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ABSTRACT We present terahertz (THz) detectors based on top-gated graphene field effect 

transistors (GFETs) with integrated split-bow-tie antennas. The GFETs were fabricated using 

graphene grown by chemical vapor deposition (CVD). The THz detectors are capable of room-

temperature rectification of a 0.6 THz signal and achieve a maximum optical responsivity better 

than 14 V/W and minimum optical noise-equivalent power (NEP) of 515 pW/Hz0.5. Our results 

are a significant improvement over previous work on graphene direct detectors and are 

comparable to other established direct detector technologies. This is the first time room-
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temperature direct detection has been demonstrated using CVD graphene, which introduces the 

potential for scalable, wafer-level production of graphene detectors. 

 

Interest in terahertz (THz) technology has recently been on the rise due to the potential to use 

terahertz radiation for a variety of applications including security imaging,1 spectroscopy,2 

biomedical imaging,3 and even anthropology.4 This necessitates the development of reliable, 

room-temperature terahertz sources and detectors.5 In this context, field effect transistors (FETs) 

have shown their potential as sensitive THz detectors realized with various traditional 

semiconductor materials.6-10  In an effort to close the so-called terahertz gap (loosely defined as 

0.3-10 THz) a focus is on high-mobility materials, and due to its high room-temperature mobility 

(up to 10,000 cm2/Vs on SiO2) and high carrier saturation velocity,11,12 graphene has recently 

attracted interest as a potential material for high-frequency applications.13,14 Theoretical analysis 

of graphene confirms its potential for use as a THz FET detector.15,16 Successful operation of 

graphene field-effect transistors (GFETs) has been demonstrated at radio frequencies.17-20 In the 

THz range, room-temperature detection with GFETs has been reported up to 3.11 THz.21-23 Thus 

far, even the best graphene-based FET THz detectors have had noise-equivalent powers (NEPs) 

close to two orders of magnitude higher than those demonstrated in other material systems such 

as Si MOSFETs (>17 pW/Hz0.5)7,8 and GaN high-electron mobility transistors (40 pW/Hz0.5),9 or 

than the NEPs of other detector technologies like YBCO bolometers (200 pW/Hz0.5),24 and zero-

bias Schottky diode detectors (<20 pW/Hz0.5).25  

Detection of THz radiation using field-effect transistors (FETs) can be explained by distributed 

resistive self-mixing of the incident THz signal in the FET channel.26,27 When the incident 
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radiation is fed to the drain and gate terminals of the transistor, the result is a drain-source 

current generated by the self-mixing of induced charge density oscillations (plasma waves) 

launched into the channel. At high frequencies, this principle of THz rectification in FETs can be 

described by hydrodynamic plasma wave models.26,28 If the damping of the plasma waves inside 

the channel is small and the channel is short, conditions can be fulfilled for enhanced resonant 

detection.15,26 Graphene is a promising candidate for such conditions because its high mobility 

should translate into a long carrier scattering time and therefore less damping of the plasma 

waves. 

In this Letter, we present THz detection measurements with an antenna-integrated GFET 

detector fabricated using graphene grown by chemical vapor deposition (CVD). Figure 1(a) 

shows an SEM image of the fabricated device with the split bow-tie antenna structure, where the 

antenna bows act as the GFET electrodes as labeled. A schematic representation of the actual 

GFET including the device dimensions is depicted in Figure 1(b). The detectors were fabricated 

using single-layer graphene on Si/SiO2 substrates (high-resistivity silicon with 300 nm SiO2) 

prepared by CVD growth and transfer. Graphene was grown on a copper foil catalyst following 

the recipe of Sun and co-workers29 and then transferred from the Cu foil to a 10 mm x 10 mm 

Si/SiO2 substrate using a frame-assisted bubbling transfer process30 and was verified to be single 

layer using optical microscopy and Raman spectroscopy. The source and drain contacts were 

patterned with electron beam lithography followed by evaporation and lift-off of a Ti/Pd/Au 

metal stack with thickness 1/15/300 nm. Graphene outside the channel area was etched and a 17-

nm-Al2O3 gate oxide was deposited31 before a gold top-gate was patterned with electron beam 

lithography. For rectification by plasma wave mixing to be effective, asymmetric coupling 
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conditions to the transistor's contacts must be ensured. This was achieved by using a split bow-

tie antenna, inducing capacitive coupling between the drain and gate terminals. 

 

Figure 1. (a) SEM image of the split bow-tie integrated GFET detector with source (S), drain 

(D) and gate (G) contacts labeled. (b) Schematic of the GFET (rectangular area in (a), not to 

scale) with dimensions Wg = 2 μm, Lg = 2.5 μm and S-D, D-G separation of 100 nm. (c) 

Measurement setup. The 0.6 THz source (A) is collimated by a PTFE lens (B), and focused onto 

the detector (E) by an off-axis paraboloidal mirror (C) and a hyper-hemisperical silicon lens (D). 

The beam power was measured after the lens with a Thomas Keating power meter (F). The 

sample was illuminated through the Si/SiO2 substrate. 

The resistance of the CVD GFET detector is shown in Figure 2(a). A known issue with GFETs 

is their hysteretic behavior depending on voltage sweep direction.32 To mitigate this effect, all 

data shown are measured with a negative-to-positive gate-voltage sweep. The resistance was 

obtained in two ways, first, from a direct current IV measurement and second, as the ratio of the 

rectified voltage and current responses ΔU and ΔI, respectively, measured upon THz self-

mixing. Both measurements are in good agreement, thus ensuring a minimum amount of device 
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drift during the THz rectification experiments and adding to the credibility of the results. GFETs 

with top-gate configuration experience parasitic series resistances as a result of the ungated 

graphene regions. In our design, we maximized the channel transconductance – to which the 

rectified THz response is proportional, see Equation (1) below – by keeping the ungated channel 

regions small relative to the gated area.33 Therefore, a gated channel region of length Lg =2.5 μm 

and a source-drain and drain-gate separation of 100 nm were chosen. The carrier mobility was 

extracted from the RDS data34 and the electron and hole mobilities were found to be μe ≈ 1800 

cm2/Vs and μh ≈ 1200 cm2/Vs, respectively. These relatively low mobilities are due to 

interactions with the substrate as well as impurities introduced during processing, with CVD 

graphene mobilities reported as much as one order of magnitude lower29 than the best values 

reported for exfoliated graphene on SiO2.
11  
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Figure 2. (a) Resistance of the GFET detector measured as dc resistance (red line) and as the 

ratio of the detected THz voltage and current response (symbols). (b) Anticipated rectified 

voltage ΔUcalc calculated from the dc resistance (red line) and measured voltage response ΔU at 

0.6 THz (symbols). The thin black line shows the contribution ΔUS of the thermoelectric effect. 

The dashed line displays the location of the charge neutrality point (CNP) from dc measurement. 

The charge carrier transport and the THz rectification mechanisms in FETs can be described 

by hydrodynamic transport models when ωτ << 1,26,28 with the coupled radiation frequency ω 

and the scattering time τ ~ μm*/e.  Here, m* = ħkF/vF is the effective cyclotron mass of the charge 

carriers and e is the electron charge.15,35 We assume the typical Fermi velocity in graphene vF ~ 

106 m/s and calculate the Fermi momentum kF = √πn ~ 2 × 108 m-1 from the charge carrier 

density n = εrε0VG/ed ~ 1.5 × 1016 m-2 with εr ~ 9 and d = 17 nm for our design.  The resulting 

charge carrier scattering time is τ ~ 25 fs and with this we find that at our working frequency of 

0.6 THz, ωτ ~ 0.09.  Under such conditions, the transistor's channel can be modeled as a 

transmission line rather than a lumped element in the classical resistive mixing case, thus, this 

regime has been termed the distributed resistive mixing regime.27,36 Resonant detection cannot be 

expected in this regime because the excited plasma waves in the transistor are overdamped 

(enhanced plasmonic mixing requires ωτ >> 1).26 However, if the charge carrier mobility is 

increased, e.g., by selecting an alternate substrate37 or suspending the graphene above the 

substrate,38 graphene remains a promising candidate for the realization of resonant FET 

detectors.  

In the non-resonant, distributed resistive mixing regime, where rectification occurs through 

self-mixing of overdamped radiation-induced charge density waves, the transistor channel's 

complex impedance can be simulated with transmission line models.27 When designing FETs for 
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high frequency mixing, it must be taken into account that the real part of the impedance 

decreases with frequency and is substantially lower than in the quasi-stationary case of classical 

resistive mixing. Based on these considerations, we designed the integrated split bow-tie 

antennas (using commercial method-of-moments and time domain numerical electromagnetic 

solvers) and GFETs to ensure good matching conditions between the antenna impedance and the 

GFET channel impedance at 0.6 THz.  

In Figure 2(b), the rectified 0.6 THz voltage response measured with a lock-in amplifier at a 

modulation frequency of 333 Hz with the setup shown in Figure 1(c) is plotted as open symbols 

on the right axis. The same figure shows as a red line on the left axis the theoretically expected 

optical voltage response of the detector at 0.6 THz (assuming a signal amplitude of Ua = 1 V), as 

calculated from the dc resistance data following Refs. 22 and 39 (Equation 1) 

Δ𝑈𝑐𝑎𝑙𝑐 =
𝑈𝑎

2

4𝜎

𝑑𝜎

𝑑𝑉𝐺
, 

where σ = W/L/RDS is the drain-source conductivity of the GFET (here, we neglect contact 

resistances). Because of the qualitative comparability of both curves one tends to presume that 

the rectification of the incident THz signal can be comprehensively described by distributed 

resistive mixing.39 However, the measured response differs from the anticipated signal in two 

main aspects. First, the pronounced roll-off of the signal level at higher positive and negative 

gate bias voltages is hardly represented by the experimental curve. Second, at the charge 

neutrality point (CNP) at VG ~ –0.345 V, it is expected that the rectified signal – proportional to 

the derivative of the channel conductivity – vanishes completely. The measured response, 

nevertheless, shows a significant magnitude at this point of ~ 49 μV.  A small leftward shift of 

the CNP, not precisely accessible in the resistance calculated from current and voltages 

responses due to divergence, could be partly responsible for this signal. However, such a shift is 
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indicated only for positive gate voltages by comparing the resistances in Figure 2(a). 

Accordingly, regarding these two features, it is highly likely that additional contributions to the 

classical Dyakonov-Shur THz response26 are present in the detected signal and the simple model 

from Equation 1 does not give a comprehensive estimate of the response of the GFET detector.  

  We believe that one reason for the response offset at the CNP can be of thermophotovoltaic 

origin as has been proposed.22 By the asymmetric coupling of the THz radiation to the transistor 

channel feeds, energy is concentrated in the gated graphene region, close to one junction between 

the gated and ungated region, whereas the second junction is at the temperature of thermal 

equilibrium. We roughly estimate the generated thermoelectric voltage from the Seebeck 

coefficients in the gated and ungated regions Sg and Sug, respectively. For graphene, the 

coefficients can be calculated from Mott's relation for degenerate semiconductors40,41 (Equation 

2) 

𝑆 = −
𝜋2𝑘𝐵

2𝑇

3𝑒

1

𝜎

𝑑𝜎

𝑑𝑉𝐺

𝑑𝑉𝐺

𝑑𝐸
|

𝐸=𝐸𝐹

, 

 

with EF = ħkFvF.  Assuming Sug = Sg(VG = 0), at the CNP the thermoelectric voltage from the 

difference ΔUS = Sg – Sug gives ~ 46.5 μV/K.  Hence, a temperature difference of roughly 1 K 

between the two junctions can be accountable for the additional contribution to the 

photoresponse at the CNP. A plot of the calculated thermoelectric voltage ΔUS versus gate 

voltage is given in Figure 2(b) as a thin black line on the right axis. The main contribution of the 

effect is at negative gate voltages, yielding a possible explanation for the signal offset at these 

gate biases, in particular for the offset at the location of the CNP. In contrast, the different 

behaviour of the measured and calculated responses for higher positive gate voltages remains 

almost unchanged and cannot easily be explained by local heating effects. While these estimates 



 9 

seem plausible for the particular experiment of this paper,41,42 clearly, further experimental and 

theoretical studies are required to verify the contribution of the thermoelectric effect to THz 

detection with GFETs. A full model would also have to account for carrier diffusion between the 

gated and ungated regions as well as modulations of the Fermi-level in the relatively short 

ungated regions due to fringing field effects. 

From the measured responses, the voltage and current responsivity ℜ𝑉 and ℜ𝐼, respectively, of 

the detector were calculated via (Equation 3) 

ℜ𝑉 =
𝜋

√2

∆𝑈

𝑃
= 𝑅𝐷𝑆ℜ𝐼 

and are shown in Figure 3(a). The prefactor π/√2 ≈ 2.2 originates from the Fourier transform of 

the square-wave modulated THz signal detected as rms value with a lock-in amplifier. This has 

an input impedance of 10 MΩ when measuring the voltage response. Furthermore, the GFET 

impedance is an order of magnitude higher than the lock-in amplifier input impedance when 

measuring the current response. The accuracy of both readout modes is ensured by the close 

overlap of the resistance curves in Figure 2(a) and also confirmed as the responses were 

independent of modulation frequency in the range 33 Hz – 33 kHz.39 In the calculation of 

responsivity, the power P is taken as the total available beam power (29 μW) measured after the 

collimating PTFE lens. Therefore, the presented responsivities are lower limits, as not all of the 

beam power was coupled to the GFET due to optical losses in the experimental system as well as 

impedance mismatching between the antenna and the GFET channel. 

The sensitivity of the detector is calculated from the optical voltage responsivity ℜ𝑉 and the 

detector noise voltage VN as (Equation 4) 

𝑁𝐸𝑃 =
𝑉𝑁

ℜ𝑉
=

√4𝑘𝐵𝑇𝑅𝐷𝑆

ℜ𝑉
. 
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Here, T is room temperature, and kB is Boltzmann's constant. To support the use of thermal 

Johnson-Nyquist noise in Equation 4, the inset of Figure 3(b) shows measurements of the noise 

spectral density of a GFET detector comparable to the one used in the presented experiment – 

only differing in gate-width – at three different gate voltages. The dashed black lines represent 

the value of the thermal noise spectral density 4kBTRDS at the respective gate biases. Deviations 

from the measured noise levels are less than 15% and are due to charging of defect states altering 

the conductivity of the GFET channel. The minimum measured NEP for our detectors was 515 

pW/Hz0.5; the data are plotted in Figure 3(b). As with the responsivities, these values are a 

conservative estimate of the device NEP, not taking into account any coupling losses of the THz 

radiation to the GFET channel. Nonetheless, the values are a substantial improvement over the 

best reported performance of antenna-coupled single-layer exfoliated GFET detectors.22 
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Figure 3. (a) Voltage (open symbols) and current (closed symbols) responsivity of the GFET 

detector at 0.6 THz. (b) NEP of the detector calculated from the voltage responsivity. The 

minimum measured NEP was 515 pW/Hz0.5. The inset shows the measured noise spectral density 

at different gate biases of a representative GFET detector with 5 μm gate width. The black 

dashed lines represent the calculated thermal noise at the respective gate biases. 

  This considerable improvement in NEP is ultimately a result of the enhanced responsivity, 

originating from a careful antenna design and using a top-gated device design while minimizing 

the contact resistances. The relationship of Equation (1) may be written in terms of the ability to 

alter the current with the gate voltage, i.e. Δ𝑈 ∝
𝑑𝐼𝐷𝑆

𝑑𝑉𝐺
. Consequently, our detectors directly 

benefit from the top-gate configuration by a higher gate capacitance per area, 𝐶𝑜𝑥 = 𝜀𝑜𝑥 𝑡𝑜𝑥⁄ , 

compared to a SiO2 back-gate.23 Furthermore, the major improvement in NEP when comparing 

to Refs. 21 and 22, with similar Cox, results from the drastically reduced ungated regions; known 

to seriously deteriorate the on-off ratio in GFETs due to large contact resistances. 14,34 

In conclusion, we have for the first time successfully demonstrated room-temperature detection 

at 0.6 THz with highly sensitive CVD-grown graphene FET detectors with integrated split bow-

tie antennas. Proper device design allowed an efficient channel modulation and reduced parasitic 

capacitances. Together with an optimized antenna, this results in a major improvement of the 

voltage responsivity and NEP over previous studies in both single-layer and bilayer 

graphene.21,22 For our detectors, we find a minimum NEP of 515 pW/Hz0.5. Further investigation 

is necessary to determine the physical processes occurring in the GFET channel under THz 

illumination in addition to the classical Dyakonov-Shur detection mechanism. While models 

describing the distributed resistive mixing mechanism have been developed for semiconductor 

FET detectors27 and ideal graphene sheets,15 none has been shown for graphene of our 
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experimental quality. The apparent shift in responsivity (asymmetry or equivalently offset of 

responsivity around the Dirac voltage) has not been observed for other detector technologies, but 

have been reported before for graphene FET detectors.21,22 This suggests that previously-

developed models are not sufficient to comprehensively describe THz detection in graphene-

based FETs. In this context, the contribution of thermoelectric effects to the measured rectified 

THz signals was discussed. Finally, we demonstrated that CVD graphene-based FET detectors 

show their potential to compete with other detector technologies, which opens the possibility for 

scalable graphene-detector production. 
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