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Structured Sparse Approximation via Generalized Regularizers:
With Application to V2V Channel Estimation

Sajjad Beygi, Erik G. Ström⇤, Urbashi Mitra
School of Electrical Engineering, University of Southern California (USC) , Los Angeles, CA

⇤Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

Abstract—In this paper, we consider the estimation of a signal
that has both group- and element-wise sparsity (joint sparsity);
motivated by channel estimation in vehicle-to-vehicle channels.
A general approach for the design of separable regularizing
functions is proposed to adaptively induce sparsity in the estima-
tion. A joint sparse signal estimation problem is formulated via
these regularizers and its optimal solution is computed based
on proximity operations. Our optimization results are quite
general and they can be applied in the context of hierarchical
sparsity models as well. The proposed recovery algorithm is
a nested iterative method based on the alternating direction
method of multipliers (ADMM). Due to regularizer separability,
key operations can be performed in parallel. V2V channels are
estimated by exploiting the joint sparsity (group/element-wise)
exhibited in the delay-Doppler domain. Simulation results reveal
that the proposed method can achieve as much as a 10 dB gain
over previously examined methods.

I. INTRODUCTION

The sparse approximation of signal x using the noisy
measured signal y is often obtained as the solution of

x̂ = argmin
x

(
�fid (y,x) +

X

k

�k�
(k)
reg (x)

)
,

where �

(k)
reg (.) regularizes the solution by enforcing certain

prior sparsity constraints on x; �fid(.) measures the violation
of the relation between x and its observation y, and �k,
the penalty parameters, are positive constants that weigh
the terms in the minimization. Assuming a mixture model
relationship between the measurement and desired signal, we
have y = Ax + n, where A is a known over-complete
dictionary, x is a signal which has sparse structure, and n is
additive Gaussian noise. There are different types of sparsity
structures:
Element-wise sparsity occurs if x has only a few non-zero
entries. For this form of sparsity, basis pursuit (BP) [1] and the
least absolute shrinkage and selection operator (LASSO) [2],
etc., have been considered. In all of these methods, the fidelity
function is the l2 norm on the error (y�Ax) and the sparsity
constraint l0 is relaxed yielding the sparse approximation
problem given by,

min
x

1
2
ky �Axk22 + �ekxk1, (P1)

where kxk1 is the sparsity-inducing regularizer. Alternatively,
there is group-wise or block-wise sparsity. In this case, the
elements of x can be clustered in groups where a few groups
have non-zero values. One can again use the l2 norm on the
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error and relax the sparsity measure to l1 which is applied to
groups, yielding the following sparse approximation problem,

min
x

1
2
ky �Axk22 + �g

NgX

i=1

kxik2, (P2)

where Ng is the number of groups, the group vectors xi

contains disjoint elements from x, and
PNg

i=1 kxik2 is the
group sparsity-inducing term. Intuitively, we can say that the
term

PNg

i=1 kxik2 is equivalent to the l1-norm of (the square-
root of) the energy in each group. In order to exploit the group-
sparsity structure of the signal being sensed, a number of
variants of LASSO have become popular, e.g., group LASSO
[3] and block sparsity methods [4]–[6].

Finally, there is joint element and group-wise sparsity struc-
ture, where the corresponding optimization problem includes
the combination of regularizers in (P1) and (P2), e.g., sparse
group/block LASSO [7], [8]. We observe that for both (P1)

and (P2), the objective functions are convex resulting in
straightforward optimization. On the other hand, non-convex
regularizer functions are advantageous in that they usually
yield sparser solutions for a given residual energy [9]–[11].
Generally, convex approaches are based on sparsity-promoting
convex penalty functions (e.g., the l1 norm), while non-convex
approaches are based on non-convex penalty functions (e.g.,
the lp pseudo-norm with p < 1).

The contributions of our work can be stated as follows:
we propose a sparse approximation method with two regular-
ization terms to control the element-wise sparsity and group-
wise sparsity similar to the sparse-group-LASSO, but we
utilize the advantage of non-convex regularization functions.
We propose a general method for designing the regularizer
term with desired properties. We show that the joint sparse
signal estimation problem using our designed regularizers can
be performed via simple proximity operations. Furthermore,
the optimal solution is evaluated by applying the group and
element-wise proximity operators in a nested fashion. The
proposed algorithm is based on an alternating direction method
of multipliers [16]. Our numerical results show a significant
improvement for V2V channels estimation using our proposed
structured signal estimator relative to the prior work in the
literature.

This paper is organized as follows: In Section II, we state
some required definitions from convex analysis and we pro-
pose the general method to design a regularizer to induce the
sparsity. In Section III, the sparse signal estimation algorithm
is given. We provide the simulation results of application of
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our proposed method for V2V channel estimation in Section
IV. Finally, Section V concludes the paper.

Notation: We denote a scalar by x, a column vector
by x, and its i-th element with [x]i. Similarly, we denote a
matrix by X and its (i, j)-th element by [X]i,j . The transpose
and conjugate transpose of X is denoted by X

T and X

H ,
respectively, and R and C denote the set of real and complex
numbers. We denote the sub-gradient of function F by @F and
the gradient of function F by OF . The element-wise (Schur)
product is denoted by �.

II. REGULARIZER: CONSTRUCTIVE METHOD

In this section, we first review some definitions from convex
and variational analysis. Then, we state our general approach
to design the regularizer based on the relationship between
the proximity operator and the Moreau envelope [12]. From a
signal processing perspective, proximity operators have a very
natural interpretation in terms of de-noising [9]. The denoising
problem can be formulated as

argmin

a2RN

⇢

1

2

kb� ak22 + �F (a)

�

,

where b 2 RN and F is a regularization function. Such a
formulation derives, in particular, from a Bayesian approach
to de-noising in the presence of Gaussian noise and of a prior
with a log-concave density function. Proximity operators have
very attractive properties that make them particularly well
suited for iterative minimization algorithms.

Definition 1. (see [12], p. 20) Let F : RN ! R be a real-
valued function. The proximity operator of F for every b 2
RN and � > 0 is defined as

P�,F (b) := argmin

a

⇢

1

2

kb� ak22 + �F (a)

�

(1)

Remark 1. The proximity operator of F admits a unique solu-
tion, if the objective function J(a) =

1
2kb�ak22+�F (a) is a

strictly convex function. Furthermore, P�,F (a) is characterized
by the inclusion that 8(a⇤,b), a

⇤
= P�,F (b) () b�a

⇤ 2
�@F (a

⇤
).

Remark 2. Note that F does not need to be a convex or
differentiable function to satisfy the condition in Remark 1.

Definition 2. (see [12], p. 20) Let F : RN ! R be a lower
semi-continuous (lsc) real-valued function and � > 0, the
Moreau envelope function, e�,F (b) : RN ! R is defined by

e�,F (b) := inf

a

⇢

1

2�

kb� ak22 + F (a)

�

.

Remark 3. Consider a general function f : R ! R, e�,f (b)
approximates f from below, namely we have e�,f (b)  f(b)

for 8b 2 R. For smaller and smaller �, e�,f (b) approximates
f(b) better and better.

One of the well-known regularization functions is the ab-
solute value function, i.e., f(a) = |a|, which in vector form
becomes the l1-norm, F (a) = kak1 =

PN
i=1 |[a]i|. For this

case, using simple calculus operations, we can derive the
proximity operator and Moreau envelope for f(a) = |a| as

P�,f (b) = sign(b)max (0, |b|� �) (2)

and

e�,f (b) =

(

|b|2
2� , if |b|  �

|b|� �
2 , if |b| > �

. (3)

The function e�,f (b) defined in (3) is called the Huber loss
function (e.g., [9], [13]). Also, P�,f (b) in (2) is well-known
as the soft thresholding operator [2], [9].
Remark 4. Consider that F (.) : RN ! R is a separable,
i.e., F (b) =

PN
i=1 f ([b]i). Then, [P�,F (b)]i = P�,f ([b]i)

and e�,F (b) =

PN
i=1 e�,f ([b]i). For example, the proximity

operator of F (b) = kbk1 is

[P�,F (b)]i = sign([b]i)max {0, |[b]i|� �} .

Definition 3. (see [12], p. 473) The function F

⇤ is called
the convex conjugate of convex function F : RN ! R, if
F

⇤
(p) = sup

a2RN

�

p

T
a� F (a)

�

.

In the following, we propose a theorem to build the connec-
tions between the regularizer, proximity operator, and Moreau
envelope. This idea was first suggested in [13] for a particular
form of regularizer (i.e., Huber loss function), but herein we
extend it for a general regularizer.

Theorem 1. Define the two following auxiliary functions,

⌘1(a) =
1

2

kak22 + �F (a), and ⌘2(a) =
1

2

kak22 � �G(a).

Assume that ⌘1(a) is strictly convex. Then,
1) G(a) is the Moreau envelope of F (a), i.e., G(a) =

e�,F (a), if and only if ⌘2 = ⌘

⇤
1 , where ⌘

⇤
1 is the convex

conjugate of ⌘1.
2) The proximity operator P�,F (a) = O⌘2(a), where

O⌘2(a) is the gradient of ⌘2(a) and G(a) = e�,F (a).

Proof: see Appendix A.
Remark 5. Based on the results in Theorem 1, if we specify
one of the functions e�,F (a) or P�,F (a), then we can compute
the other function accordingly.

Here, we consider a specific function for the Moreau enve-
lope and we construct the proximity operator for de-noising
using the specified Moreau envelope. In this way, we do not
need to specify the regularizer, instead we work only with the
Moreau envelope which intuitively can be considered as the
smooth approximation of the regularizer, as mentioned earlier
in Remark 3. Furthermore we can anticipate the structure
of the reconstruction method. Our goal here is to design an
adaptive non-convex regularizer such that we end up with a
simple proximity operator in the joint sparse signal estimation
algorithm. Based on our knowledge about the Huber loss
function, we know that its proximity operator is a simple
thresholding algorithm. Thus, as an example, we can consider
a generalized version of the Huber loss function as follows:

e�,fH (b; p) =

(

b2

2� , if |b|  �

|b|p
p�p�1 +

�
2 � �

p , if |b| > �

, (4)
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where 0 < p  1 and � > 0 are constants. Now using
Theorem 1, we can compute the proximity operator function
corresponding to e�,fH (b; p) as, P�,fH (b; p) = O⌘2(b), where
⌘2(b) =

b2

2 � �e�,fH (b; p) is a convex continuous function.

Lemma 1. For e�,fH (b; p) defined in (4), we have

P�,fH (b; p) = b ·max

(

0, 1�
✓

|b|
�

◆p�2
)

. (5)

where 0 < p  1.

The proof of Lemma 1 is elementary and thus omitted.
Using Remark 4 and Lemma 1, for FH(b) =

PN
i=1 fH ([b]i),

we have [P�,FH
(b; p)]i = [b]i ·max

⇢

0, 1�
⇣

|[b]i|
�

⌘p�2
�

.

Remark 6. For p = 1, the proximity operator defined above
becomes soft thresholding [2] and corresponds to l1-norm
regularization. For 0 < p < 1, it is possible to compute the
regularization function fH(.; p) using the auxiliary function
⌘2, but since we can compute the proximity operator without
knowing the regularization function, we do not need to find
the explicit regularization function. Furthermore, we can infer
some of properties of the function fH(.; p) : R ! R, by just
using its relationship with the auxiliary functions ⌘1 and ⌘2,
and their conjugate relationship. As in the above example of
the generalized version of the Huber loss function, one can eas-
ily check that fH(.; p) is continuous, absolute non-decreasing1,
differentiable except at 0 with @fH(0; p) = [�1, 1], and
concave on (�1, 0) and (0,1). As a simple trick introduced
in Remark 3, one can easily verify all these properties by
fH(a) ⇡ lim�!0 e�,fH (a).

III. RECONSTRUCTION ALGORITHM: JOINT SPARSITY

Assume that we have the observation vector y = Ax +

n where A 2 CM⇥N is a sensing matrix and n 2 CM is
an additive white Gaussian noise. Furthermore, assume that
the magnitude vector of the elements in vector x 2 CN has
the joint group and element-wise sparsity pattern. Our goal in
this section, is to estimate the vector x from an observation
vector y. To this aim, we need regularization terms such that
they enforce the sparsity, while simultaneously encouraging
group sparsity. This goal can be achieved by solving following
optimization problem

argmin

x

1

2

ky �Axk22 + �g�g(|x|; p) + �e�e(|x|; q), (6)

where �g(.; p) is regularization term to induce the group spar-
sity, �e(.; q) is the term to induce the element-wise sparsity,
and |x| is the (real-valued) vector found by taking the element-
wise magnitude of x. In general, the penalty parameters can
be selected from a given range in a cross-validation manner,
by varying one of the parameters and keeping others fixed [7].

1A absolute non-decreasing function F : RN ! R is a function such that
F (a) = G(kak), where G : R ! R is a non-decreasing function.

Here, we consider the generalized penalty functions as:

�g(|x|; p) =
Ng
X

i=1

fH (kxik2; p) , (7)

�e(|x|; q) =
N
X

i=1

fH (|[x]i|; q) . (8)

Note that we do not know the explicit regularization function,
fH(.; p), but we know its Moreau envelope function as defined
in (4). We will see that this information is enough to design
the reconstruction algorithm.

Definition 4 (Group). The ith group vector is defined as xi =

Wix, where Wi is a matrix with entries 0 or 1 such that in
each column or row there is at most one 1, and also for i 6= j

(two distinct groups), we have W

T
i Wj = 0.

The optimization problem in (6) can be rewritten using an
auxiliary variable z as follows,

min

x

1

2

ky �Axk22 + �g�g(|z|; p) + �e�e(|z|; q)

s.t. z = x (9)

The objective function in the optimization problem (9) consists
of the three terms along with a linear constraint. The first
term only depends on the variable x and the second and third
terms only depend on the variable z. The problem formulation
is therefore well suited to be addressed using alternating
direction method of multipliers (ADMM) [16]. ADMM will
find the optimal solution to (9), since it can be shown that the
objective function is strictly convex with the regularizers in
(7) and (8).

For the optimization problem given in (9), we form the
augmented Lagrangian

L⇢ (x, z,✓) =
1

2

ky �Axk22 + �g�g(|z|; p) + �e�e(|z|; q)

+ Re (h✓,x� zi) + ⇢

2

kx� zk22, (10)

where ✓ is the dual variable, ⇢ > 0 is the augmented
Lagrangian parameter, and hx1,x2i = x

H
2 x1. For the opti-

mization problem in (9), ADMM consists of the following
iterations,

• update-x: x

n+1
= argmin

x

1
2 ky �Axk22 +

Re (h✓n
,x� z

ni) + ⇢
2kx� z

nk22.
• update-z: zn+1

= argmin

z

�g�g(|z|; p) + �e�e(|z|; q) +

Re
�⌦

✓n
,x

n+1 � z

↵�

+

⇢
2kx

n+1 � zk22.
• update-dual variable: ✓n+1

= ✓n
+ ⇢

�

x

n+1 � z

n+1
�

.

Deriving a closed form expressions for update-x is straight-
forward, x

n+1
= A0 (⇢z

n � ✓n
) + x0, where A0 =

�

⇢I+A

H
A

��1 and x0 = A0A
H
y. If we pull the linear

terms into the quadratic ones in the objective function of
update-z and ignoring additive terms, independent of z, then
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we can express this step as

z

n+1
= argmin

z2CN

Ng
X

i=1

⇣

1

2

kxn+1
i + ✓n

⇢i � zik22

+ �⇢gfH(kzik; p) + �⇢e

N
X

j=1

fH(|[zi]j |; q)
⌘

, (11)

where �⇢g = �g/⇢, �⇢e = �e/⇢, x

n+1
i = Wix

n+1,
✓n
⇢i = Wi✓

n+1
/⇢, and zi = Wiz. We can solve (11)

by solving for each group z

n+1
i in parallell. To this end,

we introduce the following notation and lemma. The vector
z 2 Cn can be written as z = |z| � �(z), where the nth
element of �(z) is exp(j'([z]n)), and '(z) is the phase of
z, i.e., z = |z| exp(j'(z)).

Lemma 2. For any c 2 CN

argmin

z2CN

kc� zk22 = �(c)� argmin

|z|2RN

k |c|� |z| k22.

Proof : The function J(z) = kc � zk22 = kck22 + kzk22 �
2<{cHz} = k |c| k22+k |z| k22�2<{cHz} is minimized when
<{cHz} is maximized. Now,

<{cHz} =

N
X

n=1

|[c]n||[z]n| cos('([c]n)� '([z]n))


N
X

n=1

|[c]n||[z]n| = |c|T |z|

with equality if and only if �(z) = �(c), which in turn implies
that kc� zk22 = k |c|� |z| k22. Hence,

argmin

|z|��(z)2CN

kc� zk22 = argmin

|z|��(c)2CN

k |c|� |z| k22

= �(c)� argmin

|z|2RN

k |c|� |z| k22

and the lemma follows. 2

Since the two last terms in (11) are independent of the phase
of zi, we use Lemma 2 to write the ith group problem in (11)
as

z

n+1
i = �(x

n+1
i + ✓n

⇢i)� argmin

a2RN

1

2

k|xn+1
i + ✓n

⇢i|� aik22

+ �⇢gfH(kaik; p) + �⇢e

X

j

fH(|[ai]j |; q)
⌘

, (12)

where ai = Wia. As is clear, the optimization problem
in (12) involves only real-valued vectors. In following, we
state a theorem that enables us to find the optimal solution
of optimization problem in (12) using proximity operator of
function fH .

Theorem 2. Consider a function fH that satisfies in Equation
(4). Then, the solution of optimization problem,

ˆ

a = argmin

a2RN

1

2

kb� ak22 + �⇢gg(a; p) + �⇢eE(a; q),

where g(a; p) = fH (kak2; p) and E(a; q) =

P

j fH ([a]j ; q),
is given as

ˆ

a = P�⇢g,g

�

P�⇢e,E(b)
�

. (13)

Furthermore, the proximity operators of functions g and E

can be evaluated as follows, P�⇢g,g (b) =
P�g,fH

(kbk2)

kbk2
b and

[P�⇢e,E (b)]j = P�⇢e,fH (b[j]) .

The proof is given in Appendix B. Thus we can determine
a closed form solution for the optimization problem in the z-
update step in Equation (12) using the proximity operators of
the univariate functions fH . This update rule is a direct conse-
quence of Theorem 2. Therefore, update-z can be performed
as follows,

z

n+1
i = P�⇢g,g

�

P�⇢e,E

�

�

�

x

n+1
i + ✓n

⇢i

�

�

��

� �

�

x

n+1
i + ✓n

⇢i

�

.

Remark 7. Note that for p = q = 1, Theorem 2 includes the
recovery algorithm for joint sparse problem with l1 regularizer
i.e. sparse-group Lasso [7], as a particular case.

In following, we state our proposed algorithm to solve the
optimization problem given in Eq. (9).

Proposed ADMM Algorithm for Sparse Approximation
Input: Signal vector y, matrix A, ⇢, and �g , �e.
Initialize: z0 = ✓0

= 0.
Pre-computation: A0 =

�

⇢I+A

H
A

��1 and x

0
= A0A

H
y.

For n = 0 to END
x

n+1
= A0 (⇢z

n � ✓n
) + x

0

z

n+1
i = P�⇢g,g

�

P�⇢e,F

�

�

�

x

n+1
i + ✓n

⇢i

�

�

��

� �

�

x

n+1
i + ✓n

⇢i

�

,
for i = 1, . . . , Ng

✓n+1
= ✓n

+ ⇢

�

x

n+1 � z

n+1
�

.

End
Output: Vector x.

IV. NUMERICAL RESULTS

Here, we consider the application of our proposed method
for estimation of a vehicle-to-vehicle (V2V) channel. To
simulate the V2V channel, the statistical parameter values for
different scatterers are selected to be those reported in Table I
in [14], which are determined from experiment and measure-
ment data analysis. Furthermore, the channel is defined as that
in [15]. The pilot data matrix, A, is a M ⇥N matrix where
here we consider M = 2040, N = 4M , more details about
the structure of A can be found in [15]. The pilot symbol
are drawn from a zero-mean Gaussian distribution. The length
of horizon is considered from �500 m to 500 m, the road
width is 24 m, and the length of the diffuse strip around the
road 18m. It is assumed that the number of mobile discrete
(MD) scatterers is NMD = 6, and their speed are chosen
randomly from the interval [80, 140] km/h; we have NSD = 4

static discrete (SD) scatterers and NDI = 1000 diffuse (DI)
scatterers. The locations of the transmitter and receiver are
chosen randomly in a geometry with distance 50 m from
each other. The speed of the transmit and receive vehicles are
assumed as vT = 100 km/h and vR = 125 km/h, respectively.

In Fig. 1, a typical structure of the V2V channel in the delay-
Doppler domain is depicted [15]. It can be observed from
Fig. 1, that most of the large coefficients in the delay-Doppler
representation are concentrated in the area close to zero delay
(Region R1) or some constant Doppler value (Region R2),
thus we should consider our groupings such that in each group,
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Fig. 1. Delay-Doppler domain representation of V2V channel. The delay-
Doppler spreading of diffuse components is confined to a U-shape area.
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Fig. 2. Comparison of MSE v.s SNR for Least-Square (LS) method, Hybrid
Sparse/Diffuse (SD) method, and proposed method with following conditions:
p = q = 1 (GE-Sparse-1), and p = q = 0.2 (GE-Sparse-2).

either the all coefficients are large or all the coefficients are
close to zero (group-wise sparsity).

First, we estimate the channel by computing the least-
squares estimator, where we do not utilize any structural infor-
mation about the channel coefficients. In the second step, we
use the prior information about the channel geometric structure
in the delay-Doppler domain, computed from the LS solution
using an energy detection algorithm (for more details see, e.g.,
[20]). We can consider a group as a collection of coefficients
with similar Doppler values and similar magnitudes. The group
size in our simulation was common for all groups and equal
to 100, so Ng =

N
100 . We consider two sets of regularizers,

p = q = 1 (soft-thresholding) and a p = q = 0.2 and
set �e = �g/5 = 5. These values were found by trial and
error. Note that we do not optimize over the values of p and
q, this problem is beyond the scope of this paper, but we
show by simulation that we get better results with non-convex
regularizers, i.e. 0 < p, q < 1 than that obtained by convex
regularizers. Furthermore, our approach can be used for other
non-convex regularizers like SCAD [19].

Fig. 2 depicts the result for Monte Carlo simulations for
the estimation of the channel using the proposed estima-
tor for the different cases specified above, and our prior
method in [15] based on a hybrid sparse/diffuse model [17],

[18], and the least-squares estimator. The MSE is defined as
E
�
(kx̂� xk22)/kxk22

 
, where ˆ

x is the estimated channel vector.
We added a white Gaussian noise vector n, whose variance
was adjusted to achieve a prescribed receive signal-to-noise
ratio (SNR) defined as SNR = E{ky � nk22}/E{knk22}. Results
show that our joint sparse signal estimation algorithm using
the regularization term for p = q = 0.2 results in better
performance, almost 2dB to 3dB compared to p = q = 1

at low SNR. It is clear that there is at least a 10dB to 15dB
performance enhancement compared to the least-squares esti-
mator, because we consider the structural information of the
channel in different regions relative to other prior information.

V. CONCLUSIONS

In this work, we proposed a method to design the regularizer
given that Moreau envelope of the regularizer is known. Using
this algorithm, we designed an adaptive Huber regularizer
function to induce sparsity in the joint sparse signal estimation
problem. Furthermore, we showed that the the optimal solution
for the joint sparse signal estimation can be evaluated using a
nested proximity operations. Our result showed that within a
group, joint sparsity can be induced by first apply the element
proximity operator and then the group proximity operator.
Our simulation results reveal that exploiting the joint sparsity
structure with non-convex regularizers yields improvements
compared to the convex regularizers. In particular, for the
V2V channel estimation problem, we showed using simulation
that structured estimators yield significantly improved channel
estimates over unstructured approaches.

APPENDIX A
PROOF OF THEOREM 1

Part 1), using the definition of convex conjugate of a func-
tion, we know that ⌘⇤1(a) = sup

b

�

a

T
b� 1

2kbk
2
2 � �F (b)

�

.

Now, we first assume that ⌘2 = ⌘

⇤
1 , namely

sup

b

�

a

T
b� 1

2kbk
2
2 � �F (b)

�

=

1
2kak

2
2 � �G(a),

which can be rewritten as, G(a) =

1
2�kak

2
2 �

sup

b

�

1
�a

T
b� 1

2�kbk
2
2 � F (b)

�

. If we negate the objective
in the sup operator, we can change it to inf operator. Finally
we use the equality 1

2�ka� bk22 =

1
2�kak

2
2� 1

�a
T
b+

1
2�kbk

2
2.

Since all of our steps are if and only if, the reverse direction
is also is true and the proof is completed. Part 2), is a standard
result of convex duality (see [12], page 476, Proposition 11.3).
Note that it is easy to show that ⌘2(a) is continuous and
strictly convex using its connection to the Moreau envelope,
which results in the singleton value for the sub-gradient,
namely @⌘2(a) = {O⌘2(a)}.

APPENDIX B
PROOF OF THEOREM 2

We first prove a lemma, which is useful in the proof of the
main theorem.

Lemma 3. Consider that g(a; p) = fH(kak2; p). Then,

P�,g(b) =
P�,fH (kbk2)

kbk2
b for kbk2 > 0

and P�,g(0) = 0.
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Proof: Let us start with the definition of
proximity operator for g(a; p), namely P�,g(b) =

argmin

a

�

1
2kb� ak22 + �g (a; p)

 

. Since g (a; p) =

fH (kak2; p) is absolute and non-decreasing, the minimizer
will have the form P�,g(b) = a = rb for some
r 2 [0, 1]. Thus, the optimization problem becomes,
argmin

r2[0,1]
�fH (rkbk2; p) +

1
2kb � rbk22. By considering

t = rkbk2, it can be rewritten as,

argmin

t2[0,kbk2]
�fH (t; p) +

1

2

|kbk2 � t|2 = P�,fH (kbk2; p).

The last equality is due to the definition of the proximity
operator. Therefore,

P�,g(b) =
P�,fH (kbk2)

kbk2
b = max

n

0, 1� �

2�pkbk2p�2
o

b,

and the proof of the Lemma is completed.

Proof of Theorem 3: Let us define J(a) =

1
2kb � ak22 +

�⇢gg(a; p) + �⇢eE (a; q) . Assume v = P�⇢e,E(b) and u =

P�⇢g,g(v). To prove the claim of Theorem 2, we just need to
show that u is the minimizer of J(a). To prove this claim, we
consider two cases: I: u 6= 0, and II: u = 0.

Case (I): u 6= 0. Since u = P�⇢g,g(v), by Lemma
3, it means that there is some r > 0

�

i.e., r =

1 � �

2�p
⇢g kvkp�2

2

�

, and u = rv such that u =

argmin

a

�

1
2ka� vk22 + �⇢gfH (kak2; p)

 

. Therefore, u satis-
fies first order optimality for this objective function, namely

u� v + �⇢gf
0
H(kuk2; p)

u

kuk2
= 0, (14)

where f

0
H(.; p) is the derivative of fH(.; p). By definition of

the proximity operator given in Eq. (1), we know that

Pr�⇢e,E (rb; q) = argmin

a

r�⇢eE(a; q) +

1

2

ka� rbk22. (15)

Based on Lemma 2, we know that Pr�⇢e,E (rb; q) =

rP�⇢e,E (b; q). Besides, v = P�⇢e,E (b; q), so
Pr�⇢e,E (rb; q) = rv = u. Therefore, rv is the minimizer
of the objective function in (15), and by the first order
optimality condition for the objective function in (15), we
have 0 2 r�⇢e@E(u; q) + u� rb. If we substitute rv = u ,
then we have

0 2 �⇢e@E(u; q) + v � b. (16)

Summing Equations (14) and (16), we have

0 2 �⇢e@E(u; q) + �⇢gf
0
H(kuk2; p)

u

kuk2
+ u� b,

which is the first order optimality of u for the objective
function J(a). Thus the proof for the case (I) is completed.

Case (II): u = 0 or kuk2 = 0. Since 0 = P�⇢g,g(v), using
Lemma 3, v = 0 or P�⇢g,fH (kvk2) = 0. Therefore using
Lemma 2, kvk2  �⇢g . Here we need to show the first-order
optimality condition of u = 0 for the objective function J(a),
i.e.,

0 2 {�⇢e@E(u; q) + �⇢gf
0
H(kuk2; p)@kuk2 + u� b} |

u=0

= �⇢e@E(0; q) + �⇢g@fH(k0k2; p)@k0k2 � b,

Note that @(k0k) =
�

c 2 RN
, kck2  1

 

and @fH(k0k2; p) 2
[�1,+1]. Thus, the first order optimality condition is equiv-
alent to show that there exist a ✓1 2 [�1, 1]

N (equivalent to
the term @E(0; q)) and a ✓2 with k✓2k2  1 (equivalent to
the term @fH(k0k2; p)@k0k2) such that b = �⇢g✓1 + �⇢e✓2.
Since v = P�⇢e,E (b; q), using the first-order optimality
of v for objective function of proximity operator, we have
0 2 �⇢e@E (v; q) + v � b. Since kvk2  �⇢g , there exist
✓1 2 [�1, 1]

N and ✓2 =

v

�⇢g
such that b = �⇢e✓1 + �⇢g✓2,

which completes the proof.
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