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Oversampling Increases the Pre-Log of
Noncoherent Rayleigh Fading Channels

Meik Dörpinghaus, Member, IEEE, Günther Koliander, Student Member, IEEE,
Giuseppe Durisi, Senior Member, IEEE, Erwin Riegler, Member, IEEE, and Heinrich Meyr, Life Fellow, IEEE

Abstract—We analyze the capacity of a continuous-time, time-
selective, Rayleigh block-fading channel in the high signal-to-noise
ratio (SNR) regime. The fading process is assumed stationary
within each block and to change independently from block to
block; furthermore, its realizations are not known a priori to the
transmitter and the receiver (noncoherent setting). A common ap-
proach to analyzing the capacity of this channel is to assume that
the receiver performs matched filtering followed by sampling at
symbol rate (symbol matched filtering). This yields a discrete-time
channel in which each transmitted symbol corresponds to one
output sample. Liang & Veeravalli (2004) showed that the capac-
ity of this discrete-time channel grows logarithmically with the
SNR, with a capacity pre-log equal to 1 − Q/N . Here, N is the
number of symbols transmitted within one fading block, and Q
is the rank of the covariance matrix of the discrete-time channel
gains within each fading block. In this paper, we show that sym-
bol matched filtering is not a capacity-achieving strategy for the
underlying continuous-time channel. Specifically, we analyze the
capacity pre-log of the discrete-time channel obtained by oversam-
pling the continuous-time channel output, i.e., by sampling it faster
than at symbol rate. We prove that by oversampling by a factor
two one gets a capacity pre-log that is at least as large as 1−1/N .
Since the capacity pre-log corresponding to symbol-rate sampling
is 1−Q/N , our result implies indeed that symbol matched filtering
is not capacity achieving at high SNR.

Index Terms—fading channels, noncoherent capacity, oversam-
pling

I. INTRODUCTION

We analyze the high signal-to-noise ratio (SNR) capacity of
a continuous-time, time-selective, Rayleigh block-fading chan-
nel, whose realizations are unknown to the transmitter and the
receiver (noncoherent setting). Computing the channel capacity
in this scenario is relevant because the propagation environment
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is typically not known a priori at the transceivers and needs
to be estimated, for example through the transmission of pilot
symbols.

Information-theoretic analyses of fading channels in the non-
coherent setting are typically conducted starting from discrete-
time models. Marzetta and Hochwald [1], [2] investigated the
capacity of discrete-time Rayleigh block-fading channels where
the channel remains constant forN channel uses before changing
to an independent realization. For the case of single-input single-
output (SISO) channels, they provided a closed-form charac-
terization of capacity in the high SNR regime in terms of both
capacity pre-log, i.e., the asymptotic ratio between capacity and
the logarithm of SNR as SNR grows large, and second-order
term in the high-SNR capacity expansion. Zheng and Tse [3]
(and, more recently, Yang et al. [4]) extended these results to
the multiple-input multiple-output (MIMO) case, and provided a
geometric interpretation of the problem of communicating over a
Rayleigh block-fading channel whose realizations are unknown
to the receiver.

An alternative way to model channel variations in time is
to assume that the fading gains evolve according to a discrete-
time stationary process. Focusing on this scenario, Lapidoth
and Moser [5] proved that—for general fading distributions—
capacity grows double-logarithmically with SNR whenever the
fading process is regular, i.e., when the present fading state
cannot be inferred from the knowledge of arbitrarily many past
fading states. To get a more detailed understanding of the high
SNR capacity for the case of regular fading, one has to study the
second-order term in the high-SNR capacity expansion, the so
called fading number. Its value has been recently characterized
for several stationary discrete-time channel models [5]–[8].

For the case of nonregular Rayleigh fading, where nonregular
means that the present fading state can be inferred from the
knowledge of the past fading states, the high-SNR capacity
behavior depends on the support of the power spectral density
(PSD) of the fading process. Specifically, the capacity pre-log
is given by the Lebesgue measure of the set of frequencies at
which the PSD vanishes [9]. Moreover, it is shown in [8] that
Rayleigh fading yields the smallest capacity pre-log among all
stationary and ergodic fading processes with a given PSD whose
law has no mass point at zero.

Departing from the approaches followed in [1]–[3], [5], Durisi
et al. [10] analyzed the high-SNR capacity of continuous-time
Rayleigh-fading time-frequency selective channels. However,
the generality of the model considered by the authors prevented
them to obtain a closed-form expression for the high-SNR
capacity. In [11], the high-SNR capacity of a continuous-time,
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time-selective, frequency-flat, Rayleigh block-fading channel is
studied. This channel model, which is sometimes referred to as
correlated block-fading model [12], [13], is a generalization of
the standard block-fading model as it allows the fading process to
change in a stationary manner within each block. To investigate
its high-SNR capacity, the authors in [11] approximate the
underlying continuous-time channel by a discrete-time channel
obtained by performing matched filtering at the receiver followed
by sampling at symbol rate (symbol matched filtering). For the
SISO case, it is shown that the capacity pre-log is given by
1−Q/N where N is the number of symbols transmitted within
one fading block of duration T seconds, and Q is the rank of
the covariance matrix of the channel fading gains within one
fading block. The rank Q is related to the maximum Doppler
frequency νmax, namely, Q = 2bνmaxT c+ 1. Equivalently, the
capacity pre-log is given by the number of zero eigenvalues of
theN×N covariance matrix of the discrete-time channel fading
process within one fading block, normalized with respect to N .
This result has the same flavor as the one obtained in [9] for the
stationary case (see [14] for a comparison between stationary
and block-fading models).

To summarize, high-SNR capacity characterizations in terms
of pre-log for the noncoherent setting are available only for
discrete-time channels [1]–[3], [5], [9] or for the case when
continuous-time, time-selective, frequency-flat channels are dis-
cretized using the symbol matched filtering approach [11]. How-
ever, as we shall detail below, the multiplication of a continuous-
time input signal by the time-selective, frequency-flat fading
process yields in general a bandwidth expansion. So symbol
matched filtering is not necessarily optimal, because the resulting
discretized channel output is not a sufficient statistics.

Contributions: Focusing on the time-selective, frequency-flat,
Rayleigh block-fading model introduced in [11], we investigate
whether symbol matched filtering is optimal from a pre-log point
of view. Intuitively, to achieve capacity it appears necessary to
sample the continuous-time received signal so as to obtain a
sufficient statistics for the detection of the transmitted signal [15,
Ch. 4.2.4], [16, Ch. 8], [17]. Assume for example that the channel
input signal has a (one-sided) bandwidth ofW = 1/(2TS) where
TS denotes the duration of one symbol. If the channel fading
process has a bandwidth (maximum Doppler spread) of νmax, the
bandwidth of the noiseless received signal is W +νmax. Thus, in
order to fulfill the Nyquist condition and to be able to reconstruct
the received signal from its samples, one has to sample at a
rate not smaller than 2(W + νmax). Under the assumption that
νmax < W , which holds for most wireless communication
systems, sampling the received signal for example at twice the
symbol rate, i.e., oversampling by a factor 2, yields a sufficient
statistics.

The question is whether oversampling actually yields a higher
mutual information at high SNR. In this paper, we show that this
is indeed the case. Specifically, for the continuous-time channel
model considered in [11], we prove that the discrete-time channel
obtained by oversampling the output signal by a factor 2 has a
capacity pre-log that is at least as large as 1 − 1/N for every
Q < N . This capacity pre-log lower bound is independent of
the rank Q of the channel covariance matrix of the individual
fading blocks. In contrast—as already discussed—the discrete-

time channel obtained with symbol rate sampling has a capacity
pre-log equal to 1−Q/N [11, Th. 1]. Hence, we conclude that
the capacity pre-log of the underlying time-selective, frequency-
flat, Rayleigh block-fading channel is at least 1− 1/N , and that
symbol matched filtering is not capacity achieving at high SNR.

Proof Techniques: For technical reasons related to the opera-
tional definition of capacity for continuous-time channels [16,
Ch. 8], [18], we do not consider the transmission of bandlimited
signals; rather, we choose signals that are a linear combination of
time-shifted, time-limited transmit pulses.1 Under this assump-
tion, sampling the received signal at twice the symbol rate does
not yield a sufficient statistic because the transmitted signal is not
bandlimited. As we shall see, oversampling yields nevertheless
a capacity pre-log increase.

The techniques used to establish the lower bound on the
capacity pre-log for the oversampled case proposed in this
paper are similar to the ones used in [12], [13]. In [12], the
authors consider the discrete-time correlated Rayleigh block-
fading model that results from performing symbol matched
filtering on the continuous-time channel model proposed in [11]
and show that by adding sufficiently many receive antennas one
can lift the capacity pre-log from 1−Q/N to 1−1/N . This shows
that the pre-log penalty Q/N due to lack of a priori channel
knowledge (recall that for the case of perfect channel knowledge
at the receiver the capacity pre-log is 1) can be made small
by adding additional receive antennas, i.e., by “oversampling
in space”. One fundamental difference between our setup and
the one considered in [12], [13] is that adding more antennas
increases the number of fading parameters to estimate. As we
shall see, this does not occur in the oversampled discrete-time
model considered in the present paper.

Related Results: The fact that oversampling increases the
rates achievable at high-SNR has been recently observed in the
context of phase-noise channels [19]. Specifically, it is shown
in [19] for the case of Wiener phase noise that, by oversampling
the output signals by a factor that grows with the square-root
of SNR, one can achieve rates that grow logarithmically with
the SNR and a pre-log no smaller than 1/2. In contrast, symbol
matched filtering yields only a double-logarithmic growth of
capacity with the SNR. Oversampling increases the capacity
also for the case of AWGN channels with output quantization,
both at low SNR [20] and in the limiting case of no additive
noise [21], [22].

Notation: Calligraphic letters likeM denote sets, and |M|
stands for the cardinality of the set M. Boldface lower case
letters such as a and b and upper case letters such as A and B
denote vectors and matrices, respectively. Random quantities
are denoted by sans serif letters, e.g., A is a random matrix and
a is a random vector. The notation [M : N ] is used to indicate
the set {n ∈ N : M ≤ n ≤ N} for M,N ∈ N. We write
[A]I to denote a submatrix of A containing only the rows with
indices in I ⊆ [1 : M ] of the M ×N matrix A. For the vector
a, [a]I is a subvector containing the elements with indices in
I. In addition, IN is the identity matrix of dimension N ×N ,

1As pointed out in [18, p. 364], the notion of rate, which is central to
the definition of capacity, has only a limited operational meaning when the
transmitted waveforms are strictly bandlimited, and, hence, of infinite time
duration.
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and 0N×M is the all-zero matrix of size N ×M . The operator
diag(a) generates a square diagonal matrix with the elements
of a on its main diagonal; det(A) stands for the determinant
of A and we abbreviate the absolute value of the determinant
of A with |A|. The superscript T , H , and ∗ denote transpose,
Hermitian transpose, and complex conjugate, respectively. For
x ∈ R, we define bxc = max{m ∈ Z : m ≤ x}. The
notation f(·) = O(g(·)) for two functions f(·) and g(·) means
that limu→∞ |f(u)/g(u)| is upper-bounded by a constant. The
expectation operator is denoted by E[·]. The rect(·) function is
defined as

rect(t) =

{
1, if |t| ≤ 1/2
0, otherwise (1)

and the sinc(·) function is defined as

sinc(x) =

{
sin(πx)/(πx), if x 6= 0
1, if x = 0.

(2)

Finally, CN (0,C) denotes the probability distribution of a
proper complex jointly Gaussian random vector with zero mean
and covariance matrix C.

II. SYSTEM MODEL

We consider the continuous-time, time-selective, Rayleigh-
fading channel

y(t) = h(t)x(t) + w(t). (3)

Here, h(t) is the channel fading process, x(t) is the transmit
signal, w(t) is the additive white Gaussian noise process, and
y(t) denotes the channel output. All these random quantities are
complex.

We restrict ourselves to transmit signals of the form

x(t) =

∞∑
l=1

√
ρ xl p(t− (l − 1)TS) (4)

where in (4) the pulse p(t) has unit energy and p(t) = 0 if
t /∈ (0, TS), with TS being the symbol duration, i.e., the measure
of the support of p(t). For simplicity, in the following we assume
that p(t) is a rectangular pulse, i.e.,2

p(t) =
1√
TS

rect

(
t− TS/2
TS

)
. (5)

We also assume that the additive noise process w(t) is white
zero-mean proper complex Gaussian. The channel fading process
h(t) is assumed zero-mean proper complex Gaussian, and station-
ary. Hence, its dynamics are fully described by the correlation
function

rh(τ) = E [h(t+ τ)h∗(t)] (6)

2Recall that our aim is to establish an achievability result, i.e., a lower bound on
the capacity pre-log. Hence, we are allowed to select a specific pulse shape. The
choice of a rectangular pulse is convenient because it yields simpler mathematical
expressions. In practice, pulses with lower side lobes in frequency are preferable.
Although our proof can be generalized to a larger family of pulse shapes, we
decided to omit this extension because it is rather technical and may obfuscate
the actual contribution of the paper.

or, equivalently, by the PSD

Sh(ν) =

∞∫
−∞

rh(τ)e−j2πτνdτ. (7)

Because the velocity of the transmitter, the receiver, and
of the objects in the propagation environment are limited, it
is reasonable to assume that Sh(ν) has bounded support, say
[−νmax, νmax], where νmax is the maximum Doppler shift. This
means that h(t) is a bandlimited process.

Large-scale effects involving changes not only in the phase,
but also in the amplitude and the delay associated to each
propagation path, may yield abrupt changes in the fading process.
Following [11], we model these changes by assuming that
stationarity, i.e., (6), holds only over a time interval of length
T seconds. For mathematical tractability, but without losing the
main features of the underlying physical process, we assume
that the fading process takes on independent and identically
distributed realizations across blocks of T seconds. Note that
the interval length T is typically much larger than the coherence
time Tcoh = 1/(2νmax) of the channel, which characterizes the
time interval over which h(t) does not change significantly. To
summarize, we model h(t) as a block-memoryless process that
satisfies (6) within each block of T seconds. Over one such block,
say the block [0, T ], we can express h(t) using the following
series expansion

h(t) =

∞∑
m=−∞

sme
j2πm t

T , t ∈ [0, T ] (8)

with

sm =
1

T

T∫
0

h(t)e−j2πm
t
T dt (9)

and where the equality in (8) holds in mean-square sense. Be-
cause h(t) is zero-mean proper complex Gaussian, the coef-
ficients {sm} are also zero-mean proper complex Gaussian.
Furthermore, their cross-correlation is given by

E[sms∗n] =
1

T

T∫
0

 1

T

T−α∫
−α

rh(τ)e−j2πm
τ
T dτ

× e−j2πm α
T

 ej2πn
α
T dα. (10)

Under the assumption that the coherence time Tcoh of the fading
process is much smaller than T we can approximate E[sms∗n] as
follows

E[sms∗n] ≈
{

1
T Sh

(
m
T

)
for m = n

0 otherwise (11)

which implies that the coefficients sm can be assumed to be
independent provided that T � Tcoh.3

3The approximation (11) holds with equality for T -periodic correlation
functions rh(τ).
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Since h(t) is bandlimited with (one-sided) bandwidth νmax,
the series expansion in (8) can be well-approximated by keeping
only a finite number of terms, i.e.,

h(t) ≈
M∑

m=−M
sme

j2πm t
T , t ∈ [0, T ] (12)

with M = bTνmaxc. The expansion on the right-hand side
(RHS) of (12) implies that the fading process h(t) within the
interval [0, T ] can be well-approximated by Q = 2M + 1
independent proper complex Gaussian random variables, where
independence results from the approximation (11). Since we
assume that the fading process is memoryless across blocks
of T seconds, the entire fading process is characterized by
specifying Q independent parameters per block. It will turn
out convenient to introduce the normalized Fourier coefficients{
ŝm = sm/

√
1
T Sh

(
m
T

)}M
m=−M

, which are by construction i.i.d.

CN (0, 1)-distributed. In the remainder of the paper, we shall
model the fading channel h(t) over each block using (11)
and (12).

III. SYMBOL MATCHED FILTERING

The symbol matched filtering approach, which involves filter-
ing the received signal y(t) in (3) with p∗(−t) and then sampling
at symbol rate 1/TS yields for each fading block the following
discrete-time input-output relation:

yk =

∞∫
−∞

y(τ)p∗(τ − (k − 1)TS) dτ (13)

=
1√
TS

kTS∫
(k−1)TS

y(τ) dτ (14)

=
1√
TS

kTS∫
(k−1)TS

(
M∑

m=−M
sme

j2π m
TSN

τ
√
ρ xk√
TS

+ w(τ)

)
dτ

(15)

=
√
ρ xk

M∑
m=−M

sme
j2π

m(k−1/2)
N sinc

(m
N

)
+ wk (16)

where k = 1, . . . , N with N = T/TS being the number of
symbols transmitted within each block and

wk =
1√
TS

kTS∫
(k−1)TS

w(τ) dτ . (17)

The additive noise random variables {wk} are i.i.d. zero-mean
proper complex Gaussian. To keep the notation simple and
without loss of generality, we assume that the input-output
relation is normalized and that the {wk} have unit variance. Then
ρ in (16) can be thought of as the SNR. Setting

hk =

M∑
m=−M

sme
j2π

m(k−1/2)
N sinc

(m
N

)
(18)

we rewrite (16) in the following more compact form:

yk =
√
ρ hkxk + wk, k = 1, . . . , N. (19)

Because of the block-memoryless assumption, the capacity
C(ρ) of the discrete-time channel (19) is given by

C(ρ) =
1

N
sup I(x; y) (20)

where x = [x1 . . . xN ]T , y = [y1 . . . yN ]T and the supremum
is over all probability measures on x that satisfy the average-
power constraint

∑N
k=1 E

[
|xk|2

]
≤ N . Note that to approach

C(ρ) one has to code over sufficiently many independent fading
blocks. No closed-form expressions for C(ρ) are known for the
case N > 1. Let the capacity pre-log χ be defined as

χ = lim
ρ→∞

C(ρ)

log ρ
. (21)

It follows from [11, Th. 1] that

χ = 1− Q

N
(22)

provided that Q < N . The intuition behind this result is as
follows [23]:Q out of theN available symbols per block need to
be sacrificed to learn the channels. This can be done for example
by transmittingQ pilot symbols per block. The remainingN−Q
symbols can be used to communicate information. Hence, the
capacity pre-log, which can be thought of as the number of
“dimensions” per channel use available for communication, is
(N − Q)/N = 1 − Q/N . The ratio Q/N corresponds to the
ratio of the bandwidth 2νmax of the fading process to the symbol
rate 1/TS :

Q

N
≈ 2νmaxTS . (23)

Note that the capacity pre-log (22) is a lower bound on the
capacity pre-log of the underlying continuous-time channel (3)
because (22) is obtained i) by constraining the input signal to be
of the form (4) and ii) by using symbol matched filtering at the
receiver side. Both choices may be suboptimal.

IV. OVERSAMPLING THE OUTPUT SIGNAL

A. The Oversampled Input-Output Relation

We show in this section that the symbol matched filter ap-
proach reviewed in Section III is suboptimal. Specifically, we
prove that by oversampling the continuous-time channel output
by a factor two, a pre-log as large as 1− 1/N can be achieved.

Our oversampled, discrete-time, input-output relation is ob-
tained as follows. The received signal y(t) is filtered using a
rectangular pulse whose width is half the symbol time (i.e., half
the width of the transmit pulse p(t)). The resulting filtered output
signal is then sampled at twice the symbol rate. Let

wn =

√
2

TS

nTS/2∫
(n−1)TS/2

w(τ) dτ. (24)
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Within a fading block, the resulting 2N output samples are given
by

yn =

∞∫
−∞

y(τ)

√
2

TS
rect

(
τ − TS/4− (n− 1)TS/2

TS/2

)
dτ

(25)

=

√
2

TS

nTS/2∫
(n−1)TS/2

y(τ) dτ (26)

=

√
2

TS

nTS/2∫
(n−1)TS/2

(
M∑

m=−M
sme

j2π m
TSN

τ

×√ρ xdn/2e
1√
TS

+ w(τ)

)
dτ (27)

=

√
ρ

2
xdn/2e

M∑
m=−M

sme
jπmN (n− 1

2 ) sinc
( m

2N

)
+ wn,

n = 1, . . . , 2N. (28)

Introducing the shorthand notation

pm =
1√
2
e−jπ

m
2N sinc

( m
2N

)√ 1

T
Sh

(m
T

)
(29)

we can rewrite (28) as

yn =
√
ρ xdn/2e

M∑
m=−M

pmŝme
jπmnN + wn, n = 1, . . . , 2N.

(30)

It turns out convenient to distinguish between the output samples
corresponding to even values of n and the ones corresponding
to odd values of n, and to group them in two N -dimensional
vectors as follows:

yo = [y1 y3 . . . y2N−1]T (31)
ye = [y2 y4 . . . y2N ]T . (32)

Here, the subscripts “o” and “e” stand for odd and even, re-
spectively. To conveniently express the input-output relation
in vector-matrix form, we next introduce some definitions. Let
x = [x1 . . . xN ]T , ŝ = [̂s−M . . . ŝM ]T , and let wo and we con-
tain the odd and even noise samples, respectively. Furthermore,
define the Q-dimensional vector p (recall that Q = 2M + 1) as
follows

p = [p−M . . . pM ]T . (33)

Finally, let

q(k,m)
o = ejπ

m
N (2k−1), k = 1, . . . , N, m = −M, . . . ,M

(34)
q(k)
o = [q(k,−M)

o . . . q(k,M)
o ], k = 1, . . . , N (35)

Qo =


q
(1)
o

...
q
(N)
o

 . (36)

Similarly, let

q(k,m)
e = ejπ

m
N (2k), k = 1, . . . , N, m = −M, . . . ,M

(37)
q(k)
e = [q(k,−M)

e . . . q(k,M)
e ], k = 1, . . . , N (38)

Qe =


q
(1)
e

...
q
(N)
e

 . (39)

Equipped with these definitions and using (30), we can express
yo and ye as

yo =
√
ρdiag{x}Qo diag{p}ŝ + wo (40a)

ye =
√
ρdiag{x}Qe diag{p}ŝ + we. (40b)

B. Pre-log Analysis

The capacity of the oversampled discrete-time channel (40)
is given by

C(ρ) =
1

N
sup I(x; yo, ye) (41)

where the supremum is taken over all input distributions that
satisfy the average power constraint

∑N
k=1 E

[
|xk|2

]
≤ N . The

capacity pre-log is defined as in (21). Our main result is given
in the following theorem.

Theorem 1: The capacity pre-log of the channel (40) is lower-
bounded as

χ ≥ 1− 1

N
. (42)

Proof: Our proof is based on the method proposed in [12]
and subsequently simplified in [13].

For convenience, we introduce the following notation

y =

(
yo
ye

)
=
√
ρ ȳ + w (43)

where
ȳ = Bŝ (44)

with

B =

(
diag{x}Qo

diag{x}Qe

)
diag{p} (45)

and w = (wTo wTe )T . Let h(·) denote differential entropy. We
will establish a lower bound on the mutual information

I(x; y) = h(y)− h(y|x) (46)

for the specific choice x ∼ CN (0, IN ), by upper-bounding
h(y|x) and lower-bounding h(y).

Upper bound on h(y|x): Since ŝ ∼ CN (0, IQ) and w ∼
CN (0, I2N ), we conclude that y is conditionally Gaussian given
x, with conditional covariance matrix

E
[
yyH | x

]
= ρBBH + I2N . (47)

Hence, [24, Th. 2]

h(y|x) = Ex

[
log
(
(πe)2N det

(
ρBBH + I2N

))]
. (48)

We next use that det
(
ρBBH+I2N

)
= det

(
ρBHB+IQ

)
(which

follows from [25, Th. 1.3.20]). Furthermore, assuming without
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loss of generality that ρ > 1 (note that we are only interested in
the asymptotic regime ρ→∞), we have det

(
ρBHB + IQ

)
≤

det
(
ρ
(
BHB + IQ

))
= ρQ det

(
BHB + IQ

)
. Thus,

h(y|x) ≤ Ex

[
log
(
(πe)2NρQ det

(
BHB + IQ

))]
= Q log ρ+ Ex

[
log det

(
BHB + IQ

)]
+O(1) . (49)

By applying Jensen’s inequality to the concave function log(·),
we obtain

Ex

[
log det

(
BHB + IQ

)]
≤ logEx

[
det
(
BHB + IQ

)]
. (50)

The determinant det
(
BHB + IQ

)
on the RHS of (50) is a

polynomial in the entries of x and xH. Since x ∼ CN (0, IN ),
all moments of x are finite; hence, also the expectation
Ex

[
det
(
BHB+IQ

)]
is finite. Thus, the right-hand side of (50) is

a finite constant that does not depend on ρ. Hence, (49) together
with (50) implies that

h(y|x) ≤ Q log ρ+O(1) . (51)

Lower bound on h(y): Define I = [1 : N + Q − 1] and
J = [N +Q : 2N ]. We can now lower-bound h(y) as follows:

h(y) = h([y]I , [y]J ) (52)

= h([y]I) + h
(
[y]J

∣∣[y]I
)

(53)

≥ h
(√
ρ[ȳ]I + [w]I

∣∣[w]I
)

+ h
(
[y]J

∣∣ŝ, x, [y]I
)

(54)

= h
(√
ρ[ȳ]I

)
+O(1) (55)

= (N +Q− 1) log ρ+ h([ȳ]I) +O(1) . (56)

Here, (53) follows from the chain rule for differential entropy [26,
Th. 8.6.2], in (54) we use (43) and the fact that conditioning re-
duces differential entropy, (55) holds since h

(
[y]J

∣∣ŝ, x, [y]I
)

=
h
(
[w]J

)
is a finite constant that is independent of ρ, and (56)

follows by the transformation property of differential entropy
reported in [26, Eq. (8.71)]. Using (51) and (56) in (46), we
obtain

I(x; y) = (N − 1) log ρ+ h([ȳ]I) +O(1). (57)

If we now divide the RHS of (57) by N log ρ and then take the
limit ρ → ∞, we obtain the desired pre-log lower bound (42)
provided that we are able to prove that h([ȳ]I) > −∞.

To conclude the proof, we will next show that indeed
h([ȳ]I) > −∞. Because conditioning reduces entropy, we have
that

h([ȳ]I) ≥ h([ȳ]I |x1) . (58)

Coarsely speaking, conditioning on x1 in (58) corresponds to
transmitting one pilot symbol per fading block. We will use the
parametrized mappings

φx1
: CN+Q−1 → CN+Q−1; (ŝ, [x][2:N ]) 7→ [ȳ]I (59)

to establish a connection between h([ȳ]I |x1) and h(ŝ, [x][2:N ]),
which is finite by construction. Let Jφx1 (ŝ, [x][2:N ]) be the
Jacobian of the mapping φx1 given by (60) at the bottom of the
page. Note that in (60) we did not take the derivative with respect
to x1 because it is treated as a parameter. By the definition of
ȳ (see (44)), φx1

is a vector-valued polynomial mapping. Thus,
by [13, Lem. 7] the function φx1

is an m-to-one mapping on
the set M̃ ,

{
(ŝ, [x][2:N ]) : |Jφx1 (ŝ, [x][2:N ])| 6= 0

}
, i.e., there

exists a finite m ∈ N such that the intersection of the inverse
image φ−1x1

({[ȳ]I}) =
{

(ŝ, [x][2:N ]) : φx1(ŝ, [x][2:N ]) = [ȳ]I
}

and the set M̃ contains at most m elements. The value taken
by m depends only on the degree of the polynomial φx1

and
not on the specific choice of x1 ∈ C and of [ȳ]I ∈ CN+Q−1.
Since a polynomial (in our case, det

(
Jφx1 (ŝ, [x][2:N ])

)
) either

vanishes identically (which would imply M̃ = ∅) or vanishes
on a set of measure zero (which would imply M̃ 6= ∅), showing
that M̃ 6= ∅ is sufficient to conclude that det

(
Jφx1 (ŝ, [x][2:N ])

)
is nonzero almost everywhere.4 In the following lemma, whose
proof can be found in Appendix A, we show that M̃ 6= ∅.

Lemma 2: For almost all x1 there exists a pair (ŝ, [x][2:N ]) for
which |Jφx1 (ŝ, [x][2:N ])| 6= 0.

Lemma 2 implies that for almost all x1 the function φx1

is m-to-one almost everywhere. Thus, we can now use the
transformation rule for differential entropy under a finite-to-one
mapping established in [13, Lem. 8]

h
(
φx1(ŝ, [x][2:N ])

)
≥ h(ŝ, [x][2:N ])− logm

+

∫
CQ+N−1

fŝ,[x]
[2:N]

(ŝ, [x][2:N ])

× log
(∣∣Jφx1(ŝ, [x][2:N ])

∣∣2)d(ŝ, [x][2:N ]) . (61)

Because of [ȳ]I = φx1
(ŝ, [x][2:N ]), we have h

(
[ȳ]I

∣∣x1 =x1
)

=

h
(
φx1(ŝ, [x][2:N ])

)
. Thus, (61) entails

h
(
[ȳ]I

∣∣x1) ≥ h(ŝ, [x][2:N ])− logm

+ Ex1

 ∫
CQ+N−1

fŝ,[x]
[2:N]

(ŝ, [x][2:N ])

× log
(∣∣Jφx1(ŝ, [x][2:N ])

∣∣2)d(ŝ, [x][2:N ])

 .
(62)

We now show that the RHS of (62) is lower-bounded by a finite
constant. The term h(ŝ, [x][2:N ]) is the differential entropy of a

4Recall that in our notation |A| = |det(A)|.

Jφx1 (ŝ, [x][2:N ]) =

 diag{x}Qo diag{p} 01×N−1
diag{[Qo][2:N ] diag{p}ŝ}

diag{[x][1:Q-1]}[Qe][1:Q−1] diag{p} 01×N−1
diag{[Qe][2:Q−1] diag{p}ŝ} 0Q−2×N−Q+1

 (60)
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standard multivariate proper complex Gaussian random vector
and thus a finite constant. Hence, it remains to characterize

Ex1

 ∫
CQ+N−1

fŝ,[x]
[2:N]

(ŝ, [x][2:N ])

× log
(∣∣Jφx1(ŝ, [x][2:N ])

∣∣2)d(ŝ, [x][2:N ])

 (63)

=

∫
C

∫
CQ+N−1

fx1(x1) fŝ,[x]
[2:N]

(ŝ, [x][2:N ])

× log
(∣∣Jφx1(ŝ, [x][2:N ])

∣∣2)d(ŝ, [x][2:N ]) dx1 (64)

=

∫
CQ+N

fŝ,x(ŝ,x) log
(∣∣Jφx1(ŝ, [x][2:N ])

∣∣2)d(ŝ,x) (65)

where (65) holds because (ŝ, [x][2:N ]) and x1 are independent.
We use the following result from [13, Lem. 9] to show that the
RHS of (65) is bounded away from minus infinity.

Lemma 3: Let f be an analytic function on Cn that is not
identically zero. Then

I1 ,
∫
Cn

exp(−‖ξ‖2) log(|f(ξ)|) dξ > −∞ . (66)

Since the determinant of Jφx1(ŝ, [x][2:N ]) is a complex poly-
nomial that is nonzero a.e., it is an analytic function that is not
identically zero. Furthermore, fŝ,x is the probability density func-
tion of a standard multivariate Gaussian random vector. Hence,
by Lemma 3, the RHS in (65) is bounded away from minus
infinity. Thus, using (62), we conclude that h

(
[ȳ]I

∣∣x1) > −∞.
Together with (58), this implies h([ȳ]I) > −∞. This concludes
the proof.

Note that the assumption that ŝ is complex-Gaussian dis-
tributed (Rayleigh fading) can be partially relaxed in the proof
of Theorem 1. Indeed, Theorem 1 holds for any circularly
symmetric fading distribution fŝ that decays fast enough5 and
for which h(ŝ) > −∞.

V. CONCLUSIONS

We have shown that the capacity pre-log of a continuous-time,
time-selective, Rayleigh block-fading channel is lower-bounded
by 1− 1/N . This pre-log, which can be achieved by sampling
the channel output at twice the symbol rate, is independent of
the rank Q of the covariance matrix characterizing the temporal
correlation of the fading inside each fading block. In contrast,

5A detailed analysis of [12, Appendix D] shows that the decay has to be such
that Eŝ,x

[
log
(
‖(ŝT xT )‖

)
‖(ŝT xT )‖2(Q+N)+1

]
is finite.

the standard symbol matched filtering approach, which entails
sampling at symbol rate, leads to the looser lower bound 1 −
Q/N .

As already discussed in the introduction, symbol rate sampling
does not yield in general a sufficient statistics for the detection
of the transmitted symbols from the output samples. This is due
to the bandwidth expansion resulting from the multiplication of
the channel input process by the fading process.

Coarsely speaking, oversampling yields an increase of the
dimension of the output space spanned by the received samples.
The resulting additional dimensions can be used to acquire
knowledge about the fading channel at the receiver. Indeed, as
illustrated in Section IV-B (see (58)) one pilot symbol per fading
block is sufficient for the case of oversampling, whereas Q pilot
symbols are required for the case of symbol matched filtering.
This explains the pre-log increase resulting from oversampling.
Unfortunately, the processing needed to acquire this additional
channel knowledge is nonlinear. In contrast, standard minimum
mean-square estimation of the fading channel based on the pilot
symbols is pre-log optimal for the case of symbol matched fil-
tering [3]. This nonlinear processing is the reason why the proof
of our main result is technical in some parts. A phenomenon
similar to the one just described has been recently observed in the
context of multiple-antenna communications, where increasing
the number of receive antennas yield a pre-log increase for block-
correlated fading channels, even when the transmitter has a single
antenna [12], [13].

APPENDIX A
PROOF OF LEMMA 2

Proof: It is convenient to choose ŝ so that diag{p}ŝ is
nonzero and orthogonal to the rows of the matrix [Qo][1:Q−1].
Note that the elements of p are nonzero by construction. More-
over, the matrix (QT

o QT
e ) is full spark [27, Def. 1], i.e., every

set of Q columns of (QT
o QT

e ) is linearly independent, because
it is a Vandermonde matrix with nonequal columns (see [27,
Lem. 2]). Thus, our choice of ŝ yields [Qo]{k} diag{p}ŝ 6= 0
for k ∈ [Q : N ] and [Qe]{k} diag{p}ŝ 6= 0 for k ∈ [1 : N ]. To
simplify notation, we set D1 = diag{[Qe][2:Q−1] diag{p}ŝ}
and D2 = diag{[Qo][Q:N ] diag{p}ŝ}. Note that D1 and D2

are diagonal matrices with nonzero diagonal entries. We can
rewrite Jφx1 (ŝ, [x][2:N ]) as shown in (67) at the bottom of the
page. The determinant of Jφx1 (ŝ, [x][2:N ]) can now be factorized
as follows∣∣Jφx1 (ŝ, [x][2:N ])

∣∣
=

∣∣∣∣∣
(

x1[Qe]{1}
diag{[x][1:Q-1]}[Qo][1:Q-1]

)
diag{p}︸ ︷︷ ︸

=A

∣∣∣∣∣ |D2| |D1| .

(68)

Jφx1 (ŝ, [x][2:N ]) =

 diag{x}Qo diag{p} 0Q−1×Q−2 0Q−1×N−Q+1

0N−Q+1×Q−2 D2

diag{[x][1:Q-1]}[Qe][1:Q−1] diag{p} 01×Q−2 01×N−Q+1

D1 0Q−2×N−Q+1

 (67)
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Choosing x1 so that x1 6= 0 (recall that we need to establish that∣∣Jφx1 (ŝ, [x][2:N ])
∣∣ 6= 0 only for almost all x1) and choosing

all other entries of x also nonzero yields |A| 6= 0 as the
matrix A is the product of the nonsingular matrices diag{p}
and

(
x1[Qe]{1}

diag{[x][1:Q-1]}[Qo][1:Q-1]

)
(recall that (QT

o QT
e ) is full

spark). Furthermore, we have that |D2| 6= 0 and |D1| 6= 0.
Hence, we conclude that

∣∣Jφx1 (ŝ, [x][2:N ])
∣∣ 6= 0.
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