

Department of Product and Production Development
Master’s Program in Production Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

Defining User-friendly Methodology

to Create Advanced Mechanisms in

DELMIA V5

Master’s Thesis in the Production Engineering Master’s Degree Program

ILKER ERDEM

1

Department of Product and Production Development
Master’s Program in Production Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

Defining User-friendly Methodology

to Create Advanced Mechanisms in

DELMIA V5

Master’s Thesis in the Production Engineering Master’s Program

ILKER ERDEM

iii

Defining User-friendly Methodology to Create Advanced Mechanisms in DELMIA V5

Master’s Thesis in Production Engineering

ILKER ERDEM

© ILKER ERDEM, 2014

Master’s thesis / Department of Product and Production Development

 Chalmers University of Technology

Department of Product and Production Development

Division of Production Engineering

Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Telephone: + 46 (0)31-772 1000

iv

ACKNOWLEDGEMENTS

 In the accomplishment of this thesis work many have contributed, but the first and most important

of all is my supervisor, Henrik Kihlman. I take this opportunity to thank him for his patience, generosity

and strong belief in my efforts. Without his support and guidance, it would have been a very

troublesome journey to embark and continue.

 I also take this opportunity to express my gratitude to Peter Helgosson, a colleague of my

supervisor and valuable member of Prodtex family, for his support in this thesis work. It has always been

inspiring for me to see people who share the same passion for robots that I have carried in my all life. I,

therefore, deeply thank Peter for his guidance, cordial support, important information and sincerity,

which significantly helped me finish this assignment.

 Another very important person who provided me the stepping stone is Torbjörn Jakobsson of

Prodtex family. By his earlier work on hexapods and his efforts to create a kinematic device, I had been

able to acquire the necessary knowledge and understand the dynamics behind a mechanism creation in

DELMIA V5. Hence, I am very glad that I have been able to complete his work, without whom I believe

this thesis work would have never been completed.

 I am also obliged to say how grateful I am for the support and information that Mr. Fredrik

Palmquist of Exechon family, Mr. Cyrille Froissart of Dassault Systemes, and Mr. Torgny Brogårdh of ABB

provided. With their contributions, I have been able to move forward beyond the scopes of expectations.

 Lastly, I would like to express countless thanks to my parents, my brother and friends for their

constant encouragement and support without which success would not be achievable at all.

v

Defining User-friendly Methodology to Create Advanced Mechanisms in DELMIA V5

Master’s Thesis in Production Engineering Master’s Program

ILKER ERDEM

Department of Product and Production Development

Division of Production Engineering

Chalmers University of Technology

 ABSTRACT

 The main subject and aim of this thesis work are to create a methodology to define forward and

inverse kinematics for advanced mechanisms such as robots with parallel and hybrid structures for the

use in the project named LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid

Structures) in DELMIA V5. These respective mechanisms are Hexapod/Flexapod 6P, Exechon and Gantry-

Tau robots. The methodology created for this thesis work is building these robots with their forward and

inverse kinematics definitions and testing the outcome. The forward kinematics aspect covers the

building of the respective mechanisms whereas the inverse kinematics aspect includes the investigation

of relevant theory and transfer of it to a C-file where this file is compiled to the use of DELMIA V5.

Testing aspect focuses on comparing the results achieved with a C-file and MATLAB to the actual values

coming from DELMIA V5. Hexapod and Flexapod 6P mechanisms are investigated and simulated in

DELMIA V5 in complete structure while Exechon and Gantry-Tau robots are built only for their parallel

structures.

Keywords: DELMIA V5, parallel kinematics, forward kinematics, inverse kinematics, Hexapod, Exechon,

Gantry-TAU, simulation.

vi

TABLE OF CONTENTS
1. INTRODUCTION ... 1

1.1. OBJECTIVES AND SCOPE .. 1

1.2. METHODOLOGY .. 2

2. INTRODUCTION TO ROBOTS: HEXAPOD/FLEXAPOD 6P, EXECHON AND GANTRY-TAU 3

2.1. HEXAPOD/FLEXAPOD 6P ... 3

2.2. EXECHON ... 4

2.3. GANTRY-TAU ... 5

3. THEORY .. 7

3.1. FORWARD KINEMATICS .. 7

3.2. BUILDING MECHANISMS AND FORWARD KINEMATICS IN DELMIA V5 .. 9

3.2.1. CREATION OF MECHANISMS IN DELMIA V5 .. 9

3.3. INVERSE KINEMATICS .. 17

3.3.1. CREATION OF INVERSE KINEMATICS IN DELMIA V5 .. 18

3.3.2. THE ANALYSIS OF C-FILE FOR INVERSE KINEMATICS IN DELMIA V5 .. 23

3.3.3. COMPILATION OF C-FILES .. 27

4. THEORY OF INVERSE KINEMATICS FOR RESPECTIVE ROBOTS ... 28

4.1. HEXAPOD/FLEXAPOD 6P INVERSE KINEMATICS ... 28

4.2. HEXAPOD/FLEXAPOD 6P – TRANSFER OF THEORY TO A C-FILE .. 31

4.3. EXECHON INVERSE KINEMATICS – THEORY .. 38

4.4. THEORY OF EXECHON TO C-FILE ... 40

4.5. GANTRY-TAU ROBOT ... 42

4.6. THEORY OF GANTRY-TAU ROBOT TO C-FILE ... 47

5. RECOMMENDED COURSE OF ACTION FOR MECHANISM BUILDING IN DELMIA V5 – THE USER-

FRIENDLY METHODOLOGY ... 50

6. RESULTS AND DISCUSSION ... 54

7. CONCLUSION ... 57

REFERENCES .. 58

APPENDICES .. 59

APPENDIX A: HOW TO SET UP ENVIRONMENT FOR FORWARD AND INVERSE KINEMATICS 59

APPENDIX B: BUILDING OF FLEXAPOD 6P ... 61

MECHANISM CREATION OF FLEXAPOD 6P ... 61

vii

TESTING OF THE FLEXAPOD 6P’S FORWARD KINEMATICS .. 80

THE CREATION OF INVERSE KINEMATICS .. 80

TESTING OF THE INVERSE MECHANISM .. 84

THE C-FILE FOR INVERSE KINEMATICS OF FLEXAPOD 6P ... 85

APPENDIX C: THE CREATION OF INVERSE KINEMATICS FOR HEXAPOD ... 95

THE INVERSE KINEMATICS CREATION .. 95

THE C-FILE FOR HEXAPOD .. 98

APPENDIX D: THE FORWARD AND INVERSE KINEMATICS CREATION OF EXECHON 107

FORWARD KINEMATICS: EXECHON.. 107

EXECHON INVERSE KINEMATICS .. 125

EXECHON C-FILE ... 128

APPENDIX E: GANTRY-TAU ROBOT ... 136

FORWARD KINEMATICS: GANTRY-TAU .. 136

INVERSE KINEMATICS: GANTRY-TAU ... 144

FORWARD KINEMATICS THEORY OF GANTRY-TAU ROBOT ... 148

THE C-FILE FOR GANTRY-TAU ROBOT .. 150

APPENDIX F: COMPILATION OF C-FILES .. 158

COMPILATION IN 64-BIT OPERATING SYSTEMS ... 158

COMPILATION IN 32-BIT OPERATING SYSTEMS ... 161

APPENDIX G: MATLAB FUNCTIONS ... 163

HEXAPOD INVERSE KINEMATICS .. 163

FLEXAPOD INVERSE KINEMATICS ... 165

EXECHON INVERSE KINEMATICS .. 167

GANTRY-TAU FORWARD KINEMATICS ... 169

GANTRY-TAU INVERSE KINEMATICS .. 170

viii

 DEFINITION OF TERMS AND ABBREVIATIONS

Actuator is a mechanism that initiates and control the motion of a system.

Degrees of freedom (DOF)

is the term that describes the independent motions that a body
is allowed to do.

CAD-model

is a 2D/3D drawings or solid structure of parts in a modeling
environment.

End-effector

is the utility of a robot that interacts with the objects that are not
part of the robot.

Joint

is the center of motion where two solid structures of a robot
contact each other.

Prismatic joint (P) is a joint type with one translational degree of freedom

Revolute joint (R) is a joint type with one rotational degree of freedom

Universal joint (U)
is a two degrees of freedom joint that corresponds to two
successively attached revolute joints.

Spherical joint (S)
is a joint type with three degrees of freedom that allows parts to
rotate in all axes freely.

Link/leg is the term that defines the solid structure between joints.

Kinematic chain
is the term employed to describe the order of joints in a
mechanism.

Serial kinematics machine (SKM)
is a robot that the respective joints are successively attached to
each other.

Parallel kinematic machine (PKM)
is a machine that consists of links/legs that operate in parallel
axes.

Hybrid robot/machine (HM)
is a robot that consists of parallel and serial kinematic chains
successively.

Tool Center Point (TCP)
is the tip of the end-effector with respect to which the robot’s
interaction with environment is calculated.

1

1. INTRODUCTION

The EU financed project ©LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and

Hybrid Structures) is a joint adventure research and development program with SAAB AB as coordinator.

The project is in partnership with 31 companies of aircraft industry and universities. LOCOMACHS mainly

focuses on reduction or eradication of non-value adding operations in manufacturing of aircrafts. Thus,

the objectives of the project can be summarized as

 Reduction of cost and lead-time

 Managing tolerance and variation

 Increasing the level of automation

 Designing new production methods and systems

 At this point, this thesis work will fit in the last two objectives (LOCOMACHS 2014). In order to

increase the level of automation and set up new rules for manufacturing and design, the simulation of

respective ideas become vital. Thus, the necessary means to support new designing ideas must be

defined in the chosen simulation environment – DELMIA V5.

DELMIA V5 of Dassault Systemes is one of the most advanced simulation tools that enables its users

to create, define and control all aspects of a production system. As one of those aspects, DELMIA V5’s

Device Building module is a highly capable virtual mechanism creation instrument that defines forward

and inverse kinematics of any given mechanism. However, advanced mechanisms such as parallel and

hybrid (parallel-serial) robots are not recognized by this module directly via user-interface; thus, this

definition of mechanism must be done by using C-code, which is considered to be a very important

feature of DELMIA V5.

 Hence with DELMIA V5’s described feature, the means to support the newly designed

manufacturing systems with higher levels of automation for LOCOMACHS project must be defined in

terms of kinematic capabilities; and this thesis work is exactly formulated to provide a user-friendly

methodology for the partners of project LOCOMACHS to simulate their kinematic devices in DELMIA V5.

1.1. OBJECTIVES AND SCOPE

In this thesis work, readers will find answers to how to define advanced mechanisms in DELMIA V5

by both using forward and inverse kinematics definition tools for robot types: hexapod/Flexapod 6P,

Exechon and Gantry-Tau robots. So, the objective of this thesis work is to

 define a methodology to create advanced mechanisms in terms of forward kinematics

 create a methodic application of relevant theory for inverse kinematics to DELMIA V5

 continue the methodology to define how to set up the compilation and testing environment.

 simulate the respective robots by using the methodology.

2

 Then, scope of this thesis work covers:

 Creation of methodology

 Building of declared robots in DELMIA V5 environment using the methodology

 Testing of the prospective robots in DELMIA environment

 Therefore, the structure of this paper will be as following:

 Forward and inverse kinematics creation in DELMIA V5

 The analysis of C-files for inverse kinematics

 Theory for the given robots in terms of inverse kinematics and its transfer to a C-file

 Method employed during the building and solving the problems occurred

 The creation of Hexapod/Flexapod 6P, Exechon and Gantry-Tau robots in DELMIA V5

(appendix section)

1.2. METHODOLOGY

 The scientific inquiry for this thesis work is originated on the question whether it is possible to

formulate a methodology that enables a layman user to build advanced mechanisms in a simulation

environment such as DELMIA V5 so that element of surprise in terms of unexpected errors is minimized.

As Craig (2005) summarizes, the steps that any mechanism creation should cover assembly, kinematics

definition and testing. In addition, the knowledge gained from the previous project owner – Torbjörn

Jakobsson – and Cyrille Froissart of Dassault Systemes shows that the same way of thinking of Craig’s

applies to DELMIA V5 as well. However, the documented information from their work is either limited to

serial kinematics machines or only defined within the limits of inverse kinematics for parallel kinematics

machines. Thus, the remaining aspects of mechanism creation for parallel kinematics machines are still a

black box. Therefore, the experimentation phase should be initiated before defining a user-friendly

methodology. This kind of experimentation and thinking was also conducted by Torbjörn Jakobsson

from which he was also able to gain great amount of insight regarding advanced mechanism creation in

DELMIA V5. By focusing on hexapod robot creation in terms of inverse kinematics definition, he was able

to map all the important founding dynamics for inverse kinematics creation and documented it. Thus, it

can be hypothesized that by assembling the respective robots for all the steps of mechanism creation it

would be possible to record a map of actions from which a user-friendly methodology can be developed.

 The results of this experimentation and the map of actions that create the methodology is given

with details in Chapter 5: RECOMMENDED COURSE OF ACTION FOR MECHANISM BUILDING IN DELMIA

V5.

3

2. INTRODUCTION TO ROBOTS: HEXAPOD/FLEXAPOD 6P, EXECHON

AND GANTRY-TAU

 In this chapter, a small introduction will be given to respective robots of this thesis work along with

their importance in industry.

2.1. HEXAPOD/FLEXAPOD 6P

 Hexapod and Flexapod 6P are the same class of robots, where the only difference lies in their

design and the structure of the parts used. This difference of design does not affect the kinematics or

the idea behind this class. Thus, these robots in this chapter will be described schematically.

 Hexapod robots, also known as Stewart Platforms, named after the creator D. Stewart, is parallel

structure of two platforms connected to each other via prismatic actuators named as legs. As the name

suggests these six legs are connected to a base platform in one end whereas the other ends of the legs

are attached to a mobile platform (Yang 1998). The design difference between Flexapod 6P and a

standard hexapod is that upper attachment points for hexapod are connected to legs via spherical joints

while Flexapod 6P has universal joints for upper attachment points and the rotation of legs about their

own axis provides the final degree of freedom that a spherical joint grants in a hexapod.

 This class of robots that is going to be adapted to DELMIA V5 will be utilized in the project called

LOCOMACHS in which hexapods will be used as flexible tooling equipment to support and enhance the

quality of production in aerospace industry.

Figure 1: Hexapod (on the left) and Flexapod 6P (on the right)

4

2.2. EXECHON

 One of the most successful PKM (Parallel Kinematic Machine) structures Exechon – developed and

patented by Karl-Erik Neumann in 2006 – is a tricept-related hybrid machine where a parallel structure

of three legs actuated with prismatic joints is followed by an R-R or a spherical wrist. The structure itself

was created in Sweden and is currently being manufactured by several companies in the world (Zoppi

2010).

 The kinematics structure is comprised of parallel and serial parts which are attached successively

and creating the hybrid kinematics. The parallel structure has three legs as said above and two of which

are identical to each other. These two legs create a common plane meanwhile the third leg’s plane is

perpendicular to the plane created by identical legs. The joints for the identical legs follow RR-P-R and

those for the third leg are RRR-P-R (Bi 2010). This is illustrated in figure 2.

 The successively attached serial structure can be a revolute-revolute or spherical wrist. The tool

attached to wrist can be used for drilling or milling operations as Bi (2010) states. The complete

structure built for DELMIA V5 can be seen in figure 3 .

 In this thesis work, revolute-revolute wrist is not going to be utilized; and thus, the calculations will

be made only for the parallel structure.

Figure 2: Exechon's parallel structure

S-P-R leg

RR-P-R leg

RR-P-R leg

Prismatic

Joint (P)

5

2.3. GANTRY-TAU

 Gantry-Tau is a parallel kinematics robot patented by ABB. The parallel structure consists of three

clusters in which links are attached to mobile platform on different points. The reason that Gantry-Tau

robot has gantry term is the fact that the actuated motion provided by three prismatic joints have the

same ideology with Cartesian (also known as Gantry) robots. The clusters term used here refer to the

group of links where each group connects a prismatic joint to the end-effector. In total, the structure has

six links and clustered as 3-2-1. This notation describes the number of links that each cluster has. The

kinematic chain of each link is a PRRS and the actuation is in the prismatic joint. The chains and their

relations to other parts can be seen in figure 4. (Johannesson 2003)

 On the other hand, it is important to keep in mind that in practical applications the kinematic chain

can be changed to a PSS (Prismatic-Spherical-Spherical). The reason is that the extra DOF that comes

with the first spherical joint only provides rotation about link’s own axial axis. Thus, in practice, this has

no influence. However, when simulated such extra joint will cause problems; and therefore, the regular

PRRS chain should be used as shown in figure 4.

Figure 3: Exechon robot as CAD model in DELMIA V5

6

Figure 5: Gantry-Tau model in DELMIA V5

Figure 4: Gantry-Tau robot

Z

X Y

Prismatic

Prismatic

Prismatic

Revolute
Revolute

Spherical

Joints

7

3. THEORY

 In this chapter, forward/inverse kinematics in general will be described along with their uses in

DELMIA. Also, the relevant theory for the inverse kinematics of Hexapod/Flexapod 6P, Exechon and

Gantry-Tau robots will be presented along with their respective C-files.

3.1. FORWARD KINEMATICS

 Before going deep into detail, it is important to define the term, kinematics. Kinematics, then, is the

investigation of mechanisms in terms of position, velocities and accelerations without including the

forces that set the basis for them (Craig 2005).

This kinematics definition, by theory, is divided into two categories where the first analysis method

is called forward kinematics. This analysis can be defined as attaching coordinate frames to each link in a

robot until the end-effector (TCP) in order to describe the position and orientation of the end-effector in

terms of base-coordinate system (Jazar 2010). These terms are shown in the figure 6.

 Thus; the idea in forward kinematics is to describe the given TCP coordinate system in base-

coordinate system by attaching intermediary coordinate frames at every joint. Hence, by propagating

from one coordinate frame to the next the end-effector’s orientation and position is described by using

each link’s coordinate frame variables where each variable is chosen as a joint value in which actuation

by command is possible. However, in order to propagate from one frame to another, a means that

includes relevant information about a frame is necessary. This relevant information should include the

position of the origin point and the orientation of the consisting XYZ unit vectors with respect to another

frame. In kinematics theory, the means to convey this information is achieved with a 4x4 matrix, named

Transformation matrix (Craig 2005).

Figure 6: Basic terms in kinematics

Base coordinate system

……

…….

……

…….

TCP coordinate system

Link 1

Link 2

Link i

8

 To fully understand and describe what transformation operation is, three different coordinate

frames A, B and C are shown in figure 7 along with point CP. To describe this point CP in coordinate frame

A, transformation matrices between A-B and B-C must be created.

 A transformation matrix then is composed of rotation and translation and has the following

structure.

(1.1)

 notation describes a transformation between A and C coordinate frames in which C is relative to

A-coordinate frame. Thus, when multiplied with
 , any given point or vector in C-coordinate frame is

transformed or described in coordinate frame A (Craig 2005). To create this transformation matrix by

using all the given coordinate frames, the following formula is applied.

 (1.2)

 This formula states that {C} is first described relative to {B}, and then multiplied with the

transformation between {A} and {B} in which {B} is relative to {A}. Hence, transformation between {A}

and {C} is completed by using an intermediary coordinate frame {B} (Craig 2005).

 The terms rotation and translation in
 are the compounds of this matrix where rotation is the

unit vector definition of each axis of {C} relative to {A} and translation is the vector between the origin

points of {A} and {C} relative to {A}. The last row of this transformation matrix is [0, 0, 0, 1] and this row

has no significance but is only useful in terms of making the matrix square (Craig 2005).

Rotation Translation

 0 0 0 1

 =

=

Figure 7: A, B and C coordinate frames each relative to earlier one.

{A}
{B}

{C}

PC

XC

YC

ZC

XB YB

ZB

XA

YA

ZA

CP

9

 Hence, the vector CP is multiplied with the transformation matrix
 and the outcome of this

operation is the vector defined in {A}. This operation is formulated as

 (1.3)

 When the formula 1.3 is applied, a robot’s end-effector is described through each link’s

transformation and the resulting transformation matrix includes variables for the actuators in the robot

mechanism. When these variables entered, this transformation matrix yields the position and

orientation of end-effector or in other words TCP location and orientation (Craig 2005).

 This methodology of course can be applied to a parallel structure such as hexapods. On the other

hand, the mathematical complexity becomes a great burden and solving these mathematical

expressions may not yield an exact result but sometimes estimations due to the necessity for numerical

approaches (Yang 1998). Therefore, DELMIA at this point provides a very useful way to create a

mechanism and builds the forward kinematics description automatically at the end-effector.

3.2. BUILDING MECHANISMS AND FORWARD KINEMATICS IN DELMIA V5

 In this chapter how DELMIA V5 approaches the concept of forward kinematics will be described

whereas building the complete mechanisms along with their forward kinematics description will be

given in appendix for hexapod/Flexapod 6P, Exechon and Gantry-Tau robots. The information presented

in this chapter is based on Cyrille Froissart’s confidential documentation. Thus, due to confidentiality of

the document the reference cannot be given.

3.2.1. CREATION OF MECHANISMS IN DELMIA V5

 Creation of a mechanism can be achieved in three ways in DELMIA environment. These methods

are

 Classic method

 Frame of Interest Method (FOI)

 Frame of Interest and Dress-Up Method

In this thesis work only “Frame of Interest Method” is used since it offered simplicity and geometry-

independent mechanism creation. FOI method is used by appointing frames (in this case called as Frame

of Interest) to the regarding joint locations and creating pre-defined joints from these frames. These

pre-defined joints are

 Revolute (1 rotational degree of freedom)

 Prismatic (1 translational degree of freedom)

 Universal (2 rotational degrees of freedom)

 Cylindrical (1 rotational or translational degree of freedom)

 Spherical (3 rotational degrees of freedom)

10

The creation of a mechanism in DELMIA V5 starts with opening ‘Device building’ module. In this

module, the user first creates a mechanism in the node. Afterwards, user defines a fixed part and starts

to build the respective mechanism upon that fixed part. To simply illustrate, an example will be given by

embarking the FOI method.

In this example, one leg of a Flexapod 6P will be used along with the fixed part ‘Base’. First, DELMIA

V5 will be opened in ‘Device building’ module.

Figure 8: Device Building module in DELMIA V5

In the second step, for each part of the mechanism ‘new component’ is clicked and a separate

component is created under the node tree. For this example, necessary parts are

 Base

 Lower connecting cube

 Lower leg connected to base

 Upper leg that is connected to lower leg part by a prismatic joints

Thus, respective node tree will be looking as in figure 9.

Figure 9: Example of a node tree for mechanisms

 In the third step, necessary CAD-models should be inserted into the respective nodes by using

‘Insert-Existing Component’ commands. Then, the node tree should have the form in figure 10.

11

Figure 10: Leg mechanism with CAD-models inserted

 In the fourth step, a new mechanism will be created and a fixed part –which in this case is the part

called ‘Base’- will be appointed. To achieve this, first ‘New Mechanism’ button must be clicked. Then in

the node tree under ‘Applications’ a new mechanism division will be available.

 To appoint the fixed part, click the ’Fixed Part’ and a respective menu will appear. Afterwards,

respective part ‘Base’ must be chosen for this example.

 In the fifth step, first joint will be created between the cube and the base part. Since the base part

is designed to have six legs, in this example only one leg will be demonstrated. For the remaining legs,

refer to the appendix.

Figure 11: Creation of a new mechanism

(1) (3) (2)

Figure 12: Creating the fixed part

12

 To create a revolute joint, first Frames of Interest (FOIs) will be attached to the respective locations.

The first frame will be attached to the base and the second in the cube. The order does not matter, but

it is noted that in order to avoid confusion, it is important to follow a pattern. At first, click ‘Frames of

Interest’ button and create a Frames of Interest node under both parts – ‘Cube’ and ‘Base’. Then, click

on ‘Frame type’ button and place the FOI as shown in figure 13.

Then the same procedure will be applied to cube and the result is shown in figure 14.

 It is important point out that all one-degree-of-freedom joints either translate or rotate about the

Z-axis of the FOI. Thus, as seen in figure 13 and figure 14, the rotational axis Z is about to coincide when

the joint is created.

Figure 14: Cube part with FOI at the center

Figure 13: Appointing FOI to 'Base' part

(1) (2) (4) (3) (5)

13

 Since all the necessary FOIs are attached, the revolute joint now can be created. To create a joint,

DELMIA V5 offers various ways. However, as stated before, when FOIs are used creation of joints are

easily done by using ‘Joint from axis’.

 After opening ‘Joint from axis’, a new menu appears where users define the properties of the axis

to be created. These features are

 Mechanism to which the joint will belong

 Joint name

 Joint type

 Axes required for joint creation.

 In this case, these features will be Mechanism.1, Revolute and 2 FOIs created for ‘Base’ and ‘Cube’.

This is shown in figure 15 .

 The order of the joints does not matter in this case and ‘Joint name’ section is automatically

generated. The ‘Angle driven’ button makes the joint an actuator in the mechanism. When clicked ‘OK’,

the cube is automatically attached to the correct location where two FOIs coincide. The result is shown

in figure 16.

Figure 16: Revolute joint with FOIs

(1) (2)

Figure 15: Joint creation with FOIs

14

 Second part of this mechanism is to connect ‘Lower Leg’ part to the cube with a revolute joint.

Again, the same procedure will be followed as for the joint between the base and cube except this time

one of the FOIs will be attached to ‘Lower Leg’. The FOIs can be seen in figure 17.

 When these two FOIs are combined by using the same methodology for the first revolute joint, the

lower leg is automatically translated to the position and oriented in a way where two FOIs’ Z-axes

coincide. The result is shown in figure 18.

Figure 17: FOIs for the second revolute joint

Figure 18: The second revolute joint

15

 In the third step, a prismatic joint will be created between ‘Lower Leg’ and ‘Upper Leg’ parts. To

achieve a correct state with the joint, it is important to place the FOIs in the accurate positions.

Specifically, when a prismatic joint is created, DELMIA V5 takes the current positions of each FOI and

makes them coincide in Z-axes. However, since the origin points are not necessarily coincided for a

prismatic joint DELMIA V5 sets the zero position of this joint in the same coordinates where the

respective parts currently are. Therefore, it is important to have each FOI at the same location before a

prismatic joint is created. To achieve this, one may consider creating a revolute joint and then deleting it

along with the constraints; and afterwards, creating the revolute joint. The second way is to move the

mobile part from respective FOI to the coordinates of the one of fixed part in the joint.

 With the first way chosen, a revolute joint will be created with the same routine for earlier joints.

Then revolute joint will be deleted and from the ‘Joint from axes’ button, a prismatic joint will be directly

made. Since this joint is appointed as the actuator of the mechanism, the ‘Length driven’ command will

be activated. The respective FOIs and the joint creation menu are shown in figure 19 and figure 20.

 Figure 20: Prismatic Joint and respective FOIs

Figure 19: Prismatic Joint menu with 'Length Driven' activated

16

 As seen earlier, the revolute joints are not created as actuators; therefore, DELMIA V5 will not be

able to simulate the system due to free motion of those joints. However, since this is an illustration to

show how mechanism creation works, it would be possible to test the mechanism by making all the

joints actuators. This achieved via double-clicking on each revolute joint in mechanism node and

activating ‘Angle driven’ field. This way DELMIA V5 will prompt a menu on which the following

information can be seen ‘The mechanism can be simulated’. This feature can also be observed by clicking

the mechanism properties icon. On the prompted menu, DELMIA V5 displays all the joints created

and their respective parts. In this section, a very important aspect is also shown in which the total

degrees of freedom of a mechanism can be seen. These degrees of freedom are divided into two

sections where one shows Degrees of freedom with command and the other Degrees of freedom

without command. The Mechanism Analysis menu is shown in figure 21.

 In figure 21, it is seen that the mechanism has three joints and only one of them has a command, in

other words one of them is only actuated. This means that the rest of the joints are free to respond any

action which makes them dangling joints by the terminology employed by DELMIA V5. This does not

mean that the mechanism created is incorrect but unfinished. As said earlier, this is only a

demonstration and the complete structure will be presented in appendix section of this paper. Thus, in

order to simulate the system, the revolute joints will be made actuators. The user must click on each

joint created under the ‘Mechanism-Joints’ node in the product tree and double-click on each joint. The

same menu for joint creation will be prompted and on that menu, ‘Angle driven’ field should be

activated. When repeated for the other revolute joint as well, the mechanism properties menu will

display ‘Yes’ for the section ‘The mechanism can be simulated’. Also, it will be seen that degrees of

freedom without command will be zero. This can also be seen from the mechanism node in the product

tree as shown in figure 22.

Figure 21: Mechanism properties menu

17

 To see the behavior of the mechanism, it must be jogged. This property is provided by ‘Jog

mechanism’ button . When clicked, a new menu will prompt, and on this menu the user will be able

to jog the mechanism for given range of joints. The menu and the jogged mechanism can be seen in

figure 23.

 This way DELMIA achieves the forward kinematics of any model needed to be built. It requires no

other calculation; and the required transformation matrix is automatically created when the inverse

kinematics definition is made – which will be the topic of the next section.

3.3. INVERSE KINEMATICS

Inverse kinematics is the way of finding necessary joint values for a given TCP values of a robot. The

way of reaching a solution is divided into two methods, algebraic and geometric. Algebraic solution is

based on finding joint values by acquiring equations from transformation matrix with given values of

TCP. On the other hand, geometric solution is about decomposing the spatial definition of a robot into

several planar equations by using vector definitions (Craig 2005). In the case of this paper, the hexapod

(Flexapod 6P) uses a geometric solution whereas Exechon and Gantry-Tau robot utilizes both of the

Figure 23: Jogging the mechanism

Figure 22: Mechanism properties after actuation

18

given ways. The building of inverse kinematics in DELMIA V5 will be the topic of this section whereas the

inverse kinematics theory of the respective robots will be presented in the next chapter.

3.3.1. CREATION OF INVERSE KINEMATICS IN DELMIA V5

 The inverse kinematics definition in DELMIA V5 is done by the ‘Inverse Kinematics’ icon . When

this icon is clicked and the mechanism is chosen, DELMIA V5 prompts a new menu for the definition of

inverse kinematics. The menu is show in figure 24.

 The first tab in the menu is Basic. Mount part section is used to define the part that is attached to

the TCP. Mount offset is used for the FOI that describes the TCP’s coordinate frame. Reference part is

used to define the coordinate frame that is going to be the reference for calculations where as the Base

part is the fixed part of the mechanism. In many cases Base part and Reference part are the same.

 Approach axis is used to define the main axis of the TCP which in most of the cases is Z-axis

whereas Approach direction is the direction that defines the positive direction in calculations whether it

is inwards or outwards on Approach axis. It is usually set as Out.

 The solver type provides options to define the inverse kinematics solution. These options are

 Numeric method

 Generic method

 Device-specific method

 User inverse method (use of a C-code).

In this paper, the creation of inverse kinematics will be carried out by creating a C-code. On the

other hand, it is important to represent how other methods work as well. Thus, simple instructions will

be given for them.

Numeric method is a built-in feature of DELMIA V5. In this method, solver tries to solve the joint

values by using algebraic methods from transformation matrix. The user has no chance to interfere with

the calculation but define which joints to be solved. When this method is chosen and ‘Advanced’ button

is clicked, a new set of tabs appear in the inverse kinematics menu – which can be seen in figure 25.

Figure 24: Inverse kinematics definition menu

19

In ‘Configurations’ tab, DELMIA V5 asks user to flag the postures of the given robot. These postures

are flagged as valid or invalid where valid makes the posture of the robot available in the simulation

environment. ‘Actuator Space Map’ tab is where the user maps the joints and their mobile parts with

the commands for inverse kinematics calculation. In this tab, the user defines the joint map section first

where each ‘Degree of Freedom’ is associated with the corresponding joint. For example, for RR

mechanism of Exechon’s wrist (revolute and revolute in serial order) dof(1) appoints the first degree of

freedom to revolute joint 1 whereas dof(2) appoints the second degree of freedom to revolute joint 2. In

the second section of mapping, types of freedom are defined where the options are limited to

translational or rotational. In the third section – Kin Axis Type, the main axis of motion is defined. For Kin

Part, the mobile part of the joint is appointed. Compute button is used to appoint these values

automatically, and it is possible that DELMIA V5 may not guess the entire system correctly. All these

sections can be seen in figure 26.

 ‘Solver Attributes’ tab is used in order to define the parameters for the chosen inverse

kinematics method. In this tab, three sections are represented. First, the user is asked to define

convergence tolerances for the numeric solution for both angular and linear convergence. In the second

section, user decides on which joints to be solved, and in the last section, TCP convergence between

Figure 25: Inverse kinematics tabs for numeric method

Figure 26: Configurations and Actuator Space Map tabs

20

robot TCP and target location is defined for X, Y, Z directions and Roll-Pitch-Yaw rotations. These

sections are unique to each mechanism in hand. This tab can be seen in figure 27 for Exechon’s RR wrist.

 After defining the necessary tabs, the inverse kinematics now is ready to use. To test its accuracy,

click on ‘Jog mechanism’ and the menu with a new tab called ‘Cartesian’ will prompt. The idea with

this tab is to use a tag at the predefined TCP location to jog the robot to a certain point by using inverse

kinematics calculation. In this tab, the user is allowed to change the TCP from defined point to any

desired location as well as to jog the mechanism by using Cartesian coordinate system with respect to

any defined coordinate frame. These features can be observed in figure 28.

 This way a mechanism defined with inverse kinematics can be used in other modules of DELMIA for

simulation purposes.

Figure 28: Cartesian tab with TCP tag

Figure 27: Solver Attributes tab

21

 Generic method is used for most commonly adapted structures in the field robotics. These

structures defined by DELMIA V5 as kinematic classes are

 Cartesian robot (TTT:RRR)

 SCARA robot (TRR:RRR)

 Cylindrical robot (TRT:RRR)

 Block robot (TTR:RRR)

 Bore robot (RTT:RRR)

 Articulated robot (RRR:RRR)

 Spherical robots (RRT:RRR)

 Pendulum robot (RTR:RRR)

 The meaning of kinematic classes shown in parentheses is that the robot has 2 divided structures.

The first structure is the body and shown before the colon. The part after the colon, on the other hand,

represents the structure known as mount or wrist. For example, Cartesian robot has three translational

joints in the body and this is represented as TTT. The RRR section, whereas, represents the three serially

connected revolute joint as a wrist attached at the end-effector. The kinematic classes and the

remaining properties for this method are shown in figure 29.

 When ‘Advanced’ is clicked the same tabs with numeric method appear, whereas the contents of

the Solver Attributes tab are different. In this tab, four different sections are shown. First section is

named ‘Joints Information’. In this section, the user defines Offsets, Presents, Signs and Order. The

‘Offsets’ are the distances of joints from the original coordinate frame of the joint. Presents are used to

inform DELMIA V5 whether the joint should be included in inverse kinematics calculation. ‘Signs’ section

decide on the direction of translation or rotation whereas ‘Order’ describes the calculation order that

should be taken into account for the given kinematic class.

 In the second section, ‘Link Lengths’, the offsets are used for rotational joints when their origins are

coaxial. Shoulder offsets and arm lengths are only available for articulated robots. ‘Base and Mount

Offset’ sections are used to define the transformation for any external coordinate frames that is set by

the user for inverse kinematics calculation. ‘Wrist Rotation’ section describes the final rotation of TCP on

Figure 29: Generic method and Basic and Solver Attributes tab

22

the wrist. Unless changed, these values represent the same structure defined in forward kinematics

building. When these values are set and clicked OK, the robot will be ready for simulation purposes.

 Device-specific method is used for specific type of robots that are already defined in the library of

DELMIA V5. Therefore, only difference of this method from Generic Inverse is that in Solver Attributes

tab, DELMIA V5 asks its users to choose the routine name for the specific type of robot. The list of robots

and their routines can be seen in figure 30.

 The last and the topic of this paper is ‘User-inverse’ method. This method is developed by DELMIA

V5 in order to enable its users to integrate complicated calculations to a variety of mechanisms. The idea

stems from the fact that some types of robots do not use widely known kinematic classes in their

systems such as hybrid or parallel robots where inverse kinematics calculation cannot be solved by using

regular approaches described in the beginning of this chapter. In order to select this method, as usual

with other methods, solver type should be set to ‘User inverse’. When Advanced is clicked, the extra

tabs Configurations and Actuator Space Map are the same as with other methods. On the other hand,

Solver Attributes tab display differences. The differences can be seen in figure 31. The first section in this

tab is ‘Link Parameters’. These parameters are used as input to C-code file to be utilized in the

calculation. The ‘Auxiliary Data’ section also has the same properties as ‘Link Parameters’. The third

section is ‘Define Library and Routine Names’, which is where the user enters the name of the C-file as

routine name and the library file created by compiling the code.

Figure 30: Device Specific method and Solver Attributes tab

Figure 31: User inverse method and Solver Attributes tab

23

 In the next section, the structure of the C-file will be presented along with how to compile it for the

use of DELMIA V5. Also this part will be covered in the appendix as how-to type documentation.

3.3.2. THE ANALYSIS OF C-FILE FOR INVERSE KINEMATICS IN DELMIA V5

In this section, the C-file structure will be analyzed. This analysis will not include any calculation or

specific name but only kin_example. This name is chosen in order for a layman user to grasp the

mechanics of C-file creation for DELMIA V5.

 The C-code for inverse kinematics starts with a

#include <shlibdefs.h>

command. The shlibdefs.h file is a standard library for DELMIA V5 that has the standard macros and

structures that are used in the creation of the inverse kinematics such as math operations.

#define NUM_SOLUTIONS 1 /* Number of possible solutions */

#define NUM_DOFS 6 /* Number of joints to be solved */

These 2 lines of commands define the number of solutions achieved after solving the inverse

kinematics (which also defines the number of possible postures a robot can perform for a given TCP) and

degrees of freedom with command that the investigated mechanism has. The NUM_SOLUTIONS

variable also defines the number of columns for the solution array, which will be shown later. The

number of solutions and DOFs are determined by the robot type used and for example, a hexapod has

six degrees of freedom with command and one possible solution for given TCP values.

In the following lines, the routines describe the interaction of the C-file with DELMIA V5. This

interaction requires some change with respect to the name used for the C-file.

DllExport int

get_kin_config(char *kin_routine, int *kin_dof, int *solution_count, int

*usrKinDataHint)

{

 if(strcmp(kin_routine, "kin_example") == 0)

 {

 *kin_dof = NUM_DOFS;

 *solution_count = NUM_SOLUTIONS;

 /*

 * this indicates kin_usr's last argument (void *pData)

 * will be DLM_Data_KinStat

 */

 *usrKinDataHint = USR_KIN_DATA_KINSTAT;

 return 0;

 }

 return 1;

}

24

static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };

static char KinMode[2][24] = { "Normal", "TrackTCP" };

In the following line, the user needs to state the name of C-file for strcmp command which

compares the name of 2 strings and return 0 if the 2 strings match each other.

/*

 * User must supply this function

*/

DllExport int

get_kin_config(char *kin_routine, int *kin_dof, int *solution_count, int

*usrKinDataHint)

{

 if(strcmp(kin_routine, "kin_example") == 0)

 {

 *kin_dof = NUM_DOFS;

 *solution_count = NUM_SOLUTIONS;

 /*

 * this indicates kin_usr's last argument (void *pData)

 * will be DLM_Data_KinStat

 */

 *usrKinDataHint = USR_KIN_DATA_KINSTAT;

 return 0;

 }

 return 1;

}

static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };

static char KinMode[2][24] = { "Normal", "TrackTCP" };

In this case, the name "kin_example" is the name of the C-file and it is stated in the strcmp

command.

The following piece of code is utilized by DELMIA V5 to recognize the function named same as the

C-file with variables which are input from DELMIA V5 to C-file. ‘T6’ here is the transformation matrix.

‘link_lengths’ is the distance between joint axes along the link lengths where “link offsets” is the

shortest distance between joint axes – which are described in the previous section. These values

according to DELMIA V5 are associated with the methodology called Denavitt-Hartenberg method

(Hartenberg 1967).

/*

** Routine Name

*/

DllExport int

kin_hexapodFullTest(

 link_lengths,

 link_offsets,

 T6, /* See above for description of these arguments */

 solutions,

 warnings,

 pData

)

/*

25

** Passed Variable Declarations

*/

double T6[4][4],

 link_lengths[],

 link_offsets[],

 solutions[][NUM_SOLUTIONS];

int warnings[];

For the lines above, a special attention should be given to the transformation matrix T6. As the

name suggests, T6 is the result of successive multiplication of serial transformations, which are 3

translations in x, y and z direction, following 3 rotations about Z, Y and X-axes. Unlike, the traditional

calculation of the transformation matrix for an articulated robot, T6 here is the direct transformation

between the world coordinates attached or Base Reference depending on the choice of the user and the

TCP.Thus, the transformation matrix as an input from DELMIA V5 has the form in figure 32.

1

0

0

0

6

pzpypx

azayax

ozoyox

nznynx

T

 In this T6 matrix, the notations n(xyz), o(xyz) and a(xyz) represent the axes of the TCP. It must be

noted that the representation of these axes have the row-vector form. Thus, when calculating the

correct form of multiplication must be used. The p(xyz) notation describes the translation of a

transformation matrix in X,Y and Z-axes with respect to the chosen coordinate frame as reference.

In the following piece of code, pData routine is defined. This routine is created as standard by

DELMIA V5 in order for users to define their inverse kinematics; thus, pData routine is the main function

for users. As seen below, the routine starts with the local variable declarations that are the constituting

terms of the transformation matrix. The users are also entitled to add variables as they see fit for their

calculation.

void *pData; /* usr routine should NEVER delete pData */

{

/*

** Local Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz;

Figure 32: T6 matrix of DELMIA V5

26

 After variable declaration, DELMIA V5 inserts a standard if-loop to print mechanism properties and

its current joint values for a given TCP. This part is essential for debugging purposes since these values

are taken from ‘Jog Mechanism’ window directly. This loop can be seen below.

#if 1

/*

* using pData

*/

 int i;

 DLM_Data_KinStat *pDLM_Data = (DLM_Data_KinStat *) pData;

 if(pDLM_Data)

 {

 printf("\n\ndof_count: %d\n", pDLM_Data->dof_count);

 printf("\njoint_types:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%s ", JointType[(pDLM_Data->joint_types)[i]]);

 printf("\n\nkin_mode: %s\n", KinMode[pDLM_Data->kin_mode]);

 printf("\njoint_values:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->joint_values[i]);

 printf("\n\njnt_trvl_lmts lower:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[0][i]);

 printf("\n\njnt_trvl_lmts upper:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[1][i]);

 printf("\n\n");

 }

#endif

The next section in the C-file is that DELMIA V5 declares that the users should start their calculation

after this given point. The declaration is

/***--------------- Execution Begins Here ----------------------------------

***/

 /*

 ** DO NOT REMOVE THIS BLOCK OF CODE

 ** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC

 ** DOFS FOR THE DEVICE

 */

 if(!kin_check_definition(NUM_DOFS, NUM_SOLUTIONS))

 {

 /*

 ** Inconsistency between device definition and inverse

 ** kinematics routine exists. A warning message has been

 ** issued and routine aborted

 */

 return(1);

 }

/***---------------- User code begins here ---------------------------------

***/

27

 After the necessary calculations are made, the user needs to feed DELMIA V5 back with the joint

values. This is achieved by using an array called solutions[][NUM_SOLUTIONS]. An example of such

action is given below.
 solutions[0][0] = J1;

 solutions[1][0] = J2;

 solutions[2][0] = J3;

 solutions[3][0] = J4;

 solutions[4][0] = J5;

solutions[5][0] = J6;

 The lines above appoint values to the elements of an array, where these values are named as J1, J2,

etc. These elements belong to the current values of joints, in this case the six joints of a respective

mechanism.

 Next important aspect is that the users are also entitled to print any value on debugging window.

This action can be delivered with a line, for example

printf("J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3);

printf("J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6);

 After having finished calculations, the user also must supply the following line to inform DELMIA V5

that the results end in an accepted posture for the mechanism. This is done by feeding back the

warnings array.

warnings[0] = WARN_GOOD_SOLUTION;

return (0);

} /* End of kin_example */

 With the above lines, the user ends the creation of C-file and proceeds to compile the file for the

creation of the required library files.

3.3.3. COMPILATION OF C-FILES

 The compilation process of C-files is somewhat delicate; but once it is completed, the process itself

becomes easy to repeat. Before, going deep it must be noted that a compilation tool is necessary for this

operation. In this thesis work, Microsoft Visual Studio 8 is used as compilation tool. The compatibility of

other tools has not been tested. Thus, the approved and recommended tool is Microsoft’s Visual Studio

(version of this program should no longer be earlier than VS 8). If another compiler has been chosen, it is

important that the compilation tool must support C# language and has nmake feature available as a

compilation operation is done via ‘nmake all’ command.

 Another important point regarding compilation process is about the operating system (OS) of the

computer on which the simulation is going to be executed. If the system is 64-bit, users should

implement a prerequisite operation before compilation. This operation will be covered in the appendix

section as environment set-up. The reason to include this step in the appendix (APPENDIX F:

COMPILATION OF C-FILES) is that it would be easier for layman users to follow a how-to type document.

28

4. THEORY OF INVERSE KINEMATICS FOR RESPECTIVE ROBOTS

 In this chapter, the inverse kinematics for hexapod/Flexapod 6P, Exechon and Gantry-Tau robots

will be given. Also, the transfer of the theory to C-file will be presented at the end of the theory for each

robot.

4.1. HEXAPOD/FLEXAPOD 6P INVERSE KINEMATICS

 The idea behind the inverse kinematics for hexapods is somewhat simple. The method relies on

vector summation and with a known TCP position and orientation the leg lengths can be calculated as

vectors and normalized to reach the total length.

 As presented earlier, a hexapod system has the kinematics chain of RR:P:RRR for one leg which

specifically stands for revolute-revolute-prismatic-revolute-revolute-revolute (Ji 2001). This chain is

illustrated in figure 33.

 In any theoretical representation, it is important to first clarify the notation used for the inverse

calculation. To start with, two different coordinate frames will be appointed. The first one XYZ0 will be

attached to the base platform that will be the fixed part of hexapod. The second frame XYZ6 will be at

the center of mobile platform. The first set of vectors Lib will be utilized to describe the position of

attachment points of legs from the base platform. The second set of vectors Li will describe the legs and

the last set of vectors LitToTCP will illustrate legs’ upper attachment points with respect to the mobile

platform’s coordinate frame XYZ6. The last vector is the position vector of the mobile platform notated

as PXYZ. These vectors are shown in figure 34. With the vectors at hand, the following summation can be

formulated (Yang 1998).

 (3.1)

Base

Mobile

platform R

R

R

P

R R

Figure 33: Hexapod/Flexapod kinematic chain of one leg

29

What equation 3.1 aims is that it describes the L1tToTCP vector in the base coordinates XYZ0 by

multiplying it with the rotation matrix. Then by adding the translation vector PXYZ, It reaches to the upper

attachment point. By subtracting L1b from the summation, the result becomes the vector between lower

attachment point and the upper one, which is the vector Li. (Yang 1998).

Then, to reach the total length of the leg normalization of the vector should be done by

 (3.2)

 Before transferring the theory to a C-file, it is important to give the coordinates of the vectors

defined earlier. These vectors are constant and Lib is defined with respect to XYZ0 whereas LitToTCP is

defined with respect to XYZ6. These vectors and their coordinates are given in table 1 and table 2for

Hexapod and Flexapod 6P.

XYZ0 Base

X6

Z6

LitToTCP XYZ6

Mobile platform

X0

Z0

Lib

Li

Figure 34: Hexapod and the constituting vectors

30

HEXAPOD Lower Attachment Points Lib Upper Attachment Points LitToTCP

Coordinates Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6 Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6

X-coordinate 31 -31 -117.826 -86.826 86.826 117.826 31 - 31 -57.761 -26.761 26.761 57.761

Y-coordinate 118.156 118.156 -32.231 -85.925 -85.925 -32.231 48.799 48.799 2.447 -51.246 -51.246 2.447

Z-coordinate 40.205 40.205 40.205 40.205 40.205 40.205 -31.45 -31.45 -31.45 -31.45 -31.45 -31.45

Table 1: Coordinates of vectors for hexapod

FLEXAPOD 6P Lower Attachment Points Lib Upper Attachment Points LitToTCP

Coordinates Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6 Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6

X-coordinate -132.5 43.733 88.767 88.767 43.733 -132.5 -48.767 -3.733 52.5 52.5 -3.733 -48.767

Y-coordinate 26 127.748 101.748 -101.748 -127.748 -26 32.466 58.466 26 -26 -58.466 -32.466

Z-coordinate 58.5 58.5 58.5 58.5 58.5 58.5 -75 -75 -75 -75 -75 -75

Table 2: Coordinates of vectors for Flexapod 6P

31

4.2. HEXAPOD/FLEXAPOD 6P – TRANSFER OF THEORY TO A C-FILE

 In this section, the theory presented in 4.1 will be transferred to the C-file. Only the theory and

calculations will be described and complete C-file can be seen in appendix.

 The calculation starts with, as stated in 3.3.2, the necessary declarations for variables. These

variables are the elements of the transformation matrix, leg lengths and legs upper attachment

coordinates. The corresponding notation, then,

 Transformation matrix: nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz

 Total leg lengths: L1, L2, L3, L4, L5, L6

 Coordinates:

o Leg 1: D11 in X-axis, D12 in Y-axis, D13 in Z-axis

o Leg 2: D21 in X-axis, D22 in Y-axis, D23 in Z-axis

o Leg 3: D31 in X-axis, D32 in Y-axis, D33 in Z-axis

o Leg 4: D41 in X-axis, D42 in Y-axis, D43 in Z-axis

o Leg 5: D51 in X-axis, D52 in Y-axis, D53 in Z-axis

o Leg 6: D61 in X-axis, D62 in Y-axis, D63 in Z-axis

 Joint values: J1, J2, J3, J4, J5, J6

 Leg length when joint command is zero: Lref

 Vectors:

o Vectors that connect mobile platform’s coordinate frame to upper attachment points

 L1tToTCP[4][1]

 L2tToTCP[4][1]

 L3tToTCP[4][1]

 L4tToTCP[4][1]

 L5tToTCP[4][1]

 L6tToTCP[4][1]

o Vectors that connect base platform to lower attachment points

 L1b[4][1]

 L2b[4][1]

 L3b[4][1]

 L4b[4][1]

 L5b[4][1]

 L6b[4][1]

o Intermediary vector definition that is the result of the summation between

 L1tCur[4]

 L2tCur[4]

 L3tCur[4]

 L4tCur[4]

 L5tCur[4]

32

 L6tCur[4]

o Array declaration for the arranged transformation matrix which is in column vector form

 TCP[4][4]

o Additional variables to perform matrix multiplication

 inner1, inner2, inner3, inner4, inner5, inner6

 row1, row2, row3, row4, row5, row6

 col1, col2, col3, col4, col5, col6

 These declarations in the code should be as

void *pData; /* usr routine should NEVER delete pData */

{

/*

** Local Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33, D41, D42, D43, D51,

D52, D53, D61, D62, D63;

long double L1,L2,L3,L4,L5,L6,J1,J2,J3,J4,J5,J6, Lref;

//Variables to perform matrix multiplication

int row1,row2,row3,row4,row5,row6;

int col1,col2,col3,col4,col5,col6;

int inner1,inner2,inner3,inner4,inner5,inner6;

// The upper attachmentpoints for each leg (The vector between the TCP and

each upper attachment point).

long double L1tToTCP[4][1];

long double L2tToTCP[4][1];

long double L3tToTCP[4][1];

long double L4tToTCP[4][1];

long double L5tToTCP[4][1];

long double L6tToTCP[4][1];

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool

Centre Point) - see line 307.

long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).

long double L1tCur[4] = {0};

long double L2tCur[4] = {0};

long double L3tCur[4] = {0};

long double L4tCur[4] = {0};

long double L5tCur[4] = {0};

long double L6tCur[4] = {0};

//Lower attachemnt points on each leg (in Base coordinates)

long double L1b[3];

long double L2b[3];

long double L3b[3];

long double L4b[3];

long double L5b[3];

long double L6b[3];

33

 After the declarations, matrix elements should be appointed to T6 matrix – which is, as said earlier,

standard definition and input of DELMIA V5 to describe the transformation between two coordinate

frames. This operation is done by

//Importing the current TCP values from Delmia through the T6 matrix and

putting proper context

nx = T6[0][0];

ny = T6[0][1];

nz = T6[0][2];

ox = T6[1][0];

oy = T6[1][1];

oz = T6[1][2];

ax = T6[2][0];

ay = T6[2][1];

az = T6[2][2];

px = T6[3][0];

py = T6[3][1];

pz = T6[3][2];

 In order to perform the matrix multiplication, the transformation matrix should be rearranged in

column vector format. This operation can be skipped and the rest of the calculation can be done

accordingly with the row vector form; however, for this thesis work column vector form is chosen. So

this arrangement is done via

//The transforming T6 matrix from row vectors form to column vector form

 TCP[0][0] = nx; TCP[0][1] = ox; TCP[0][2] = ax; TCP[0][3] = px;

 TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;

 TCP[2][0] = nz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;

 TCP[3][0] = 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3][3] = 1;

 At this point, by measuring the coordinates of upper and lower attachment points in hexapod when

all the actuators are zero, LitToTCP and Lib vectors can be defined with actual vector values. Thus the

corresponding values are declared as

//The vector between the TCP and the upper attachmentpoints for each leg

L1tToTCP[0][0] = 31; L1tToTCP[1][0] = 48.799; L1tToTCP[2][0] = -31.45;

L1tToTCP[3][0] = 1;

L2tToTCP[0][0] = -31; L2tToTCP[1][0] = 48.799; L2tToTCP[2][0] = -31.45;

L2tToTCP[3][0] = 1;

L3tToTCP[0][0] = -57.761; L3tToTCP[1][0] = 2.447; L3tToTCP[2][0] = -31.45;

L3tToTCP[3][0] = 1;

L4tToTCP[0][0] = -26.761; L4tToTCP[1][0] = -51.246; L4tToTCP[2][0] = -31.45;

L4tToTCP[3][0] = 1;

L5tToTCP[0][0] = 26.761; L5tToTCP[1][0] = -51.246; L5tToTCP[2][0] = -31.45;

L5tToTCP[3][0] = 1;

L6tToTCP[0][0] = 57.761; L6tToTCP[1][0] = 2.447; L6tToTCP[2][0] = -31.45;

L6tToTCP[3][0] = 1;

//The lower attachmentpoints for each leg (in Base-coordinates).

L1b[0] = 31; L1b[1] = 118.156; L1b[2] = 40.205;

L2b[0] =-31; L2b[1] = 118.156; L2b[2] = 40.205;

L3b[0] =-117.826; L3b[1] = -32.231; L3b[2] = 40.205;

L4b[0] =-86.826; L4b[1] = -85.925; L4b[2] = 40.205;

L5b[0] = 86.826; L5b[1] = -85.925; L5b[2] = 40.205;

34

L6b[0] = 117.826; L6b[1] = -32.231; L6b[2] = 40.205;

Lref = 376.5;

 Since the coordinates are appointed to the vectors, equation 3.1 can be executed. Thus the

multiplication and summation
 is done with for six legs where R matrix is TCP

//Calculating the current position (in x,y,z in Base coordinates) of each

upper attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)

and the upper attachmentpoint for each leg (LxToTCP[][])

//Calculate upper position on Leg1 (The array L1tCur)

 for (row1 = 0; row1 < 4; row1++) {

 for (col1 = 0; col1 < 1; col1++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner1 = 0; inner1 < 4; inner1++) {

 L1tCur[row1] += TCP[row1][inner1] * L1tToTCP[inner1][col1];

 }

 }

 }

 //Calculate upper position on Leg2 (The array L2tCur)

 for (row2 = 0; row2 < 4; row2++) {

 for (col2 = 0; col2 < 1; col2++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner2 = 0; inner2 < 4; inner2++) {

 L2tCur[row2] += TCP[row2][inner2] * L2tToTCP[inner2][col2];

 }

 }

 }

//Calculate upper position on Leg3 (The array L3tCur)

 for (row3 = 0; row3 < 4; row3++) {

 for (col3 = 0; col3 < 1; col3++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner3 = 0; inner3 < 4; inner3++) {

 L3tCur[row3] += TCP[row3][inner3] * L3tToTCP[inner3][col3];

 }

 }

 }

//Calculate upper position on Leg4 (The array L4tCur)

 for (row4 = 0; row4 < 4; row4++) {

 for (col4 = 0; col4 < 1; col4++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner4 = 0; inner4 < 4; inner4++) {

 L4tCur[row4] += TCP[row4][inner4] * L4tToTCP[inner4][col4];

 }

 }

 }

35

//Calculate upper position on Leg5 (The array L5tCur)

 for (row5 = 0; row5 < 4; row5++) {

 for (col5 = 0; col5 < 1; col5++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner5 = 0; inner5 < 4; inner5++) {

 L5tCur[row5] += TCP[row5][inner5] * L5tToTCP[inner5][col5];

 }

 }

 }

//Calculate upper position on Leg6 (The array L6tCur)

 for (row6 = 0; row6 < 4; row6++) {

 for (col6 = 0; col6 < 1; col6++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner6 = 0; inner6 < 4; inner6++) {

 L6tCur[row6] += TCP[row6][inner6] * L6tToTCP[inner6][col6];

 }

 }

 }

 The result of this operation is LitCur. Since the transformation matrix is 4x4 in which translation

vector
 is included, the summation operation is automatically done as the multiplication operation

continues. So LitCur is then

 (3.3)

 Then, the subtraction operation will be done. With the result of the subtraction operation in hand,

it is instantly normalized by adding the squares of vector components of the resulting vector. This is

achieved via

// Calcultates the distance between the upper and lower attachment points for

each leg.

L1 = sqrt(((pow((L1tCur[0]-L1b[0]),2)))+((pow((L1tCur[1]-

L1b[1]),2)))+((pow((L1tCur[2]-L1b[2]),2))));

L2 = sqrt(((pow((L2tCur[0]-L2b[0]),2)))+((pow((L2tCur[1]-

L2b[1]),2)))+((pow((L2tCur[2]-L2b[2]),2))));

L3 = sqrt(((pow((L3tCur[0]-L3b[0]),2)))+((pow((L3tCur[1]-

L3b[1]),2)))+((pow((L3tCur[2]-L3b[2]),2))));

L4 = sqrt(((pow((L4tCur[0]-L4b[0]),2)))+((pow((L4tCur[1]-

L4b[1]),2)))+((pow((L4tCur[2]-L4b[2]),2))));

L5 = sqrt(((pow((L5tCur[0]-L5b[0]),2)))+((pow((L5tCur[1]-

L5b[1]),2)))+((pow((L5tCur[2]-L5b[2]),2))));

L6 = sqrt(((pow((L6tCur[0]-L6b[0]),2)))+((pow((L6tCur[1]-

L6b[1]),2)))+((pow((L6tCur[2]-L6b[2]),2))));

36

 Then from total leg lengths, the reference length (notated as Lref) – which is the total length when

joint command is zero – will be subtracted. This way, joint values will be achieved and these values J1, J2,

J3, J4, J5 and J6 will be fed back to ‘solutions’ array. This is accomplished by

//Calculates the joint values by calulating the differnce in distance between

the two attachmentpoints on each leg and a reference length (Lref)

//(the lenght between attachment points when the joints are 0)

J1 = L1 - Lref;

J2 = L2 - Lref;

J3 = L3 - Lref;

J4 = L4 - Lref;

J5 = L5 - Lref;

J6 = L6 - Lref;

D11 = L1tCur[0]; D12 = L1tCur[1]; D13 = L1tCur[2];

D21 = L2tCur[0]; D22 = L2tCur[1]; D23 = L2tCur[2];

D31 = L3tCur[0]; D32 = L3tCur[1]; D33 = L3tCur[2];

D41 = L4tCur[0]; D42 = L4tCur[1]; D43 = L4tCur[2];

D51 = L5tCur[0]; D52 = L5tCur[1]; D53 = L5tCur[2];

D61 = L6tCur[0]; D62 = L6tCur[1]; D63 = L6tCur[2];

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0][0] = J1;

solutions[1][0] = J2;

solutions[2][0] = J3;

solutions[3][0] = J4;

solutions[4][0] = J5;

solutions[5][0] = J6;

 With the lines above, the calculation phase is accomplished. After this point, the user can also print

any value on debugging window in order to verify that the inverse kinematics is working. Such printing

operation, in this case, can be done for leg lengths and their corresponding coordinates with

//Printing some of the variable values out in the debug window to ease

debugging and get an overview of what is going on

printf("\n The leg lengths\n");

printf("J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3);

printf("J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6);

printf("L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3);

printf("L4 L5 L6: %12.4f ,%12.4f ,%12.4f\n", L4 ,L5 ,L6);

printf("\n The legs' upper attachment point coordinates \n");

printf("\D11 D12 D13: %12.4f ,%12.4f ,%12.4f\n", D11 ,D12 ,D13);

printf("\D21 D22 D23: %12.4f ,%12.4f ,%12.4f\n", D21 ,D22 ,D23);

printf("\D31 D32 D33: %12.4f ,%12.4f ,%12.4f\n", D31 ,D32 ,D33);

printf("\D41 D42 D43: %12.4f ,%12.4f ,%12.4f\n", D41 ,D42 ,D43);

printf("\D51 D52 D53: %12.4f ,%12.4f ,%12.4f\n", D51 ,D52 ,D53);

printf("\D61 D62 D63: %12.4f ,%12.4f ,%12.4f\n", D61 ,D62 ,D63);

 After printing values the code continues with the declaration of an acceptable solution via

warnings[0] = WARN_GOOD_SOLUTION;

37

 And the C-file is terminated with

return (0);

 }

 With termination, the transfer of the theory is completed. It must be noted that the coordinates

used in this code belong to hexapod. For Flexapod 6P case, the corresponding lines can be altered

according to values in Table 2.

38

4.3. EXECHON INVERSE KINEMATICS – THEORY

 The inverse kinematics theory of Exechon has been presented in literature in various ways. One of

those ways is presented by Bi (2011). In the respective theory, inverse kinematics is treated by using

intermediate variables defining the position and orientation of the mobile platform; and through these

variables, the coordinates of the attachment points are calculated. Zoppi (2010) is also adopting a

similar way where the inverse kinematics approach is defined via intermediate variables that are not

defining the direct value of the joints. Thus, a parallel theory employed for Stewart platforms can be

applied to Exechon.

 The idea of this similar inverse kinematics is that with a transformation matrix, the vectors that

connect mobile platform to legs’ lower attachment points can be described with respect to base

coordinate frame, which is done by multiplication of these vectors with a T6 matrix. Then, the constant

vectors that connect the base coordinate frame to fixed upper attachment points – which are the

centers of RR-joints for identical legs and spherical joint for the perpendicular leg – are subtracted from

the product of the multiplication operation. Then, the resulting vectors that define the legs are

normalized and the standard leg lengths when the actuators are zero are subtracted from the

normalized vectors – which results in the joint values under actuation (Bi 2011).

L2b

L3b

L3tToTCP

XYZ6

XYZ0

L1b

L1tToTCP L2tToTCP

L1
L2

L3

Figure 35: The vector description of Exechon robot's parallel structure

Mobile

Platform

39

 In order to clarify the calculations, the vectors need to be illustrated with their notations. These

vectors are shown in figure 35. Then, the theory of inverse kinematics for the parallel part of Exechon

will be presented.

 The necessary vectors and the coordinate frames are then

 XYZ0 – Base coordinate system

 XYZ6 – Mobile platform’s coordinate system located at the center of a possible wrist

 Li – The set of vectors to define the corresponding leg’s position and orientation.

 Lib – The constant vectors that define the location of upper attachment points of legs

 LitToTCP – The set of vectors that connect XYZ6 to attachment points on mobile platform

 As put earlier, the methodology is somewhat similar to hexapod; and that is the reason same

notation is used for this robot as well.

 First step in the calculation is to describe LitToTCP vectors in the base coordinate system (Bi 2011).

To achieve that, the use of transformation matrix T6 – which is input from DELMIA V5 – is required. The

transformation matrix for this robot will be measuring the coordinate frame XYZ6’s orientation and

position. Thus, description of the mobile platform’s vectors in base coordinate frame is

 (3.4)

 Then, since transformation matrix includes translation the result of equation 3.4 is now equal to the

summation of Lib and Li. When Lib is subtracted, the result will be the vector describing Li (Bi 2011).

Hence,

 (3.5)

 (3.6)

 Finally, the normalization of this vector will yield the total length, which is

 (3.7)

 In the case of Exechon as with hexapod, the reference length must be subtracted from the product

of equation 3.7 so that the result of subtraction can be fed back to solutions matrix of the C-code. This

part is not described in the theory section for it is defined when the assembly is completed in DELMIA

V5. However, it must be noted that the reference lengths of Exechon robot may differ from each other

depending on the CAD-models. These lengths in this thesis work are 803.887 mm for identical legs and

886.021 mm for leg 3. As in the case of hexapod, these constant vectors should be defined and these

values for the coordinates of the respective vectors are given in table 3.

40

HEXAPOD
From Base Coordinate System to Upper

Attachment Points Lib
Mobile Platform’s Lower Attachment

Points LitToTCP

Coordinates Leg 1 Leg 2 Leg 3 Leg 1 Leg 2 Leg 3

X-coordinate 420 -420 0 173 -173 0

Y-coordinate 0 0 670 -50 -50 173

Z-coordinate 0 0 0 485 485 485

Table 3: Coordinates for the vectors of Exechon

4.4. THEORY OF EXECHON TO C-FILE

 As with the case of Flexapod 6P and hexapod cases, the c-file starts with declarations of

coordinates. These coordinates and corresponding vectors are declared as

//The vector between the TCP and the upper attachmentpoints for each leg

L1tToTCP[0][0] = 173; L1tToTCP[1][0] = -50; L1tToTCP[2][0] = 485;

L1tToTCP[3][0] = 1;

L2tToTCP[0][0] = -173; L2tToTCP[1][0] = -50; L2tToTCP[2][0] = 485;

L2tToTCP[3][0] = 1;

L3tToTCP[0][0] = 0; L3tToTCP[1][0] = 173; L3tToTCP[2][0] = 485;

L3tToTCP[3][0] = 1;

//The lower attachmentpoints for each leg (in Base-coordinates).

L1b[0] = 420; L1b[1] = 0; L1b[2] = 0;

L2b[0] = -420; L2b[1] = 0; L2b[2] = 0;

L3b[0] = 0; L3b[1] = 670; L3b[2] = 0;

 Then, the calculations start with transforming or in other words describing LitToTCP vectors in base

coordinate system by using a matrix multiplication function for three LitToTCP vectors.

//Calculate upper position on Leg1 (The array L1tCur)

 for (row1 = 0; row1 < 4; row1++) {

 for (col1 = 0; col1 < 1; col1++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner1 = 0; inner1 < 4; inner1++) {

 L1tCur[row1] += TCP[row1][inner1] * L1tToTCP[inner1][col1];

 }

 }

 }

 //Calculate upper position on Leg2 (The array L2tCur)

 for (row2 = 0; row2 < 4; row2++) {

 for (col2 = 0; col2 < 1; col2++) {

41

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner2 = 0; inner2 < 4; inner2++) {

 L2tCur[row2] += TCP[row2][inner2] * L2tToTCP[inner2][col2];

 }

 }

 }

//Calculate upper position on Leg3 (The array L3tCur)

 for (row3 = 0; row3 < 4; row3++) {

 for (col3 = 0; col3 < 1; col3++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner3 = 0; inner3 < 4; inner3++) {

 L3tCur[row3] += TCP[row3][inner3] * L3tToTCP[inner3][col3];

 }

 }

 }

 Then, from LitToTCP vectors the base vectors Lib will be subtracted and the product of this

operation will be normalized. This operation is done via

// Calcultates the distance between the upper and lower attachment points for

each leg.

L1 = sqrt(((pow((L1tCur[0]-L1b[0]),2)))+((pow((L1tCur[1]-

L1b[1]),2)))+((pow((L1tCur[2]-L1b[2]),2))));

L2 = sqrt(((pow((L2tCur[0]-L2b[0]),2)))+((pow((L2tCur[1]-

L2b[1]),2)))+((pow((L2tCur[2]-L2b[2]),2))));

L3 = sqrt(((pow((L3tCur[0]-L3b[0]),2)))+((pow((L3tCur[1]-

L3b[1]),2)))+((pow((L3tCur[2]-L3b[2]),2))));

 From this total length, the reference length of for identical legs and leg 3 will be subtracted and the

result will be fed back to solutions matrix.

//The distance between upper and lower leg attachmentpoint when the command

joint is zero. Used as a reference to get the current leg length

Lref12 = 803.887;

Lref3 = 886.021;

//Calculates the joint values by calulating the differnce in distance between

the two attachmentpoints on each leg and a reference length (Lref)

//(the lenght between attachment points when the joints are 0)

J1 = L1 - Lref12;

J2 = L2 - Lref12;

J3 = L3 - Lref3;

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0][0] = J1;

solutions[1][0] = J2;

solutions[2][0] = J3;

42

4.5. GANTRY-TAU ROBOT

 The inverse kinematics aspect of Gantry-Tau robots bears some similarities to previous robots of

this thesis work since it is comprised of a parallel structure. The schematic description of this robot can

be seen in figure 36.

 In order to develop the inverse kinematics, the kinematic description of Gantry-Tau is essential.

Each link in the clusters have the kinematic chain of prismatic joint with actuation, universal joint and a

spherical joint that connects the link to the mobile platform. Therefore, from the inverse kinematics

perspective, the outcome of calculations should yield values for prismatic actuators Pi (i = 1-3). To find

these joint values, then, each cluster will be analyzed separately; and in each cluster, one link and its

constituting vectors will be used due to parallel formation of the mechanism (Johannesson 2003).

l1

l2

l3

Z

X Y

Figure 36: Gantry-Tau robot

 Prismatic(P1)

Prismatic(P2)

 Prismatic (P3)

Cluster 1 (C1)

 Cluster 2 (C2)

 Cluster 3 (C3)

43

 In figure 37, the vectors that constitute link 1’s kinematic chain can be seen. From these vectors, it

is possible to develop the equation 3.8 for link 1

 (3.8)

 (3.9)

 where
 is the transformation matrix between the TCP and base frame whereas

 is the

rotational part of
 . Since is a constant length in the mechanism as well as and , the actuators

coordinate’s coordinates can easily be found (Johannesson 2003). Let
 be equal to

 and

equation 3.8 be arranged as

 (3.10)

 If the vectors and their components are rewritten in matrix form, then

1

d

d

d

1

0

0

P

1

N

N

N

l
z1,

y1,

x1,x1,

z1,

y1,

x1,

1

1

dN

dN

dPN

l
z1,z1,

y1,y1,

x1,x1,x1,

1 (3.11)

Figure 37: Link 1's vector definition

P1

TCP

n1

l1

Z

X Y

d1

T

44

 As put before, the lengths of the links are constant and known; thus, when the right hand side of

equation 3.11 is normalized

 (3.12)

 Then, when the variable is separated

 (3.13)

 From equation 3.13, the actuator value has two solutions (Johannesson 2003).

 This chain of calculations will be repeated for the remaining prismatic actuators as well. The

schematic description of the vectors that comprise link 3 is in figure 38.

 For the second actuator, the same type of calculation done for the first will be created. The sum of

the vectors presented in figure 38 corresponds to

 (3.14)

 As in link 1, let the right hand side of equation 3.14 be
 and when the left hand side of the

equation is separated and represented in matrix form

TCP

Z

X Y

S2

P2

d2 l2

T

n2

Figure 38: Prismatic joint 2 and the corresponding vectors

45

1

d

d

d

1

0

0

P

1

S

S

S

1

N

N

N

l
z2,

y2,

x2,x2,

z2,

y2,

y2,

z2,

y2,

x2,

2

1

dSN

dSN

dP SN

l
z2,z2,z2,

y2,y2,y2,

x2,x2,x2,x2,

2 (3.15)

 When both hand sides of equation 3.15 are normalized, then

 (3.16)

 With separation of variables of equation 3.16, the prismatic joint value

 (3.17)

 As in earlier joint, two solutions exist for P2,X as well (Johannesson 2003). The last actuator is

attached to the last link l6 in the robot. Thus the vectors that constitute this chain can be seen in figure

39.

 Repeating the same idea for other joints, the sum of the vectors for the last prismatic joint will yield

 (3.18)

S3

Figure 39: Prismatic joint 3's vectors

Z

X Y

TCP

P3

d3

l3

 T

n3

46

 Let the right hand side of equation 3.18 be
 and when the left hand side of the equation is

separated and represented in matrix form

11

0

0

P

1

S

S

S

1

N

N

N

l
3,

3,

x3,x3,

3,

y3,

3,

z,3

y,3

x,3

3

z

y

z

x

d

d

d

1

SN

SN

PSN

l
z3,z3,z3,

y3,y3,y3,

x3,x3,x3,x3,

3
d

d

d

 (3.19)

When both hand sides of equation 3.19 are normalized, then

 (3.20)

 With separation of variables of equation 3.16, the prismatic joint value is

 (3.21)

 The last joint has two solutions as well as the earlier joints. Thus, in total Gantry-Tau robot has eight

different postures for given TCP values. The robot chooses the best configuration/posture in real-time

applications whereas in DELMIA V5 users are allowed to specify the posture. Another important point to

keep in mind is that the forward kinematics of Gantry-Tau robot also offers various postures for given

joint values (Johannesson 2003). Since such situation cannot be defined in DELMIA V5, it is possible to

have some errors when a change is made between the postures offered by inverse kinematics. This

problem usually changes the coordinates TCP when the current posture is changed (for the forward

kinematics calculation, refer to the appendix).

 Before proceeding to the creation of C-file, the necessary coordinates for Gantry-Tau is given in

table 4.

 S1 S2 S3 d1 d2 d3 n1 n2 n3

X 0 -1100 -2200 -96.569 0 96.569 224.999 0 -182.574

Y 0 700 0 -185 -322.843 0 -240.001 39.705 -80

Z 0 0 0 -400 -173.726 -400 171.568 336.862 213.994

Table 4: Coordinates of the vectors for Gantry-Tau

47

4.6. THEORY OF GANTRY-TAU ROBOT TO C-FILE

 As with previous cases, the variables should be defined. These variables for the given vectors in

Table 4 are defined as

/***---------------- User code begins here ---------------------------------

***/

//The vectors to define the prismatic joints where Pi[2][0] is the prismatic

joint value in negative direction

P1[0][0] = 0; P1[1][0] = 0; P1[2][0] = 0; P1[3][0] = 1;

P2[0][0] = -1100; P2[1][0] = 700; P2[2][0] = 0; P2[3][0] = 1;

P3[0][0] = -2200; P3[1][0] = 0; P3[2][0] = 0; P3[3][0] = 1;

//The constant vectors to define the upper attachment points from prismatic

joint end

d1[0][0] = -96.569; d1[1][0] = -185; d1[2][0] = -400; d1[3][0] = 1;

d2[0][0] = 0; d2[1][0] = -322.843; d2[2][0] = -173.726; d2[3][0] = 1;

d3[0][0] = 96.569; d3[1][0] = 0; d3[2][0] = -400; d3[3][0] = 1;

//The vectors that connect TCP to lower attachment points.

n1[0][0] = 224.999; n1[1][0] = -240.001;n1[2][0] = 171.568; n1[3][0] = 1;

n2[0][0] = 0; n2[1][0] = 39.705; n2[2][0] = 336.862; n2[3][0] = 1;

n3[0][0] = -182.574; n3[1][0] = -80; n3[2][0] = 213.994; n3[3][0] = 1;

//Reference lengths

Lref=1500 ;

Lref2=1499.775;

 Again TCP matrix will be formed from T6 matrix as following

//Importing the current TCP values from Delmia through the T6 matrix and

putting proper context

nx = T6[0][0];

ny = T6[0][1];

nz = T6[0][2];

ox = T6[1][0];

oy = T6[1][1];

oz = T6[1][2];

ax = T6[2][0];

ay = T6[2][1];

az = T6[2][2];

px = T6[3][0];

py = T6[3][1];

pz = T6[3][2];

//The transforming T6 matrix from row vectors form to column vector form

TCP[0][0] = nx; TCP[0][1] = ox; TCP[0][2] = ax; TCP[0][3] = px;

TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;

TCP[2][0] = nz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;

TCP[3][0] = 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3][3] = 1;

48

 Then, the multiplication of ni vectors with TCP matrix will be accomplished via

//Calculating the current position (in x,y,z in Base coordinates) of each

lower attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)

and the lower attachmentpoint for each leg

//Calculate upper position on Leg1 (The array L1tCur)

 for (row1 = 0; row1 < 4; row1++) {

 for (col1 = 0; col1 < 1; col1++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner1 = 0; inner1 < 4; inner1++) {

 NT1[row1][0] += TCP[row1][inner1] * n1[inner1][col1];

 }

 }

 }

 //Calculate upper position on Leg2 (The array L2tCur)

 for (row2 = 0; row2 < 4; row2++) {

 for (col2 = 0; col2 < 1; col2++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner2 = 0; inner2 < 4; inner2++) {

 NT2[row2][0] += TCP[row2][inner2] * n2[inner2][col2];

 }

 }

 }

//Calculate upper position on Leg3 (The array L3tCur)

 for (row3 = 0; row3 < 4; row3++) {

 for (col3 = 0; col3 < 1; col3++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner3 = 0; inner3 < 4; inner3++) {

 NT3[row3][0] += TCP[row3][inner3] * n3[inner3][col3];

 }

 }

 }

 Now, equations 3.13, 3.17, and 3.21 will be directly applied as following

//Finding the joint values by using the theory. Multiplication with -1 stems

from the direction of the joints.

J11=-1*(NT1[2][0]-d1[2][0]+ sqrt(pow(Lref,2)-pow((P1[0][0]+d1[0][0]-

NT1[0][0]),2)-pow((P1[1][0]+d1[1][0]-NT1[1][0]),2)));

J12=-1*(NT1[2][0]-d1[2][0]- sqrt(pow(Lref,2)-pow((P1[0][0]+d1[0][0]-

NT1[0][0]),2)-pow((P1[1][0]+d1[1][0]-NT1[1][0]),2)));

J21=-1*(NT2[2][0]-d2[2][0]+ sqrt(pow(Lref,2)-pow((P2[0][0]+d2[0][0]-

NT2[0][0]),2)-pow((P2[1][0]+d2[1][0]-NT2[1][0]),2)));

J22=-1*(NT2[2][0]-d2[2][0]- sqrt(pow(Lref,2)-pow((P2[0][0]+d2[0][0]-

NT2[0][0]),2)-pow((P2[1][0]+d2[1][0]-NT2[1][0]),2)));

49

J31=-1*(NT3[2][0]-d3[2][0]+ sqrt(pow(Lref2,2)-pow((P3[0][0]+d3[0][0]-

NT3[0][0]),2)-pow((P3[1][0]+d3[1][0]-NT3[1][0]),2)));

J32=-1*(NT3[2][0]-d3[2][0]- sqrt(pow(Lref2,2)-pow((P3[0][0]+d3[0][0]-

NT3[0][0]),2)-pow((P3[1][0]+d3[1][0]-NT3[1][0]),2)));

 Then, the joint values are sent back to solutions matrix for all possible eight postures that can be

created with J1, J2 and J3’s two different values. The matrix then should be as

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0][0] = J11; solutions[1][0] = J21; solutions[2][0] = J31;

solutions[0][1] = J11; solutions[1][1] = J21; solutions[2][1] = J32;

solutions[0][2] = J11; solutions[1][2] = J22; solutions[2][2] = J31;

solutions[0][3] = J11; solutions[1][3] = J22; solutions[2][3] = J32;

solutions[0][4] = J12; solutions[1][4] = J21; solutions[2][4] = J31;

solutions[0][5] = J12; solutions[1][5] = J21; solutions[2][5] = J32;

solutions[0][6] = J12; solutions[1][6] = J22; solutions[2][6] = J31;

solutions[0][7] = J12; solutions[1][7] = J22; solutions[2][7] = J32;

50

5. RECOMMENDED COURSE OF ACTION FOR MECHANISM BUILDING IN

DELMIA V5 – THE USER-FRIENDLY METHODOLOGY

 As the title suggests, this chapter is dedicated to describe the methodology employed to create a

mechanism beyond the scope of technical knowledge required for any user to utilize DELMIA V5’s

Device Building module. One of the most important aspects of mechanism building in the respective

software is that any user can encounter various types of obstacles. Thus, in the preceding parts of this

chapter each step of the designed methodology will be described.

 The first step of each device building project in DELMIA V5 is to first investigate the relative theory

for inverse and forward kinematics of mechanism. By building this knowledge in advance, the users will

not only learn about the inverse kinematics, but also be able to inherit the necessary understanding for

the expected behavior of the target mechanism.

 The next step, as expected, is to create the forward kinematics of the mechanism in hand.

Specifically, each mechanism may require a different approach than the next; however, the very basics

of the mechanism building will still remain within the idea that first appoint the fixed part and

successively build the mobile parts of the mechanism. When the end-effector is reached, the behavior

of the mechanism should be checked via jogging the mechanism. Thus, the schematic methodology will

look like for forward kinematics as in figure 40.

 After reaching a correct state in forward kinematics, the users now should analyze the inverse

kinematics theory. The available literature may offer various ways to define inverse kinematics; however,

since DELMIA V5 offers transformation matrix for the end-effector it would be important to apply the

relevant theory with respect to such opportunity. After having defined the relative theory, users should

also define the inverse kinematics parameters via the interface offered by DELMIA V5. This

wizard/interface walks the users through the necessary parameters, which are well described in the

appendices of this thesis work. Thirdly, it is highly-recommended for users to transfer the inverse

kinematics theory to a MATLAB function as well, where users will be able to compare their simulation

results to those coming from MATLAB. However, it is also important to verify MATLAB functions via

using the created mechanism that has only forward kinematics definition. Users can verify these

MATLAB functions by simply jogging the mechanism to a certain TCP position and orientation; and when

these TCP values are applied to MATLAB, the outcome of the function should match the joint values in

DELMIA V5. When these steps are collected and put in a scheme, the result will be as figure 41.

Create the nod
tree

Bring in the
parts of

mechanism

Create
mechanism via

new mechanism
button

Appoint the
fixed part

Successively
create joints to
reach the end-

effector

Control the
behavior of the

created
mechanism

Analyze inverse
kinematics theory

Apply and
transform

information with
respect to DELMIA

V5

Define inverse
kinematics in
DELMIA V5
interface

Create MATLAB
functions for the

inverse kinematics

Verify MATLAB
functions

Figure 40: Forward kinematics steps

Figure 41: Inverse kinematics steps

51

 After the parameter definition and verification of MATLAB functions, users are guided to create the

C-file with analyzed and applied inverse kinematics description. Firstly, users should appoint the

administrative commands of the C-file, which are plainly described in the theory section. Then, users

should transfer the inverse kinematics theory to the file and compile it. The final step before proceeding

to the testing phase is the compilation of the C-file. This phase requires the use of a compilation tool.

Such necessity is discussed in section 3.3.3 and APPENDIX F: COMPILATION OF C-FILES. Users are not

expected to have any problems while using this step of the methodology employed for this thesis work.

So the steps then will be as in figure 42.

 After the compilation, debugging phase of the mechanism should be done. During the compilation,

it is possible for layman users to encounter with syntax or semantic errors. Thus, these errors can easily

be spotted on the debugging window. If the compilation in the first place is successful, the accuracy of

the calculations should be verified. Hence, it is recommended for users to move the mechanism with

inverse kinematics definition to a certain position and orientation; and compare the results to those

coming from MATLAB for the same TCP values. If there is a mismatch between the results, the source of

error should be spotted and rectified. When the rectification is done, the new C-file should be

recompiled. And this circle should continue until it is proven that the mechanism is fully functional and

free of errors. When these steps are grouped in a schematic description, the result will be as in figure 43.

 Finally, when all the steps so far described are to be redefined in a complete tree like concept, the

resulting figure will be as in figure 44; and the methodology applied to the robots of this thesis work can

be seen in figure 45.

Start a clean C-file
page

Define
administrative

commands

Transfer the theory
to the C-file

Compile

Appoint names of
thecreated files

back to DELMIA V5
inverse kinematics

interface

Compare
results

Error Rectify

Compilation
Mechanism is

completed

Figure 42: C-file creation

Figure 43: Compilation and debugging

52

Find relevant theory and analyze the behaviour of the mechanism

Build the forward kinematics

Control the behaviour of the robot

Analyze inverse kinematics theory

Reevaluate theory with respect to DELMIA V5

Create the MATLAB function for inverse kinematics

Verify MATLAB function via using forward kinematics in DELMIA V5

Create the C-file

Compile

Debug the C-file

Error

Mechanism is completed

Syntax/Semantic

Contol the input on the debuggin
window

Mismatch with results from MATLAB for
different TCP values

Determine the source of the error

 Assembly errors Calculation error in C-file

Fix the error

Figure 44: The recommended course of action

NO

YES

53

Robots

Hexapod

Find the relevant theory

Analyze the calculation results by
using MATLAB simultaneously

Determine the cause of the
problem

Rearrange the code accordingly

Compile the C-file

Start testing the code by using
MATLAB simultaneously

Flexapod 6P/ Exechon / Gantry Tau

Find the relevant theory

Build the forward kinematics

Build the inverse kinematics via
DELMIA V5R21 interface

Transfer the respective theory to a
C-file

Compile the C-file

Start testing the code by using
MATLAB simultaneously

Figure 45: Application of methodology to respective robots

54

6. RESULTS AND DISCUSSION

 The aftermath of this thesis work is fully functional Hexapod, Flexapod 6P, Exechon and Gantry-Tau

robots along with a methodology enabling the simulation of most parallel kinematics structures in

DELMIA V5 by using a C-file for inverse kinematics.

 The methodology developed for this thesis work can be used by any layman users for the purpose

of simulating advanced mechanisms in not only DELMIA V5 but also any other simulation environment

that supports the use of inverse kinematics via a C-file. However, it is very likely to encounter some

obstacles at some points of the methodology that cannot be classified and illustrated easily in the

methodology.

 One of these stages that problems are most likely to occur is whilst the creation of forward

kinematics. During the assembly, it is observed that the creation of joints may not be possible due to the

fact that the mechanism sometimes becomes over-constrained. The reason of such a case is usually

resulting from the fact that the algorithm behind DELMIA V5’s forward kinematics is not able to find a

point in the working space to create the necessary constraints for the joint. In order to overcome such a

problem, users can easily drag/rotate the respective part to a point that is close to the center of

prospective joint. Usually, the relocation of these parts results in the successful assembly; however, the

outcome may differ from what users expect. Even if the over-constraint case did not happen, the

algorithm described above can cause unexpected problems such as the case in which the mobile parts of

the robot are diving through each other and the end-effector is at some point and orientation other

than home position. Such a case is illustrated in figure 46.

Figure 46: Parts diving each other

 Since these problems are randomly occurring and their reasons are somewhat ambiguous, they

have not been classified in the methodology. However, this situation clearly shows that the

methodology can further be elevated in terms of forward kinematics to decipher all the dynamics of

mechanism creation in DELMIA V5.

55

 Another step that is possible for users to run into problems is the inverse kinematics creation. In

this step, the methodology reduces problems into two categories – syntax/semantic errors and

calculation mistakes. In this thesis work all the errors that occurred during this phase were related to

either syntax/semantic or calculation. However, this situation still can be open-ended, meaning users

may have to overcome other problems if they need to change the parameters in the DELMIA V5’s

interface for inverse kinematics or they might suffer from the incapability of C-language when very

advanced calculations must be made.

 Having described the results of using the methodology, it is also important to represent the key

findings with created robots. Consequently, the hexapod robot was the first to be analyzed as it was

handed over from the previous owner of the project, Torbjörn Jakobsson. Thus, its forward kinematics

was built in advance by him. On the other hand, Flexapod 6P – which shares the same theory with

hexapod – was completely built from already available CAD-parts. The theory for inverse kinematics of

these robots was completely adopted and it proved to be completely sufficient for the simulation to be

used in real-life applications. The error rate of joint values observed throughout the testing phase was

approximately in the span of ±0.0004 mm with respect to the output coming from MATLAB functions –

the reason of which is presumed to be related to C-language bitwise operations.

 The Exechon robot is simulated with only parallel structure, meaning the wrist attached after the

mobile platform was not included in inverse kinematics. The reason behind this choice stemmed from

the fact that available published theory regarding the inverse kinematics of hybrid structure (parallel

and serial attached to each other successively) was not available at the time of this thesis work carried

out. In addition, due to its limitations in the kinematics structure Exechon robot is not responding

accurately to the commands given by DELMIA V5’s Cartesian tab – in which rotational and translational

motion cannot happen simultaneously unless a separate tag for the target TCP is created. Particularly,

when pure translational motion is performed DELMIA V5 first calculates the necessary joint values for

pure translation; and for these joint values Exechon reaches the closest possible point in its workspace.

In table 5, such situation is disclosed for 100 mm of translation in X-direction. When the motion is

performed DELMIA V5 takes the robot to the nearest point [95.7935, 49.4846, -1252.5967]T via

translational and rotational motion. When analyzed further, these limitations in the capability of the

robot motion are stemming from the fact that the mobile platform is only capable of doing rotations

about X and Y axes and pure translation in Z-direction (Bi 2011).

Intended
TCP

Coordinates

Intended
TCP

orientation
(deg)

Actual TCP
Coordinates

Actual
TCP

orientati
on (deg)

Joint values for
intended TCP
coordinates

from MATLAB
function (mm)

Joint values
for actual TCP
coordinates

from
debugging

window (mm)

Joint values
for actual TCP
coordinates

from MATLAB
function(mm)

X 100 0 95.7935 -0.024 -24.8915 -24.8915 -24.8920

Y 50 0 49.4846 -4.372 36.1332 36.1332 36.1329

Z -1250 0 -1252.5967 0.002 5.6258 5.6258 5.6257
Table 5: Exechon's forward kinematics results

56

 The Gantry-Tau robot has been simulated and proved to be mostly functional in simulation

environment. The theory of inverse kinematics for this robot was easily integrated into a C-file except

for switching between the eight different postures that the inverse kinematics of Gantry-Tau robot

offers. Specifically, for a given TCP values, the inverse kinematics calculates eight different postures.

When changing the posture, it was observed that TCP values changed even though they should have

remained the same as in the earlier posture. The reason for this problem was resulting from the fact

that when joint values are fed back to DELMIA V5, forward kinematics of the robot recalculates the TCP

coordinates and sends these values back to the transformation matrix. However, the forward kinematics

calculation of Gantry-Tau results in multiple postures as for its inverse kinematics (see APPENDIX E:

GANTRY-TAU ROBOT for forward kinematics calculation). Since DELMIA V5 does not include this option

to choose between postures in forward kinematics calculation, the software randomly chooses an

available posture and sends different TCP coordinates to C-file than the values of intended TCP. To

illustrate, when Gantry-Tau robot is jogged to [-1200, -750, -1900]T mm and forced to switch between

the postures resulting from the inverse kinematics calculation, the next posture causes TCP to move to

another point [-725.0365, 714.1958, -2274.3482]T although it is intended to remain in its former position

as seen in table 6. As Johannesson (2003) explains this situation is stemming from the fact that when

posture 2’s joint values are applied to forward kinematics, it produces multiple TCP values; and as

DELMIA V5 is not offering this choice between TCPs, it is randomly appointing one TCP location for the

robot. On the other hand, it was also observed that this situation does not happen for some postures as

well. Hence, it is enough to make the point that if users choose to remain in the same posture as the TCP

propagates, they would be able to reach a somewhat stable simulation environment for Gantry-Tau

robot.

Intended TCP
coordinates

Joint values for the
intended coordinates

from debugging
window

Joint values
for Posture

1 at
intended

TCP location

Joint values
for Posture 2

when
switching
postures

New TCP
coordinates

when switched
to posture 2

Joint values for
posture 2’s TCP

coordinates
from MATLAB
function (mm)

X -1200 417.2158/2239.6689 417.2158 417.2158 -725.0365 417.2157

Y -750 361.0962/2417.7485 361.0962 361.0962 714.1958 361.0964

Z -1900 265.8219/2306.2108 265.8219 2306.2108 -2274.3482 2306.2107
Table 6: Gantry-Tau's inverse kinematics results

 This thesis work shows that there is still much to be done to reach a complete robust simulation

of parallel kinematics mechanisms in DELMIA V5 since the forward kinematics of these structures

requires more delicate care than of serial robots. Thus, an interface that calculates the forward

kinematics of parallel structures would pave the way for DELMIA V5 to enhance its simulation ability

over advanced mechanisms. Also, further exploration of the assembly creation algorithm and input

parameters of inverse kinematics can lay the foundations for other opportunities in the field of

mechanism creation in DELMIA V5.

57

7. CONCLUSION

 In this thesis work, a methodology to create advanced mechanisms in DELMIA V5 has been

developed and by using this methodology hexapod, Flexapod 6P, Exechon and Gantry-Tau robots have

been simulated. The methodology covers the complete steps that range from mechanism assembly to

the application of inverse kinematics theory to DELMIA V5. The compilation and environment set-up

along with the testing procedure have also been methodically defined. Therefore, with this

methodology layman users would be able to create any type of mechanism in DELMIA V5 or similar

environments in which inverse kinematics is defined with a C-file. In addition, a how-to style

documentation for layman users have been created in which users can find the steps of how to

implement the methodology to respective robots. The simulation of hexapod and Flexapod 6P robots

have proved to be completely functional whereas the simulation of Exechon and Gantry-Tau robots still

needs some improvements due to the reasons stated in the result section.

58

REFERENCES

Bi, Z. and Jin, Y., 2011. Kinematic modeling of Exechon parallel kinematic machine. Robotics and

Computer-Integrated Manufacturing, 27(1), pp.186-193.

Craig, J., 2005. Introduction to robotics. 1st ed. Upper Saddle River, N.J.: Pearson/Prentice Hall.

Hartenberg, R. and Denavit, J., 1964. Kinematic synthesis of linkages. 1st ed. New York: McGraw-Hill.

Jazar, R., 2010. Theory of applied robotics. 1st ed. New York: Springer.

Ji, P. and Wu, H., 2001. A closed-form forward kinematics solution for the 6-6 p Stewart platform. IEEE

Transactions on Robotics and Automation, 17(4), pp.522-526.

Johannesson, L., Berbyuk, V. and Brogårdh, T., 2003. Gantry-Tau A New Three Degrees of Freedom

Parallel Kinematic Robot. Proceedings of the Mekatronikmöte2003, August 27-28, 2003, Göteborg,

Sweden. pp.1-6

Locomachs.eu, (2014). LOCOMACHS - LOw COst Manufacturing and Assembly of Composite and Hybrid

Structures - Welcome to the official website of the LOCOMACHS project!. [online] Available at:

http://www.locomachs.eu/ (2014-06-10).

Yang, J. and Geng, Z., 1998. Closed form forward kinematics solution to a class of hexapod robots. IEEE

Transactions on Robotics and Automation, 14(3), pp.503-508.

Zoppi, M., Zlatanov, D. and Molfino, R., 2010. Kinematics analysis of the Exechon tripod. Proceedings of

the ASME 2010 International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference, August 15-18, 2010, Montreal, Quebec, Canada. pp.1381-

1388.

59

 APPENDICES

 The appendices section is structured as how-to style documentation where layman users can easily

follow steps to build the respective robots described in the main part of this work without having

prerequisite knowledge. In appendix A, environment set-up is clarified. In appendix B, C, D and E

complete forward and inverse kinematics of the respective robots are given. In appendix F compilation

of a C-file and final arrangements for simulation are depicted. The respective MATLAB functions are

given in appendix G.

 APPENDIX A: HOW TO SET UP ENVIRONMENT FOR FORWARD AND

INVERSE KINEMATICS
 First, debugging window should be arranged as following. Right-click on DELMIA V5 and click

properties.

 On Shortcut Tab, remove the “-nowindow” section from the target directory. Then click ‘OK’.

Figure A.1. Properties tab

Figure A.2. Properties tab-nowindow

60

 Now, an environment variable should be created for DELMIA V5.

a) Go to directory “C:\Documents and Settings\All Users\Application

Data\DassaultSystemes\CATEnv”

b) If that directory doesn’t work, go to “C:\Program Files\Dassault Systemes\B21\intel_a”

and open EnvDir.txt file and see the directory of the folder for environment files.

c) In the CATEnv folder, open DELMIA.V5.B21.txt file and at the end of the text file enter

the following command

CNEXTOUTPUT=console

 When the text file is saved and closed, the environment set-up is completed.

1

2

3

4
5

Figure A.3. Opening debugging window

61

 APPENDIX B: BUILDING OF FLEXAPOD 6P

 Building of the mechanism is going to start with creation of mechanism which builds the forward

kinematics automatically. Then inverse kinematics arrangement will be made. It is important to notify

here as well that only Flexapod 6P will be built in forward kinematics since hexapod was already built by

the previous owner, Torbjörn Jakobsson.

 MECHANISM CREATION OF FLEXAPOD 6P

 First step in the creation is to create the new elements under the node tree. This is done by New

Component command under Insert menu.

 Create new components under the main node tree as the number of components that the

Flexapod 6P has. In this case, 32 new components are required. Then name the components

accordingly. The result should look like

Figure B.1. Opening debugging window

Figure B.2. The nod-tree for Flexapod 6P

62

 These 32 components are

a) Base platform

b) 12 cubes

c) 6 lower leg parts

d) 6 upper leg parts

e) 6 upper leg connections

f) Mobile platform

(d)

(a) (b)

(c)

(e) (f)

Figure B.3. The components of Flexapod 6P

63

 Now, importing the cad or cgr parts into is of topic. To do that, click on the newly created

component under the node tree, and insert the respective part via Insert – Existing Component.

 Now, repeat this procedure of inserting components for the remaining 31 parts. The resulting

node tree should look like

 Figure B.5. The components of Flexapod 6P with CAD-models

Figure B.4. Inserting CAD-models via Existing Component

64

 After bringing all necessary components, a new mechanism should be created first. Click New

Mechanism and the result will be a new section under the node tree.

 Now, set the fixed part of the mechanism, which is the Base by using the Fixed Part button and

then selecting the component named Base.

 At this moment, Frames of Interests will be created as folders under the node tree. For each

component, create the folder Frames of Interests by clicking button. The result should look

like this for each component. Name the folders as seen fit.

1 2

3

Figure B.7. Defining fixed-part

Figure B.8. Creating FOI folders

Figure B.6. Creating new mechanism

65

 Now, the first mechanism will be created. Start with appointing FOI to the Base part as in the

figure. Click button and select the FOI folder under the Base. A new menu will appear and it

will ask for the location and orientation of the new FOI. Select the center of the prospective joint

and make sure that rotation is about the Z-axis of FOI. The steps should look like

 Now, a FOI will be appointed to the corresponding Cube part. Same procedure for the Base part

should be followed and the corresponding FOI at the center of the cube should look like

Z

X

Y

Z Y

X

Figure B.9. Creating FOIs in the fixed part

Figure B.10. Creating FOIs in the cube

66

 At this moment, the creation of joint will be done. First, click Joint From Axis button a new

menu will appear and select Revolute as joint type and then for Axis 1 and 2 choose the FOIs

created. The order for this work does not matter. Then click OK and a new revolute joint will

be created and the cube part will be automatically placed at its corresponding point in the

Base part. The menu for joint creation should look like

 Now, repeat the same procedure for the remaining 5 cubes that should be connected to

Base part. The result should be looking like

Figure B.11. Creating a revolute joint

Figure B.12. Fixed part with 6 cubes

67

 At this point, the assembly of the lower legs to the cubes will be made. The FOIs will be

appointed again. One for the lower cube with different Z-direction than the previous FOI.

The other will be created on the lower leg. The respective FOIs should look like

 After the creation of FOIs, same procedure of joint creation for the cube will be followed.

Then the result will be

Z
Y

X

Z

Y

X

Figure B.13. FOIs for leg-assembly

Figure B.14. Completed leg-assembly

68

 Now the creation of prismatic joints will be made. First, prospective FOIs will be created at

joint zeros.

 The tricky point about prismatic joints that, when the joint is created DELMIA V5 takes

exactly the positions of FOIs at that moment as zero point. It is because prismatic joints do

not require FOIs to coincide at origins; thus, only coinciding in Z-direction any point can be

zero point for the joint. This case is important to consider because when inverse kinematics

is calculated, the joint range will be crucial and what is fed back as solution must be within

that range to have a good posture. Therefore, it is very important to have a standard way of

creating prismatic joints. One of these standard points will be presented here as well.

 The first FOI on Lower Leg part will be created the same way for previous parts. The

respective FOI should be appointed at the zero point of the joint. It should look like

 The second FOI will be created in the upper leg part at the bottom. The FOI will look like

Z

X Y

Y X

Z

Figure B.16. The second FOI for the prismatic joint

Figure B.15. FOI for the prismatic joint

69

 Normally, prismatic joints can be created immediately; but before, the origin points of

FOIs must be coincided. The first way is to snap the Upper Leg part from the created FOI

and propagate the part to the FOI of the Lower Leg. This can be done by copying-pasting

the coordinates of the FOI of the Lower Leg to the FOI of Upper Leg.

 The second way is somewhat more error proof. The idea is to first create a revolute joint

between the FOIs. This would result in a perfect coincidence at both Z-axes and origin

points of each FOI. After the revolute joint creation, it must be deleted so that over that

joint, a prismatic one can be created. One important point is to delete also the

constraints that come with revolute joints. To make sure that there is no constraint left,

delete the revolute joint with Delete All Children button activated. The steps than should

look like

Figure B.17. Revolute joint creation and deleting

70

 Note that when the revolute joint is deleted, the current positions of the parts remain

the same. Without making any changes, prismatic joints will be created. Note also that

in Flexapod 6P or hexapod, prismatic joints are actuators. Thus Length Driven is

activated for this step. The steps in creation should look like

 When these steps are repeated for other legs as well the result should be

Figure B.19. Completed prismatic joint creation for all legs

Figure B.18. Prismatic joint creation

71

 In this step, the intermediary part between Upper Leg and Upper Cube will be

assembled. This part is named as Upper Leg Connection (ULC) that grants the third

degree of freedom to the upper attachment point where the other two degrees of

freedom are given by the Upper Cube part.

 As usual, first, FOIs will be created. The FOI for ULC part is

 The FOI for the Upper Leg part should be created at the top. Then the result should be

Z

X Y

X

Y

Z

Figure B.21. Corresponding FOIs of connecting parts

Figure B.20.FOIs for connecting parts

72

 Now the revolute joint will be created.

 Same operation will be repeated for the remaining 5 legs and the result will look like

Figure B.22. Revolute joint creation for connecting parts

Figure B.23. Completed revolute joint creation

73

 In this step, the cubes that will connect the mobile platform to ULCs will be assembled.

First, respective FOIs will be appointed to cubes and ULCs. The FOI of the cube will be

the same as the lower cubes. The FOIs of the respective parts are then

 Now the revolute joint will be created between these parts.

X

Y
Z

X

Y

Z

Figure B.24. FOIs for upper cubes and connecting parts

Figure B.25. Revolute joint creation

74

 When this operation is repeated for the remaining legs, the result will be

 The most important part of the assembly is to attach the mobile platform to the Upper

Cubes. In order to achieve the right state, mobile platform must be fixed to some point

with respect to the base platform. This way DELMIA will treat the legs as mobile and

move the location of theirs in order to create the joints. If this way is not chosen, both

legs and mobile platform will be moved and the result might be different than intended.

An example of these unintended result

Figure B.26. Completed revolute joint creation

Figure B.27. Parts diving through each other

75

 In order to avoid this result or some other that is similar, the users must create a Rigid

Joint between the base platform and the mobile. To achieve the right state, first the

mobile platform should be propagated to the right coordinates. These coordinates are

the ones that make all the joints zero and keep the mobile platform’s Z-axis coincided

with the base platform’s Z-axis. The coordinates are [0, 0, 500.515]T. The point of

snapping is TCP and can be seen in the following figure

 The rigid joint then will be created by using Rigid Joint button . Choose the respective

parts from the node tree and click OK. This way the mobile platform will be fixed to the

base platform.

 After the creation of the rigid joint, it is now assured that the assembled legs will give

the correct posture.

 In this step, the revolute joints between the Upper Cubes and the mobile platform. As

standard, the respective FOIs will be produced first. The FOIs for the cubes and on the

mobile platform will be at the center of the rotation. Thus, the FOIs will be

Figure B.28. Moving mobile platform

Figure B.29. Creating a rigid joint

76

 Now revolute joint will be created with Joint from axis button.

 Then, the result will be

Z Y

X
Z Y

X

Figure B.30. Creating FOIs in the mobile platform and upper cubes

Figure B.31. Creating revolute joint

Figure B.32. Final revolute joint

77

 When this operation is repeated for the rest of the legs, the mechanism will be

completed. The result of the top assembly will look like

 The complete structure then should look like

Figure B.33. Completed revolute joint creation

Figure B.34. Completed Flexapod 6P

78

 To complete the forward kinematics, users also have to define another FOI as TCP

coordinate frame. The new FOI will be created under mobile platform in the same

orientation as base coordinate frame since the starting transformation values should be

standard position and same orientation as base. The FOI then should look like

 In this step, specifications regarding joints will be appointed. These specifications can be

related to any joint, but in the case of Flexapod 6P these specifications are limited to

actuators that are prismatic joints. The specifications are

o Joint actuation direction

o Joint range

o Reference length

 The joint range can be arranged in two ways. The first way to define the limits for joints

is double-clicking on the prismatic joint under Mechanism-Joints node. When clicked,

Joint Edition menu will appear and on that menu users can define the travel limits and

joint’s actuation direction for each joint. The Joint Edition menu for the first prismatic

joint will be

Figure B.35. FOI for TCP

Figure B.36. Joint control

79

 The direction of joint is highlighted and the users can change the positive direction of

the joint accordingly.

 The most convenient way to define limits is to click Travel Limits button and in the

new menu define the joint limits for actuators. The travel limits for Flexapod 6P are [-

1,275] mm. The reason that the lower limit is less than zero is the fact that when inverse

kinematics is calculated, the code in the C-file might generate negative values that are

very close to zero. This way a correct posture is guaranteed to be within the limits when

inverse kinematics is loaded. Then, the menu for travel limits should look like

 Second part of arranging properties of the joints can be done by clicking Mechanism

Properties button. When clicked, a new menu will pop up, and on that menu users

can see degrees of freedom with and without command, and also if the mechanism can

be simulated. In addition, the user can see the joints and their constituting parts. The

menu looks like

 When the definition and arrangements are made, the testing of the created mechanism

will be made.

Figure B.37. Defining travel limits

Figure B.38. Mechanism analysis

80

 TESTING OF THE FLEXAPOD 6P’S FORWARD KINEMATICS

 The testing of the forward kinematics is simply done by testing the behavior of the joints

for different values on actuators. This is done by Jog Mechanism button. When

clicked, a new menu will appear and on that menu users can manipulate the actuators.

If the joints are responding as intended then it means the built mechanism is working

properly.

 If an error is observed, it is possible to go to joints menu and check their properties once

again.

THE CREATION OF INVERSE KINEMATICS

 Before creating the inverse kinematics, the users have to create a part that will be

attached to the mobile platform’s TCP. Thus, go to Insert-New part and create a part

under the parent node. Then, name the part accordingly. In this case, the new part is

named as TCP.

Figure B.40. Creating a new part for TCP

Figure B.39. Mechanism testing

81

 After the creation of the new part, propagate it to the same location to the TCP. To

achieve it, take the coordinates of FOI located at TCP and apply it to the new part. After

the propagation, create a rigid joint between the new part and the mobile platform.

 When the new rigid joint is created, the inverse kinematics is now ready to be defined.

 The inverse kinematics is created through the button Inverse Kinematics . Click the

button and select the parent element on the node tree. A new menu will appear. On the

menu, appoint accordingly as below

o Mount Part: TCP.1 (the part created after the mechanism creation named as

TCP)

o Mount Offset: The FOI created to represent TCP

o Reference part: Base platform

o Base: Base platform

o Approach axis: Z-axis

o Solver type: User Inverse (for C-file method)

 After appointing the sections in Basic tab, click Advanced. Note that new tabs now

appear next to Basic tab.

Figure B.41. Attaching TCP to mobile platform

82

 In the Configurations tab, make sure that the Posture_1 is valid. Then proceed to the

next tab Actuator Space Map.

Figure B.42. Defining Inverse Kinematics parameters of DELMIA V5

83

 In the Actuator Space Map tab, appoint each leg to the corresponding dof. These dofs and

Kin DOF parameters are

o Leg 1 (Command 1) : dof(1) – Translational –Trans Z- Kin DOF 1

o Leg 2 (Command 2) : dof(2) – Translational –Trans Z- Kin DOF 2

o Leg 3 (Command 3) : dof(3) – Translational –Trans Z- Kin DOF 3

o Leg 4 (Command 4) : dof(4) – Translational –Trans Z- Kin DOF 4

o Leg 5 (Command 5) : dof(5) – Translational –Trans Z- Kin DOF 5

o Leg 6 (Command 1) : dof(6) – Translational –Trans Z- Kin DOF 6

 The Kin Part section asks the user to appoint the mobile parts of the prismatic joints. In this

case these parts are Upper Legs. To appoint the corresponding parts, click on the Kin Part

area and then go to node tree and choose the corresponding part. These parts are

o Leg 1 (Command 1) : Upper_Leg_1

o Leg 2 (Command 2) : Upper_Leg_2

o Leg 3 (Command 3) : Upper_Leg_3

o Leg 4 (Command 4) : Upper_Leg_4

o Leg 5 (Command 5) : Upper_Leg_5

o Leg 6 (Command 6) : Upper_Leg_6

 The corresponding figure can be seen below for this tab.

Figure B.43. Defining Actuator’s parameters

84

 The last tab and operation is Solver Attributes tab. In this tab, only the names of the C-

code and library files will be entered. The remaining sections should be left empty since

the code covers these values. Hence, the tab should look like

 Then click OK, and the inverse kinematics definition will be complete.

TESTING OF THE INVERSE MECHANISM

 First click on Jog Mechanism button and see that there is a new tab in the menu called

Cartesian. In this menu, DELMIA allows its users to manipulate the mechanism by using

TCP tag – which is only activated when the inverse kinematics is defined. The menu then

Figure B.44. Defining library and C-file names

Figure B.45. Jogging mechanism with inverse kinematics definition

85

 To test the mechanism, one may enter the TCP coordinates and orientation or simply

drag the TCP tag to some random locations.

 When the movement is made, go to Mechanism.1 tab and check the joint values with

results printed on the debugging window. If they match each other, then the inverse

kinematics is working as intended.

 THE C-FILE FOR INVERSE KINEMATICS OF FLEXAPOD 6P

 In section 4.2, the relevant theory was transferred to a C-file for hexapod. The notations and the

way of working are also described in that section. Thus, here the complete code will be given.

/**

**

** USER KINEMATICS EXAMPLE

**

** Copyright (c) 1990 Delmia Corporation, All rights reserved.

**

** This file contains an example of a kinematics routine for the

** shared library. This example will work for 4 DOF 2 Config (left and

right

** elbow) scara robots such as the ASEA/IRB300. By default,

** kin_usr1 is mapped to this routine.

**

** For a description of kinematics solutions refer to:

**

** Paul, Richard P., "Robot Manipulators: Mathematics, Programming

** and Control", The MIT Press, Cambridge, Massachusetts, 1981.

**

** DESCRIPTION OF ARGUMENTS

**

** double T6[4][4] 4x4 position matrix of center of wrist. This is

Figure B.46. Comparing results to debugging window

86

** the goal point MINUS the tool frame and mounting

** plate offsets. This is the easiest point to start

** the inverse kinematic solution from, and is the

** traditional approach.

**

** NOTE: T6 matrix may be transposed from your usual

** notation.

**

** | nx ny nz 0 | \\

** T6 = | ox oy oz 0 | > direction cosines (9)

** | ax ay az 0 | /

** | px py pz 1 | -> position terms (3)

**

** px = T6[3][0];

**

** double link_lengths[] Distance between joint axis along link length

**

** double link_offsets[] Offset between joint axis along joint axis

**

** These two arrays can be considered the Denevitt-

** Hartenburg variables described in Paul's book, or

** any convenient scheme the user desires.

**

** double solutions[][] A two dimensional array contains all possible

** solutions for robot arm. It is up to user to

** decide how many solutions are possible, and to

** provide all solutions when routine is called:

** elbow up, elbow down, etc. The CONFIGS

** Button in IGRIP allows user to view all possible

** solutions and may provide insight into importance

** of this array.

**

** int warnings[] Array providing warning states for each solution

** such as unreachable, singular, etc. Possible

warning

** states are defined in include file shlibdefs.h

** and are:

**

** WARN_GOOD_SOLUTION

** WARN_JOINT_LIMIT_EXCEEDED

** WARN_UNREACHABLE

** WARN_SINGULAR_SOLUTION

**

** NOTE: shlibdefs.h is automatically included by the IGRIP Shared

** Library Make system. For further details regarding the

building

** of the shared library, refer to the IGRIP Motion Pipeline

** Reference Guide

**

**

** Words of encouragement

**

** Writing inverse kinematics routines is a challenge. Invariably

** you will make mistakes which later seem trivial. Even experts on

** the subject loathe writing a new routine. The usual problems

** are matching the routines view of the world with the device

** definition. You must check that where this routine thinks is

87

** the axis origin, or the zero reference position, is the same

** as the IGRIP device. Also make sure that each agree upon the

positive

** sense of direction. These are the most common foul ups. Next,

** the mounting plate offset may be wrong, so when first debugging

** your routine, set the mounting plate and tool frame offsets to

** zero. Next check for dropped signs in your equations. Maybe

** an inverse trig function is returning an angle in a different

quadrant

** than the one you want. Perhaps you should be using atan2 instead

** of atan (or vice-versa). Remember that trig and inverse trig

function

** angles are in radians. Also, check array indices. Remember that

** arrays start at zero not one, so link_4's offset is at

link_offsets[3].

** Are you referring to T6[3][2], when you mean T6[2][3]? Remember that

** transformation matrices may be transposed from standard text book

** definitions. Once you get your routine to work you will have earned

** the title of kinematician.

**

**/

#include <shlibdefs.h>

/*

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

**

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

** |

** |

** \ /

** v */

#define NUM_SOLUTIONS 1 /* Number of possible solutions */

#define NUM_DOFS 6 /* Number of joints to be solved */

/* ^

** / \

** |

** |

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

**

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

88

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

*/

/*

 * User must supply this function

*/

DllExport int

get_kin_config(char *kin_routine, int *kin_dof, int *solution_count, int

*usrKinDataHint)

{

 if(strcmp(kin_routine, "kin_flexapod") == 0)

 {

 *kin_dof = NUM_DOFS;

 *solution_count = NUM_SOLUTIONS;

 /*

 * this indicates kin_usr's last argument (void *pData)

 * will be DLM_Data_KinStat

 */

 *usrKinDataHint = USR_KIN_DATA_KINSTAT;

 return 0;

 }

 return 1;

}

static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };

static char KinMode[2][24] = { "Normal", "TrackTCP" };

/*

** Routine Name

*/

DllExport int

kin_flexapod(

 link_lengths,

 link_offsets,

 T6, /* See above for description of these arguments */

 solutions,

 warnings,

 pData

)

/*

** Passed Variable Declarations

*/

double T6[4][4],

 link_lengths[],

 link_offsets[],

 solutions[][NUM_SOLUTIONS];

int warnings[];

void *pData; /* usr routine should NEVER delete pData */

{

89

/*

** Local Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33, D41, D42, D43, D51,

D52, D53, D61, D62, D63;

long double L1,L2,L3,L4,L5,L6,J1,J2,J3,J4,J5,J6, Lref;

//Variables to perform matrix multiplication

int row1,row2,row3,row4,row5,row6;

int col1,col2,col3,col4,col5,col6;

int inner1,inner2,inner3,inner4,inner5,inner6;

// The upper attachmentpoints for each leg (The vector between the TCP and

each upper attachment point).

long double L1tToTCP[4][1];

long double L2tToTCP[4][1];

long double L3tToTCP[4][1];

long double L4tToTCP[4][1];

long double L5tToTCP[4][1];

long double L6tToTCP[4][1];

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool

Centre Point) - see line 307.

long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).

long double L1tCur[4] = {0};

long double L2tCur[4] = {0};

long double L3tCur[4] = {0};

long double L4tCur[4] = {0};

long double L5tCur[4] = {0};

long double L6tCur[4] = {0};

//Lower attachemnt points on each leg (in Base coordinates)

long double L1b[3]; long double L2b[3]; long double L3b[3];

long double L4b[3]; long double L5b[3]; long double L6b[3];

#if 1

/*

* using pData

*/

 int i;

 DLM_Data_KinStat *pDLM_Data = (DLM_Data_KinStat *) pData;

 if(pDLM_Data)

 {

 printf("\n\ndof_count: %d\n", pDLM_Data->dof_count);

 printf("\njoint_types:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%s ", JointType[(pDLM_Data->joint_types)[i]]);

 printf("\n\nkin_mode: %s\n", KinMode[pDLM_Data->kin_mode]);

 printf("\njoint_values:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

90

 printf("%12.4f ", pDLM_Data->joint_values[i]);

 printf("\n\njnt_trvl_lmts lower:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[0][i]);

 printf("\n\njnt_trvl_lmts upper:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[1][i]);

 printf("\n\n");

 }

#endif

/***--------------- Execution Begins Here ----------------------------------

***/

 /*

 ** DO NOT REMOVE THIS BLOCK OF CODE

 ** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC

 ** DOFS FOR THE DEVICE

 */

 if(!kin_check_definition(NUM_DOFS, NUM_SOLUTIONS))

 {

 /*

 ** Inconsistency between device definition and inverse

 ** kinematics routine exists. A warning message has been

 ** issued and routine aborted

 */

 return(1);

 }

/***---------------- User code begins here ---------------------------------

***/

//The vector between the TCP and the upper attachmentpoints for each leg

L1tToTCP[0][0] = -48.767; L1tToTCP[1][0] = 32.466; L1tToTCP[2][0] = -75;

L1tToTCP[3][0] = 1;

L2tToTCP[0][0] = -3.733; L2tToTCP[1][0] = 58.466; L2tToTCP[2][0] = -75;

L2tToTCP[3][0] = 1;

L3tToTCP[0][0] = 52.5; L3tToTCP[1][0] = 26; L3tToTCP[2][0] = -75;

L3tToTCP[3][0] = 1;

L4tToTCP[0][0] = 52.5; L4tToTCP[1][0] = -26; L4tToTCP[2][0] = -75;

L4tToTCP[3][0] = 1;

L5tToTCP[0][0] = -3.733; L5tToTCP[1][0] = -58.466; L5tToTCP[2][0] = -75;

L5tToTCP[3][0] = 1;

L6tToTCP[0][0] = -48.767; L6tToTCP[1][0] = -32.466; L6tToTCP[2][0] = -75;

L6tToTCP[3][0] = 1;

91

//The lower attachmentpoints for each leg (in Base-coordinates).

L1b[0] = -132.5; L1b[1] = 26; L1b[2] = 58.5;

L2b[0] = 43.733; L2b[1] = 127.748; L2b[2] = 58.5;

L3b[0] = 88.767; L3b[1] = 101.748; L3b[2] = 58.5;

L4b[0] = 88.767; L4b[1] = -101.748; L4b[2] = 58.5;

L5b[0] = 43.733; L5b[1] = -127.748; L5b[2] = 58.5;

L6b[0] = -132.5; L6b[1] = -26; L6b[2] = 58.5;

//Importing the current TCP values from Delmia through the T6 matrix and

putting proper context

nx = T6[0][0];

ny = T6[0][1];

nz = T6[0][2];

ox = T6[1][0];

oy = T6[1][1];

oz = T6[1][2];

ax = T6[2][0];

ay = T6[2][1];

az = T6[2][2];

px = T6[3][0];

py = T6[3][1];

pz = T6[3][2];

//Printing the current TCP values in the debug window for evaluation purposes

printf("\nx ny nz: %12.4f ,%12.4f ,%12.4f\n", nx ,ny ,nz);

printf("\ox oy oz: %12.4f ,%12.4f ,%12.4f\n", ox ,oy ,oz);

printf("\ax ay az: %12.4f ,%12.4f ,%12.4f\n", ax ,ay ,az);

printf("\px py pz: %12.4f ,%12.4f ,%12.4f\n", px ,py ,pz);

//The transforming T6 matrix from row vectors form to column vector form

TCP[0][0] = nx; TCP[0][1] = ox; TCP[0][2] = ax; TCP[0][3] = px;

TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;

TCP[2][0] = nz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;

TCP[3][0] = 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3][3] = 1;

//Printing the transformed matrix TCP

printf("\n Transformed T6 matrix - TCP matrix\n");

printf("\nx ox ax px: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nx ,ox ,ax, px);

printf("\ny oy ay py: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", ny ,oy ,ay, py);

printf("\nz oz az pz: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nz ,oz ,az, pz);

//Calculating the current position (in x,y,z in Base coordinates) of each

upper attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)

and the upper attachmentpoint for each leg (LxToTCP[][])

//Calculate upper position on Leg1 (The array L1tCur)

 for (row1 = 0; row1 < 4; row1++) {

 for (col1 = 0; col1 < 1; col1++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner1 = 0; inner1 < 4; inner1++) {

 L1tCur[row1] += TCP[row1][inner1] * L1tToTCP[inner1][col1];

 }

 }

 }

92

//Calculate upper position on Leg2 (The array L2tCur)

 for (row2 = 0; row2 < 4; row2++) {

 for (col2 = 0; col2 < 1; col2++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner2 = 0; inner2 < 4; inner2++) {

 L2tCur[row2] += TCP[row2][inner2] * L2tToTCP[inner2][col2];

 }

 }

 }

//Calculate upper position on Leg3 (The array L3tCur)

 for (row3 = 0; row3 < 4; row3++) {

 for (col3 = 0; col3 < 1; col3++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner3 = 0; inner3 < 4; inner3++) {

 L3tCur[row3] += TCP[row3][inner3] * L3tToTCP[inner3][col3];

 }

 }

 }

//Calculate upper position on Leg4 (The array L4tCur)

 for (row4 = 0; row4 < 4; row4++) {

 for (col4 = 0; col4 < 1; col4++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner4 = 0; inner4 < 4; inner4++) {

 L4tCur[row4] += TCP[row4][inner4] * L4tToTCP[inner4][col4];

 }

 }

 }

//Calculate upper position on Leg5 (The array L5tCur)

 for (row5 = 0; row5 < 4; row5++) {

 for (col5 = 0; col5 < 1; col5++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner5 = 0; inner5 < 4; inner5++) {

 L5tCur[row5] += TCP[row5][inner5] * L5tToTCP[inner5][col5];

 }

 }

 }

//Calculate upper position on Leg6 (The array L6tCur)

 for (row6 = 0; row6 < 4; row6++) {

 for (col6 = 0; col6 < 1; col6++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner6 = 0; inner6 < 4; inner6++) {

 L6tCur[row6] += TCP[row6][inner6] * L6tToTCP[inner6][col6];

 }

 }

 }

93

// Calcultates the distance between the upper and lower attachment points for

each leg.

 L1 = sqrt(((pow((L1tCur[0]-L1b[0]),2)))+((pow((L1tCur[1]-

L1b[1]),2)))+((pow((L1tCur[2]-L1b[2]),2))));

 L2 = sqrt(((pow((L2tCur[0]-L2b[0]),2)))+((pow((L2tCur[1]-

L2b[1]),2)))+((pow((L2tCur[2]-L2b[2]),2))));

 L3 = sqrt(((pow((L3tCur[0]-L3b[0]),2)))+((pow((L3tCur[1]-

L3b[1]),2)))+((pow((L3tCur[2]-L3b[2]),2))));

 L4 = sqrt(((pow((L4tCur[0]-L4b[0]),2)))+((pow((L4tCur[1]-

L4b[1]),2)))+((pow((L4tCur[2]-L4b[2]),2))));

 L5 = sqrt(((pow((L5tCur[0]-L5b[0]),2)))+((pow((L5tCur[1]-

L5b[1]),2)))+((pow((L5tCur[2]-L5b[2]),2))));

 L6 = sqrt(((pow((L6tCur[0]-L6b[0]),2)))+((pow((L6tCur[1]-

L6b[1]),2)))+((pow((L6tCur[2]-L6b[2]),2))));

//The distance between upper and lower leg attachmentpoint when the command

joint is zero. Used as a reference to get the current leg length

Lref = 376.5;

//Calculates the joint values by calulating the differnce in distance between

the two attachmentpoints on each leg and a reference length (Lref)

//(the lenght between attachment points when the joints are 0)

J1 = L1 - Lref;

J2 = L2 - Lref;

J3 = L3 - Lref;

J4 = L4 - Lref;

J5 = L5 - Lref;

J6 = L6 - Lref;

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0][0] = J1;

solutions[1][0] = J2;

solutions[2][0] = J3;

solutions[3][0] = J4;

solutions[4][0] = J5;

solutions[5][0] = J6;

//Printing some of the variable values out in the debug window to ease

debugging and get an overview of what is going on

printf("\n The leg lengths\n");

printf("J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3);

printf("J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6);

printf("L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3);

printf("L4 L5 L6: %12.4f ,%12.4f ,%12.4f\n", L4 ,L5 ,L6);

D11 = L1tCur[0]; D12 = L1tCur[1]; D13 = L1tCur[2];

D21 = L2tCur[0]; D22 = L2tCur[1]; D23 = L2tCur[2];

D31 = L3tCur[0]; D32 = L3tCur[1]; D33 = L3tCur[2];

D41 = L4tCur[0]; D42 = L4tCur[1]; D43 = L4tCur[2];

D51 = L5tCur[0]; D52 = L5tCur[1]; D53 = L5tCur[2];

D61 = L6tCur[0]; D62 = L6tCur[1]; D63 = L6tCur[2];

94

printf("\n The legs' upper attachment point coordinates \n");

printf("\D11 D12 D13: %12.4f ,%12.4f ,%12.4f\n", D11 ,D12 ,D13);

printf("\D21 D22 D23: %12.4f ,%12.4f ,%12.4f\n", D21 ,D22 ,D23);

printf("\D31 D32 D33: %12.4f ,%12.4f ,%12.4f\n", D31 ,D32 ,D33);

printf("\D41 D42 D43: %12.4f ,%12.4f ,%12.4f\n", D41 ,D42 ,D43);

printf("\D51 D52 D53: %12.4f ,%12.4f ,%12.4f\n", D51 ,D52 ,D53);

printf("\D61 D62 D63: %12.4f ,%12.4f ,%12.4f\n", D61 ,D62 ,D63);

warnings[0] = WARN_GOOD_SOLUTION;

return (0);

}

95

 APPENDIX C: THE CREATION OF INVERSE KINEMATICS FOR HEXAPOD

 The hexapod as stated in section 2.1 is an equivalent structure to Flexapod 6P where the upper

attachment points are spherical joints instead of three successive revolute joints as with Flexapod 6P.

 As put earlier, the forward kinematics was received ready from the previous project owner thus in

this appendix, the creation of forward kinematics will not be given. Hence, the inverse kinematics will be

the topic of this section.

THE INVERSE KINEMATICS CREATION

 As with the Flexapod 6P case, the same procedure will be followed. Thus the Basic tab

should look like

o TCP.1: The part created to mount with the TCP point

o Tool1: The FOI at TCP point

o BasePlateAssyKin.1 : The base platform part

o Z: Approach axis

o Out is the approach direction

o User inverse method is for C-file use

Figure C.1. Hexapod with forward kinematics created

96

 When clicked Advanced, the remaining tabs are the same as Flexapod 6P. These tabs than

Figure C.2. Defining Inverse kinematics parameters

Figure C.3. Checking configurations

97

 The Actuator Space Map tab follows the same procedure with Flexapod 6P. The Kin Part has
the mobile parts of the prismatic joints.

 The Solver Attributes tab has no offset or any auxiliary values since the C-file covers those

values in the code. Thus, the tab should only have a change in the C-file and library names.

Figure C.4. Defining Actuators

Figure C.5. Defining C-file and library names

98

 THE C-FILE FOR HEXAPOD

/**

**

** USER KINEMATICS EXAMPLE

**

** Copyright (c) 1990 Delmia Corporation, All rights reserved.

**

** This file contains an example of a kinematics routine for the

** shared library. This example will work for 4 DOF 2 Config (left and

right

** elbow) scara robots such as the ASEA/IRB300. By default,

** kin_usr1 is mapped to this routine.

**

** For a description of kinematics solutions refer to:

**

** Paul, Richard P., "Robot Manipulators: Mathematics, Programming

** and Control", The MIT Press, Cambridge, Massachusetts, 1981.

**

** DESCRIPTION OF ARGUMENTS

**

** double T6[4][4] 4x4 position matrix of center of wrist. This is

** the goal point MINUS the tool frame and mounting

** plate offsets. This is the easiest point to start

** the inverse kinematic solution from, and is the

** traditional approach.

**

** NOTE: T6 matrix may be transposed from your usual

** notation.

**

** | nx ny nz 0 | \\

** T6 = | ox oy oz 0 | > direction cosines (9)

** | ax ay az 0 | /

** | px py pz 1 | -> position terms (3)

**

** px = T6[3][0];

**

** double link_lengths[] Distance between joint axis along link length

**

** double link_offsets[] Offset between joint axis along joint axis

**

** These two arrays can be considered the Denevitt-

** Hartenburg variables described in Paul's book, or

** any convenient scheme the user desires.

**

** double solutions[][] A two dimensional array contains all possible

** solutions for robot arm. It is up to user to

** decide how many solutions are possible, and to

** provide all solutions when routine is called:

** elbow up, elbow down, etc. The CONFIGS

** Button in IGRIP allows user to view all possible

** solutions and may provide insight into importance

** of this array.

**

99

** int warnings[] Array providing warning states for each solution

** such as unreachable, singular, etc. Possible

warning

** states are defined in include file shlibdefs.h

** and are:

**

** WARN_GOOD_SOLUTION

** WARN_JOINT_LIMIT_EXCEEDED

** WARN_UNREACHABLE

** WARN_SINGULAR_SOLUTION

**

** NOTE: shlibdefs.h is automatically included by the IGRIP Shared

** Library Make system. For further details regarding the

building

** of the shared library, refer to the IGRIP Motion Pipeline

** Reference Guide

**

**

** Words of encouragement

**

** Writing inverse kinematics routines is a challenge. Invariably

** you will make mistakes which later seem trivial. Even experts on

** the subject loathe writing a new routine. The usual problems

** are matching the routines view of the world with the device

** definition. You must check that where this routine thinks is

** the axis origin, or the zero reference position, is the same

** as the IGRIP device. Also make sure that each agree upon the

positive

** sense of direction. These are the most common foul ups. Next,

** the mounting plate offset may be wrong, so when first debugging

** your routine, set the mounting plate and tool frame offsets to

** zero. Next check for dropped signs in your equations. Maybe

** an inverse trig function is returning an angle in a different

quadrant

** than the one you want. Perhaps you should be using atan2 instead

** of atan (or vice-versa). Remember that trig and inverse trig

function

** angles are in radians. Also, check array indices. Remember that

** arrays start at zero not one, so link_4's offset is at

link_offsets[3].

** Are you referring to T6[3][2], when you mean T6[2][3]? Remember that

** transformation matrices may be transposed from standard text book

** definitions. Once you get your routine to work you will have earned

** the title of kinematician.

**

**/

#include <shlibdefs.h>

/*

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

**

100

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

** |

** |

** \ /

** v */

#define NUM_SOLUTIONS 1 /* Number of possible solutions */

#define NUM_DOFS 6 /* Number of joints to be solved */

/* ^

** / \

** |

** |

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

**

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

*/

/*

 * User must supply this function

*/

DllExport int

get_kin_config(char *kin_routine, int *kin_dof, int *solution_count, int

*usrKinDataHint)

{

 if(strcmp(kin_routine, "kin_hexapodFullTest") == 0)

 {

 *kin_dof = NUM_DOFS;

 *solution_count = NUM_SOLUTIONS;

 /*

 * this indicates kin_usr's last argument (void *pData)

 * will be DLM_Data_KinStat

 */

 *usrKinDataHint = USR_KIN_DATA_KINSTAT;

 return 0;

 }

 return 1;

}

static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };

static char KinMode[2][24] = { "Normal", "TrackTCP" };

/*

** Routine Name

*/

DllExport int

kin_hexapodFullTest(

 link_lengths,

 link_offsets,

 T6, /* See above for description of these arguments */

 solutions,

 warnings,

 pData

)

/*

101

** Passed Variable Declarations

*/

double T6[4][4],

 link_lengths[],

 link_offsets[],

 solutions[][NUM_SOLUTIONS];

int warnings[];

void *pData; /* usr routine should NEVER delete pData */

{

/*

** Local Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33, D41, D42, D43, D51,

D52, D53, D61, D62, D63;

long double L1,L2,L3,L4,L5,L6,J1,J2,J3,J4,J5,J6, Lref;

//Variables to perform matrix multiplication

int row1,row2,row3,row4,row5,row6;

int col1,col2,col3,col4,col5,col6;

int inner1,inner2,inner3,inner4,inner5,inner6;

// The upper attachmentpoints for each leg (The vector between the TCP and

each upper attachment point).

long double L1tToTCP[4][1];

long double L2tToTCP[4][1];

long double L3tToTCP[4][1];

long double L4tToTCP[4][1];

long double L5tToTCP[4][1];

long double L6tToTCP[4][1];

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool

Centre Point) - see line 307.

long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).

long double L1tCur[4] = {0};

long double L2tCur[4] = {0};

long double L3tCur[4] = {0};

long double L4tCur[4] = {0};

long double L5tCur[4] = {0};

long double L6tCur[4] = {0};

//Lower attachemnt points on each leg (in Base coordinates)

long double L1b[3];

long double L2b[3];

long double L3b[3];

long double L4b[3];

long double L5b[3];

long double L6b[3];

102

#if 1

/*

* using pData

*/

 int i;

 DLM_Data_KinStat *pDLM_Data = (DLM_Data_KinStat *) pData;

 if(pDLM_Data)

 {

 printf("\n\ndof_count: %d\n", pDLM_Data->dof_count);

 printf("\njoint_types:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%s ", JointType[(pDLM_Data->joint_types)[i]]);

 printf("\n\nkin_mode: %s\n", KinMode[pDLM_Data->kin_mode]);

 printf("\njoint_values:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->joint_values[i]);

 printf("\n\njnt_trvl_lmts lower:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[0][i]);

 printf("\n\njnt_trvl_lmts upper:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[1][i]);

 printf("\n\n");

 }

#endif

/***--------------- Execution Begins Here ----------------------------------

***/

 /*

 ** DO NOT REMOVE THIS BLOCK OF CODE

 ** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC

 ** DOFS FOR THE DEVICE

 */

 if(!kin_check_definition(NUM_DOFS, NUM_SOLUTIONS))

 {

 /*

 ** Inconsistency between device definition and inverse

 ** kinematics routine exists. A warning message has been

 ** issued and routine aborted

 */

 return(1);

 }

/***---------------- User code begins here ---------------------------------

***/

103

//The vector between the TCP and the upper attachmentpoints for each leg

L1tToTCP[0][0] = 31; L1tToTCP[1][0] = 48.799; L1tToTCP[2][0] = -31.45;

L1tToTCP[3][0] = 1;

L2tToTCP[0][0] = -31; L2tToTCP[1][0] = 48.799; L2tToTCP[2][0] = -31.45;

L2tToTCP[3][0] = 1;

L3tToTCP[0][0] = -57.761; L3tToTCP[1][0] = 2.447; L3tToTCP[2][0] = -31.45;

L3tToTCP[3][0] = 1;

L4tToTCP[0][0] = -26.761; L4tToTCP[1][0] = -51.246; L4tToTCP[2][0] = -31.45;

L4tToTCP[3][0] = 1;

L5tToTCP[0][0] = 26.761; L5tToTCP[1][0] = -51.246; L5tToTCP[2][0] = -31.45;

L5tToTCP[3][0] = 1;

L6tToTCP[0][0] = 57.761; L6tToTCP[1][0] = 2.447; L6tToTCP[2][0] = -31.45;

L6tToTCP[3][0] = 1;

//The lower attachmentpoints for each leg (in Base-coordinates).

L1b[0] = 31; L1b[1] = 118.156; L1b[2] = 40.205;

L2b[0] = -31; L2b[1] = 118.156; L2b[2] = 40.205;

L3b[0] = -117.826; L3b[1] = -32.231; L3b[2] = 40.205;

L4b[0] = -86.826; L4b[1] = -85.925; L4b[2] = 40.205;

L5b[0] = 86.826; L5b[1] = -85.925; L5b[2] = 40.205;

L6b[0] = 117.826; L6b[1] = -32.231; L6b[2] = 40.205;

//Importing the current TCP values from Delmia through the T6 matrix and

putting proper context

nx = T6[0][0];

ny = T6[0][1];

nz = T6[0][2];

ox = T6[1][0];

oy = T6[1][1];

oz = T6[1][2];

ax = T6[2][0];

ay = T6[2][1];

az = T6[2][2];

px = T6[3][0];

py = T6[3][1];

pz = T6[3][2];

//Printing the current TCP values in the debug window for evaluation purposes

printf("\nx ny nz: %12.4f ,%12.4f ,%12.4f\n", nx ,ny ,nz);

printf("\ox oy oz: %12.4f ,%12.4f ,%12.4f\n", ox ,oy ,oz);

printf("\ax ay az: %12.4f ,%12.4f ,%12.4f\n", ax ,ay ,az);

printf("\px py pz: %12.4f ,%12.4f ,%12.4f\n", px ,py ,pz);

//The transforming T6 matrix from row vectors form to column vector form

TCP[0][0] = nx; TCP[0][1] = ox; TCP[0][2] = ax; TCP[0][3] = px;

TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;

TCP[2][0] = nz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;

TCP[3][0] = 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3][3] = 1;

104

//Printing the transformed matrix TCP

printf("\n Transformed T6 matrix - TCP matrix\n");

printf("\nx ox ax px: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nx ,ox ,ax, px);

printf("\ny oy ay py: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", ny ,oy ,ay, py);

printf("\nz oz az pz: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nz ,oz ,az, pz);

//Calculating the current position (in x,y,z in Base coordinates) of each

upper attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)

and the upper attachmentpoint for each leg (LxToTCP[][])

//Calculate upper position on Leg1 (The array L1tCur)

 for (row1 = 0; row1 < 4; row1++) {

 for (col1 = 0; col1 < 1; col1++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner1 = 0; inner1 < 4; inner1++) {

 L1tCur[row1] += TCP[row1][inner1] * L1tToTCP[inner1][col1];

 }

 }

 }

 //Calculate upper position on Leg2 (The array L2tCur)

 for (row2 = 0; row2 < 4; row2++) {

 for (col2 = 0; col2 < 1; col2++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner2 = 0; inner2 < 4; inner2++) {

 L2tCur[row2] += TCP[row2][inner2] * L2tToTCP[inner2][col2];

 }

 }

 }

//Calculate upper position on Leg3 (The array L3tCur)

 for (row3 = 0; row3 < 4; row3++) {

 for (col3 = 0; col3 < 1; col3++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner3 = 0; inner3 < 4; inner3++) {

 L3tCur[row3] += TCP[row3][inner3] * L3tToTCP[inner3][col3];

 }

 }

 }

//Calculate upper position on Leg4 (The array L4tCur)

 for (row4 = 0; row4 < 4; row4++) {

 for (col4 = 0; col4 < 1; col4++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner4 = 0; inner4 < 4; inner4++) {

 L4tCur[row4] += TCP[row4][inner4] * L4tToTCP[inner4][col4];

 }

 }

 }

105

//Calculate upper position on Leg5 (The array L5tCur)

 for (row5 = 0; row5 < 4; row5++) {

 for (col5 = 0; col5 < 1; col5++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner5 = 0; inner5 < 4; inner5++) {

 L5tCur[row5] += TCP[row5][inner5] * L5tToTCP[inner5][col5];

 }

 //printf("%lf\t",L5tCur[row5]);

 }

 }

//Calculate upper position on Leg6 (The array L6tCur)

 for (row6 = 0; row6 < 4; row6++) {

 for (col6 = 0; col6 < 1; col6++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner6 = 0; inner6 < 4; inner6++) {

 L6tCur[row6] += TCP[row6][inner6] * L6tToTCP[inner6][col6];

 }

 //printf("%lf\t",L6tCur[row6]);

 }

 }

// Calcultates the distance between the upper and lower attachment points for

each leg.

L1 = sqrt(((pow((L1tCur[0]-L1b[0]),2)))+((pow((L1tCur[1]-

L1b[1]),2)))+((pow((L1tCur[2]-L1b[2]),2))));

L2 = sqrt(((pow((L2tCur[0]-L2b[0]),2)))+((pow((L2tCur[1]-

L2b[1]),2)))+((pow((L2tCur[2]-L2b[2]),2))));

L3 = sqrt(((pow((L3tCur[0]-L3b[0]),2)))+((pow((L3tCur[1]-

L3b[1]),2)))+((pow((L3tCur[2]-L3b[2]),2))));

L4 = sqrt(((pow((L4tCur[0]-L4b[0]),2)))+((pow((L4tCur[1]-

L4b[1]),2)))+((pow((L4tCur[2]-L4b[2]),2))));

L5 = sqrt(((pow((L5tCur[0]-L5b[0]),2)))+((pow((L5tCur[1]-

L5b[1]),2)))+((pow((L5tCur[2]-L5b[2]),2))));

L6 = sqrt(((pow((L6tCur[0]-L6b[0]),2)))+((pow((L6tCur[1]-

L6b[1]),2)))+((pow((L6tCur[2]-L6b[2]),2))));

//The distance between upper and lower leg attachmentpoint when the command

joint is zero. Used as a reference to get the current leg length

Lref = 399.413;

//Calculates the joint values by calulating the differnce in distance between

the two attachmentpoints on each leg and a reference length (Lref)

//(the lenght between attachment points when the joints are 0)

J1 = L1 - Lref;

J2 = L2 - Lref;

J3 = L3 - Lref;

J4 = L4 - Lref;

J5 = L5 - Lref;

J6 = L6 - Lref;

106

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0][0] = J1;

solutions[1][0] = J2;

solutions[2][0] = J3;

solutions[3][0] = J4;

solutions[4][0] = J5;

solutions[5][0] = J6;

//Printing some of the variable values out in the debug window to ease

debugging and get an overview of what is going on

printf("\n The leg lengths\n");

printf("J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3);

printf("J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6);

printf("L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3);

printf("L4 L5 L6: %12.4f ,%12.4f ,%12.4f\n", L4 ,L5 ,L6);

D11 = L1tCur[0]; D12 = L1tCur[1]; D13 = L1tCur[2];

D21 = L2tCur[0]; D22 = L2tCur[1]; D23 = L2tCur[2];

D31 = L3tCur[0]; D32 = L3tCur[1]; D33 = L3tCur[2];

D41 = L4tCur[0]; D42 = L4tCur[1]; D43 = L4tCur[2];

D51 = L5tCur[0]; D52 = L5tCur[1]; D53 = L5tCur[2];

D61 = L6tCur[0]; D62 = L6tCur[1]; D63 = L6tCur[2];

printf("\n The legs' upper attachment point coordinates \n");

printf("\D11 D12 D13: %12.4f ,%12.4f ,%12.4f\n", D11 ,D12 ,D13);

printf("\D21 D22 D23: %12.4f ,%12.4f ,%12.4f\n", D21 ,D22 ,D23);

printf("\D31 D32 D33: %12.4f ,%12.4f ,%12.4f\n", D31 ,D32 ,D33);

printf("\D41 D42 D43: %12.4f ,%12.4f ,%12.4f\n", D41 ,D42 ,D43);

printf("\D51 D52 D53: %12.4f ,%12.4f ,%12.4f\n", D51 ,D52 ,D53);

printf("\D61 D62 D63: %12.4f ,%12.4f ,%12.4f\n", D61 ,D62 ,D63);

warnings[0] = WARN_GOOD_SOLUTION;

return (0);

}

107

 APPENDIX D: THE FORWARD AND INVERSE KINEMATICS CREATION OF

EXECHON

 In this section, the forward kinematics of complete structure of Exechon (including the wrist) and

inverse kinematics (without the wrist attached) will be explained.

 FORWARD KINEMATICS: EXECHON

 The parts necessary to build an Exechon robot

a) 2 fixed base parts named Base13 and Base2

b) 3 legs named Act2 and Act1

c) 3 prismatic actuators IG13 and IG2_a

d) 1 mobile platform named MP

e) 1 revolute joint component named IG2_b for spherical joint in leg 3

f) 1 part for the wrist’s first revolute joint named Ax4

g) 1 part for the wrist’s second revolute joint named Ax5

h) 1 part named OG13 to connect 2 identical legs via revolute joints

i) 1 part named OG2 to connect the perpendicular leg (leg 3) to base part Base2

j) 1 pseudo part named 0 to serve as the reference frame and base for the robot.

(a) (b) (c)

(d) (e) (f)

108

 First step in building of the mechanism is to form the node tree by first creating components

using New Component button and inserting the necessary parts by Existing Component

button. The steps and resulting tree should look like

 The second step is to create the FOI folders as in Flexapod 6P case. Thus, click and then

create the folders under each component.

 The third step is to create a new mechanism and appoint the pseudo part 0 fixed by

clicking button and selecting part 0.

(g) (h) (i)

Figure D.1. Parts of Exechon

Figure D.2. Respective nod-tree

109

 The fourth step is to place the base frame into pseudo part 0. Click and select the FOI

folder under the part 0. For the location of FOI, select Design and place it in the same

location at the world coordinate frame of DELMIA.

 The next step is to create the revolute joint between pseudo part 0 and OG13. First, create a

FOI at the center of OG13 and another FOI at the base. The directions are then

X

Z

Y

X

Z

Y

Figure D.4. FOIs for base and OG13

Figure D.3. FOI for base

110

 Now, create a revolute joint between these FOIs by clicking button and select the

revolute joint and respective FOIs. Then click OK.

 In this step, create a new revolute joint without actuation. First, create the respective

FOIs at the center of rotation for OG13. Then, create the FOIs as below. The respective

FOIs then

Z

X
Y

Z

Y

X

Z
X

Y

Figure D.6. FOIs for OG13 and actuators

Figure D.5. Revolute joint for base and OG13

111

 The result of revolute joint creation should look like

 Before legs are attached, rigid joint between mobile platform and base part should be

created in order to keep the prismatic joints equal to each other and compliant with

standards of the robot. Thus, the required coordinates for mobile platform MP are [0,

50, -1250]T.

 Along with the MP also bring the base part Base12 and create another rigid joint

between pseudo part 0 and Base12. Propagation of all the parts should be done with

respect to the centers appointed while the parts are being created. The result should

look like

Figure D.8. Propagated mobile platform with respect to OG13

Figure D.7. Assembled actuators to OG13

112

 Now, the legs 1 and 2 can be assembled via revolute joints to MP. First, appoint FOIs (for

prismatic joints) to the centers of rotation at lower attachment points for both legs as

shown in the next figure.

 Next, appoint another set of FOIs for revolute joints to both legs as

Z

X
Y

Figure D.9. FOI for prismatic joint

Figure D.10. FOI for revolute joint

113

 The second set of FOIs will be created for MP’s revolute joints. The respective FOIs

should look like

 Now, create the revolute joints for each leg, and the result should look like

Z

X

Y

Figure D.12. Leg 1 and 2 assembled to mobile platform

Figure D.11. FOI for mobile platform

114

 In this step, the prismatic joints will be created. First, create a set of FOIs at actuators.

The FOIs must be at the center of rotation and should look like

 The tricky point is to directly create the prismatic joints without making any changes in

the rotation of legs and the actuators. This convenient method is provided by the fact

that MP is fixed to the base. Thus, when prismatic joints are created the result is

Z

 Y
X

Figure D.14. Leg 1 and 2 assembled to actuators

Figure D.13. FOIs in actuators for prismatic joints

115

 Now, the third leg will be connected to MP. The FOIs for the lower attachment points

are the same as the leg 1 and 2. The FOI on MP will be the same as others as well. Thus,

the result of FOI creation for MP and leg 3 should look like

 When the revolute joint is created, the result is then

Z Y

X

Figure D.15. FOIs for Leg 3 and mobile platform

Figure D.16. Leg 3 and mobile platform assembled

116

 Now, the creation of the spherical joint of leg 2 will be done. It is important to start from

the second base because attaching successively prismatic joints first and the spherical

joint later may result in a state where standards for prismatic joint and the second base

are out of limits. Thus, first create a FOI in the pseudo part 0 at the coordinates [0, 670,

0]T. The respective FOI should look like

 Now, propagate Base2 to the same location as previous FOI and create a rigid joint

between pseudo part 0. The result should look like

Z X

Y

Figure D.18. Rigid joint creation for base2 with pseudo base

Figure D.17. FOIs for the second base

117

 In this step, the 3 successive revolute joints which correspond to a spherical joint will be

built. The first revolute joint will be the rotation between Base 2 and the OG2. As usual,

the FOIs will be appointed first. This time, though, pseudo part 0’s second FOI will be

used since its Z-axis corresponds to the rotation of this joint. Thus, only one FOI will be

created in OG2. The FOI and the result of joint creation should look like

 Now, the second revolute joint will be created between OG2 and IG2a. This time 2

separate FOIs will be created in both parts. The FOIs should be at the center and look

like

Z X

Y

X
Z

Y

Z
X

Y

Figure D.19. FOIs for OG2 and pseudo base

Figure D.20. FOIs for OG2 and actuator

118

 The result of the joint creation for the second revolute joint should look like

 The last revolute joint will create the rotation between IG2a and IG2b. The respective

FOIs that should be created for both parts should look like

Z

Y

X

Z

Y

X

Figure D.21. Revolute joint creation between OG2 and actuator

Figure D.22. FOIs for actuator components

119

 Then, the result of the joint creation will be

 Now, the last joint – the prismatic – will be built. In the earlier steps, the necessary FOI

for prismatic joint on the leg 3 was created. The FOI for the revolute joint used in part

IG2b will also be used here as well. Thus, go directly the joint creation and select the

respective joints. The steps should be

Figure D.23. Revolute joint creation for actuator components

Figure D.24. Prismatic joint creation for leg and the actuator

120

 Hence, the result should be

 The rest of the joints will be used to build the wrist. On the other hand, the inverse

kinematics will only cover for the parallel structure, which is the figure above. Thus for

the joints in the wrist, a FOI in part MP will be created at the center of MP which also

corresponds to the center of rotation for the wrist as stated in the theory section. Thus,

the FOIs in MP and Ax4 should look like

Z

X Y

Figure D.25. Parallel structure of Exechon

Figure D.26. FOIs for wrist and mobile platform

121

 The result, then, for the first revolute joint of the wrist should look like

 Now the second revolute joint will be created. For this operation the respective FOIs

should look like

Z

Y
X

X
Y Z

Figure D.27. Revolute joint between wrist and mobile platform

Figure D.28. FOIs for wrist and driller

122

 Thus, the result of the final joint creation should result as

 Now, check the directions of the prismatic joints. Make sure that they all move in the

same direction. This step is important when defining the joint limits. Thus, chosen

directions for this thesis work are all in positive direction towards the wrist. Hence, the

directions should look be as

Figure D.30. Joint check

Figure D.29. Exechon’s hybrid structure

123

 Now, test the mechanism by using the Jog Mechanism property as in Flexapod 6P case.

When confirmed that the system is working as intended, the measurements will be

made for inverse kinematics.

 On the other hand, at some steps, DELMIA V5 might exhibit unexpected behaviors at

the joints where the fixed part acts as mobile instead of the intended mobile part. In

those situations, change the direction of the joint and DELMIA is most likely to respond

as expected. If not, it is recommended to rebuild the system.

 When the mechanism jogged, the behavior should be as

 At this point, it is also important to check the posture of the joints to make sure that the

complete structure is at zero position and fits the standards. To achieve this, measure

the prismatic joints total lengths. Identical legs 1 and 2 should yield the same number

whereas leg 3 will be different. The measurements should be done by using FOIs, and

they should look like

Figure D.31. Motion check

Figure D.32. Measuring travel limits

124

 The second set of measurements will be done to get the limits for the prismatic joints.

These measurements should look like

 Then, with the measurements the following table can be created to set the travel limits.

The table then

Prismatic Joint 1 Prismatic Joint 2 Prismatic Joint 3

Total Length 745 745 745

Lower Limit -150 -150 -225

Upper Limit 595 595 520

 Since the mechanism is set and ready to use, now the inverse kinematics can be defined.

Figure D.34. Defining travel limits

Figure D.33. Measuring other lengths to define travel limits

125

 EXECHON INVERSE KINEMATICS

 As in Flexapod 6P and hexapod cases, the inverse kinematics definition will be made for

DELMIA V5 environment. To start with, create a part named TCP and place it at the

center of the wrist. The result should look like

 Now, click on Inverse Kinematics button and define the properties as following

o Mount Part: TCP

o Mount Offset: The FOI at the center of the wrist

o Base: Pseudo part 0

o Base reference: Pseudo part 0

o Approach Axis: Z

o Approach Direction: Out

o Solver Type: User Inverse

Figure D.35. Attaching new part to a TCP

126

 The result should look like

 Now, click on Advanced and proceed to the Configurations and Actuator Space Map tabs.

The Configurations tab should look like

 The attributes in the Actuator Space Map should be as

 Joints Map Joints Type Kin Axis Type Kin DOF Kin Part

Command 1 dof(1) Translational Trans Z 1 Leg 1

Command 2 dof(2) Translational Trans Z 2 Leg 2

Command 3 dof(3) Translational Trans Z 3 Leg 3

Command 4 dof(4) Rotational Rot Z 4 Ax4

Command 5 dof(5) Rotational Rot Z 5 Ax5

Figure D.36. Basic tab for inverse kinematics

Figure D.37. Configurations tab for inverse kinematics

127

 Then, the tab should look like

 The final tab Solver Attributes should only contain C-file and library names

 Then click OK, and start jogging the mechanism. As in earlier cases, compare the joint

values on Mechanism tab to the solutions displayed on the debugging window.

Figure D.38. Actuator parameters for inverse kinematics

Figure D.39. Library and C-file names for solver tab

128

 EXECHON C-FILE

 The C-file that should be directly transferred can be copied and pasted as seen below.

/**

**

** USER KINEMATICS EXAMPLE

**

** Copyright (c) 1990 Delmia Corporation, All rights reserved.

**

** This file contains an example of a kinematics routine for the

** shared library. This example will work for 4 DOF 2 Config (left and

right

** elbow) scara robots such as the ASEA/IRB300. By default,

** kin_usr1 is mapped to this routine.

**

** For a description of kinematics solutions refer to:

**

** Paul, Richard P., "Robot Manipulators: Mathematics, Programming

** and Control", The MIT Press, Cambridge, Massachusetts, 1981.

**

** DESCRIPTION OF ARGUMENTS

**

** double T6[4][4] 4x4 position matrix of center of wrist. This is

** the goal point MINUS the tool frame and mounting

** plate offsets. This is the easiest point to start

** the inverse kinematic solution from, and is the

** traditional approach.

**

** NOTE: T6 matrix may be transposed from your usual

** notation.

**

** | nx ny nz 0 | \\

** T6 = | ox oy oz 0 | > direction cosines (9)

** | ax ay az 0 | /

** | px py pz 1 | -> position terms (3)

**

** px = T6[3][0];

**

** double link_lengths[] Distance between joint axis along link length

**

** double link_offsets[] Offset between joint axis along joint axis

**

** These two arrays can be considered the Denevitt-

** Hartenburg variables described in Paul's book, or

** any convenient scheme the user desires.

**

** double solutions[][] A two dimensional array contains all possible

** solutions for robot arm. It is up to user to

** decide how many solutions are possible, and to

** provide all solutions when routine is called:

** elbow up, elbow down, etc. The CONFIGS

** Button in IGRIP allows user to view all possible

** solutions and may provide insight into importance

** of this array.

129

**

** int warnings[] Array providing warning states for each solution

** such as unreachable, singular, etc. Possible

warning

** states are defined in include file shlibdefs.h

** and are:

**

** WARN_GOOD_SOLUTION

** WARN_JOINT_LIMIT_EXCEEDED

** WARN_UNREACHABLE

** WARN_SINGULAR_SOLUTION

**

** NOTE: shlibdefs.h is automatically included by the IGRIP Shared

** Library Make system. For further details regarding the

building

** of the shared library, refer to the IGRIP Motion Pipeline

** Reference Guide

**

**

** Words of encouragement

**

** Writing inverse kinematics routines is a challenge. Invariably

** you will make mistakes which later seem trivial. Even experts on

** the subject loathe writing a new routine. The usual problems

** are matching the routines view of the world with the device

** definition. You must check that where this routine thinks is

** the axis origin, or the zero reference position, is the same

** as the IGRIP device. Also make sure that each agree upon the

positive

** sense of direction. These are the most common foul ups. Next,

** the mounting plate offset may be wrong, so when first debugging

** your routine, set the mounting plate and tool frame offsets to

** zero. Next check for dropped signs in your equations. Maybe

** an inverse trig function is returning an angle in a different

quadrant

** than the one you want. Perhaps you should be using atan2 instead

** of atan (or vice-versa). Remember that trig and inverse trig

function

** angles are in radians. Also, check array indices. Remember that

** arrays start at zero not one, so link_4's offset is at

link_offsets[3].

** Are you referring to T6[3][2], when you mean T6[2][3]? Remember that

** transformation matrices may be transposed from standard text book

** definitions. Once you get your routine to work you will have earned

** the title of kinematician.

**

**/

#include <shlibdefs.h>

130

/*

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

**

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

** |

** |

** \ /

** v */

#define NUM_SOLUTIONS 1 /* Number of possible solutions */

#define NUM_DOFS 3 /* Number of joints to be solved */

/* ^

** / \

** |

** |

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

**

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

*/

/*

 * User must supply this function

*/

DllExport int

get_kin_config(char *kin_routine, int *kin_dof, int *solution_count, int

*usrKinDataHint)

{

 if(strcmp(kin_routine, "kin_exechon") == 0)

 {

 *kin_dof = NUM_DOFS;

 *solution_count = NUM_SOLUTIONS;

 /*

 * this indicates kin_usr's last argument (void *pData)

 * will be DLM_Data_KinStat

 */

 *usrKinDataHint = USR_KIN_DATA_KINSTAT;

 return 0;

 }

 return 1;

}

131

static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };

static char KinMode[2][24] = { "Normal", "TrackTCP" };

/*

** Routine Name

*/

DllExport int

kin_exechon(

 link_lengths,

 link_offsets,

 T6, /* See above for description of these arguments */

 solutions,

 warnings,

 pData

)

/*

** Passed Variable Declarations

*/

double T6[4][4],

 link_lengths[],

 link_offsets[],

 solutions[][NUM_SOLUTIONS];

int warnings[];

void *pData; /* usr routine should NEVER delete pData */

{

/*

** Local Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33;

long double L1,L2,L3,J1,J2,J3, Lref12,Lref3;

//Variables to perform matrix multiplication

int row1,row2,row3;

int col1,col2,col3;

int inner1,inner2,inner3;

// The upper attachmentpoints for each leg (The vector between the TCP and

each upper attachment point).

long double L1tToTCP[4][1];

long double L2tToTCP[4][1];

long double L3tToTCP[4][1];

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool

Centre Point) - see line 307.

long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).

long double L1tCur[4] = {0};

long double L2tCur[4] = {0};

long double L3tCur[4] = {0};

132

//Lower attachemnt points on each leg (in Base coordinates)

long double L1b[3];

long double L2b[3];

long double L3b[3];

#if 1

/*

* using pData

*/

 int i;

 DLM_Data_KinStat *pDLM_Data = (DLM_Data_KinStat *) pData;

 if(pDLM_Data)

 {

 printf("\n\ndof_count: %d\n", pDLM_Data->dof_count);

 printf("\njoint_types:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%s ", JointType[(pDLM_Data->joint_types)[i]]);

 printf("\n\nkin_mode: %s\n", KinMode[pDLM_Data->kin_mode]);

 printf("\njoint_values:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->joint_values[i]);

 printf("\n\njnt_trvl_lmts lower:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[0][i]);

 printf("\n\njnt_trvl_lmts upper:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[1][i]);

 printf("\n\n");

 }

#endif

/***--------------- Execution Begins Here ----------------------------------

***/

 /*

 ** DO NOT REMOVE THIS BLOCK OF CODE

 ** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC

 ** DOFS FOR THE DEVICE

 */

 if(!kin_check_definition(NUM_DOFS, NUM_SOLUTIONS))

 {

 /*

 ** Inconsistency between device definition and inverse

 ** kinematics routine exists. A warning message has been

 ** issued and routine aborted

 */

 return(1);

 }

/***---------------- User code begins here ---------------------------------

***/

133

//Importing the current TCP values from Delmia through the T6 matrix and

putting proper context

nx = T6[0][0];

ny = T6[0][1];

nz = T6[0][2];

ox = T6[1][0];

oy = T6[1][1];

oz = T6[1][2];

ax = T6[2][0];

ay = T6[2][1];

az = T6[2][2];

px = T6[3][0];

py = T6[3][1];

pz = T6[3][2];

//Printing the current TCP values in the debug window for evaluation purposes

printf("\nx ny nz: %12.4f ,%12.4f ,%12.4f\n", nx ,ny ,nz);

printf("\ox oy oz: %12.4f ,%12.4f ,%12.4f\n", ox ,oy ,oz);

printf("\ax ay az: %12.4f ,%12.4f ,%12.4f\n", ax ,ay ,az);

printf("\px py pz: %12.4f ,%12.4f ,%12.4f\n", px ,py ,pz);

//The transforming T6 matrix from row vectors form to column vector form

TCP[0][0] = nx; TCP[0][1] = ox; TCP[0][2] = ax; TCP[0][3] = px;

TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;

TCP[2][0] = nz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;

TCP[3][0] = 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3][3] = 1;

//Printing the transformed matrix TCP

printf("\n Transformed T6 matrix - TCP matrix\n");

printf("\nx ox ax px: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nx ,ox ,ax, px);

printf("\ny oy ay py: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", ny ,oy ,ay, py);

printf("\nz oz az pz: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nz ,oz ,az, pz);

//The vector between the TCP and the upper attachmentpoints for each leg

L1tToTCP[0][0] = 173; L1tToTCP[1][0] = -50; L1tToTCP[2][0] = 485;

L1tToTCP[3][0] = 1;

L2tToTCP[0][0] = -173; L2tToTCP[1][0] = -50; L2tToTCP[2][0] = 485;

L2tToTCP[3][0] = 1;

L3tToTCP[0][0] = 0; L3tToTCP[1][0] = 173; L3tToTCP[2][0] = 485;

L3tToTCP[3][0] = 1;

//The lower attachmentpoints for each leg (in Base-coordinates).

L1b[0] = 420; L1b[1] = 0; L1b[2] = 0;

L2b[0] = -420; L2b[1] = 0; L2b[2] = 0;

L3b[0] = 0; L3b[1] = 670; L3b[2] = 0;

//Calculating the current position (in x,y,z in Base coordinates) of each

upper attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)

and the upper attachmentpoint for each leg (LxToTCP[][])

134

//Calculate upper position on Leg1 (The array L1tCur)

 for (row1 = 0; row1 < 4; row1++) {

 for (col1 = 0; col1 < 1; col1++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner1 = 0; inner1 < 4; inner1++) {

 L1tCur[row1] += TCP[row1][inner1] * L1tToTCP[inner1][col1];

 }

 }

 }

 //Calculate upper position on Leg2 (The array L2tCur)

 for (row2 = 0; row2 < 4; row2++) {

 for (col2 = 0; col2 < 1; col2++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner2 = 0; inner2 < 4; inner2++) {

 L2tCur[row2] += TCP[row2][inner2] * L2tToTCP[inner2][col2];

 }

 }

 }

//Calculate upper position on Leg3 (The array L3tCur)

 for (row3 = 0; row3 < 4; row3++) {

 for (col3 = 0; col3 < 1; col3++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner3 = 0; inner3 < 4; inner3++) {

 L3tCur[row3] += TCP[row3][inner3] * L3tToTCP[inner3][col3];

 }

 }

 }

// Calcultates the distance between the upper and lower attachment points for

each leg.

L1 = sqrt(((pow((L1tCur[0]-L1b[0]),2)))+((pow((L1tCur[1]-

L1b[1]),2)))+((pow((L1tCur[2]-L1b[2]),2))));

L2 = sqrt(((pow((L2tCur[0]-L2b[0]),2)))+((pow((L2tCur[1]-

L2b[1]),2)))+((pow((L2tCur[2]-L2b[2]),2))));

L3 = sqrt(((pow((L3tCur[0]-L3b[0]),2)))+((pow((L3tCur[1]-

L3b[1]),2)))+((pow((L3tCur[2]-L3b[2]),2))));

//The distance between upper and lower leg attachmentpoint when the command

joint is zero. Used as a reference to get the current leg length

Lref12 = 803.887;

Lref3 = 886.021;

//Calculates the joint values by calulating the differnce in distance between

the two attachmentpoints on each leg and a reference length (Lref)

//(the lenght between attachment points when the joints are 0)

J1 = L1 - Lref12;

J2 = L2 - Lref12;

J3 = L3 - Lref3;

135

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0][0] = J1;

solutions[1][0] = J2;

solutions[2][0] = J3;

//Printing some of the variable values out in the debug window to ease

debugging and get an overview of what is going on

printf("\n The leg lengths\n");

printf("J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3);

printf("L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3);

D11 = L1tCur[0]; D12 = L1tCur[1]; D13 = L1tCur[2];

D21 = L2tCur[0]; D22 = L2tCur[1]; D23 = L2tCur[2];

D31 = L3tCur[0]; D32 = L3tCur[1]; D33 = L3tCur[2];

printf("\n The legs' lower attachment point coordinates \n");

printf("\D11 D12 D13: %12.4f ,%12.4f ,%12.4f\n", D11 ,D12 ,D13);

printf("\D21 D22 D23: %12.4f ,%12.4f ,%12.4f\n", D21 ,D22 ,D23);

printf("\D31 D32 D33: %12.4f ,%12.4f ,%12.4f\n", D31 ,D32 ,D33);

warnings[0] = WARN_GOOD_SOLUTION;

return (0);

}

136

 APPENDIX E: GANTRY-TAU ROBOT

 In this appendix, the forward and inverse kinematics of Gantry-Tau robot will be given. The C-file

that can be directly copied to another file is also attached at the end of the inverse kinematics

calculation.

 FORWARD KINEMATICS: GANTRY-TAU

 The parts that constitute this robot are

a) Three fixed beams for the prismatic joints named Prismatic_fixed_1, 2 and 3

b) Three mobile parts for the prismatic joints named Prismatic_mobile_1, 2 and 3

c) Six links named arm_1, 2,…,6

d) A mobile platform named Mobile_platform

e) Six pseudo parts to create successive rotations named ins_sph_1,2,…,6

f) One pseudo part to define the base coordinate frame named Base_ref

 The first step in building the mechanism is to insert the all parts as in earlier cases. The node

tree then should look like

(a) (b) (c) (d)

Figure E.1. Parts of Gantry-TAU

Figure E.2. The nod-tree for Gantry-TAU

137

 Then, click New Mechanism button . Afterwards, click Fix button and select one of the

Prismatic_fixed parts. From their center points, place all the beams with respect to the following

coordinates:

 Prismatic_fixed_1 Prismatic_fixed_2 Prismatic_fixed_3

X -2300 100 -1100

Y 0 0 800

Z -3000 -3000 -3000

 With the correct orientations, the result should look like

 Then start appointing FOIs to beams for the prismatic joints with Z-directions as

Z

Y

X

Figure E.3. The prismatic joint beams

Figure E.4. FOIs for prismatic joints

138

 Now, appoint the corresponding FOIs to the prismatic joint’s mobile parts as

 In this step, first create revolute joints between the fixed and mobile parts to make sure that the

origins of each FOI are coinciding with the corresponding ones. Afterwards, delete the newly

created revolute joints and directly create prismatic joints between the same FOI pairs with

Length driven property activated. The result should look like

 Figure E.6. Prismatic joint creation for all beams

Figure E.5. FOIs for prismatic joints mobile part

139

 Now, the links will be attached to the mobile platform via spherical joints. First, create the

corresponding FOIs at the center of sockets on the mobile platform. Then, create the

corresponding FOIs on each link. The orientation of these set of FOIs do not matter since a

spherical joint only requires a coincidence in the origin. Thus, the result should look like

 Next, create the spherical joints by clicking Joint From Axis and selecting Spherical as joint

type. The result should look like as

 Then, repeat this action for the remaining links and the result should be as

Figure E.7. FOIs for spherical joints

Figure E.8. Spherical joint creation

140

 Now, create the FOIs for the successive rotations’ first revolute joints at upper attachment

points. Initially, start creating the respective FOIs at the center of sockets in mobile platforms.

The result should look like

Z

Y

Figure E.9. Spherical joints for all legs

Figure E.10. FOIs for universal joint

141

 Now, go to pseudo part ins_sph and create a FOI folder. Inside that folder create a FOI and place

it on the previous FOI at the same direction. Then, click Joint From Axis and create the revolute

joint. The result should look like

 At the same location under the pseudo part, create another FOI with Z-direction matching

previous FOI’s Y-direction. The result should look like

Figure E.11. First revolute joint of universal joint

Figure E.12. Second set of FOIs for the second revolute joint of universal joint

142

 The corresponding FOI for previous frame will be created in the link’s end that is not connected

to the mobile platform. The orientation of this FOI does not matter since the other end is a

spherical joint. Thus, the FOI in the link should be at the center of the ball and look like

 Now, create the second revolute joint between the respective FOIs. The result should look like

Figure E.13. FOI in the leg for the universal joint

Figure E.14. Completed universal joint creation

143

 Then, repeat the same pattern for the remaining links and the result should look like

 The last part of the forward kinematics is to place the pseudo part Base_ref to the center of the

prismatic joint 1 (the cluster with 2 links). The result should look like

Figure E.15. Completed mechanism

Figure E.16. FOI for the base reference

144

 In this step, click on the prismatic joints to make sure that their directions are in negative Z-

direction of the base frame. The result should look like

 In this step, appoint the travel limits by clicking button. The limits for all prismatic joints are [-

1,2600] mm.

 Now, click on Jog Mechanism button to see that the behavior of the mechanism is correct.

 INVERSE KINEMATICS: GANTRY-TAU

 First, create the TCP part and place it under the mobile platform at the center of the surface.

The result should look like

Figure E.18. Attaching new part to TCP

Figure E.17. Joint check

145

 Now, create the FOI for the mobile part at the center of TCP with the same orientation as base

coordinate frame. The result should be as

 Then, click on Inverse Kinematics button and define Basic tab parameters as

o Mount Part: TCP

o Mount Offset: The FOI at the center of the wrist Tool1

o Base: Pseudo part Base_ref

o Base reference: Pseudo part Base_ref

o Approach Axis: Z

o Approach Direction: Out

o Solver Type: User Inverse

Figure E.19. Attaching tool FOI to TCP

Figure E.20. Defining parameters for basic tab

146

 Now, click Advanced and make sure that Posture_1 in Configurations tab is valid. The result

should be as

 In Actuator Space Map tab, the parameters should be as

 Joints Map Joints Type Kin Axis Type Kin DOF Kin Part

Command 1 dof(1) Translational Trans Z 1 Prismatic_mobile_2

Command 2 dof(2) Translational Trans Z 2 Prismatic_mobile_3

Command 3 dof(3) Translational Trans Z 3 Prismatic_mobile_1

 The result in the tab should look like

Figure E.22. Defining parameters for actuators

Figure E.21. Validating Posture for configurations tab

147

 In the last tab – Solver Attributes, fill the library name as libtau and the routine name as kin_tau.

The tab should be as

 Then, click OK and start testing the robot by using the Jog Mechanism button as in earlier

cases and check whether the inverse kinematics’ joint values are matching the actual values by

on the Mechanism tab.

Figure E.23. Defining library and C-file names

148

 FORWARD KINEMATICS THEORY OF GANTRY-TAU ROBOT

 The theory of forward kinematics of Gantry-Tau robot will be presented in this section in order to

prove that DELMIA V5’s posture change for this robot is resulting in two different TCP coordinates. Also,

not to interrupt the consistency of the structure of the robot it was decided to present the relative

theory as appendix.

 As Johannesson (2003) states the forward kinematics of Gantry-Tau robot can be presented as

three spheres created for each cluster; thus, the intersection(s) of these spheres will yield the TCP

coordinates.

 If, again, the vectors for each cluster are formulated with respect to TCP values, the result then

where is the vector that defines prismatic actuators,
 is the vector from the end of prismatic joint

vector the universal joints. is the vector that connects TCP () to the attachment points of legs on the

mobile platform. Thus, when this equation is written with components and its absolute value is taken

for lengths of the each cluster, the result will be

Z

X Y

Prismatic

Prismatic

Prismatic

Revolute
Revolute

Spherical Joints

Figure E.24. Gantry-TAU schematics

149

Thus, the spherical equation above can be easily solved and since the equation is a second order

polynomial, the result of this equation will yield two sets of solutions for vector; hence, TCP

coordinates get two different values for a set of given joint values. The MATLAB function of this

calculation can be seen in appendix G.

150

 THE C-FILE FOR GANTRY-TAU ROBOT
/**

**

** USER KINEMATICS EXAMPLE

**

** Copyright (c) 1990 Delmia Corporation, All rights reserved.

**

** This file contains an example of a kinematics routine for the

** shared library. This example will work for 4 DOF 2 Config (left and

right

** elbow) scara robots such as the ASEA/IRB300. By default,

** kin_usr1 is mapped to this routine.

**

** For a description of kinematics solutions refer to:

**

** Paul, Richard P., "Robot Manipulators: Mathematics, Programming

** and Control", The MIT Press, Cambridge, Massachusetts, 1981.

**

** DESCRIPTION OF ARGUMENTS

**

** double T6[4][4] 4x4 position matrix of center of wrist. This is

** the goal point MINUS the tool frame and mounting

** plate offsets. This is the easiest point to start

** the inverse kinematic solution from, and is the

** traditional approach.

**

** NOTE: T6 matrix may be transposed from your usual

** notation.

**

** | nx ny nz 0 | \\

** T6 = | ox oy oz 0 | > direction cosines (9)

** | ax ay az 0 | /

** | px py pz 1 | -> position terms (3)

**

** px = T6[3][0];

**

** double link_lengths[] Distance between joint axis along link length

**

** double link_offsets[] Offset between joint axis along joint axis

**

** These two arrays can be considered the Denevitt-

** Hartenburg variables described in Paul's book, or

** any convenient scheme the user desires.

**

** double solutions[][] A two dimensional array contains all possible

** solutions for robot arm. It is up to user to

** decide how many solutions are possible, and to

** provide all solutions when routine is called:

** elbow up, elbow down, etc. The CONFIGS

** Button in IGRIP allows user to view all possible

** solutions and may provide insight into importance

** of this array.

**

** int warnings[] Array providing warning states for each solution

151

** such as unreachable, singular, etc. Possible

warning

** states are defined in include file shlibdefs.h

** and are:

**

** WARN_GOOD_SOLUTION

** WARN_JOINT_LIMIT_EXCEEDED

** WARN_UNREACHABLE

** WARN_SINGULAR_SOLUTION

**

** NOTE: shlibdefs.h is automatically included by the IGRIP Shared

** Library Make system. For further details regarding the

building

** of the shared library, refer to the IGRIP Motion Pipeline

** Reference Guide

**

**

** Words of encouragement

**

** Writing inverse kinematics routines is a challenge. Invariably

** you will make mistakes which later seem trivial. Even experts on

** the subject loathe writing a new routine. The usual problems

** are matching the routines view of the world with the device

** definition. You must check that where this routine thinks is

** the axis origin, or the zero reference position, is the same

** as the IGRIP device. Also make sure that each agree upon the

positive

** sense of direction. These are the most common foul ups. Next,

** the mounting plate offset may be wrong, so when first debugging

** your routine, set the mounting plate and tool frame offsets to

** zero. Next check for dropped signs in your equations. Maybe

** an inverse trig function is returning an angle in a different

quadrant

** than the one you want. Perhaps you should be using atan2 instead

** of atan (or vice-versa). Remember that trig and inverse trig

function

** angles are in radians. Also, check array indices. Remember that

** arrays start at zero not one, so link_4's offset is at

link_offsets[3].

** Are you referring to T6[3][2], when you mean T6[2][3]? Remember that

** transformation matrices may be transposed from standard text book

** definitions. Once you get your routine to work you will have earned

** the title of kinematician.

**

**/

#include <shlibdefs.h>

/*

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

152

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

**

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

** |

** |

** \ /

** v */

#define NUM_SOLUTIONS 8 /* Number of possible solutions */

#define NUM_DOFS 3 /* Number of joints to be solved */

/* ^

** / \

** |

** |

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

**

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT

IMPORTANT

*/

/*

 * User must supply this function

*/

DllExport int

get_kin_config(char *kin_routine, int *kin_dof, int *solution_count, int

*usrKinDataHint)

{

 if(strcmp(kin_routine, "kin_tau") == 0)

 {

 *kin_dof = NUM_DOFS;

 *solution_count = NUM_SOLUTIONS;

 /*

 * this indicates kin_usr's last argument (void *pData)

 * will be DLM_Data_KinStat

 */

 *usrKinDataHint = USR_KIN_DATA_KINSTAT;

 return 0;

 }

 return 1;

}

static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };

static char KinMode[2][24] = { "Normal", "TrackTCP" };

153

/*

** Routine Name

*/

DllExport int

kin_tau(

 link_lengths,

 link_offsets,

 T6, /* See above for description of these arguments */

 solutions,

 warnings,

 pData

)

/*

** Passed Variable Declarations

*/

double T6[4][4],

 link_lengths[],

 link_offsets[],

 solutions[][NUM_SOLUTIONS];

int warnings[];

void *pData; /* usr routine should NEVER delete pData */

{

/*

** Local Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, oz, ax, ay, az, px, py, pz;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33;

long double J11,J12,J21,J22,J31,J32, Lref,Lref2;

//Variables to perform matrix multiplication

int row1,row2,row3;

int col1,col2,col3;

int inner1,inner2,inner3;

// The prismatic joint vectors for each leg (The vector between the TCP and

each upper attachment point).

long double P1[4][1];

long double P2[4][1];

long double P3[4][1];

// The vectors that connect upper attachment points to prismatic joints

long double d1[4][1];

long double d2[4][1];

long double d3[4][1];

// The vectors that connect lower attachment points to TCP

long double n1[4][1];

long double n2[4][1];

long double n3[4][1];

// The resulting vectors of multiplication of ni vectors with TCP matrix

long double NT1[4][1] = {0};

long double NT2[4][1] = {0};

long double NT3[4][1] = {0};

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool

Centre Point) - see line 307.

long double TCP[4][4];

154

#if 1

/*

* using pData

*/

 int i;

 DLM_Data_KinStat *pDLM_Data = (DLM_Data_KinStat *) pData;

 if(pDLM_Data)

 {

 printf("\n\ndof_count: %d\n", pDLM_Data->dof_count);

 printf("\njoint_types:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%s ", JointType[(pDLM_Data->joint_types)[i]]);

 printf("\n\nkin_mode: %s\n", KinMode[pDLM_Data->kin_mode]);

 printf("\njoint_values:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->joint_values[i]);

 printf("\n\njnt_trvl_lmts lower:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[0][i]);

 printf("\n\njnt_trvl_lmts upper:\n");

 for(i = 0; i < pDLM_Data->dof_count; i++)

 printf("%12.4f ", pDLM_Data->jnt_trvl_lmts[1][i]);

 printf("\n\n");

 }

#endif

/***--------------- Execution Begins Here ----------------------------------

***/

 /*

 ** DO NOT REMOVE THIS BLOCK OF CODE

 ** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC

 ** DOFS FOR THE DEVICE

 */

 if(!kin_check_definition(NUM_DOFS, NUM_SOLUTIONS))

 {

 /*

 ** Inconsistency between device definition and inverse

 ** kinematics routine exists. A warning message has been

 ** issued and routine aborted

 */

 return(1);

 }

/***---------------- User code begins here ---------------------------------

***/

155

//The vectors to define the prismatic joints where Pi[2][0] is the prismatic

joint value in negative direction

P1[0][0] = 0; P1[1][0] = 0; P1[2][0] = 0; P1[3][0] = 1;

P2[0][0] = -1100; P2[1][0] = 700; P2[2][0] = 0; P2[3][0] = 1;

P3[0][0] = -2200; P3[1][0] = 0; P3[2][0] = 0; P3[3][0] = 1;

//The constant vectors to define the upper attachment points from prismatic

joint end

d1[0][0] = -96.569; d1[1][0] = -185; d1[2][0] = -400; d1[3][0] = 1;

d2[0][0] = 0; d2[1][0] = -322.843; d2[2][0] = -173.726; d2[3][0] = 1;

d3[0][0] = 96.569; d3[1][0] = 0; d3[2][0] = -400; d3[3][0] = 1;

//The vectors that connect TCP to lower attachment points.

n1[0][0] = 224.999; n1[1][0] = -240.001; n1[2][0] = 171.568; n1[3][0] = 1;

n2[0][0] = 0; n2[1][0] = 39.705; n2[2][0] = 336.862; n2[3][0] = 1;

n3[0][0] = -182.574; n3[1][0] = -80; n3[2][0] = 213.994; n3[3][0] = 1;

//Reference lengths

 Lref=1500 ;

 Lref2=1499.775;

//Importing the current TCP values from Delmia through the T6 matrix and

putting proper context

 nx = T6[0][0];

 ny = T6[0][1];

 nz = T6[0][2];

 ox = T6[1][0];

 oy = T6[1][1];

 oz = T6[1][2];

 ax = T6[2][0];

 ay = T6[2][1];

 az = T6[2][2];

 px = T6[3][0];

 py = T6[3][1];

 pz = T6[3][2];

//The transforming T6 matrix from row vectors form to column vector form

TCP[0][0] = nx; TCP[0][1] = ox; TCP[0][2] = ax; TCP[0][3] = px;

TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;

TCP[2][0] = nz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;

TCP[3][0] = 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3][3] = 1;

//Calculating the current position (in x,y,z in Base coordinates) of each

lower attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)

and the lower attachmentpoint for each leg

//Calculate upper position on Leg1 (The array L1tCur)

 for (row1 = 0; row1 < 4; row1++) {

 for (col1 = 0; col1 < 1; col1++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner1 = 0; inner1 < 4; inner1++) {

 NT1[row1][0] += TCP[row1][inner1] * n1[inner1][col1];

 }

 }

 }

156

 //Calculate upper position on Leg2 (The array L2tCur)

 for (row2 = 0; row2 < 4; row2++) {

 for (col2 = 0; col2 < 1; col2++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner2 = 0; inner2 < 4; inner2++) {

 NT2[row2][0] += TCP[row2][inner2] * n2[inner2][col2];

 }

 }

 }

//Calculate upper position on Leg3 (The array L3tCur)

 for (row3 = 0; row3 < 4; row3++) {

 for (col3 = 0; col3 < 1; col3++) {

 // Multiply the row of A by the column of B to get the row,

column of product.

 for (inner3 = 0; inner3 < 4; inner3++) {

 NT3[row3][0] += TCP[row3][inner3] * n3[inner3][col3];

 }

 }

 }

//Finding the joint values by using the theory. Multiplication with -1 stems

from the direction of the joints.

J11=-1*(NT1[2][0]-d1[2][0]+ sqrt(pow(Lref,2)-pow((P1[0][0]+d1[0][0]-

NT1[0][0]),2)-pow((P1[1][0]+d1[1][0]-NT1[1][0]),2)));

J12=-1*(NT1[2][0]-d1[2][0]- sqrt(pow(Lref,2)-pow((P1[0][0]+d1[0][0]-

NT1[0][0]),2)-pow((P1[1][0]+d1[1][0]-NT1[1][0]),2)));

J21=-1*(NT2[2][0]-d2[2][0]+ sqrt(pow(Lref,2)-pow((P2[0][0]+d2[0][0]-

NT2[0][0]),2)-pow((P2[1][0]+d2[1][0]-NT2[1][0]),2)));

J22=-1*(NT2[2][0]-d2[2][0]- sqrt(pow(Lref,2)-pow((P2[0][0]+d2[0][0]-

NT2[0][0]),2)-pow((P2[1][0]+d2[1][0]-NT2[1][0]),2)));

J31=-1*(NT3[2][0]-d3[2][0]+ sqrt(pow(Lref2,2)-pow((P3[0][0]+d3[0][0]-

NT3[0][0]),2)-pow((P3[1][0]+d3[1][0]-NT3[1][0]),2)));

J32=-1*(NT3[2][0]-d3[2][0]- sqrt(pow(Lref2,2)-pow((P3[0][0]+d3[0][0]-

NT3[0][0]),2)-pow((P3[1][0]+d3[1][0]-NT3[1][0]),2)));

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0][0] = J11; solutions[1][0] = J21; solutions[2][0] = J31;

solutions[0][1] = J11; solutions[1][1] = J21; solutions[2][1] = J32;

solutions[0][2] = J11; solutions[1][2] = J22; solutions[2][2] = J31;

solutions[0][3] = J11; solutions[1][3] = J22; solutions[2][3] = J32;

solutions[0][4] = J12; solutions[1][4] = J21; solutions[2][4] = J31;

solutions[0][5] = J12; solutions[1][5] = J21; solutions[2][5] = J32;

solutions[0][6] = J12; solutions[1][6] = J22; solutions[2][6] = J31;

solutions[0][7] = J12; solutions[1][7] = J22; solutions[2][7] = J32;

157

//Printing some of the variable values out in the debug window to ease

debugging and get an overview of what is going on

//Printing the current TCP values in the debug window for evaluation purposes

printf("\nx ny nz: %12.4f ,%12.4f ,%12.4f\n", nx ,ny ,nz);

printf("\ox oy oz: %12.4f ,%12.4f ,%12.4f\n", ox ,oy ,oz);

printf("\ax ay az: %12.4f ,%12.4f ,%12.4f\n", ax ,ay ,az);

printf("\px py pz: %12.4f ,%12.4f ,%12.4f\n", px ,py ,pz);

//Printing the transformed matrix TCP

printf("\n Transformed T6 matrix - TCP matrix\n");

printf("\nx ox ax px: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nx ,ox ,ax, px);

printf("\ny oy ay py: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", ny ,oy ,ay, py);

printf("\nz oz az pz: %12.4f ,%12.4f ,%12.4f ,%12.4f\n", nz ,oz ,az, pz);

//Joint values

printf("\n The joint values\n");

printf("J11 J21 J31: %12.4f ,%12.4f ,%12.4f\n", J11 ,J21 ,J31);

printf("J11 J21 J32: %12.4f ,%12.4f ,%12.4f\n", J11 ,J21 ,J32);

printf("J11 J22 J31: %12.4f ,%12.4f ,%12.4f\n", J11 ,J22 ,J31);

printf("J11 J22 J32: %12.4f ,%12.4f ,%12.4f\n", J11 ,J22 ,J32);

printf("J12 J21 J31: %12.4f ,%12.4f ,%12.4f\n", J12 ,J21 ,J31);

printf("J12 J21 J32: %12.4f ,%12.4f ,%12.4f\n", J12 ,J21 ,J32);

printf("J12 J22 J31: %12.4f ,%12.4f ,%12.4f\n", J12 ,J22 ,J31);

printf("J12 J22 J32: %12.4f ,%12.4f ,%12.4f\n", J12 ,J22 ,J32);

warnings[0] = WARN_GOOD_SOLUTION;

return (0);

}

158

 APPENDIX F: COMPILATION OF C-FILES

 The compilation of C-files and their placement in DELMIA V5 folder will be covered in this section.

Before this operation being explained, there is a prerequisite that users must fulfill – which is a

compilation tool.

 Dassault Systemes endorses the use of Microsoft Visual Studio (version 8 or higher). On the other

hand, it would be possible to use other compilation tools which support the use of nmake all command.

It must also be noted that the compilation tool must support C# language since the basic version of

Visual Studio does not support the compilation of C-files.

 COMPILATION IN 64-BIT OPERATING SYSTEMS

 Go to “C:\Program Files (x86)\Dassault Systemes\B21\win_b64\startup\DNBUserKinematics”.

The directory may vary depending on the user.

 At this point make sure that the DNBUserKinematics folder has glaux.lib file. If not, copy and paste

the file directly without making any change. This file glaux.lib is a standard library file and it can be

directly found on various sources.

 Create a folder named lib under the same directory.

 Also copy and paste the vcvars.bat file there.

 Copy and paste the C-file created in this directory as well. The result should look like this

 Now, open vcvars.bat file with VS, WordPad or NotePad and it should look like

Figure F.1. DNBUserKinematics folder

Figure F.2. vcvars.bat file for compilation tool

159

 Now, change the directory for the version of Visual Studio used or any other compilation tool

available. For example, in this thesis work VS 9 is used; thus, the line should be

@"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\vcvarsall.bat"

amd64

 Save and close vcvars.bat file and proceed to the next step.

 At this point, necessary changes in makefile will be made. Open makefile in VS, WordPad or

NotePad.

 In makefile, go to lines 1-5 (which specify the names of library and locations that will be created

after compilation) and find the following code and change as following:

library name and locations

DEST = .\lib

LIBRARY = libhexapodFullTest

 Go to line 10 and paste directory of the Visual Studio. It should look like as

set up the MS Visual C++ compiler

MS_LOC= c:\Program Files (x86)\Microsoft Visual Studio 9.0\VC

 OBS! For other versions of VS, change the directory accordingly.

 On line 58, the name of the C-file created before should be specified. Thus, it should look like as

following (notice that it should end with obj extension)

files to compile

OBJS = \

 kin_hexapodFullTest.obj

 When the changes are made, save and close the makefile.

 OBS! Other versions of DELMIA provide different makefiles; however the changes in the file are still

the same as above. The only difference is in the number of lines in which these changes should be

made.

 Now, proceed to compilation operation. First, open the VS command prompt and enter the

following command

cd C:\Program Files\Dassault Systemes\B21\win_b64\startup\DNBUserKinematics

Figure F.3. VS command prompt with folder destination

160

 Under the same directory, type vcvars.bat and press enter. The result should look like

 Now, the compilation operation can be done. Again, remain under the same directory in command

prompt, and write nmake all. If C-file has no errors, the command prompt will look like

 After seeing the up-to-date message, 2 different files are created in the lib folder created in the

beginning. One of these files end with .lib extension whereas the other has .lib.manifest in the end.

 If the completed message as above cannot be observed, the prompt window will show the errors in

C-files. These errors can be semantic or syntax related; and thus, they should be corrected

accordingly.

Figure F.4. VS command prompt after executing vcvars.bat

Figure F.5. VS command prompt after executing nmake all command

161

 COMPILATION IN 32-BIT OPERATING SYSTEMS

 Go to “C:\Program Files\Dassault Systemes\B21\intel_a\startup\DNBUserKinematics”. The

directory may vary depending on the user.

 At this point make sure that the DNBUserKinematics folder has glaux.lib file. If not, copy and paste

the file directly without making any changes on the glaux.lib file. This file glaux.lib is a standard

library file and it can be directly found on the web.

 Create a folder named lib in the same directory. Copy and paste the C-file created in this directory

as well. The result should look like this

 At this point, necessary changes in makefile will be made. Open makefile in VS, WordPad or

NotePad.

 In makefile, go to lines 1-5 (which specify the names of library and locations that will be created

after compilation) and find the following code and change as following

library name and locations

DEST = .\lib

LIBRARY = libhexapodFullTest

 Go to line 10 and paste directory of the VisualStudio. It should look like as

set up the MS Visual C++ compiler

MS_LOC= c:\Program Files (x86)\Microsoft Visual Studio 9.0\VC

 OBS! For other versions of VS, change directory accordingly.

 On line 58, the name of the C-file created before should be specified. Thus it should look like as

following(notice that it should end with obj extension)

files to compile

OBJS = \

 kin_hexapodFullTest.obj

 When the changes are made, save and close the makefile.

Figure F.6. DNBUserKinematics folder

162

 Now, proceed to compilation operation. First, open the VS command prompt and enter the

following command

cd C:\Program Files\Dassault Systemes\B21\win_b64\startup\DNBUserKinematics

 Now, the compilation operation can be done. Again remain under the same directory in command

prompt, and write nmake all. If C-file has no errors, the command prompt will look like

 After seeing the up-to-date message, 2 different files are created in the lib folder created in the

beginning. One of these files end with .lib extension whereas the other has .lib.manifest in the end.

 If the completed message as above cannot be observed, the prompt window will show the errors in

C-files. These errors can be semantic or syntax related.

Figure F.7. VS command prompt with folder destination

Figure F.8. VS command prompt after executing nmake all command

163

 APPENDIX G: MATLAB FUNCTIONS

 HEXAPOD INVERSE KINEMATICS

function [] =hexapod(px,py,pz,tex,tey,tez,T6)
%Enter your tex,tey,tez values that are rotations of the mobile platform in
%degrees. px,py and pz values are the translations in mm. T6 and TCP
%matrices should be created in the workspace and entered with their names
%into the function.
%--
%Creation of necessary symbols and conversions from degrees to radians.
syms x y z tx ty tz;
tex=tex*pi/180;
tey=tey*pi/180;
tez=tez*pi/180;
%--
%Fix values are assigned to the vectors where L.b is the base vector in
%base coordinate frame whereas L.tToTCPs are the vectors that connect the

mobiles
%cooridnate frame to upper attachment points.

L1b=[31;118.156;40.205;1];
L1tToTCP=[31;48.799;-31.45;1];
L2b=[-31;118.156;40.205;1];
L2tToTCP=[-31;48.799;-31.45;1];
L3b=[-117.826;-32.231;40.205;1];
L3tToTCP=[-57.761;2.447;-31.45;1];
L4b=[-86.826;-85.925;40.205;1];
L4tToTCP=[-26.761;-51.246;-31.45;1];
L5b=[86.826;-85.925;40.205;1];
L5tToTCP=[26.761;-51.246;-31.45;1];
L6b=[117.826;-32.231;40.205;1];
L6tToTCP=[57.761;2.447;-31.45;1];
Lref=399.413;

%--
%Creation of transformation matrices for the given values of TCP for T6 and
%TCP matrices.
%R symbolizes rotation here.

R_T6=subs(T6,x,px);
R_T6=subs(R_T6,y,py);
R_T6=subs(R_T6,z,pz);
R_T6=subs(R_T6,tx,tex);
R_T6=subs(R_T6,ty,tey);
R_T6=subs(R_T6,tz,tez);
%--
% Finding leg lengths by using T6 matrix
L1_t6=R_T6*L1tToTCP-L1b;
L2_t6=R_T6*L2tToTCP-L2b;
L3_t6=R_T6*L3tToTCP-L3b;
L4_t6=R_T6*L4tToTCP-L4b;
L5_t6=R_T6*L5tToTCP-L5b;
L6_t6=R_T6*L6tToTCP-L6b;
%--

164

%Vectors to describe upper attachment points from mobile platform with
%respect to the base coordinate system

L1_tTCP=R_T6(1:3,1:3)*L1tToTCP(1:3);
L2_tTCP=R_T6(1:3,1:3)*L2tToTCP(1:3);
L3_tTCP=R_T6(1:3,1:3)*L3tToTCP(1:3);
L4_tTCP=R_T6(1:3,1:3)*L4tToTCP(1:3);
L5_tTCP=R_T6(1:3,1:3)*L5tToTCP(1:3);
L6_tTCP=R_T6(1:3,1:3)*L6tToTCP(1:3);

%--
%total lenght - standard length = joint values for T6 matrix
J1_t6=norm(L1_t6)-Lref;
J2_t6=norm(L2_t6)-Lref;
J3_t6=norm(L3_t6)-Lref;
J4_t6=norm(L4_t6)-Lref;
J5_t6=norm(L5_t6)-Lref;
J6_t6=norm(L6_t6)-Lref;
%--
%Displaying the results
Leg_lengths=[J1_t6;J2_t6;J3_t6;J4_t6;J5_t6;J6_t6]
Coordinates_T6=[R_T6*L1tToTCP,R_T6*L2tToTCP,R_T6*L3tToTCP,R_T6*L4tToTCP,R_T6*

L5tToTCP,R_T6*L6tToTCP]
R_T6

end

165

 FLEXAPOD INVERSE KINEMATICS

function [] =flexapod(px,py,pz,tex,tey,tez,T6)
%Enter your tex,tey,tez values that are rotations of the mobile platform in
%degrees. px,py and pz values are the translations in mm. T6 and TCP
%matrices should be created in the workspace and entered with their names
%into the function.
%--
%Creation of necessary symbols and conversions from degrees to radians.
syms x y z tx ty tz;
tex=tex*pi/180;
tey=tey*pi/180;
tez=tez*pi/180;
%--
%Fix values are assigned to the vectors where L.b is the base vector in
%base coordinate frame whereas L.tToTCPs are the vectors that connect the

mobiles
%cooridnate frame to upper attachment points.

L1b=[-132.5;26;58.5;1];
L1tToTCP=[-48.767;32.466;-75;1];
L2b=[43.733;127.748;58.5;1];
L2tToTCP=[-3.733;58.466;-75;1];
L3b=[88.767;101.748;58.5;1];
L3tToTCP=[52.5;26;-75;1];
L4b=[88.767;-101.748;58.5;1];
L4tToTCP=[52.5;-26;-75;1];
L5b=[43.733;-127.748;58.5;1];
L5tToTCP=[-3.733;-58.466;-75;1];
L6b=[-132.5;-26;58.5;1];
L6tToTCP=[-48.767;-32.466;-75;1];
Lref=376.5;

%--
%Creation of transformation matrices for the given values of TCP for T6 and
%TCP matrices.
%R symbolizes rotation here.

R_T6=subs(T6,x,px);
R_T6=subs(R_T6,y,py);
R_T6=subs(R_T6,z,pz);
R_T6=subs(R_T6,tx,tex);
R_T6=subs(R_T6,ty,tey);
R_T6=subs(R_T6,tz,tez);
%--
% Finding leg lengths by using T6 matrix
L1_t6=R_T6*L1tToTCP-L1b;
L2_t6=R_T6*L2tToTCP-L2b;
L3_t6=R_T6*L3tToTCP-L3b;
L4_t6=R_T6*L4tToTCP-L4b;
L5_t6=R_T6*L5tToTCP-L5b;
L6_t6=R_T6*L6tToTCP-L6b;
%--
%Vectors to describe upper attachment points from mobile platform with
%respect to the base coordinate system

166

L1_tTCP=R_T6(1:3,1:3)*L1tToTCP(1:3);
L2_tTCP=R_T6(1:3,1:3)*L2tToTCP(1:3);
L3_tTCP=R_T6(1:3,1:3)*L3tToTCP(1:3);
L4_tTCP=R_T6(1:3,1:3)*L4tToTCP(1:3);
L5_tTCP=R_T6(1:3,1:3)*L5tToTCP(1:3);
L6_tTCP=R_T6(1:3,1:3)*L6tToTCP(1:3);

%--
%total lenght - standard length = joint values for T6 matrix
J1_t6=norm(L1_t6)-Lref;
J2_t6=norm(L2_t6)-Lref;
J3_t6=norm(L3_t6)-Lref;
J4_t6=norm(L4_t6)-Lref;
J5_t6=norm(L5_t6)-Lref;
J6_t6=norm(L6_t6)-Lref;
%--
%Displaying the results
Leg_lengths=[J1_t6;J2_t6;J3_t6;J4_t6;J5_t6;J6_t6]
Coordinates_T6=[R_T6*L1tToTCP,R_T6*L2tToTCP,R_T6*L3tToTCP,R_T6*L4tToTCP,R_T6*

L5tToTCP,R_T6*L6tToTCP]
R_T6

end

167

 EXECHON INVERSE KINEMATICS

function [] =exechon(px,py,pz,tex,tey,tez,T6)
%Enter your tex,tey,tez values that are rotations of the mobile platform in
%degrees. px,py and pz values are the translations in mm. T6 and TCP
%matrices should be created in the workspace and entered with their names
%into the function.
%--
%Creation of necessary symbols and conversions from degrees to radians.
format short e
syms x y z tx ty tz;
tex=tex*pi/180;
tey=tey*pi/180;
tez=tez*pi/180;
%--
%Fix values are assigned to the vectors where L.b is the base vector in
%base coordinate frame whereas L.tToTCPs are the vectors that connect the

mobiles
%cooridnate frame to upper attachment points.

L1b=[420;0;0;1];
L1tToTCP=[173;-50;485;1];
L2b=[-420;0;0;1];
L2tToTCP=[-173;-50;485;1];
L3b=[0;670;0;1];
L3tToTCP=[-0;173;485;1];
Lref12=803.887;
Lref3=886.021;

%--
%Creation of transformation matrices for the given values of TCP for T6 and
%TCP matrices.
%R symbolizes rotation here.

R_T6=subs(T6,x,px);
R_T6=subs(R_T6,y,py);
R_T6=subs(R_T6,z,pz);
R_T6=subs(R_T6,tx,tex);
R_T6=subs(R_T6,ty,tey);
R_T6=subs(R_T6,tz,tez);
%--
% Finding leg lengths by using T6 matrix
L1_t6=R_T6*L1tToTCP-L1b;
L2_t6=R_T6*L2tToTCP-L2b;
L3_t6=R_T6*L3tToTCP-L3b;
%--
%Vectors to describe upper attachment points from mobile platform with
%respect to the base coordinate system

L1_tTCP=R_T6(1:3,1:3)*L1tToTCP(1:3);
L2_tTCP=R_T6(1:3,1:3)*L2tToTCP(1:3);
L3_tTCP=R_T6(1:3,1:3)*L3tToTCP(1:3);

168

%--
%total lenght - standard length = joint values for T6 matrix
J1_t6=norm(L1_t6)-Lref12;
J2_t6=norm(L2_t6)-Lref12;
J3_t6=norm(L3_t6)-Lref3;
J1_t6_1=-norm(L1_t6)-Lref12;
J2_t6_1=-norm(L2_t6)-Lref12;
J3_t6_1=-norm(L3_t6)-Lref3;

%--
%Displaying the results
Leg_lengths=[J1_t6 J1_t6_1;J2_t6 J2_t6_1;J3_t6 J3_t6_1]
Coordinates_T6=[R_T6*L1tToTCP,R_T6*L2tToTCP,R_T6*L3tToTCP]
R_T6

end

169

 GANTRY-TAU FORWARD KINEMATICS
function []=tau_forward(p1,p2,p3)
%The coordinates of presented vectors with joint values of p1,p2 and p3

inserted.
P1=[0;0;-p1];
P2=[-1100;700;-p2];
P3=[-2200;0;-p3];
d1=[-96.569;-185;-400];
d2=[0;-322.843;-173.726];
d3=[96.569;0;-400];
n1=[224.99;-240.001;171.568];
n2=[0;39.705;336.862];
n3=[-182.574;-80;213.994];
L1=1500;
L2=1499.775;
syms x y z
T=[x;y;z];

%The equations A1,B1 and C1
A=T+n1-(P1+d1);
B=T+n2-(P2+d2);
C=T+n3-(P3+d3);
A1=A(1,1)^2+A(2,1)^2+A(3,1)^2-L1^2;
B1=B(1,1)^2+B(2,1)^2+B(3,1)^2-L1^2;
C1=C(1,1)^2+C(2,1)^2+C(3,1)^2-L2^2;

%The solution
[x,y,z]=solve(A1,B1,C1);
T=[x(1) y(1) z(1);x(2) y(2) z(2)];
double(T)

170

 GANTRY-TAU INVERSE KINEMATICS

function [] =tau(px,py,pz,tex,tey,tez,T6)
syms x y z tx ty tz;
%The radian to degree conversion
tex=tex*pi/180;
tey=tey*pi/180;
tez=tez*pi/180;
%The coordinates of presented vectors.
P1=[0;0;0;1];
P2=[-1100;700;0;1];
P3=[-2200;0;0;1];
d1=[-96.569;-185;-400;1];
d2=[0;-322.843;-173.726;1];
d3=[96.569;0;-400;1];
n1=[224.99;-240.001;171.568;1];
n2=[0;39.705;336.862;1];
n3=[-182.574;-80;213.994;1];
%Reference leg lengths
Lref=1500;
Lref2=1499.775;
%Inserting TCP values to transformation matrix
R_T6=subs(T6,x,px);
R_T6=subs(R_T6,y,py);
R_T6=subs(R_T6,z,pz);
R_T6=subs(R_T6,tx,tex);
R_T6=subs(R_T6,ty,tey);
R_T6=subs(R_T6,tz,tez);
%Multiplication of mobile platform vectors with transformation matrix
NT1=R_T6*n1;
NT2=R_T6*n2;
NT3=R_T6*n3;
%Applying equations for each joint
J11=-1*(NT1(3,1)-d1(3,1)+sqrt(Lref^2-(P1(1,1)+d1(1,1)-NT1(1,1))^2-

(P1(2,1)+d1(2,1)-NT1(2,1))^2));
J12=-1*(NT1(3,1)-d1(3,1)-sqrt(Lref^2-(P1(1,1)+d1(1,1)-NT1(1,1))^2-

(P1(2,1)+d1(2,1)-NT1(2,1))^2));
J21=-1*(NT2(3,1)-d2(3,1)+sqrt(Lref^2-(P2(1,1)+d2(1,1)-NT2(1,1))^2-

(P2(2,1)+d2(2,1)-NT2(2,1))^2));
J22=-1*(NT2(3,1)-d2(3,1)-sqrt(Lref^2-(P2(1,1)+d2(1,1)-NT2(1,1))^2-

(P2(2,1)+d2(2,1)-NT2(2,1))^2));
J31=-1*(NT3(3,1)-d3(3,1)+sqrt(Lref2^2-(P3(1,1)+d3(1,1)-NT3(1,1))^2-

(P3(2,1)+d3(2,1)-NT3(2,1))^2));
J32=-1*(NT3(3,1)-d3(3,1)-sqrt(Lref2^2-(P3(1,1)+d3(1,1)-NT3(1,1))^2-

(P3(2,1)+d3(2,1)-NT3(2,1))^2));

%Displaying results
R_T6
%Joint values
Joint_values=[J11,J21,J31;J11,J21,J32;J11,J22,J31;J11,J22,J32;J12,J21,J31;J12

,J21,J32;J12,J22,J31;J12,J22,J32];
Joint_values
end

