantifying

its impact on the CRLB provides a way to close this feedback

loop.

This paper is organized as follows: The signal and channel

models are given in Section II. The derivation of the CRLB and

the evaluation of the influence of TR processing are provided

in Section III. Results are discussed in Section IV. Finally,

conclusions are drawn.

II. SIGNAL AND CHANNEL MODELS

In order to give a mathematical description of the received

signal r(t), which is needed to compute the CRLB, we

first introduce a model for a hybrid, deterministic/stochastic

channel [3] and secondly for a backscatter channel as the

concatenation of the former ones.

A. Hybrid Deterministic/Stochastic Channel

The hybrid deterministic/stochastic complex baseband radio

channel hm,ℓ(τ) between a radar node m ∈ {TX,RX} located

at position p1,m and a target at position pℓ is defined as

hm,ℓ(τ) =

Km,ℓ
∑

k=1

αk,m,ℓδ(τ − τk,m,ℓ) + νm,ℓ(τ) (1)

where the first term consists of Km,ℓ deterministic MPCs

with complex amplitudes αk,m,ℓ ∈ C and delays τk,m,ℓ =
1

c
||pℓ − pk,m||, where c is the speed of light. The delays of

deterministic MPCs, i.e. strong specular reflections on walls,

can be modeled geometrically, if the floor-plan is known.

Fig. 1 shows the locations
{

pk,m = [xk,m, yk,m]T
}Km,ℓ

k=1
of a

subset of VAs in the considered environment. The second term

νm,ℓ(τ) denotes the diffuse multipath (DM) and is modeled

with a stochastic process. We assume uncorrelated scattering

(US), so that the ACF of the DM is given as

Kν(τ, u) = E {νm,ℓ(τ)νm,ℓ(u)
∗} = Sν,m,ℓ(τ)δ(τ − u). (2)

Sν,m,ℓ(τ) is the power delay profile (PDP), where Sν,m,ℓ(τ) =
0 for τ < τ1,m,ℓ, which implies that the DM does not exist

until the first deterministic MPC excites the channel. For a

specific radar node m and a well-defined “local area” around

the target position pℓ (several wavelengths), DM is assumed to

be quasi-stationary, which means that the channel’s first- and

second-order statistics do not change noticeably in the spatial

domain [10].

B. Backscatter Channel

For brevity, we drop the tag position index ℓ in further

derivations. The backscatter channel impulse response (CIR) is

obtained by the convolution of the up- and down-link channels

both modeled with (1) yielding

hBS(τ) = hTX(τ) ∗ hRX(τ)

=

KTX
∑

k=1

KRX
∑

l=1

αk,TXαl,RXδ(τ − τk,TX − τl,RX)

+

KTX
∑

k=1

αk,TXνRX(τ − τk,TX) +

KRX
∑

l=1

αl,RXνTX(τ − τl,RX)

+ νTX(τ) ∗ νRX(τ). (3)

Here, the first term represents the deterministic part of the

backscatter channel. The second and third terms are the convo-

lution of the DM of the up-link channel with the deterministic

components of the down-link channel, and vice versa. The

last term constitutes the convolution of the DM of the up-

and down-link channels. In the following, we denote the

sum of the last three terms of (3) that comprise the DM as

νBS(τ) = νTX,DMRX
(τ) + νRX,DMTX

(τ) + νDMTX,DMRX
(τ).

From (3) it is seen that the backscatter channel can be

decomposed into a deterministic and a diffuse part, in the same

way as the up- and down-links in (1).

With the quasi-stationarity, US assumption and that νTX(τ)
and νRX(τ) are assumed to be independent, the PDP of the

backscatter channel is the second central moment of the DM

process

Sν,BS(τ) = E {νBS(τ)ν
∗
BS(τ)}

= E

{

KTX
∑

k=1

KTX
∑

k′=1

αk,TXα
∗
k′,TXνRX(τ − τk,TX)ν

∗
RX(τ − τk′,TX)

}

+ E

{

KRX
∑

l=1

KRX
∑

l′=1

αl,RXα
∗
l′,RXνTX(τ − τl,RX)ν

∗
TX(τ − τl′,RX)

}

+ E {νTX(τ) ∗ νRX(τ)(νTX(τ) ∗ νRX(τ))
∗} . (4)

We assume a zero-mean Gaussian model for the DM, thus

first and second moments give a complete description of the

random process. The validity of the US assumption for a

backscatter channel constituted by two US-channels has been

proven in the appendix of [6], which leads to

Sν,BS(τ) =

KTX
∑

k=1

|αk,TX|
2Sν,RX(τ − τk,TX) (5)

+

KRX
∑

l=1

|αl,RX|
2Sν,TX(τ − τl,RX) + Sν,TX(τ) ∗ Sν,RX(τ).

In Fig. 2(a) the deterministic MPCs and the PDPs of the DM

of some exemplary up- and down-link channels are shown.

Fig. 2(b) shows the deterministic components hBS,det(τ) and

the individual terms of the PDP Sν,BS(τ) of the backscatter

channel.

C. Transmitted Signal – Time-Reversal Processing

We assume that the TX transmits a signal s(t) ∈ C. On the

one hand, this can be a single pulse p(t) with pulse duration

Tp, e.g. a commonly used root raised cosine pulse. Hence, the

received signal represents the backscatter channel convolved

with this pulse p(t). On the other hand, the transmitted signal

s(t) can be a sum of complex weighted and time-shifted copies

of this pulse p(t) in order to obtain a TR signal.

TR processing is one promising candidate to overcome the

degenerate pinhole nature of the backscatter channel, because

it optimizes the link-budget between the TX and RX by

focusing the energy onto the target. This is done by using

the VAs, which are a geometric model for the deterministic
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Fig. 2. (a) Up- and down-link channel. Solid lines denote the up-
link channel, with deterministic components in black and the PDPs
of the DM in gray. Dashed lines indicate the down-link channel.
(b) Backscatter channel. Solid black lines denote the deterministic
components. The gray lines indicate the different summands of the
PDP.

MPCs of hTX(τ) in (1), as a virtual antenna array for spatial

focusing. The TX signal becomes

s(t) =
[

K̂TX
∑

k=1

α̂∗
k,TXδ

(

t+ τ̂k,TX

)

]

∗ p(t) (6)

where {α̂k,TX, τ̂k,TX} is the set of K̂TX(τ) estimated MPC

parameters of the up-link channel hTX for a position p̂. The

complex amplitudes are normalized s.t.
∫∞

−∞ |s(t)|2dt = ETR.

The received signal at radar node RX can be obtained by the

convolution of (3) with the transmit waveform (6) and AWGN

n(t) with a two-sided power spectral density of N0/2, given

as

r(t) = s(t) ∗ hBS(t) + n(t) (7)

=
[

KTX
∑

k=1

KRX
∑

l=1

K̂TX
∑

k′=1

αk,TXαl,RXα̂
∗
k′,TX

× δ(t− τk,TX − τl,RX + τ̂k′,TX)

+

KTX
∑

k=1

K̂TX
∑

k′=1

αk,TXα̂
∗
k′,TXνRX(t− τk,TX + τ̂k′,TX)

+

KRX
∑

l=1

K̂TX
∑

k′=1

αl,RXα̂
∗
k′,TXνTX(t− τl,RX + τ̂k‘,TX)

+

∫ K̂TX
∑

k′=1

α̂∗
k′,TXνTX(λ)νRX(t+ hatτk′,TX − λ)dλ

]

∗ p(t) + n(t).

The first term comprises deterministic components of the

received signal r(t), and the remaining terms constitute the

DM arriving at the RX. Eq. (7) again shows that the channel

described by the convolution of hBS(τ) and hTR(τ) can be

decomposed into deterministic and diffuse parts. Assuming

perfect TR parameters are available, (7) gives additional

insights in the TR processing: First, the energy is concentrated

on the deterministic MPCs of the down-link channel hℓ,RX(τ).

Second, again the structure of an equivalent deterministic

channel and DM can be observed. The PDP of the received

DM can be obtained as

Sν,TR(τ) = (8)

=

KTX
∑

k=1

K̂TX
∑

k′=1

|αk,TX|
2|α̂k′,TX|

2Sν,RX(τ − τk,TX + τ̂k′,TX)

+

KRX
∑

l=1

K̂TX
∑

k′=1

|αl,RX|
2|α̂k′,TX|

2Sν,TX(τ − τl,RX + τ̂k′,TX)

+

K̂TX
∑

k′=1

|α̂k′,TX|
2

∫ ∞

−∞

Sν,TX(λ)Sν,RX(τ + τ̂k′,TX − λ)dλ.

III. ERROR BOUND ON THE POSITION ESTIMATION

In this section, we derive the equivalent Fisher information

matrix (EFIM) [1] for the target localization problem via the

backscatter channel. The derivation and the notation follow

closely [2] and [3]. Additionally, the influence of TR process-

ing on the bound is analyzed.

A. Problem Formulation

Our goal is to estimate the position p of the target from

the received signal r(t) in the presence of DM and AWGN,

using the TX and RX nodes at positions p1,TX and p1,RX.

With a-priori known floor-plan information, the TX and RX

span two corresponding sets of VAs at positions {pk,TX}
and {pl,RX}. For the sake of simplicity, we introduce for

the backscatter channel the equivalent propagation delays

τk,l = τk,TX+τl,RX = 1

c
||p−pk,TX||+

1

c
||p−pl,RX||, which

are related to the geometry. Their corresponding complex

amplitudes αk,l = αk,TXαl,RX are nuisance parameters for

the position estimation. We collect the delays τk,l and the real

and imaginary parts of the amplitudes αk,l in vectors τ , αR,

and αI respectively.

The CRLB on the position error is a lower bound for the

MSE of an unbiased estimator and is computed as the inverse

of the Fisher information matrix (FIM) J(θ) [11]. The vector

of unknown parameters for position estimation is defined as

θ =
[

pT (αR)T (αI)T
]T

(cf. [1]–[3]) and a transformed

parameter vector related to the received signal r(t) is ψ =
[

τT (αR)T (αI)T
]T

. The FIM of the transformed parameter

vector ψ is defined as

J(ψ) = E
r|ψ

{

−
∂2

∂ψ∂ψ
ln p(r|ψ)

}

(9)

where the observation vector r is obtained from the Karhunen-

Loéve expansion of the received signal r(t) [11]. The FIM for

position estimation is computed by applying the chain rule

J(θ) = PJ(ψ)PT (10)

where P = ∂ψ/∂θ is the the Jacobian of the transformation.



B. Likelihood Function of the Received Signal

The likelihood function we use is adopted from [3]. Due

to the fact that the DM νBS(τ) is a colored non-stationary

Gaussian noise process, a whitening operation has to be

applied to the received signal r(t) to obtain a tractable form.

Given that the backscatter channel and the TR processed

backscatter channel are both composed the same way as the

channel used in [3], the framework to derive the likelihood

function can be extended to backscatter channels. Using the

Karhunen-Loéve expansion and integral equations [11], we can

write

ln p(r|ψ) ∝

2

N0

∫ Tob

0

ℜ
{

r(t)

KTX
∑

k=1

KRX
∑

l=1

w2

k,lα
∗
k,ls

∗(t− τk,l)
}

dt

−
1

N0

∫ Tob

0

∣

∣

∣

KTX
∑

k=1

KRX
∑

l=1

wk,lαk,ls(t− τk,l)
∣

∣

∣

2

dt (11)

where Tob is the observation time and wk,l =
√

N0/(N0 + TpSν(τk,l)) are the weighting factors accounting

for DM. Sν(τk,l) denotes the PDP of the DM alone or with

TR-processing. The term TpSν(τk,l) constitutes the inference

power of the DM. The signal s(t) ∈ C either represents the

TR waveform or the pulse waveform p(t).

C. EFIM and Position Error Bound (PEB)

The PEB represents the CRLB on the position error at

position p and is defined as

P(p) ≡
√

tr{[J(θ)2×2]−1} (12)

where tr{·} is the trace of a square matrix. J(θ)2×2 is the

upper left submatrix, which comprises the information on

the position estimation and is called EFIM [1]. It leads to

a reduction of the dimensionality of the FIM. The matrix P

for the parameter transformation in (10) is

P =

[

H2×KTXKRX
02×2KTXKRX

02KTXKRX×2 I2KTXKRX×2KTXKRX

]

(13)

where 0 is the zero matrix, I denotes the identity matrix and H

incorporates the geometry. The columns of H are of the form

− 1

c
[cosφk,TX + cosφl,RX, sinφk,TX + sinφl,RX]

T, where

φk,TX and φl,RX are the angles between VAs of the TX- and

RX-radar node and the target. For example on the TX side, this

angle is defined as φk,TX = tan−1((y−yk,TX)/(x−xk,TX)).
The EFIM on the position error can be written as [3]

EFIM ≡ J(θ)2×2 = HΛAH
T −HΛBΛ

−1

C
ΛT

BH
T (14)

where the block matrices ΛA, ΛB and ΛC are defined in the

appendix. If there is no path overlap, which means that signals

coming from different VAs do not intersect in the time-domain,

ΛA is a diagonal matrix and ΛB is zero. According to [3],

the EFIM can then be written in a canonical form a

J(θ)2×2 =
8π2β2

c2

KTX
∑

k=1

KRX
∑

l=1

SINRk,lJr(φk, φl) (15)

where β2 is the effective mean squared bandwidth of the pulse

p(t),

SINRk,l = w2

k,l

|αk,l|
2

N0

=
|αk,l|

2

N0 + TpSν(τk,l)
(16)

is the signal-to-interference-plus-noise ratio of the k, l-th
backscatter MPC and

Jr(φk, φl) =

[

A2 AB
AB B2

]

(17)

is the 2 × 2 ranging direction matrix accounting for the

geometry, where A = cosφk,TX + cosφl,RX and B =
sinφk,TX +sinφl,RX. Note that (15) in general does not hold

for backscatter channels with TR processing, due to additional

generated overlap of signal paths.

This analytical result was comprehensively analyzed for

the single-channel MINT scenario in [3]. There, the main

findings which also are evident in (15) are the following:

First, any increase of the effective bandwidth decreases the

PEB. Second, each additional VA increases the EFIM and

consequently decreases the PEB, and third, the gain of each

VA is determined by the corresponding SINR.

D. Influence of TR Processing on the Position Error Bound

One impact of TR processing on the CRLB is that the

weights wk,l accounting for the DM change according to the

PDP Sν,TR. Furthermore, TR processing influences the signal

correlation function, which appears in the block matrices of

the EFIM (c.f. appendix), the following way

Rs(τk,l − τk′,l′) =

∫ ∞

−∞

s(t− τk,l)s(t− τk′,l′)dt

=

∫ ∞

−∞

K̂TX
∑

m=1

K̂TX
∑

m′=1

∣

∣α̂m,TX

∣

∣

2
|α̂m′,TX

∣

∣

2

p(t− τk,l + τ̂m,TX)p(t− τk′,l′ + τ̂m′,TX)dt

=

K̂TX
∑

m=1

K̂TX
∑

m′=1

∣

∣α̂m,TX

∣

∣

2
|α̂m′,TX

∣

∣

2

Rp((τk,l − τ̂m,TX)− (τk′,l′ − τ̂m′,TX)). (18)

where Rp(τk,l − τk′,l′) =
∫∞

−∞ p(t − τk,l)p(t − τk′,l′)dt is

the ACF of the transmitted pulse p(t). Eq. (18) illustrates the

additional generated path overlap by TR processing.

IV. RESULTS

1) Simulation Setup: A computational analysis has been

performed for the scenario illustrated in Fig. 1 for a target that

moves along a trajectory consisting of 24 target positions. The

TX radar node is located at position p1,TX = [8, 7.5]T and

the RX radar node at position p1,RX = [2, 6]T. Deterministic

MPCs of the up- and down-link channels hTX(τ) and hRX(τ)
have been generated using VAs for first- and second-order

reflections and the LOS components. A similar path-loss

model has been used for the MPC gain as in [3], assuming a

carrier frequency of 7 GHz and adding 3 dB of attenuation for

each reflection order. The transmitted pulse p(t) is modeled
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as root raised cosine pulse with roll-off factor βroll = 0.6 and

pulse duration of Tp = 0.5 ns corresponding to a bandwidth

of 2 GHz. The PDPs of the diffuse part of both channels

are modeled as double-exponential functions cf. [12, (9)].

Their parameters are the total power of the diffuse multipath

Ω1 = 1.16 × 10−6, the decay time γ1 = 20 ns, the rise

time γrise = 5 ns and the shape parameter χ = 0.98, which

were kept fixed over the entire trajectory. However, due to the

concatenation of the up- and down-link channels, the resulting

PDP of the DM for the backscatter channel depends on the

deterministic channel parts, and thus on the target position.

The SNR of DM varies along the trajectory between 25 dB and

31 dB. The SINR of the LOS component at the first trajectory

position p = [3, 2] is 21 dB for the backscatter channel and

15 dB for the backscatter channel with TR processing.

2) CRLB and Influence of TR Processing: We first analyze

the CRLB for backscatter channels without TR processing.

Due to the fact that in a backscatter channel more MPCs

appear than in a conventional channel, path-overlap is more

probable, which causes stronger degradation of the PEB. This

is illustrated in Fig. 3, where the PEB is computed from the

complete EFIM (14) and from the canonical form of the EFIM

that neglects path-overlap. First-order reflections (solid lines)

and second-order reflections (dashed lines) are analyzed. We
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(b) NLOS, VA order 1 for TR processing
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(c) LOS, VA order 2 for TR processing

0 5 10 15 20 25
0.01

0.02

0.03

0.04

0.05

trajectory

st
dv

 o
f e

rr
or

 [m
]

 

 

PEB Backscatter channel
PEB Backscatter channel + TR

(d) NLOS, VA order 2 for TR processing

Fig. 5. PEB along a trajectory for LOS and NLOS scenarios with VA order
of 1 for TR processing (path overlap considered), Tp = 0.5 ns.

can see that the PEB neglecting path overlap is decreased

with increasing order of MPCs, since more information can

be exploited. On the other hand, the PEB considering path-

overlap is partly increased since path-overlap makes this

information unusable.

Fig. 4 shows the impact of TR processing using VA order

of 2. Position error ellipses are given in terms of the forty-

fold standard deviation for several trajectory positions. Red

(solid) stands for the backscatter channel alone and black

(dashed) includes TR processing. One can first see that the

error depends on the geometry. It is lower in the direction of

the radar nodes, because MPCs from other directions are more



impaired by DM. An interesting fact is that TR processing

partly levels this imbalance. It improves the information from

reflected MPCs, while reducing information from the LOS

component that gets affected by DM more significantly, due

which is a fundamental requirement for a cognitive radar to

gain control over the environment sensing in its perception-

action cycle [13]. The overall PEB is decreased by TR

processing for most positions, but the gain depends strongly

on the geometry.

Figs. 5(a)-(d) show the PEB of the backscatter channel with

TR processing along the trajectory for the LOS and NLOS

cases (path overlap considered), where the latter means that

the first component of the TX channel has been set to zero.

Figs. 5(a) and (b) illustrate TR processing with MPCs coming

from VAs of first-order. One can see that TR processing

results in a performance gain, especially for NLOS scenarios.

As Figs. 5(c) and (d) show, the inclusion of second-order

reflections in TR parameter set does not automatically yields

in a performance gain. This can be explained by the fact

that the impairment of additional DM is higher than the gain

caused by energy focusing. The results illustrate again that the

performance gain through TR processing is strongly dependent

on the geometry of the room.

V. CONCLUSIONS

Using a channel model that explicitly models the diffuse

multipath, a unified likelihood model for the localization on

backscatter channels has been introduced. The impact of TR

processing can be evaluated as well. Results show the detri-

mental effect of path overlap and DM in backscatter channels.

Using geometrically modeled deterministic MPCs for TR

processing does not automatically imply large performance

gains. The special structure of DM in the backscatter channel

suggest a careful usage of a subset of the uplink paths for

TR, which is supported by our derivations and results. TR

processing yields a closed control loop for optimal sensing of

the environment as it is required in a cognitive radar system.

The CRLB can be used as feedback information as it quantifies

the performance gain.

APPENDIX

A. Derivation of the Subblocks of the FIM

The FIM J(ψ) of the transformed parameter vector ψ =
[

τT (αR)T (αI)T
]T

can be calculated from (9) the following

way

J(ψ) =





ΛA ΛR

B ΛI

B

(ΛR

B)
T Λ′

C Λ′′
C

(ΛI

B)
T Λ′′

C Λ′
C





3KTXKRX×3KTXKRX

(19)

where ΛB = [ΛR

B ΛI

B] and ΛC = [Λ′
C Λ′′

C;Λ
′′
C Λ′

C]. The

sub-blocks are derived as

[ΛA]kl,k′l′ = E
r|ψ

{∂2 ln p(r|ψ)

∂τk,l∂τk′,l′

}

=
2

N0

wk,lwk′,l′ℜ
{

αk,lα
∗
k′,l′

∂2Rs(τk,l − τk′,l′)

∂τk,l∂τk′,l′

}

[ΛR

B]kl,k′l′ = E
r|ψ

{∂2 ln p(r|ψ)

∂τk,l∂αR

k′,l′

}

=
2

N0

wk,lwk′,l′ℜ
{

αk,l

∂Rs(τk,l − τk′,l′)

∂τk,l

}

[ΛI

B]kl,k′l′ = E
r|ψ

{∂2 ln p(r|ψ)

∂τk,l∂αI
k′,l′

}

=
2

N0

wk,lwk′,l′ℑ
{

αk,l

∂Rs(τk,l − τk′,l′)

∂τk,l

}

[Λ′
C]kl,k′l′ = E

r|ψ

{∂2 ln p(r|ψ)

∂αR
k,l∂α

R
k′,l′

}

= E
r|ψ

{∂2 ln p(r|ψ)

∂αI
k,l∂α

I
k′,l′

}

=
2

N0

wk,lwk′,l′ℜ
{

Rs(τk,l − τk′,l′)
}

[Λ′′
C]kl,k′l′ = E

r|ψ

{∂2 ln p(r|ψ)

∂αR

k,l∂α
I

k′,l′

}

=
2

N0

wk,lwk′,l′ℑ
{

Rs(τk,l − τk′,l′)
}

where Rs(τk,l − τk′,l′) =
∫∞

−∞
s(t− τk,l)s(t− τk′,l′)dt is the

signal correlation function.
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