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Bandlimited Power-Efficient Signaling and Pulse

Design for Intensity Modulation
Cristian B. Czegledi, M. Reza Khanzadi, Student Member, IEEE, and Erik Agrell, Senior Member, IEEE

Abstract—In this paper, a new method for power-efficient
intersymbol interference-free transmission over the bandlimited
intensity-modulation direct-detection channel is proposed. A new
time-varying bias signal is added to the transmitted signal
to make it nonnegative and provide a more power-efficient
transmission than the previously considered constant bias. To
exploit the benefits of the new signaling method, Nyquist and
root-Nyquist pulses suitable for the use with this kind of bias
are designed using two different methods. In the first method,
new pulses are obtained by adding Nyquist pulses in the time
domain with different combining coefficients, whereas in the
second method, the pulses are obtained by the design of their
frequency response. Analytical expressions for the asymptotic
optical power efficiency and symbol error rate of the proposed
schemes are derived and evaluated. At a spectral efficiency of
1 b/s/Hz, using on-off keying modulation and the proposed bias
signal and pulses, up to 0.628 dB gains in asymptotic power
efficiency can be achieved compared to the previously best known
signaling scheme, which is based on squared sinc pulse shaping.

Index Terms—fiber-optical communications, free-space optical
communications, ISI-free signaling, Nyquist pulses, root-Nyquist
pulses.

I. INTRODUCTION

INTENSITY-modulation direct-detection (IM/DD) systems

are a potential solution for low-cost and low-complexity

optical communication links. In such systems, incoherent

transceivers are used, which encode the information only on

the optical intensity of the transmitted signal, opposed to

coherent communications, where both amplitude and phase

carry information. Intensity modulation is obtained by varying

the driving current of a vertical-cavity surface-emitting laser,

laser diode, or light-emitting diode used at the transmitter.

Direct detection is performed at the receiver by using a

photodetector that generates an electrical current, proportional

to the received optical power [1], [2, Ch. 1]. Applications

of IM/DD systems include short-range optical links such as

fiber-to-the-home, optical interconnects [3], and diffuse indoor

wireless optical links [1].

An IM/DD system implies two major constraints on the

transmitted electrical signal; it must be nonnegative, and for
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safety and power-consumption purposes, the average and peak

optical powers have to be within certain limitations [1].

In [4], intersymbol interference (ISI)-free transmission over

a strictly bandlimited IM/DD channel was investigated for

the first time. Pulse-amplitude modulation (PAM) schemes

were designed using bandlimited ISI-free nonnegative Nyquist

pulses such as the squared sinc (S2) pulse, which requires

a bandwidth equal to the symbol rate. It was also shown

that nonnegative bandlimited ISI-free root-Nyquist pulses do

not exist. As an extension, new nonnegative Nyquist pulses

were introduced in [5], which provide a trade-off between the

required average optical power and the bandwidth, spanning

from the symbol rate to its double.

A new modulation scheme for the bandlimited ISI-free

IM/DD systems was proposed in [6], where a constant direct-

current (DC) bias signal is added to the transmitted wave-

form in order to make the signal nonnegative. This approach

provides more bandwidth flexibility by enabling transmission

below the symbol rate, and it also allows the use of root-

Nyquist pulses. At the moment, for a bandwidth equal to the

symbol rate, there is still no modulation scheme having a better

power efficiency than the scheme proposed in [4], which uses

the S2 pulse.

In this paper, we extend the work on bandlimited ISI-free

IM/DD systems by presenting a new, more power-efficient

signaling method, and new Nyquist and root-Nyquist pulse

shapes, suitable for the proposed signaling method. The new

signaling method consists of a new bias signal, which is time-

varying, different from the one previously proposed in [6].

Moreover, the optical power efficiency is further increased by

optimizing new pulse shapes for the time-varying bias. The

design of the pulses is done using two different methods. For

the first time, modulation schemes are presented that are more

power-efficient than the PAM signaling method based on S2

pulse [4], at the same spectral efficiency.

II. SYSTEM MODEL

In the absence of optical amplification, the dominating noise

sources are thermal noise and shot noise in the photodetector

[7, Sec. 4.4]. The IM/DD link can in this case be accurately

modeled as a baseband additive white Gaussian noise (AWGN)

channel, imposing certain restrictions on the transmitted signal

[1], [2, Ch. 5], [8, Ch. 2]. Fig. 1 shows the model of a IM/DD

system, including a transmitter, a channel, and a receiver. The

transmitted nonnegative intensity is constructed as a modified



IEEE TRANSACTION ON COMMUNICATIONS 2

Transmitter Receiver

Pulse shaping Receive filter
Input
symbols

Bias
adder

Bias
substractor Output

symbols
Decision

Baseband
channel

ak âk
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Fig. 1. Baseband IM/DD system model. The bias signal f(t) is added to the PAM signal x(t) at the transmitter to construct the nonnegative signal x+(t).
At the receiver, the same bias signal is subtracted from the received signal before demodulation is performed.

PAM signal

x+(t) = A
(

f(t) +

∞
∑

k=−∞

akp(t− kT )
)

, (1)

where A is a positive power scaling factor, ak is the kth trans-

mitted symbol uniformly drawn from a finite one-dimensional

constellation C , T is the symbol time, and p(t) is an arbitrary

pulse shape of bandwidth B ≤ 1/T . The nonnegativity

constraint is satisfied by adding a proper signal bias f(t) to

the transmitted PAM signal. The received signal is

y(t) = H(x+(t) + n(t)), (2)

where H represents the combined effects of the channel

attenuation and receiver gain and n(t) is zero-mean AWGN

with double-sided power spectral density N0/2. Without loss

of generality, we assume that the channel gain estimation is

ideal, so that H = 1. At the receiver, the same bias f(t), which

is added at the transmitter is subtracted from the received

signal y(t), making the rest of the receiver a conventional

PAM demodulator. As it is presented in Fig. 1, the subtraction

of the bias f(t) is done in the analog domain. Considering that

the filtering and sampling operations at the receiver are linear,

the subtraction of the bias can be moved to the digital domain

between sampling and decision. In this case, the subtracted

bias samples are obtained by filtering f(t) with the same

receive filter g(t) used to filter y(t) and by sampling it at

the same time as symbol sampling is done. Since the bias is

a deterministic waveform, its samples can be stored and used

from a memory at the receiver.

A. Average and Peak Optical Power

According to [2, Ch. 5], [5, Ch. 2], the average optical power

is computed as the average amplitude of x+(t)

Pavg =
1

T

∫ T

0

E{x+(t)}dt, (3)

where E{·} denotes the statistical expectation.

The peak optical power is

Ppeak = sup
t∈R,{ak}

(x+(t))

= sup
t∈R,{ak}

(

A(f(t) +

∞
∑

k=−∞

akp(t− kT ))

)

,
(4)

where R denotes the set of real numbers and {ak} the infi-

nite sequence . . . , a−1, a0, a1, a2, . . .. For safety and power-

consumption considerations, the average and peak optical

powers have to be within certain limitations.

B. ISI-free and Bandwidth Constraints

To fulfill the bandwidth restriction on x+(t), the pulse shape

p(t) used at the transmitter is always bandlimited, B ≤ 1/T .

The ISI-free condition is considered in two scenarios. Using a

sampling receiver, where the receiver’s filter g(t) is flat in the

band of interest, and using matched-filter (MF) receiver with

the receive filter g(t) matched to the transmitter’s pulse shape

p(t).
To fulfill the ISI-free condition in the first case, Nyquist

pulses p(t) are used, which satisfy the Nyquist criterion [9,

Eq. (9.2-12)]

p(nT ) =

{

1, n = 0,

0, n 6= 0,
(5)

for all integers n. In the frequency domain, this is equivalent

to [9, Eq. (9.2-13)]

∞
∑

m=−∞

P (f +m/T ) = T, (6)

where P (f) is the Fourier transform of p(t).
In the MF receiver scenario, the receive filter is matched to

the transmitter pulse. In order to meet the ISI-free constraint

at the output signal after the MF, a root-Nyquist pulse P
RN
(f)

can be used at the transmitter, which can be obtained from a

Nyquist pulse by applying [9, Eq. (9.2-29)]

P (f) = P
RN
(f) =

√

|P
N
(f)|e−j2πft0 , (7)

where P
N
(f) is the frequency response of the Nyquist pulse,

j =
√
−1 is the imaginary quantity, and t0 is a delay to allow

nonsymmetric pulses and to ensure physical realizability of

the filter. Considering an ideal channel, i.e., a channel with a

normalized flat response in the band of interest, to match the

receive filter to the transmitter’s filter, its frequency response

is set to be G(f) = P ∗(f), where (·)∗ denotes the complex

conjugate.

For convenience, the operator R(·) is defined, which con-

verts a Nyquist pulse into its corresponding root-Nyquist pulse
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using (7)

p
RN

(t) = R(p
N
(t)) = F

−1(
√

|F (p
N
(t))|), (8)

where F (·) denotes the Fourier transform, F (·)−1 means its

inverse, p
N
(t) is the initial Nyquist pulse, and p

RN
(t) is the

resultant root-Nyquist pulse, both defined in the time domain.

III. THE BIAS SIGNAL

In this section, the proposed bias signal is introduced, which

guarantees the nonnegativity of the transmitted signal. The

procedure of finding a power-efficient modulation scheme can

be formulated as an optimization problem, where the optical

power efficiency is maximized by finding the bias signal f(t),
constellation C , and pulse shape p(t). However, in this paper,

previously known constellations are used and the focus is on

the design of f(t) and p(t).

A. The Bias Expression

To fulfill the nonnegativity constraint, a bias signal f(t) is

added to the PAM signal in (1). It can be any waveform, as

long as it is strictly bandlimited and achieves the nonnegativity

of the transmitted signal.

For all t ∈ R and {ak}, (1) can be rewritten as

x+(t) = A

(

f(t) +

∞
∑

k=−∞

(ak − L) p(t− kT )

+ L

∞
∑

k=−∞

p(t− kT )

)

,

(9)

where L = (a+a)/2 is the midpoint of the constellation, a =
maxa∈C a, and a = mina∈C a. According to [6, Corollary 2],

for a bandlimited pulse p(t) with B ≤ 1/T

∞
∑

k=−∞

p(t− kT ) =
P (0)

T
, (10)

which is a constant independent of t. Using (10), (9) can be

rewritten as

x+(t) = A

(

f(t) +
∞
∑

k=−∞

(ak − L) p(t− kT ) +
LP (0)

T

)

.

(11)

Since the last term of the right hand side of (11) is constant,

the variations in time of the required bias f(t) depend only

on the summation term. The worst case scenario is when all

the terms in the summation are minimum (the most negative

value of each term), requiring the largest bias. Any term of

the summation achieves the minimum value in two possible

ways. First, when (ak − L) is maximum, i.e., (a − L), and

p(t − kT ) < 0, or second, when (ak − L) is minimum, i.e.,

(a−L), and p(t− kT ) > 0. Both cases are the same because

(a−L) = −(a−L). Thus for any t, (11) can be bounded as

x+(t) ≥ A

(

f(t)− v(t) +
LP (0)

T

)

, (12)
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Fig. 2. A PAM signal, x(t), using C = {0, 1} and the RC pulse with
α = 0.5. The required DC bias in [6] is µ0 = −minx(t) = 0.241 for
µ1 = 0; using the optimal cosine-bias, µ1 = −0.08 and φ = 0, the required
DC bias becomes µ0 = 0.182.

where v(t) = (a− L)
∑∞

k=−∞ |p(t− kT )|. Note that v(t)
does not always exist, the summation diverges for some cases

of p(t), which makes v(t) = ∞.

The variation in time of f(t) depends only on the summa-

tion
∑∞

k=−∞ |p(t− kT )|, which is a time-varying, periodic

function with period equal to T . Therefore, our choice of f(t)
is also a time-varying, periodic function with the period equal

to T . According to [10, p. 171], a periodic function with the

period equal to T can be decomposed into its Fourier series

as

f(t) = µ0 +

∞
∑

k=1

µk cos

(

2πkt

T
+ φk

)

, (13)

where µ0 is a constant and µk and φk are the amplitude and

the phase, respectively, of the kth cosine component.

The bias signal has to be a waveform which is strictly

bandlimited, B ≤ 1/T , to satisfy the condition imposed in

Sec. I. Therefore, to satisfy the bandwidth limitation, only the

first term of the summation in (13) is considered, which yields

f(t) = µ0 + µ1 cos

(

2πt

T
+ φ

)

. (14)

For the sake of notation simplicity, we define φ = φ1. For

any given µ1 and φ, the DC component µ0 can be chosen to

ensure x+(t) ≥ 0.

From the average optical power perspective, the cosine

component of the bias does not require extra power since its

integral is zero in (3). The extra power is consumed only by

the DC bias µ0. However, compared to [6], the transmission

is more power-efficient because less DC bias is required after

adding a suitably chosen cosine term.

By substituting (14) in (1), the transmitted signal becomes

x+(t) = A

(

µ0 + µ1 cos

(

2πt

T
+ φ

)

+

∞
∑

k=−∞

akp(t− kT )

)

.

(15)

In the special case of µ1 = 0, (15) becomes the same as [6,

Eq. (1)].
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Fig. 3. Frequency spectrum of the proposed signaling method using a R(RC)
pulse with α = 1.

The effect of adding the variable bias to the transmitted

signal is plotted in Fig. 2, where a PAM signal is formed

using the raised-cosine (RC) pulse with the roll-off factor α =
0.5 (see Sec. VI-A) and C = {0, 1}. It can be seen that the

required DC bias in [6] is decreased by adding the cosine term

to the transmitted signal.

The cost of adding the time-variable bias is an increased

bandwidth. By using only a DC bias, µ1 = 0, the required

bandwidth is equal to the bandwidth of the pulse p(t), i.e.,

B ≤ 1/T , whereas after adding the cosine term, the required

bandwidth becomes B = 1/T . It must be noted that the

receiver does not need any extra synchronization for the time-

varying bias, since the cosine term has the same period as

the symbol clock. Moreover, the cosine-tone added to the

spectrum can be used at the receiver in the clock-recovery

circuit, analogously to detecting the return-to-zero modulation

format which has a similar spectral component at 1/T [7,

Pg. 148].

Fig. 3 shows the normalized spectrum of a signal x+(t)
formed using the proposed modulation format and the R(RC)

pulse with a roll-off factor α = 1. It can be noticed that

the spectrum is strictly bandlimited and exhibits a spectral

component at f = 1/T which corresponds to the cosine term

in (14). A narrow-bandpass filter or a phase-locked loop can

easily isolate this component for further use in the clock-

recovery circuit.

B. Bias Coefficients

In the previous section, the time-varying bias was proposed.

In this section, the bias parameters µ0, µ1, and φ are optimized

to maximize the average optical power efficiency.

From (12) and (14), the optimal, i.e., minimum, value of

µ0 as a function of µ1 and φ, such that it satisfies the

nonnegativity constraint, can be written as

µ0 = max
0≤t<T

(

v(t) − µ1 cos
(2πt

T
+ φ

)

)

− LP (0)

T
. (16)

As mentioned earlier, the cosine component of the bias does

not have any effect on the average optical power. However, any

choice of µ1 and φ affects the optimal value of µ0. Hence, µ0

is minimized over µ1 and φ as

µ0 = min
0≤φ<2π
µ1∈R

max
0≤t<T

(

v(t) − µ1 cos
(2πt

T
+ φ

)

)

− LP (0)

T
,

(17)

which maximizes the average optical power efficiency.

From (17), it can be seen that the DC bias µ0 depends

on the constellation C , the pulse shape p(t), the amplitude

µ1, and the phase φ of the variable bias, but not on the

instantaneous transmitted symbols due to (12). Solving this

optimization analytically is not tractable, but it can be easily

solved numerically.

IV. POWER EFFICIENCY

In this section, analytical expressions for the average and

peak optical powers are derived and the asymptotic power

efficiency (APE) criterion is introduced.

The average optical power can be computed by substituting

(15) in (3), which yields

Pavg =
1

T

∫ T

0

A

(

µ0 + µ1 cos
(2πt

T
+ φ

)

+ E{ak}
∞
∑

k=−∞

p(t− kT )

)

dt

= A
(

µ0 + E{ak}p̄
)

,

(18)

where

p̄ =
1

T

∫ ∞

−∞

p(t)dt =
P (0)

T
. (19)

By substituting µ0 from (16), which is the minimum required

DC bias that satisfies the nonnegativity constraint for a given

µ1 and φ, the average optical power can be written as

Pavg = A

(

max
0≤t<T

(

v(t) − µ1 cos
(2πt

T
+ φ

)

)

+ p̄
(

E{ak} − L
)

)

.

(20)

The optimization of Pavg is in this paper implemented by

minimizing (20) over the cosine-bias parameters µ1 and φ.

The peak optical power can be obtained by substituting the

bias expression from (14) in (11) and then in (4) as

Ppeak = sup
t∈R,{ak}

(

A

(

µ0 + µ1 cos
(2πt

T
+ φ

)

+

∞
∑

k=−∞

(ak − L) p(t− kT ) +
LP (0)

T

)

)

.

(21)

If the worst case scenario is considered (where the summation

in (21) is maximum), analogous to (12) and by substituting µ0
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and φ = 0. The cross-markers represent different values of µ1 and the triangle denotes the minimum average optical power.

from (16), Ppeak becomes

Ppeak = A

(

max
0≤t<T

(

v(t)− µ1 cos
(2πt

T
+ φ

)

)

+ max
0≤t<T

(

v(t) + µ1 cos
(2πt

T
+ φ

)

)

)

,

(22)

which is an achievable upper bound on the transmitted signal,

i.e., maxt∈R x
+(t) ≤ Ppeak for all {ak}. The situation of

having maxt∈R x+(t) = Ppeak is rather unlikely since in

general occurs for a single sequence {ak}, but there exist many

sequences {ak} that will form a signal x+(t) with a maximum

arbitrarily close to Ppeak. (22) is bounded1 by

2A max
0≤t<T

v(t) ≤ Ppeak ≤ 2A( max
0≤t<T

v(t) + |µ1|). (23)

The lower bound in (23) is the peak optical power required

in [6] and can be obtained by setting µ1 = 0 in (22). Similar

to (20), the optimization of (22) can be performed over the

cosine-bias parameters, µ1 and φ. Minimizing the average

optical power in (20) does not guarantee the minimum peak

optical power. A trade-off between average and peak optical

power can be obtained by varying µ1 and φ in (20) and (22).

However, the main objective in this paper is to minimize the

average optical power.

Fig. 4 shows the trade-off for different values of µ1 (cross-

markers) between Ppeak and Pavg and their corresponding

minimum values computed for the RC pulse (left) and for the

R(RC) pulse (right) using α = 0.5, C = {0, 1}, and φ = 0. In

the first case, the minimum average optical power is obtained

when µ1 = −0.08, while the minimum peak optical power

1Both inequalities can be easily proven by starting from the basic inequality
max(f(t) + g(t)) ≤ max(f(t)) + max(g(t)). The first inequality can
be proved by replacing f(t) = v(t) − µ1 cos(2πt/T + φ) and g(t) =
v(t) + µ1 cos(2πt/T + φ), while the second one can be proved using
max(v(t)± µ1 cos(2πt/T +φ)) ≤ max(v(t)) +max(±µ1 cos(2πt/T +
φ)) = max(v(t)) + |µ1|.

is obtained (the sum of the two maxima in (22) is equal to

2max v(t)) when −0.05 ≤ µ1 ≤ 0.05, i.e., red flat solid

line. However, if the minimum peak optical power is desired,

µ0 = −0.05 is the best choice, where Pavg is at its lowest

value while Ppeak is minimized. In the figure on the right for

the R(RC) pulse, the minimum values for both average and

peak optical powers are achieved for µ1 = 0.02.

The average optical power gains achieved by the proposed

method are computed in terms of the APE, defined as

APE =
P

ref
avg

Pavg

, (24)

where P
ref
avg is the average optical power required by the

benchmark signaling method to guarantee a given symbol error

rate Pe and Pavg is the average optical power required by

the proposed method to achieve the same Pe. The benchmark

signaling method uses the constellation C = {0, 1}, similar

to [1], [2, Ch. 5], along with the S2 pulse and a sampling

receiver. The S2 pulse is a positive Nyquist pulse, which does

not require any bias signal and offers the most power-efficient

signaling scheme previously known at the same bandwidth as

the proposed signaling scheme, B = 1/T , which leads to a

fair comparison.

V. M -PAM ANALYSIS

In the previous sections, the relations are valid for any

choice of one-dimensional constellation, while in this section,

the APE is calculated for any uniformly spaced M -ary PAM

(M -PAM) constellation. According to [6, Theorem 3], shifting

the constellation points with a constant offset does not change

the ultimate performance of the proposed signaling method

based on adding the bias signal. Without loss of generality, in

this work the constellation C is chosen to be a nonnegative M -

PAM constellation defined as C = {0, 1, 2, ...,M − 1}, with

the parameters a = 0, a = M − 1, L = E{ak} = (M − 1)/2,

and the minimum distance of the constellation ∆a = 1.



IEEE TRANSACTION ON COMMUNICATIONS 6

For both sampling and MF receivers, the scaling factor A
can be computed as a function of the other system parameters

to achieve a given Pe.

A. Sampling Receiver

In this case, using the same principles as in [6], the

parameter A is computed as

A =
2

∆a p(0)
Q−1

(

Pe

M

2(M − 1)

)

√

N0B, (25)

where B is the required bandwidth and Q(·) is the Gaussian

Q-function defined as

Q(x) =
1

2π

∫ ∞

x

exp

(−x2

2

)

dx, (26)

and Q(·)−1 means its inverse. Substituting (25) in (18), the

average optical transmitted power becomes

Pavg = Q−1

(

Pe

M

2(M − 1)

)

√

N0B
2µ0 + (M − 1)p̄

p(0)
. (27)

The average optical power required by the benchmark signal-

ing method using (27) is

P ref
avg = Q−1 (Pe)

√

N0Bref, (28)

where Bref = 1/T . Substituting (27) and (28) in (24) and

taking the limit Pe → 0, since the interest is in the

asymptotical power efficiency, the APE expression in the case

of sampling receiver becomes

APE =

√

Bref

B

p(0)

2µ0 + (M − 1)p̄
. (29)

B. Matched Filter Receiver

The APE for the MF receiver can be computed by taking

similar steps as in the case of using a sampling receiver. Here

A becomes [6]

A = Q−1

(

Pe

M

2(M − 1)

)

1

∆a

√

2N0

Ep

, (30)

where Ep =
∫∞

−∞
p(t)2dt. Using (30) in (18), the average

optical power becomes

Pavg = Q−1

(

Pe

M

2(M − 1)

)

√

2N0

Ep

(

µ0 +
(M − 1)p̄

2

)

.

(31)

After substituting (28) and (31) in (24) and letting Pe → 0,

the APE becomes

APE =
√

2BrefEp

1

2µ0 + (M − 1)p̄
. (32)

The DC bias µ0 in (29) and (32) is computed using

(17), which maximizes the APE, i.e., minimizes Pavg of the

proposed method.

TABLE I
STUDIED NYQUIST PULSES

Pulse Analytic Expression p(t)

RC







π
4

sinc
(

t
T

)

t = ± T
2α

sinc
(

t
T

) cos(παt

T
)

1−( 2αt

T
)2

otherwise

BTN sinc( t
T
)

2παt

T ln 2
sin(παt

T
)+2 cos(παt

T
)−1

( παt

T ln 2
)2+1

PL sinc( t
T
)sinc(αt

T
)

Xia







π
2

sinc
(

t
T

)

t = − T
2α

sinc
(

t
T

) cos(παt

T
)

2αt

T
+1

otherwise

S2 sinc2( t
T
)

We define sinc(x) , sin(πx)/(πx).

VI. PULSE SHAPING

In the previous section, the optimal optical power efficiency,

i.e., APE, was found by optimizing only the bias signal f(t). In

this section, the optimization is reformulated by simultaneous

optimization of the pulse shape p(t) and the bias signal f(t).
The APE can be maximized by choosing the pulse shape p(t),
the cosine-bias coefficients µ1 and φ, and the DC bias µ0,

while keeping the rest of the systems parameters such as the

constellation C constant.

The following sections present different choices of the pulse

shape p(t), used in the optimization process to find the scheme

that achieves the maximum APE. In Sec. VI-A, pulses already

known in the literature are presented, while in Sec. VI-B and

VI-C, new pulses are designed for use with the time-varying

bias, first by combining the already known pulses in the time

domain, and then by numerical optimization in the frequency

domain.

A. Known pulses

In this paper, the most common Nyquist pulses known in

the literature (defined in Tab. I) are analyzed. The RC pulse [9,

Eq. (9.2-27)] is one of the most well-known Nyquist pulses,

followed by the “better than Nyquist” (BTN) pulse [11], the

parametric linear (PL) pulse of the first order [12], and the

first-order Xia pulse [13], [14]. The Xia pulse is different

from the rest of the pulses by being nonsymmetric in the

time domain and also satisfying both the Nyquist and root-

Nyquist criteria at the same time. The excess bandwidth for

each pulse is controlled by the roll-off factor α ∈ [0, 1]. All

the pulses presented in Tab. I have negative parts in the time

domain, their bandwidth is equal to B = (1 + α)/2T , and

for α = 0 they all result in the sinc pulse. The sinc pulse

is an impractical waveform for IM/DD signaling, since the

summation in (17) diverges, requiring an infinite DC bias µ0.

The S2 pulse, proposed in [4] is nonnegative, ISI-free, and has

a fixed bandwidth B = 1/T . By being positive at any time t,
the S2 pulse does not require any bias signal.
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Fig. 5. The Fourier transform P (f) vs. frequency f of several pulses obtained
during a low resolution grid search of Q(f). The curve with markers achieves
the maximum APE out of this set of curves.

In this study, the performance of each pulse with both

sampling and matched filter receivers is analyzed. The R(·)
operator is used to obtain root-Nyquist pulses, except the Xia

pulse, which does not require any transformation since it is

a Nyquist and a root-Nyquist pulse at the same time. As a

side note, the well known root-raised cosine pulse is obtained

by applying the R(·) operator on the RC pulse. Whenever

we refer to the performance of a pulse denoted as R(pulse)

is this paper, it is implicitly assumed that an MF receiver is

used. Conversely, pulses without the R(·) notation are detected

using a sampling receiver.

B. Composite Pulses

In this section, new pulses denoted as “composite pulses”

are designed by linear combinations of the pulses introduced

in the previous section. A composite pulse can be obtained as

a summation of different Nyquist pulses in the time domain.

The added pulses are required to have the same symbol time

T . Therefore, the outcome of the addition is another Nyquist

pulse with the same symbol time. The employed pulses can

be combined with different coefficients and different roll-off

factors. For complexity reasons, in this study only two pulses

are combined to form a composite pulse, defined as

p(t, α) = i1p1(t, α1) + i2p2(t, α2), (33)

where i1, i2 ∈ R are the combining coefficients, α1, α2 ∈ [0, 1]
are the roll-off factors, and p1, p2 are two arbitrary Nyquist

pulses defined in Sec. VI-A. The roll-off factor of the obtained

composite pulse p(t, α) is α = max{α1, α2}.

By optimizing the (i1, i2, α1, α2) parameters in (33),

new pulses can be obtained, which are at least as good as

the best pulse between p1 and p2. A composite pulse can be

used with a sampling receiver and moreover, its corresponding

root-Nyquist pulse can be obtained using the R(·) operator and

employed with an MF receiver.
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Init 1 64 160 256 3318
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Fig. 6. The optimization process of the curve with highest APE from Fig. 5
(curve with markers). Several intermediate steps are shown along the achieved
APE values at each step. Between 256 and 3318 iterations, the changes in the
APE and the shape are very small, which is the reason why no such curves
are plotted.

C. Frequency-Shaped Pulses

In Sec. VII-B, new composite pulses are obtained in the

time domain, while in this section, new pulses are constructed

by optimizing them in the frequency domain.

The frequency domain P (f) of a Nyquist pulse has to

satisfy (6). Accordingly, it can be designed as [12]

P (f) =



























Q(f), 0 ≤ f < 1
2T

,

T
2
, f = 1

2T
,

T −Q( 1
T
− f), 1

2T
< f < 1

T
,

0, f ≥ 1
T
,

(34)

where Q(f) is a real-valued function with T/2 ≤ Q(f) ≤ T .

Hence, it is enough to know Q(f) in order to design a Nyquist

pulse. To maximize the APE, new pulses are obtained by

optimizing the Q(f) function. To this end, Q(f) is represented

using N equally spaced samples from 0 to 1/2T , and the

Nelder–Mead algorithm [15] is applied to find the sample

values for which the objective function, i.e., the APE, is

maximized. The objective function is chosen to be the APE

whenever T/2 ≤ Q(f) ≤ T for all frequency samples f and

a low value otherwise. The optimization was implemented in

MATLAB using the fminsearch function and executed on

a computer cluster.

In order to maximize the efficiency of the optimization, the

input curve to the algorithm is chosen close to the optimal

solution. Therefore, the starting values of Q(f) are determined

using a grid search. For computation complexity reasons

during the grid search, the frequency spectrum from 0 to

1/2T of Q(f) is discretized only into six equally spaced

points. Two points are fixed, Q(0) = T , Q(1/2T ) = T/2,

and the remaining four points Q(i/10T ) i ∈ {1, 2, 3, 4}
are varied within the interval [T/2, T ]. The pulse with the

best APE from the grid search is upsampled to N points and
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Fig. 7. APE as a function of µ1 and the roll-off factor α, for the R(RC)
pulse. By setting µ1 = 0, the added bias becomes a pure DC bias and the
obtained APE curve agrees with [6]. The dashed curve is obtained using the

variable bias and for every value of α, the optimum µ1 was used, µopt
1 (α).

The improvement of the variable bias over the DC bias is 0.679 dB, reaching
the maximum APE at α = 1.

given as an input to the Nelder–Mead optimization algorithm.

The upsampling of Q(f) is achieved using piecewise cubic

Hermite interpolation (PCHI), which is done in MATLAB by

the interp1 function. Hence, the first derivative of P (f) is

continuous and consequently the obtained pulse shapes decay

with at least 1/ |t|3 in the time domain.

Even though a grid search is performed before applying the

Nelder–Mead algorithm, there is no guarantee that the output

of the optimization reaches the global maximum. The APE

expression is not necessarily concave, and the algorithm can

be trapped in one of the local maxima. However, considerable

gains in the APE can be achieved by performing such an

optimization.

In Fig. 5, an example of a low-resolution grid search is

demonstrated along with the curve having the maximum APE

out of the presented set of curves. Fig. 6 shows the second

stage of the APE optimization, where the best curve from the

grid search in Fig. 5 is upsampled to N = 12 and input to the

Nelder–Mead algorithm.

VII. RESULTS

In this section, the achievable performance gains of the pro-

posed bias signal using different pulse shapes from Sec. VI are

investigated. In Sec. VII-A, the variable-bias signaling method

is applied to previously known pulses, while in Sec. VII-B and

VII-C, further gains are achieved by designing new pulses

specifically for the variable-bias signaling method. For the

sake of simplicity and without loss of generality, only results

for C = {0, 1} and pulses with p̄ = 1 are presented.

A. Known Pulses

In Fig. 7, the APE of the R(RC) pulse is presented as

a function of the roll-off factor α and the amplitude of the
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Fig. 8. APE versus the roll-off factor α, for different pulses in both scenarios,
using a sampling receiver and using an MF receiver, respectively. The best
APE is obtained by R(RC) and R(Xia) at α = 1 and is equal to 0.454 dB.
The curve corresponding to the RC pulse with an MF receiver, i.e., R(RC),

is the same curve as the µ1 = µopt
1 (α) (dashed) curve in Fig. 7.

variable bias µ1. As mentioned in Sec. III-A, the bandwidth

of the variable bias is equal to 1/T , therefore the required

bandwidth B is equal to 1/T , except for µ1 = 0, where

B = (1 + α)/2T . Using the variable bias, the maximum

APE = 0.454 dB is reached at (α = 1, µ1 = 0.137, φ =
0, µ0 = 0.136), where 0.679 dB is gained in APE compared

to pure DC bias with maximum APE = −0.225 dB at

(α = 0.715, µ1 = 0, φ = 0, µ0 = 0.244), at a cost of

an increased bandwidth. The variable bias, µ1, decreases the

required DC bias µ0, and therefore, less average optical power

(18) is required.

Fig. 8 shows the APE versus excess bandwidth α, for the

pulses defined in Sec. VI-A, used with a sampling or MF

receiver. For any α, the APE is optimized over µ0, µ1, and

φ. In general, the APE increases with α and achieves its

maximum at α = 1, except for R(PL) and R(BTN), where

the APE reaches its maximum at α = 0.992 and α = 0.976,

respectively. At α = 0, each pulse becomes a sinc pulse,

reaching the minimum APE, since the sinc pulse requires

an infinite DC bias µ0. All the pulses, apart from Xia, are

symmetric around the origin in the time domain, therefore,

the optimum phase of the bias is φ = 0.

In Fig. 8, it can also be observed that the MF receiver is

more efficient than the sampling receiver for all α and all

pulses. The availability of MF-based power-efficient signaling

schemes is one of the main benefit of the new time-varying

bias. If only the DC bias µ0 is used, µ1 = 0, the sampling

receiver has a better performance [6], and if no bias is used,

µ0 = µ1 = 0, then there is no root-Nyquist pulse that can be

used with an MF receiver [4].

The optimum bias parameters as a function of the roll-

off factor α for the R(Xia) pulse are plotted in Fig. 9. The

presented values for the optimal bias parameter achieve the
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Fig. 9. Optimized parameters of the Xia pulse in function of α.

APE curve shown in Fig. 8. The optimal value for µ0 when

µ1 = 0 (which agrees with [6]) is higher than when the optimal

value for µ1 is used. The optimum phase φ for the Xia pulse

decreases with α from φ = 0 when α = 0, i.e., it is a pure

sinc pulse, to φ = −π/2 when α = 1. At α = 1, by shifting

the Xia pulse in time by −T/4 results in the R(RC) pulse2,

therefore, for φ = −π/2 radians in case of using the R(Xia)

pulse, the same APE as for the R(RC) pulse with φ = 0 is

obtained.

Fig. 10 compares the maximum APE values obtained by the

pulses shown in Fig. 8. The best APE is obtained simultane-

ously by R(RC) and R(Xia).

B. Composite Pulses

In this section, the achievable APEs of the composite pulses

presented in Sec. VI-B using the variable bias are analyzed.

The composite pulses are obtained by performing a grid search

over the parameters in (33). The grid search varies −1 ≤
i1, i2 ≤ 1, which are the combining coefficients, with a step

2It can be easily proved that by setting α = 1 in [16, Eq. 2.2-11] and by
setting α = 1 and t = t′−Ts/4 in [14, Eq. (3)], the expressions will become
the same.
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Fig. 10. The maximum APE achieved by the pulses in Fig. 8. Most of the
pulses result in the best APE when α = 1, except R(PL) for which α = 0.992
and R(BTN) for which α = 0.976.

size of 1/191 and 0 ≤ α1, α2 ≤ 1, which are the roll-off

factors of the first and second pulse, with a step size of 1/21.

In Tab. II are presented the quartets (i1, i2, α1, α2) which

achieve the maximum APEs when used with the time-variable

bias and an MF receiver. For comparison, APE values obtained

by using only the DC bias are shown. Note that the presented

pulses were optimized for use with the time-varying bias, this

implies that they are not optimum for the use with only a DC

bias. In general, the composite pulses formed by using at least

one RC pulse have higher APEs, of which R(RC+RC) gives

the best performance. It can be noted that the APE gain of

the composite pulses is strongly related to the performance of

the pulses used in the (33) combination, e.g., the BTN pulse

has the worst performance when used with an MF receiver and

composite pulses based on it have also the worst performance.

The search for the optimal composite pulses based on the

Xia pulse requires phase optimization of the bias signal, which

is not the case for the other pulses defined in Sec. VI-A. This

leads to a more complex optimization, which is the reason why

combinations including the Xia pulse were not investigated.

TABLE II
COMPOSITE PULSES. PULSES WITH AN OPTIMIZED COSINE BIAS (µ1 = µopt

1 ) ARE MORE POWER-EFFICIENT THAN ONLY WITH A DC BIAS (µ1 = 0).

µ1 = µopt
1 µ1 = 0

Pulse i1 α1 i2 α2 APE (dB) µ0 µ1 APE (dB) µ0

R(BTN+BTN) 0.4013 1 0.5987 0.4 0.419 0.112 0.109 −0.445 0.221

R(PL+BTN) 3.5551 1 −2.5551 1 0.457 0.107 0.106 −0.377 0.213

R(PL+PL) 0.4029 1 0.5971 0.45 0.461 0.108 0.106 −0.387 0.214

R(BTN+RC) 0.0753 1 0.9247 0.8 0.539 0.101 0.096 −0.233 0.197

R(PL+RC) 0.3958 0.4 0.6042 1 0.546 0.100 0.096 −0.227 0.197

R(RC+RC) 0.3582 1 0.6418 0.65 0.591 0.096 0.093 −0.144 0.188
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Fig. 11. Several pulses are compared in the time domain. The decaying rate
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top right subfigure. The numerically optimized pulse, which provides the best
performance, has the biggest first side lobe and the best decaying rate.

C. Frequency-Shaped Pulses

In this section, a numerically optimized pulse in the fre-

quency domain from Sec. VI-C is compared with the best

pulses from the previous sections. The frequency-shaped pulse

is obtained by the procedure described in Sec. VI-C, starting

with a grid search on the samples of Q(f) in the frequency

domain. The step size is T/390 for the frequency point

at Q(1/10T ), 19T/5100 for the second frequency point at

Q(1/5T ), and 29T/5100 for the last two frequency points at

Q(3/10T ) and Q(4/10T ). A nonequal computational effort

is used for the different frequency points because the APE

quantity seems to be more sensitive to the changes in Q(f)
in its first half of the frequency domain [0, 1/4T ] than in

its second half [1/4T, 1/2T ]. The extra sensitivity is due to

the fact that the frequency components in the [0, 1/4T ] range

correspond to the decaying rate in the time domain, which has

a high impact on the APE, since more terms contribute to v(t)
in (17). The shape of Q(f) which offers the maximum APE is

further optimized using the Nelder–Mead algorithm to further

increase the APE gain. The discrete frequency shape of Q(f)
is upsampled using PCHI from the 6 points obtained during

the grid search to N points, and then used as initial values of

the Nelder–Mead algorithm.

The algorithm does not put any constraints on the number of

input samples. However, increasing the frequency resolution

results in a longer convergence time of the algorithm. If Q(f)
is discretized into N points, the algorithm will vary only N−2
points, leaving fixed the first and last points. The simulations

were performed varying N from 7 to 130 points, achieving

the best result for N = 17, shown in Fig. 11.

The fact that the best result is obtained for N = 17 in this

study may seem somehow counterintuitive, since increasing

the resolution usually improves the result. However, increasing

the frequency resolution N also increases the chances of get-

-0.4

-0.2

0

0.2

0.4

0.6

A
P

E
(d

B
)

R(RC) R(RC+RC) R(FreqSh)

0.454

0.591
0.628

−0.388

−0.144
−0.089

µ1 = µopt
1

µ1 = 0

Fig. 12. The achievable APE of the pulses shown in Fig. 11 used with the
time-varying bias signal and only the DC bias are shown. The frequency-
shaped pulse outperforms the other pulses by having an APE gain of 0.628
dB. All the pulses perform worse than S2 when are used only with a DC bias.

ting trapped into a local maximum. As mention in Sec. VI-C,

the objective function is not concave and contains many local

maxima. This work does not claim that the proposed pulse is

globally optimal. In general, the optimum value of N depends

on initialization of the Nelder–Mead optimization.

In Fig. 11, the numerically optimized pulse in the frequency

domain is compared in the time domain with the S2 pulse

and the best pulses previously obtained. The frequency-shaped

pulse has the largest first side lobe, slightly larger than the

R(RC+RC) pulse. Comparing the decaying rate, the numeri-

cally optimized pulse in the frequency domain has noticeable

smaller side lobes at t = −4000T compared to the rest of the

pulses. This is beneficial since fewer terms contribute to v(t)
in (17).

Fig. 12 shows the achievable APE gains with and without

the time-varying bias for the pulses of Fig. 11. The S2 pulse

(the best previously known pulse) is outperfomed by means

of the proposed variable-bias signaling method and an MF

receiver. The frequency-shaped pulse has the best performance

due to its better decaying rate, followed by the composite

pulse.

Fig. 13 presents a different analysis by comparing the bit

error rate (BER) as a function of the required signal-to-noise

ratio (SNR) in terms of the average optical power defined as

in [1, Eq. (5)]

SNR =
P 2

avg

N0Rb

, (35)

where Rb = 1/T is the bit rate. The evaluated pulses preserve

the same order as in Fig. 12 in terms of performance. A gain of

1.26 dB (twice the APE gain) in SNR is achieved between the

proposed signaling method using the frequency shaped pulse

and the S2 pulse.
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VIII. CONCLUSIONS AND FUTURE WORK

This paper presents a new modulation format for IM/DD

systems by designing a new bias signal and new bandlimited

ISI-free pulses for use with the bias. The proposed bias signal

is time-varying and bandlimited to B = 1/T , consisting of a

DC bias and a cosine term, being more power-efficient than the

previously proposed constant DC bias. Moreover, new designs

of Nyquist and root-Nyquist pulses are introduced, which

further improve the power efficiency. The proposed method

enables for the first time the power-efficient use of root-

Nyquist pulses and the matched filter design at a bandwidth

equal to the symbol rate. The evaluation of the new modulation

formats is done by computing the asymptotic power efficiency,

which shows gains up to 0.628 dB compared to the best

previously known signaling method, which corresponds to

1.26 dB in terms of SNR, at the same spectral efficiency.

The results of this paper were derived under several ide-

alized conditions. Interesting directions for future research

include how the presented gains are affected by subtracting

at the receiver a bias with nonideal magnitude, frequency,

or phase; how the added bias at the transmitter can be

used at the receiver for symbol synchronization; relaxing the

nonnegativity constraint by choosing a smaller DC bias than

the optimal value (17); relaxing the strict bandwidth constraint;

and investigating the performance under nonlinear distortion.
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