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Introduction

I Particle transport due to Ion Temperature Gradient/Trapped Electron
(ITG/TE) mode turbulence is investigated using the gyrokinetic code
GENE.1 Both quasilinear (QL) treatment and nonlinear (NL) simulations
are performed for typical tokamak parameters.The results are compared to a
computationally efficient fluid model.2

I A selfconsistent treatment is used, where the stationary local profiles are
calculated corresponding to zero particle flux simultaneously for electrons
and trace impurities. The scaling of the stationary profiles with magnetic
shear, safety factor, electron-to-ion temperature ratio,
collisionality, toroidal sheared rotation, triangularity, and
elongation is investigated.

I The electron density gradient can significantly affect the stationary impurity
profile scaling.3 Thus, a selfconsistent treatment is important for parameters
for which the stationary background density profile is sensitive.

Particle transport

I The local particle transport for species
j can be formally divided into its
diagonal and off-diagonal parts,
RΓj
nj

= Dj
R

Lnj
+ DTj

R

LTj
+ RVp,j, (1)

where the DTj-term is the thermopinch
and Vp,j includes contributions from
curvature and parallel compression.

0 50 100 150 200 250 300

t [R/cs]

−20

−15

−10

−5

0

5

10

15

20

Γ
e

[D
G
B
n

0
/
R

]

R/Ln = 2.22

R/Ln = 2.77

R/Ln = 3.33

Figure 1: Electron particle flux at three

density gradients

I Solving equation (1) for zero particle flux, with Vj = DTj1/LTj + Vp,j yields

PFj ≡
R

Lnj

∣∣∣∣∣
Γ=0

= −RVj
Dj

, (2)

the steady state gradient of zero particle flux for species j. It quantifies the
balance between diffusion and advection, and gives a measure of how
“peaked” the local density profile is at steady state, the peaking factor.

Simulation details

I NL GENE simulations were performed, PFe was
calculated first by finding the gradient of zero particle
flux.
. The results were compared to QL GENE and a fluid

model.
I Impurities were included as trace species, they do not

affect the turbulent dynamics:
. PFe was used as input while finding PFZ.
. ΓZ scales linearly with the impurity gradients, the

peaking factor and its contribution from thermopinch
can be found.

r/R 0.18

ŝ 0.796

q0 1.4

R/Lni,e 2.22

R/LTi,e 6.96

Ti/Te 1.0

Te[k eV] 2.85

ne[1019m−3] 3.51

B0[T] 3.1

R[m] 1.65

β[%] 0

νei[cs/R] 0.05

Table 1: CBC parameters

I Parameter scans were done around those of Cyclone Base Case (Table 1).4

Scaling with temperature gradient

I When scanning over R/LTi (Figure 2):
. R/LTi < 4.5, TE dominated, increasing

peaking factor, low ion heat transport.
. R/LTi > 4.5, ITG dominated, slowly

decreasing peaking factor,5 stiff increase in
ion heat transport.

. The addition of 3% Beryllium lowers the
stiffness of the ion heat transport.

I Reduced models sensitive to choice of
wavenumber.

I Zero particle flux is the result of a balance of
outward and inward transport at different
wavenumbers (Figure 3).

. This represents a challenge for reduced
models.

0 2 4 6 8

R/LTi

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
F

0

100

200

300

400

500

600

Q
i

[D
G
B
n

0
T
e
/
R

]

PFNL

PF 0.2
QL

PF 0.3
QL

PF 0.2
fl

PF 0.3
fl

Qi

Qi , 3% Be

Figure 2: Scaling of PFe and ion

heat flux with R/LTi
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Figure 3: Normalized poloidal

wavenumber spectrum at zero

particle flux

Scaling with temperature ratio
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(a) NL, QL and fluid scalings of

PFe
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(b) Simultaneous QL scalings of

PFe and PFZ
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Figure 4: Scalings of background electron peaking and impurity peaking with Ti/Te.

I Electron peaking reduced with increasing ion-electron temperature ratio.
I Same dependence on low-Z impurities while high-Z more flat.
. Due to higher relative contribution of outward thermopinch for low-Z

impurities ∼ 1/Z.

Scaling with magnetic shear
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(b) Simultaneous QL scalings of

PFe and PFZ
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Figure 5: Scalings of background electron peaking and impurity peaking with ŝ.

I Electron peaking show strong nearly linear dependence of magnetic shear.
. Due to stronger inward convective pinch as a result of the shear

dependence on curvature pinch.
I PFZ follows same trend, high-Z impurities more strongly affected.

Scaling with collisionality
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(b) Simultaneous QL scalings of

PFe and PFZ
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Figure 6: Scalings of background electron peaking and impurity peaking with νei.

I Higher collisionality reduces the peaking factors for both the background6

and the impurities, but the effect on high-Z impurities is small.
. Reduction in peaking factor due to larger contribution from outward

thermopinch due to change in real frequency, PFT,Z ∼ −ωr TZTeZ + 7
4

(
TZ
TeZ

)2

.

Conclusions

I Reasonable qualitative agreement between NL, QL gyrokinetic, and fluid
PFe. Reduced models sensitive to choice of wavenumber.

I PFe sensitive in scans over temperature ratio, magnetic shear, collisionality,
and elongation, weak sensitivity for safety factor, sheared toroidal rotation,
and triangularity.

I Selfconsistent treatment often results in similar trends for PFe and PFZ.
. Parameter regions with simultaneously high PFe and low PFZ are rare.

I Low νei favourable, allows for high PFe with little effect on high-Z impurities.
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