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ABSTRACT

The main subject and aim of this thesis work are to create a methodology to define forward and
inverse kinematics for advanced mechanisms such as robots with parallel and hybrid structures for the
use in the project named LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid
Structures) in DELMIA V5. These respective mechanisms are Hexapod/Flexapod 6P, Exechon and Gantry-
Tau robots. The methodology created for this thesis work is building these robots with their forward and
inverse kinematics definitions and testing the outcome. The forward kinematics aspect covers the
building of the respective mechanisms whereas the inverse kinematics aspect includes the investigation
of relevant theory and transfer of it to a C-file where this file is compiled to the use of DELMIA V5.
Testing aspect focuses on comparing the results achieved with a C-file and MATLAB to the actual values
coming from DELMIA V5. Hexapod and Flexapod 6P mechanisms are investigated and simulated in
DELMIA V5 in complete structure while Exechon and Gantry-Tau robots are built only for their parallel
structures.

Keywords: DELMIA V5, parallel kinematics, forward kinematics, inverse kinematics, Hexapod, Exechon,
Gantry-TAU, simulation.
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DEFINITION OF TERMS AND ABBREVIATIONS

Actuator is a mechanism that initiates and control the motion of a system.

Degrees of freedom (DOF) is the term that describes the independent motions that a body
is allowed to do.

CAD-model is a 2D/3D drawings or solid structure of parts in a modeling
environment.

End-effector is the utility of a robot that interacts with the objects that are not
part of the robot.

Joint is the center of motion where two solid structures of a robot

contact each other.

Prismatic joint (P) is a joint type with one translational degree of freedom

Revolute joint (R) is a joint type with one rotational degree of freedom

is a two degrees of freedom joint that corresponds to two
successively attached revolute joints.

is a joint type with three degrees of freedom that allows parts to
rotate in all axes freely.

Universal joint (U)
Spherical joint (S)
Link/leg is the term that defines the solid structure between joints.

. . . is the term employed to describe the order of joints in a
Kinematic chain

mechanism.
. . . is a robot that the respective joints are successively attached to
Serial kinematics machine (SKM) P J v
each other.
. . . is a machine that consists of links/legs that operate in parallel
Parallel kinematic machine (PKM) axes /leg P P

is a robot that consists of parallel and serial kinematic chains
successively.

is the tip of the end-effector with respect to which the robot’s
interaction with environment is calculated.

Hybrid robot/machine (HM)

Tool Center Point (TCP)

viii



1.INTRODUCTION

The EU financed project ©LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and
Hybrid Structures) is a joint adventure research and development program with SAAB AB as coordinator.
The project is in partnership with 31 companies of aircraft industry and universities. LOCOMACHS mainly
focuses on reduction or eradication of non-value adding operations in manufacturing of aircrafts. Thus,
the objectives of the project can be summarized as

e Reduction of cost and lead-time

e Managing tolerance and variation

e Increasing the level of automation

e Designing new production methods and systems

At this point, this thesis work will fit in the last two objectives (LOCOMACHS 2014). In order to
increase the level of automation and set up new rules for manufacturing and design, the simulation of
respective ideas become vital. Thus, the necessary means to support new designing ideas must be
defined in the chosen simulation environment — DELMIA V5.

DELMIA V5 of Dassault Systemes is one of the most advanced simulation tools that enables its users
to create, define and control all aspects of a production system. As one of those aspects, DELMIA V5's
Device Building module is a highly capable virtual mechanism creation instrument that defines forward
and inverse kinematics of any given mechanism. However, advanced mechanisms such as parallel and
hybrid (parallel-serial) robots are not recognized by this module directly via user-interface; thus, this
definition of mechanism must be done by using C-code, which is considered to be a very important
feature of DELMIA V5.

Hence with DELMIA V5’s described feature, the means to support the newly designed
manufacturing systems with higher levels of automation for LOCOMACHS project must be defined in
terms of kinematic capabilities; and this thesis work is exactly formulated to provide a user-friendly
methodology for the partners of project LOCOMACHS to simulate their kinematic devices in DELMIA V5.

1.1. OBJECTIVES AND SCOPE

In this thesis work, readers will find answers to how to define advanced mechanisms in DELMIA V5
by both using forward and inverse kinematics definition tools for robot types: hexapod/Flexapod 6P,
Exechon and Gantry-Tau robots. So, the objective of this thesis work is to

e define a methodology to create advanced mechanisms in terms of forward kinematics

e create a methodic application of relevant theory for inverse kinematics to DELMIA V5

e continue the methodology to define how to set up the compilation and testing environment.
e simulate the respective robots by using the methodology.



Then, scope of this thesis work covers:

e Creation of methodology
e Building of declared robots in DELMIA V5 environment using the methodology
e Testing of the prospective robots in DELMIA environment

Therefore, the structure of this paper will be as following:

e Forward and inverse kinematics creation in DELMIA V5

e The analysis of C-files for inverse kinematics

o Theory for the given robots in terms of inverse kinematics and its transfer to a C-file

o Method employed during the building and solving the problems occurred

e The creation of Hexapod/Flexapod 6P, Exechon and Gantry-Tau robots in DELMIA V5
(appendix section)

1.2. METHODOLOGY

The scientific inquiry for this thesis work is originated on the question whether it is possible to
formulate a methodology that enables a layman user to build advanced mechanisms in a simulation
environment such as DELMIA V5 so that element of surprise in terms of unexpected errors is minimized.
As Craig (2005) summarizes, the steps that any mechanism creation should cover assembly, kinematics
definition and testing. In addition, the knowledge gained from the previous project owner — Torbjorn
Jakobsson — and Cyrille Froissart of Dassault Systemes shows that the same way of thinking of Craig’s
applies to DELMIA V5 as well. However, the documented information from their work is either limited to
serial kinematics machines or only defined within the limits of inverse kinematics for parallel kinematics
machines. Thus, the remaining aspects of mechanism creation for parallel kinematics machines are still a
black box. Therefore, the experimentation phase should be initiated before defining a user-friendly
methodology. This kind of experimentation and thinking was also conducted by Torbjérn Jakobsson
from which he was also able to gain great amount of insight regarding advanced mechanism creation in
DELMIA V5. By focusing on hexapod robot creation in terms of inverse kinematics definition, he was able
to map all the important founding dynamics for inverse kinematics creation and documented it. Thus, it
can be hypothesized that by assembling the respective robots for all the steps of mechanism creation it
would be possible to record a map of actions from which a user-friendly methodology can be developed.

The results of this experimentation and the map of actions that create the methodology is given
with details in Chapter 5: RECOMMENDED COURSE OF ACTION FOR MECHANISM BUILDING IN DELMIA
V5.



2. INTRODUCTION TO ROBOTS: HEXAPOD/FLEXAPOD 6P, EXECHON
AND GANTRY-TAU

In this chapter, a small introduction will be given to respective robots of this thesis work along with
their importance in industry.

2.1. HEXAPOD /FLEXAPOD 6P

Hexapod and Flexapod 6P are the same class of robots, where the only difference lies in their
design and the structure of the parts used. This difference of design does not affect the kinematics or
the idea behind this class. Thus, these robots in this chapter will be described schematically.

Hexapod robots, also known as Stewart Platforms, named after the creator D. Stewart, is parallel
structure of two platforms connected to each other via prismatic actuators named as legs. As the name
suggests these six legs are connected to a base platform in one end whereas the other ends of the legs
are attached to a mobile platform (Yang 1998). The design difference between Flexapod 6P and a
standard hexapod is that upper attachment points for hexapod are connected to legs via spherical joints
while Flexapod 6P has universal joints for upper attachment points and the rotation of legs about their
own axis provides the final degree of freedom that a spherical joint grants in a hexapod.

Figure 1: Hexapod (on the left) and Flexapod 6P (on the right)

This class of robots that is going to be adapted to DELMIA V5 will be utilized in the project called
LOCOMACHS in which hexapods will be used as flexible tooling equipment to support and enhance the
quality of production in aerospace industry.



2.2. EXECHON

One of the most successful PKM (Parallel Kinematic Machine) structures Exechon — developed and
patented by Karl-Erik Neumann in 2006 — is a tricept-related hybrid machine where a parallel structure
of three legs actuated with prismatic joints is followed by an R-R or a spherical wrist. The structure itself
was created in Sweden and is currently being manufactured by several companies in the world (Zoppi
2010).

The kinematics structure is comprised of parallel and serial parts which are attached successively
and creating the hybrid kinematics. The parallel structure has three legs as said above and two of which
are identical to each other. These two legs create a common plane meanwhile the third leg’s plane is
perpendicular to the plane created by identical legs. The joints for the identical legs follow RR-P-R and
those for the third leg are RRR-P-R (Bi 2010). This is illustrated in figure 2.

. S-P-R leg

RR-P-R leg
RR-P-R leg

)
Prismatic/
Joint (P)

Figure 2: Exechon's parallel structure

The successively attached serial structure can be a revolute-revolute or spherical wrist. The tool
attached to wrist can be used for drilling or milling operations as Bi (2010) states. The complete
structure built for DELMIA V5 can be seen in figure 3 .

In this thesis work, revolute-revolute wrist is not going to be utilized; and thus, the calculations will

be made only for the parallel structure.



Figure 3: Exechon robot as CAD model in DELMIA V5

2.3. GANTRY-TAU

Gantry-Tau is a parallel kinematics robot patented by ABB. The parallel structure consists of three
clusters in which links are attached to mobile platform on different points. The reason that Gantry-Tau
robot has gantry term is the fact that the actuated motion provided by three prismatic joints have the
same ideology with Cartesian (also known as Gantry) robots. The clusters term used here refer to the
group of links where each group connects a prismatic joint to the end-effector. In total, the structure has
six links and clustered as 3-2-1. This notation describes the number of links that each cluster has. The
kinematic chain of each link is a PRRS and the actuation is in the prismatic joint. The chains and their
relations to other parts can be seen in figure 4. (Johannesson 2003)

On the other hand, it is important to keep in mind that in practical applications the kinematic chain
can be changed to a PSS (Prismatic-Spherical-Spherical). The reason is that the extra DOF that comes
with the first spherical joint only provides rotation about link’s own axial axis. Thus, in practice, this has
no influence. However, when simulated such extra joint will cause problems; and therefore, the regular
PRRS chain should be used as shown in figure 4.



Revolute ? Revolute .

I
L
'\

Prismatic

\
\
Prismatic \
Spherical
Joints

Prismatic

Figure 4: Gantry-Tau robot

Figure 5: Gantry-Tau model in DELMIA V5




3. THEORY

In this chapter, forward/inverse kinematics in general will be described along with their uses in
DELMIA. Also, the relevant theory for the inverse kinematics of Hexapod/Flexapod 6P, Exechon and
Gantry-Tau robots will be presented along with their respective C-files.

3.1. FORWARD KINEMATICS

Before going deep into detail, it is important to define the term, kinematics. Kinematics, then, is the
investigation of mechanisms in terms of position, velocities and accelerations without including the
forces that set the basis for them (Craig 2005).

This kinematics definition, by theory, is divided into two categories where the first analysis method
is called forward kinematics. This analysis can be defined as attaching coordinate frames to each link in a
robot until the end-effector (TCP) in order to describe the position and orientation of the end-effector in
terms of base-coordinate system (Jazar 2010). These terms are shown in the figure 6.

TCP coordinate system

Link i

Link 2

Link 1

Base coordinate system

Figure 6: Basic terms in kinematics

Thus; the idea in forward kinematics is to describe the given TCP coordinate system in base-
coordinate system by attaching intermediary coordinate frames at every joint. Hence, by propagating
from one coordinate frame to the next the end-effector’s orientation and position is described by using
each link’s coordinate frame variables where each variable is chosen as a joint value in which actuation
by command is possible. However, in order to propagate from one frame to another, a means that
includes relevant information about a frame is necessary. This relevant information should include the
position of the origin point and the orientation of the consisting XYZ unit vectors with respect to another
frame. In kinematics theory, the means to convey this information is achieved with a 4x4 matrix, named
Transformation matrix (Craig 2005).



To fully understand and describe what transformation operation is, three different coordinate
frames A, B and C are shown in figure 7 along with point C,. To describe this point C, in coordinate frame
A, transformation matrices between A-B and B-C must be created.

Zc
G

YB XC

Xa

Figure 7: A, B and C coordinate frames each relative to earlier one.

A transformation matrix then is composed of rotation and translation and has the following
structure.

Rotation ‘ Translation
AT:
c

000 ‘ 1 (1)

AT notation describes a transformation between A and C coordinate frames in which C is relative to
A-coordinate frame. Thus, when multiplied with 4T, any given point or vector in C-coordinate frame is
transformed or described in coordinate frame A (Craig 2005). To create this transformation matrix by
using all the given coordinate frames, the following formula is applied.

AT = 4T BT (1.2)

This formula states that {C} is first described relative to {B}, and then multiplied with the
transformation between {A} and {B} in which {B} is relative to {A}. Hence, transformation between {A}
and {C} is completed by using an intermediary coordinate frame {B} (Craig 2005).

The terms rotation and translation in 4T are the compounds of this matrix where rotation is the
unit vector definition of each axis of {C} relative to {A} and translation is the vector between the origin
points of {A} and {C} relative to {A}. The last row of this transformation matrix is [0, 0, 0, 1] and this row
has no significance but is only useful in terms of making the matrix square (Craig 2005).



Hence, the vector Cpis multiplied with the transformation matrix ‘éT and the outcome of this
operation is the vector defined in {A}. This operation is formulated as

ACp = 4T BT CCp (1.3)

When the formula 1.3 is applied, a robot’s end-effector is described through each link’s
transformation and the resulting transformation matrix includes variables for the actuators in the robot
mechanism. When these variables entered, this transformation matrix yields the position and
orientation of end-effector or in other words TCP location and orientation (Craig 2005).

This methodology of course can be applied to a parallel structure such as hexapods. On the other
hand, the mathematical complexity becomes a great burden and solving these mathematical
expressions may not yield an exact result but sometimes estimations due to the necessity for numerical
approaches (Yang 1998). Therefore, DELMIA at this point provides a very useful way to create a
mechanism and builds the forward kinematics description automatically at the end-effector.

3.2. BUILDING MECHANISMS AND FORWARD KINEMATICS IN DELMIA V5

In this chapter how DELMIA V5 approaches the concept of forward kinematics will be described
whereas building the complete mechanisms along with their forward kinematics description will be
given in appendix for hexapod/Flexapod 6P, Exechon and Gantry-Tau robots. The information presented
in this chapter is based on Cyrille Froissart’s confidential documentation. Thus, due to confidentiality of
the document the reference cannot be given.

3.2.1. CREATION OF MECHANISMS IN DELMIA V5

Creation of a mechanism can be achieved in three ways in DELMIA environment. These methods
are

e (Classic method

e Frame of Interest Method (FOI)

e Frame of Interest and Dress-Up Method

In this thesis work only “Frame of Interest Method” is used since it offered simplicity and geometry-
independent mechanism creation. FOI method is used by appointing frames (in this case called as Frame
of Interest) to the regarding joint locations and creating pre-defined joints from these frames. These
pre-defined joints are

e Revolute (1 rotational degree of freedom)

e Prismatic ( 1 translational degree of freedom)

e Universal (2 rotational degrees of freedom)

e Cylindrical ( 1 rotational or translational degree of freedom)
e Spherical ( 3 rotational degrees of freedom)



The creation of a mechanism in DELMIA V5 starts with opening ‘Device building’ module. In this
module, the user first creates a mechanism in the node. Afterwards, user defines a fixed part and starts
to build the respective mechanism upon that fixed part. To simply illustrate, an example will be given by
embarking the FOI method.

In this example, one leg of a Flexapod 6P will be used along with the fixed part ‘Base’. First, DELMIA
V5 will be opened in ‘Device building’ module.

Mﬁi\e Edt  Wew st Took  fralyze  Window  Help
§ %4 pm - pssembly Pracess Simulation

I T——

Mechanical Design

Machining

‘Digita\ Mackup

Eguipment & Systems

Digital Process Far Manufacturing

Maghining Simulation

3 7, are welding

Ergonomics Design & Analysis » &g_—gnhnt CFfline Programming
knowledgeware ¥ O] arkeel Sequencing
Lagic Design » Q,J Resolrce Layout

. Device Task Definition
1 LinaktIrvkinHexspodFull Test CATProduck ‘Qf_

51 Production System Analysis

2 Flexapods_P_Kine...ic_2014_03_11_v8.CATPraduct

3 XT5005_2v3, CATProduct
Rl

Figure 8: Device Building module in DELMIA V5

In the second step, for each part of the mechanism ‘new component’ is clicked and a separate
component is created under the node tree. For this example, necessary parts are

e Base

e Lower connecting cube

e Lower leg connected to base

e Upper leg that is connected to lower leg part by a prismatic joints

Thus, respective node tree will be looking as in figure 9.

P | =Tl ism
% Base (Base)
5‘@} Connecting cube (Cube)
B Lower leg {Lower leg)
C@) Upper Leg (Upper Leg)
Applicatons

Figure 9: Example of a node tree for mechanisms

In the third step, necessary CAD-models should be inserted into the respective nodes by using
‘Insert-Existing Component’ commands. Then, the node tree should have the form in figure 10.
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4l eg Mechanism
If% Base (Base)
|

t—‘@ Base Plate P (Base Plate P. 1)
Hi‘% Connecting cube (Cube)
#—@ CUBE (CUBE. 1)
lfélz-} Lowrer leg (Lower leg)
t«'@ Lower Leg P (Lower Leg P. 1)
a.a-{'IE-; Upper Leg (Upper Leg)

*'@ Upper Leg P (Upper LagP.1)
—Applcatons

Figure 10: Leg mechanism with CAD-models inserted

In the fourth step, a new mechanism will be created and a fixed part —which in this case is the part

called ‘Base’- will be appointed. To achieve this, first ‘New Mechanism’ button must be clicked. Then in

the node tree under ‘“Applications’ a new mechanism division will be available.

To appoint the fixed part, click the 'Fixed Part’ and a respective menu will appear. Afterwards,

& sm

8’% Base (Base)
*"@ Base Flate P (Base Platz P.1)
Y Connecting cube (Cube)

#CQCUBE (CUBE. 1)

8—"?—) Lowier leg (Lower leg)
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S-Mechanisms
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Joints
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&R b e

Speeds-Accelerations

Figure 11: Creation of a new mechanism

respective part ‘Base’ must be chosen for this example.

& @ s[H
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—
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Speecls-Accelerations
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is designed to have six legs, in this example only one leg will be demonstrated. For the remaining legs,

refer to the appendix.

Figure 12: Creating the fixed part
In the fifth step, first joint will be created between the cube and the base part. Since the base part
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To create a revolute joint, first Frames of Interest (FOIs) will be attached to the respective locations.
The first frame will be attached to the base and the second in the cube. The order does not matter, but
it is noted that in order to avoid confusion, it is important to follow a pattern. At first, click ‘Frames of
Interest’ button and create a Frames of Interest node under both parts — ‘Cube’ and ‘Base’. Then, click
on ‘Frame type’ button and place the FOI as shown in figure 13.

\\l-'}?'ﬁ]l

(1)

% Base (Base)
|
i-f'@ Base Plate P (Base Plate P.1)
i-.E: Frames Of Interest. 1
% Connecting cube (Cube)
|
U-C'@ CUEE (CUBE. 1)

ﬂ-?ﬁ Frames Of Interest1.1

Made

“3 Lower leg (Lower leg)

|

"C@ Lower Leg P (Lower LegP.1)
D Upper Leg (Upper Leg)

i—@ Upper Leg P (Upper Leg P. 1)

(2)

\\l -r}?ﬂﬂ[

(3) (4)

& ||| @ 82

o
Move Orign —

3]

(5)

Figure 13: Appointing FOI to 'Base’ part

Then the same procedure will be applied to cube and the result is shown in figure 14.

@

>

Figure 14: Cube part with FOI at the center

It is important point out that all one-degree-of-freedom joints either translate or rotate about the
Z-axis of the FOI. Thus, as seen in figure 13 and figure 14, the rotational axis Z is about to coincide when

the joint is created.
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Since all the necessary FOIs are attached, the revolute joint now can be created. To create a joint,
DELMIA V5 offers various ways. However, as stated before, when FOIs are used creation of joints are

easily done by using “Joint from axis’.

After opening ‘Joint from axis’, a new menu appears where users define the properties of the axis

to be created. These features are

e Mechanism to which the joint will belong
e Joint name

e Joint type

e Axes required for joint creation.

In this case, these features will be Mechanism.1, Revolute and 2 FOIs created for ‘Base’ and ‘Cube’.

This is shown in figure 15 .

Axis-based Joint Creation

Mechanism: IMechanism.l

LI Mew Mechanism I

Joink Eype: IRevqute - I

Current selection

Aois 12 Cube_base_1
R.atia: 1

O Angle driven

F
RE
Joink nanne: IRev0|ute.l
@
@
)
=

Axis 21 |Base_cube_1

[ command 2

@ oK I OCancell

(2)

Figure 15: Joint creation with FOIs

The order of the joints does not matter in this case and ‘Joint name’ section is automatically

generated. The ‘Angle driven’ button makes the joint an actuator in the mechanism. When clicked ‘OK’,
the cube is automatically attached to the correct location where two FOIs coincide. The result is shown

in figure 16.

| .

Figure 16: Revolute joint with FOIs
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Second part of this mechanism is to connect ‘Lower Leg’ part to the cube with a revolute joint.

Again, the same procedure will be followed as for the joint between the base and cube except this time

one of the FOIs will be attached to ‘Lower Leg’. The FOls can be seen in figure 17.

Figure 17: FOIs for the second revolute joint

When these two FOIs are combined by using the same methodology for the first revolute joint, the

lower leg is automatically translated to the position and oriented in a way where two FOIs’ Z-axes
coincide. The result is shown in figure 18.

Figure 18: The second revolute joint
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In the third step, a prismatic joint will be created between ‘Lower Leg’ and ‘Upper Leg’ parts. To
achieve a correct state with the joint, it is important to place the FOIs in the accurate positions.
Specifically, when a prismatic joint is created, DELMIA V5 takes the current positions of each FOl and
makes them coincide in Z-axes. However, since the origin points are not necessarily coincided for a
prismatic joint DELMIA V5 sets the zero position of this joint in the same coordinates where the
respective parts currently are. Therefore, it is important to have each FOI at the same location before a
prismatic joint is created. To achieve this, one may consider creating a revolute joint and then deleting it
along with the constraints; and afterwards, creating the revolute joint. The second way is to move the
mobile part from respective FOI to the coordinates of the one of fixed part in the joint.

With the first way chosen, a revolute joint will be created with the same routine for earlier joints.
Then revolute joint will be deleted and from the ‘Joint from axes’ button, a prismatic joint will be directly
made. Since this joint is appointed as the actuator of the mechanism, the ‘Length driven’ command will
be activated. The respective FOIls and the joint creation menu are shown in figure 19 and figure 20.

Axis-based Joint Creation

Mechanism: |Mechanism.1 j Mew Mechanism l

Joink name: | Prismatic, 5

Joink EyPes | prismatic -

Current selection
Axis 1 |Design.2.1 fxis 2; |Design.3.1

O
@ ok | & cancel

Figure 19: Prismatic Joint menu with ‘Length Driven' activated

Figure 20: Prismatic Joint and respective FOls
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As seen earlier, the revolute joints are not created as actuators; therefore, DELMIA V5 will not be
able to simulate the system due to free motion of those joints. However, since this is an illustration to
show how mechanism creation works, it would be possible to test the mechanism by making all the
joints actuators. This achieved via double-clicking on each revolute joint in mechanism node and
activating ‘Angle driven’ field. This way DELMIA V5 will prompt a menu on which the following
information can be seen ‘The mechanism can be simulated’. This feature can also be observed by clicking
the mechanism properties @ icon. On the prompted menu, DELMIA V5 displays all the joints created
and their respective parts. In this section, a very important aspect is also shown in which the total
degrees of freedom of a mechanism can be seen. These degrees of freedom are divided into two
sections where one shows Degrees of freedom with command and the other Degrees of freedom
without command. The Mechanism Analysis menu is shown in figure 21.

Mechanism Analysis @@
eneral Properties
Mechanism name: [Mecharism. 1 =l
Mechanism can be simulated: Mo
Mumber of joints: 3

Mumber of commands: 1
Degrees of freedom without command(s): ]3_
Degrees of freedom with command(s): ’27
Fixed part: [Base

Joints visualisation: () o, @ oFf e

Jaint | Cornmand ‘ Type ‘ Part 1 ‘ Geometry 1 ‘ Part 2 Geometry 2 ‘ Part 3 ‘
Revalute. 1 Revolute  Cube CATLINeCGM  Base CATLINECGM
Revalute.2 Revolute  Base CATLINECGM  Lower Leg  CATLInECGM
Prismatic.4  Command.2  Prismatic  Lower Leg  CATLIReCGM  Upper Leg  CATLIneCGM
Mechanism dressup information:

Part 1 Part 2 Part 3

Close

Figure 21: Mechanism properties menu

In figure 21, it is seen that the mechanism has three joints and only one of them has a command, in
other words one of them is only actuated. This means that the rest of the joints are free to respond any
action which makes them dangling joints by the terminology employed by DELMIA V5. This does not
mean that the mechanism created is incorrect but unfinished. As said earlier, this is only a
demonstration and the complete structure will be presented in appendix section of this paper. Thus, in
order to simulate the system, the revolute joints will be made actuators. The user must click on each
joint created under the ‘Mechanism-Joints’ node in the product tree and double-click on each joint. The
same menu for joint creation will be prompted and on that menu, ‘Angle driven’ field should be
activated. When repeated for the other revolute joint as well, the mechanism properties menu will
display ‘Yes’ for the section ‘The mechanism can be simulated’. Also, it will be seen that degrees of
freedom without command will be zero. This can also be seen from the mechanism node in the product
tree as shown in figure 22.
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Figure 22: Mechanism properties after actuation
To see the behavior of the mechanism, it must be jogged. This property is provided by ‘Jog

mechanism’ button ®. When clicked, a new menu will prompt, and on this menu the user will be able

to jog the mechanism for given range of joints. The menu and the jogged mechanism can be seen in
figure 23.

Figure 23: Jogging the mechanism

This way DELMIA achieves the forward kinematics of any model needed to be built. It requires no
other calculation; and the required transformation matrix is automatically created when the inverse
kinematics definition is made — which will be the topic of the next section.

3.3. INVERSE KINEMATICS

Inverse kinematics is the way of finding necessary joint values for a given TCP values of a robot. The
way of reaching a solution is divided into two methods, algebraic and geometric. Algebraic solution is
based on finding joint values by acquiring equations from transformation matrix with given values of
TCP. On the other hand, geometric solution is about decomposing the spatial definition of a robot into
several planar equations by using vector definitions (Craig 2005). In the case of this paper, the hexapod
(Flexapod 6P) uses a geometric solution whereas Exechon and Gantry-Tau robot utilizes both of the
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given ways. The building of inverse kinematics in DELMIA V5 will be the topic of this section whereas the
inverse kinematics theory of the respective robots will be presented in the next chapter.

3.3.1. CREATION OF INVERSE KINEMATICS IN DELMIA V5

The inverse kinematics definition in DELMIA V5 is done by the ‘Inverse Kinematics’ icon & . When
this icon is clicked and the mechanism is chosen, DELMIA V5 prompts a new menu for the definition of
inverse kinematics. The menu is show in figure 24.

IE's Inverse Kinematic Attributes @@

Create Mew T Chain | _Delete Current Ik Chain_|

Tnverse Kinematic Chain [ o e opan v

Leflelle]

Advanced... I

|9

Figure 24: Inverse kinematics definition menu

The first tab in the menu is Basic. Mount part section is used to define the part that is attached to
the TCP. Mount offset is used for the FOI that describes the TCP’s coordinate frame. Reference part is
used to define the coordinate frame that is going to be the reference for calculations where as the Base
part is the fixed part of the mechanism. In many cases Base part and Reference part are the same.

Approach axis is used to define the main axis of the TCP which in most of the cases is Z-axis
whereas Approach direction is the direction that defines the positive direction in calculations whether it
is inwards or outwards on Approach axis. It is usually set as Out.

The solver type provides options to define the inverse kinematics solution. These options are

e Numeric method

e Generic method

e Device-specific method

e User inverse method (use of a C-code).

In this paper, the creation of inverse kinematics will be carried out by creating a C-code. On the
other hand, it is important to represent how other methods work as well. Thus, simple instructions will
be given for them.

Numeric method is a built-in feature of DELMIA V5. In this method, solver tries to solve the joint
values by using algebraic methods from transformation matrix. The user has no chance to interfere with
the calculation but define which joints to be solved. When this method is chosen and ‘Advanced’ button
is clicked, a new set of tabs appear in the inverse kinematics menu — which can be seen in figure 25.
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Exechon_RR_wrist’s Inverse Kinematic Attributes
Inwerse Kinematic Chain |y nematics chain,l | _Create Mew I chain_|_Delete Current ¢ Chain
——————

i Basic More | Configurations | Actuator Space Map | Solver Attributes (Mumeric) |
Mount Part | TP
Mount Offset | Designz
Reference Part: [R1_1
Ease Part [R1_1
Approach Axis z =
Approach Direction ‘Out ﬂ
Solver Type | rumeric Irvverse ¥
Routine [ Kinhumeric

@ 0K & Cancel I

Figure 25: Inverse kinematics tabs for numeric method

In ‘Configurations’ tab, DELMIA V5 asks user to flag the postures of the given robot. These postures
are flagged as valid or invalid where valid makes the posture of the robot available in the simulation
environment. ‘Actuator Space Map’ tab is where the user maps the joints and their mobile parts with
the commands for inverse kinematics calculation. In this tab, the user defines the joint map section first
where each ‘Degree of Freedom’ is associated with the corresponding joint. For example, for RR
mechanism of Exechon’s wrist (revolute and revolute in serial order) dof(1) appoints the first degree of
freedom to revolute joint 1 whereas dof(2) appoints the second degree of freedom to revolute joint 2. In
the second section of mapping, types of freedom are defined where the options are limited to
translational or rotational. In the third section — Kin Axis Type, the main axis of motion is defined. For Kin
Part, the mobile part of the joint is appointed. Compute button is used to appoint these values
automatically, and it is possible that DELMIA V5 may not guess the entire system correctly. All these
sections can be seen in figure 26.

Exechon_RR_wrist’s Inverse Kinematic Attributes [2)X] | Exechon_RR_wrist's Inverse Kinematic Attributes. P
Inverse Kinematic Chain [iinematics chain.L v | _Create New Ik Chain | _Delete Current Ik Chain Inverse Kinematic Chain [yinematics chain,| | _(Creats New IK Chain | _Delete Current Ik Chain |
BasicMore | Cofiguations | Actustor Space Map | Solver Astributes (humeric) | Basic Hare | Canfiguations | Actuatar Space lap | Salver Atirbutes (Haeric) |
Config Info Map Info
! iz Yiley Joinks Map Jninks Type Kin Ais Type Kin DOF Kin Part
Posture 1 [vaid -] Cormand { 1] dof(1) [Retational ~fretz -t [riz Clear flphahiode 1
- (Command 2 gof(z) [Rotational ez <z Jret Clear Afphabiode 2
9 ok | Scancel| S ox | & cancel

Figure 26: Configurations and Actuator Space Map tabs

‘Solver Attributes’ tab is used in order to define the parameters for the chosen inverse
kinematics method. In this tab, three sections are represented. First, the user is asked to define
convergence tolerances for the numeric solution for both angular and linear convergence. In the second
section, user decides on which joints to be solved, and in the last section, TCP convergence between
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robot TCP and target location is defined for X, Y, Z directions and Roll-Pitch-Yaw rotations. These
sections are unique to each mechanism in hand. This tab can be seen in figure 27 for Exechon’s RR wrist.

Exechon_RR_wrist's Inverse Kinematic Attributes

Inverse Kinematic Chain [\inematics chain,1 = | _(Create bew IK Chain | _Delete Current IK Chain_|

BasicMore | Corfigurations | ActustorSpace Map | Solver Attributes (Mumeric) ‘

Conwergence Tolerances
Lingar & 0,100 mm
Angular : 0,010 deg

Salve Joints TCP Convergence
Jointi[yeg =l v
JointZ[yes =l Y [ves

Ves

Ves

Ves

Lellellellellefle

Ves

@ oK & cancel
[ —

Figure 27: Solver Attributes tab

After defining the necessary tabs, the inverse kinematics now is ready to use. To test its accuracy,
click on “Jog mechanism’ ® and the menu with a new tab called ‘Cartesian’ will prompt. The idea with
this tab is to use a tag at the predefined TCP location to jog the robot to a certain point by using inverse
kinematics calculation. In this tab, the user is allowed to change the TCP from defined point to any
desired location as well as to jog the mechanism by using Cartesian coordinate system with respect to
any defined coordinate frame. These features can be observed in figure 28.

This way a mechanism defined with inverse kinematics can be used in other modules of DELMIA for
simulation purposes.
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L ro o

I Imediate

e | Reset. |

Figure 28: Cartesian tab with TCP tag
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Generic method is used for most commonly adapted structures in the field robotics. These
structures defined by DELMIA V5 as kinematic classes are

e Cartesian robot ( TTT:RRR)

e SCARA robot (TRR:RRR)

e Cylindrical robot (TRT:RRR)

e Block robot (TTR:RRR)

e Bore robot (RTT:RRR)

e Articulated robot (RRR:RRR)
e Spherical robots (RRT:RRR)

e Pendulum robot (RTR:RRR)

The meaning of kinematic classes shown in parentheses is that the robot has 2 divided structures.
The first structure is the body and shown before the colon. The part after the colon, on the other hand,
represents the structure known as mount or wrist. For example, Cartesian robot has three translational
joints in the body and this is represented as TTT. The RRR section, whereas, represents the three serially
connected revolute joint as a wrist attached at the end-effector. The kinematic classes and the
remaining properties for this method are shown in figure 29.

When ‘Advanced’ is clicked the same tabs with numeric method appear, whereas the contents of
the Solver Attributes tab are different. In this tab, four different sections are shown. First section is
named ‘Joints Information’. In this section, the user defines Offsets, Presents, Signs and Order. The
‘Offsets’ are the distances of joints from the original coordinate frame of the joint. Presents are used to
inform DELMIA V5 whether the joint should be included in inverse kinematics calculation. ‘Signs’ section
decide on the direction of translation or rotation whereas ‘Order’ describes the calculation order that
should be taken into account for the given kinematic class.

GantryMechanismis Inverse Kinematic Attributes [2]5] | GantryMechanism's Inverse Kinematic Attributes PIx
Inverse Kinematic Chain [yinematics chain,. v | _<reate New IK Chain | _Delete Current I Chain l Inverse Kinematic Chain [yinematics chain.1 v | _Create New 1K Chain I Delete Current 1K Chain I
Basic | Bacic ore | Configurations | Actustor SpaceMap | Sclver Atcributes (Generic) |
Mount Part [ Jeinks Information Link Lengths
Hount Offset. [ ZeroOffsets _ Presents signs Order
3 Jeink 1 [0,000 dea [present _v][Postive ][0 [0
eference Part [ = pad)
Base Part I doink2 ; [0.000 dea [present v |[posiive ][0
El = T
Approach Axis [z =] ot 3 [0.000 deg [present v |[Postive [0 =
Approach Direction four = Joint 4 : [0 present _v|[positive ][0 ot oo
Joinks S =
s re— = JZ::ES ‘ Jo Present _~|[Postive  ~|[0 wrist OFfset 2 & [0.000 mm
Routine KinGeneric Jo Fresent _v|[Fosiive ][0 st Offset 3 : [0.000mm
Kinematic Class r— Ei Base Offset Mourk Offsat ulist Rotation
Cartesian [ TTTRRR % (Pos X) 0,000 mm  (Pos X) [0000wm | Yaw(RatX) :[0.000 deg
SCARA [ TRRIRRR ] v(osY) : [aoomm || (FosY) : [Donamm  Phch(RotY): [0.000deg
g‘v“”kd[ﬂgggggﬂ]wl 2(Fos2) ¢ [aooomm | Z(Posz) : [poonwm |Rol (Rot?) : [0.000deq
jock [ TTR
Gore [ RTTRRR ] Var (Rot %) [0.000 deg Yaw (Rot %) : [0,000 deg
articloted [ RRR:RRR | Pich(Rot ) [0.000deq | Pitch{Rot) i 0000 dea
Spherical [ RRT:RRR ] Rall (Ret2):
Pendulm [ RTR:RRR all (Rot2): [0.000 deg Roll (Rot 2): [0,000 deg |
Compute Generic Params
Advanced.

Figure 29: Generic method and Basic and Solver Attributes tab

In the second section, ‘Link Lengths’, the offsets are used for rotational joints when their origins are
coaxial. Shoulder offsets and arm lengths are only available for articulated robots. ‘Base and Mount
Offset’ sections are used to define the transformation for any external coordinate frames that is set by
the user for inverse kinematics calculation. ‘Wrist Rotation’ section describes the final rotation of TCP on
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the wrist. Unless changed, these values represent the same structure defined in forward kinematics
building. When these values are set and clicked OK, the robot will be ready for simulation purposes.

Device-specific method is used for specific type of robots that are already defined in the library of
DELMIA V5. Therefore, only difference of this method from Generic Inverse is that in Solver Attributes
tab, DELMIA V5 asks its users to choose the routine name for the specific type of robot. The list of robots

and their routines can be seen in figure 30.

Basicore | Configuretions | Actustor Space Map
Link Parameters

Length1: [0.000mm  Offset 1: [0.000 mmw
Length2: [0.000mm  Offset2: [a.000mm
Length3: [0.000mm  Offset3: [0.000 mm
Length4:[0.000mm  Offset<: [0.000mm
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kin_abb_irb2000

-] | Scneel|

Figure 30: Device Specific method and Solver Attributes tab

The last and the topic of this paper is ‘User-inverse’ method. This method is developed by DELMIA
V5 in order to enable its users to integrate complicated calculations to a variety of mechanisms. The idea
stems from the fact that some types of robots do not use widely known kinematic classes in their
systems such as hybrid or parallel robots where inverse kinematics calculation cannot be solved by using
regular approaches described in the beginning of this chapter. In order to select this method, as usual
with other methods, solver type should be set to ‘User inverse’. When Advanced is clicked, the extra
tabs Configurations and Actuator Space Map are the same as with other methods. On the other hand,
Solver Attributes tab display differences. The differences can be seen in figure 31. The first section in this
tab is ‘Link Parameters’. These parameters are used as input to C-code file to be utilized in the
calculation. The ‘Auxiliary Data’ section also has the same properties as ‘Link Parameters’. The third
section is ‘Define Library and Routine Names’, which is where the user enters the name of the C-file as
routine name and the library file created by compiling the code.

IE's Inverse Kinematic Attributes @@

Inverse Kinematic Chain [kinematics chain.1 | _Create Mew I Chain | Delete Current IK Chain |
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Figure 31: User inverse method and Solver Attributes tab
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In the next section, the structure of the C-file will be presented along with how to compile it for the
use of DELMIA V5. Also this part will be covered in the appendix as how-to type documentation.

3.3.2. THE ANALYSIS OF C-FILE FOR INVERSE KINEMATICS IN DELMIA V5

In this section, the C-file structure will be analyzed. This analysis will not include any calculation or
specific name but only kin_example. This name is chosen in order for a layman user to grasp the
mechanics of C-file creation for DELMIA V5.

The C-code for inverse kinematics starts with a

#include <shlibdefs.h>

command. The shlibdefs.h file is a standard library for DELMIA V5 that has the standard macros and
structures that are used in the creation of the inverse kinematics such as math operations.

#define NUM SOLUTIONS 1 /* Number of possible solutions */

#define NUM DOFS 6 /* Number of joints to be solved */

These 2 lines of commands define the number of solutions achieved after solving the inverse
kinematics (which also defines the number of possible postures a robot can perform for a given TCP) and
degrees of freedom with command that the investigated mechanism has. The NUM_SOLUTIONS
variable also defines the number of columns for the solution array, which will be shown later. The
number of solutions and DOFs are determined by the robot type used and for example, a hexapod has
six degrees of freedom with command and one possible solution for given TCP values.

In the following lines, the routines describe the interaction of the C-file with DELMIA V5. This
interaction requires some change with respect to the name used for the C-file.

DllExport int
get kin config( char *kin routine, int *kin dof, int *solution count, int
*usrKinDataHint )
{
if ( strcmp( kin routine, )y == 0 )
{
*kin dof = NUM DOFS;
*solution count = NUM SOLUTIONS;
/=
* this indicates kin usr's last argument (void *pData)
* will be DLM Data KinStat
74
*usrKinDataHint = USR_KIN DATA KINSTAT;
return 0;
}

return 1;
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static char JointType[2][24] = { 0 )8
static char KinMode[2] [24] = { , }s

In the following line, the user needs to state the name of C-file for strcmp command which
compares the name of 2 strings and return 0 if the 2 strings match each other.

/*
* User must supply this function

*/

Dl1lExport int
get kin config( char *kin routine, int *kin dof, int *solution count, int
*usrKinDataHint )
{
if( strcmp( kin routine, "kin example" ) == )
{
*kin dof = NUM DOFS;
*solution count = NUM SOLUTIONS;
/*
* this indicates kin usr's last argument (void *pData)
* will be DLM Data KinStat
*/
*usrKinDataHint = USR_KIN DATA KINSTAT;
return 0;
}
return 1;
}
static char JointTypel[2
static char KinMode[2] [

{ "ROTATIONAL", "TRANSLATIONAL" };

24] =
] = { "Normal", "TrackTCP" };

11
24

In this case, the name "kin example" is the name of the C-file and it is stated in the strcmp
command.

The following piece of code is utilized by DELMIA V5 to recognize the function named same as the
C-file with variables which are input from DELMIA V5 to C-file. ‘T6” here is the transformation matrix.
‘link_lengths’ is the distance between joint axes along the link lengths where “link offsets” is the
shortest distance between joint axes — which are described in the previous section. These values
according to DELMIA V5 are associated with the methodology called Denavitt-Hartenberg method
(Hartenberg 1967).

/*

** Routine Name

*/

DllExport int

kin hexapodFullTest (
link lengths,
link offsets,
T6, /* See above for description of these arguments */
solutions,
warnings,

pData

)

/*
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** Passed Variable Declarations
*/
double To6[4][4],
link lengths[],
link offsets][],
solutions[] [NUM_ SOLUTIONS] ;
int warnings|[];

For the lines above, a special attention should be given to the transformation matrix T6. As the
name suggests, T6 is the result of successive multiplication of serial transformations, which are 3
translations in x, y and z direction, following 3 rotations about Z, Y and X-axes. Unlike, the traditional
calculation of the transformation matrix for an articulated robot, T6 here is the direct transformation
between the world coordinates attached or Base Reference depending on the choice of the user and the
TCP.Thus, the transformation matrix as an input from DELMIA V5 has the form in figure 32.

‘nx ny nz O]
ox oy oz O
T6= Yoo
ax ay az O
| px py pz 1

Figure 32: T6 matrix of DELMIA V5

In this T6 matrix, the notations n(xyz), o(xyz) and a(xyz) represent the axes of the TCP. It must be
noted that the representation of these axes have the row-vector form. Thus, when calculating the
correct form of multiplication must be used. The p(xyz) notation describes the translation of a
transformation matrix in X,Y and Z-axes with respect to the chosen coordinate frame as reference.

In the following piece of code, pData routine is defined. This routine is created as standard by
DELMIA V5 in order for users to define their inverse kinematics; thus, pData routine is the main function
for users. As seen below, the routine starts with the local variable declarations that are the constituting
terms of the transformation matrix. The users are also entitled to add variables as they see fit for their
calculation.
void *pData; /* usr routine should NEVER delete pData */

{
/*
** TLocal Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, 0z, ax, ay, az, pPX, pPY, pPzZ;
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After variable declaration, DELMIA V5 inserts a standard if-loop to print mechanism properties and

its current joint values for a given TCP. This part is essential for debugging purposes since these values

are taken from ‘Jog Mechanism’ window directly. This loop can be seen below.

#if 1
/*
* using pData
*/
int 1i;
DLM Data KinStat *pDLM Data = (DLM Data KinStat *) pData;
if ( pDLM Data )
{
printf( "\n\ndof count: %d\n", pDLM Data->dof count );
printf( "\njoint types:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%s ", JointTypel (pDLM Data->joint types) [i]] );
printf( "\n\nkin mode: %s\n", KinMode[pDLM Data->kin mode] );
printf( "\njoint values:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->joint values[i] );
printf( "\n\njnt trvl Imts lower:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[0][i] );
printf( "\n\njnt trvl lmts upper:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[1l][i] );
printf ( "\n\n" );
}
#endif

The next section in the C-file is that DELMIA V5 declares that the users should start their calculation
after this given point. The declaration is

————————— Execution Begins Here ——---———--—-———————————————————————

DO NOT REMOVE THIS BLOCK OF CODE
IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC
DOFS FOR THE DEVICE

'kin check definition( NUM DOFS, NUM SOLUTIONS ) )
Inconsistency between device definition and inverse

kinematics routine exists. A warning message has been
issued and routine aborted

return( 1 );

/*k*k*k ______
***/

/*

* %

* %

* %

%/

if(

{

/~k

* %

%/

)
/*** ______
***/
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After the necessary calculations are made, the user needs to feed DELMIA V5 back with the joint
values. This is achieved by using an array called solutions[] [NUM_SOLUTIONS] . An example of such
action is given below.

solutions[0] [0] = J1;
solutions[1][0] = J2;
solutions[2][0] = J3;
solutions[3][0] = J4;
solutions[4][0] = J5;
solutions[5][0] = J6;

The lines above appoint values to the elements of an array, where these values are named as J1, J2,
etc. These elements belong to the current values of joints, in this case the six joints of a respective
mechanism.

Next important aspect is that the users are also entitled to print any value on debugging window.
This action can be delivered with a line, for example

printf( "J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3 );
printf( "J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6 );

After having finished calculations, the user also must supply the following line to inform DELMIA V5
that the results end in an accepted posture for the mechanism. This is done by feeding back the
warnings array.

warnings[ 0 ] = WARN GOOD SOLUTION;
return (0);

} /* End of kin example */

With the above lines, the user ends the creation of C-file and proceeds to compile the file for the
creation of the required library files.

3.3.3. COMPILATION OF C-FILES

The compilation process of C-files is somewhat delicate; but once it is completed, the process itself
becomes easy to repeat. Before, going deep it must be noted that a compilation tool is necessary for this
operation. In this thesis work, Microsoft Visual Studio 8 is used as compilation tool. The compatibility of
other tools has not been tested. Thus, the approved and recommended tool is Microsoft’s Visual Studio
(version of this program should no longer be earlier than VS 8). If another compiler has been chosen, it is
important that the compilation tool must support C# language and has nmake feature available as a
compilation operation is done via ‘nmake all command.

Another important point regarding compilation process is about the operating system (OS) of the
computer on which the simulation is going to be executed. If the system is 64-bit, users should
implement a prerequisite operation before compilation. This operation will be covered in the appendix
section as environment set-up. The reason to include this step in the appendix (APPENDIX F:
COMPILATION OF C-FILES) is that it would be easier for layman users to follow a how-to type document.

27



4. THEORY OF INVERSE KINEMATICS FOR RESPECTIVE ROBOTS

In this chapter, the inverse kinematics for hexapod/Flexapod 6P, Exechon and Gantry-Tau robots
will be given. Also, the transfer of the theory to C-file will be presented at the end of the theory for each
robot.

4.1. HEXAPOD/FLEXAPOD 6P INVERSE KINEMATICS

The idea behind the inverse kinematics for hexapods is somewhat simple. The method relies on
vector summation and with a known TCP position and orientation the leg lengths can be calculated as
vectors and normalized to reach the total length.

As presented earlier, a hexapod system has the kinematics chain of RR:P:RRR for one leg which
specifically stands for revolute-revolute-prismatic-revolute-revolute-revolute (Ji 2001). This chain is
illustrated in figure 33.

Mobile /

platform

Figure 33: Hexapod/Flexapod kinematic chain of one leg

In any theoretical representation, it is important to first clarify the notation used for the inverse
calculation. To start with, two different coordinate frames will be appointed. The first one XYZ, will be
attached to the base platform that will be the fixed part of hexapod. The second frame XYZ; will be at
the center of mobile platform. The first set of vectors Lb will be utilized to describe the position of
attachment points of legs from the base platform. The second set of vectors L; will describe the legs and
the last set of vectors LitToTCP will illustrate legs’ upper attachment points with respect to the mobile
platform’s coordinate frame XYZ;. The last vector is the position vector of the mobile platform notated
as Pyyz. These vectors are shown in figure 34. With the vectors at hand, the following summation can be
formulated (Yang 1998).

L, = Rx L,tToTCP + Pyy, — L,b (3.1)
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Li
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* L,b
Base XYZ, X,

Figure 34: Hexapod and the constituting vectors

What equation 3.1 aims is that it describes the L1tToTCP vector in the base coordinates XYZ, by
multiplying it with the rotation matrix. Then by adding the translation vector Pyy;, It reaches to the upper
attachment point. By subtracting L,b from the summation, the result becomes the vector between lower
attachment point and the upper one, which is the vector L;. (Yang 1998).

Then, to reach the total length of the leg normalization of the vector should be done by

Tl = Jl? Lo, + L, .2)

Before transferring the theory to a C-file, it is important to give the coordinates of the vectors
defined earlier. These vectors are constant and Lib is defined with respect to XYZ,whereas LitToTCP is
defined with respect to XYZs. These vectors and their coordinates are given in table 1 and table 2for
Hexapod and Flexapod 6P.
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HEXAPOD

Lower Attachment Points Lb

Upper Attachment Points LitToTCP

Coordinates Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6 Leg 1l Leg 2 Leg 3 Leg 4 Leg 5 Leg 6
X-coordinate 31 -31 -117.826 | -86.826 86.826 117.826 31 -31 -57.761 -26.761 26.761 57.761
Y-coordinate 118.156 118.156 -32.231 -85.925 -85.925 -32.231 48.799 48.799 2.447 -51.246 -51.246 2.447
Z-coordinate 40.205 40.205 40.205 40.205 40.205 40.205 -31.45 -31.45 -31.45 -31.45 -31.45 -31.45
Table 1: Coordinates of vectors for hexapod

FLEXAPOD 6P Lower Attachment Points Lb Upper Attachment Points LitToTCP
Coordinates Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6 Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6
X-coordinate -132.5 43.733 88.767 88.767 43.733 -132.5 -48.767 -3.733 52.5 52.5 -3.733 -48.767
Y-coordinate 26 127.748 101.748 | -101.748 | -127.748 -26 32.466 58.466 26 -26 -58.466 -32.466
Z-coordinate 58.5 58.5 58.5 58.5 58.5 58.5 -75 -75 -75 -75 -75 -75

Table 2: Coordinates of vectors for Flexapod 6P
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4.2. HEXAPOD/FLEXAPOD 6P - TRANSFER OF THEORY TO A C-FILE

In this section, the theory presented in 4.1 will be transferred to the C-file. Only the theory and
calculations will be described and complete C-file can be seen in appendix.

The calculation starts with, as stated in 3.3.2, the necessary declarations for variables. These
variables are the elements of the transformation matrix, leg lengths and legs upper attachment
coordinates. The corresponding notation, then,

e Transformation matrix: nx, ny, nz, ox, oy, 0z, ax, ay, az, px, py, pz
e Total leglengths: L1, L2, L3, L4, L5, L6

e Coordinates:

Leg 1: D11 in X-axis, D12 in Y-axis, D13 in Z-axis
Leg 2: D21 in X-axis, D22 in Y-axis, D23 in Z-axis
Leg 3: D31 in X-axis, D32 in Y-axis, D33 in Z-axis
Leg 4: D41 in X-axis, D42 in Y-axis, D43 in Z-axis
Leg 5: D51 in X-axis, D52 in Y-axis, D53 in Z-axis
Leg 6: D61 in X-axis, D62 in Y-axis, D63 in Z-axis
e Joint values:J1, J2, 13, )4, J5, J6

e Leg length when joint command is zero: Lref

O O O O

e Vectors:

o Vectors that connect mobile platform’s coordinate frame to upper attachment points
»  L1tToTCP[4][1]
» | 2tToTCP[4][1]
»  L3tToTCP[4][1]
»  L4tToTCP[4][1]
»  L5tToTCP[4][1]
»  L6tToTCP[4][1]

o Vectors that connect base platform to lower attachment points
= L1b[4][1]
= L2b[4][1]
= L3b[4][1]
= L4b[4][1]
= L5b[4][1]
= L6b[4][1]

o Intermediary vector definition that is the result of the summation between

L,tCur = R x LitToTCP + Pyyy

= |1tCur[4]
= [2tCur[4]
= |3tCur[4]
= |4tCur[4]
= |5tCur[4]
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= L6tCur[4]
o Array declaration for the arranged transformation matrix which is in column vector form
= TCP[4][4]
o Additional variables to perform matrix multiplication
®* jnnerl, inner2, inner3, inner4, inner5, inner6
=  rowl, row2, row3, row4, row5, row6
= coll, col2, col3, col4, col5, col6

These declarations in the code should be as
void *pData; /* usr routine should NEVER delete pData */

{

/*

** TLocal Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, 0z, ax, ay, az, pPX, pPY, PzZ;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33, D41, D42, D43, D51,
D52, D53, D61, D62, D63;

long double 1n1,L2,L.3,1.4,L5,L6,J1,32,33,J4,3J5,J6, Lref;

//Variables to perform matrix multiplication
int rowl, row2,row3, rowd, rowb5, rowb6;

int coll,co0l2,co0l3,col4d4,col5,col6;

int innerl, inner2,inner3, inner4, inner5, inner6;

// The upper attachmentpoints for each leg (The vector between the TCP and
each upper attachment point).

long double L1tToTCP[4][1];

long double L2tToTCP[4][1];
long double L3tToTCP[4][1];
long double L4tToTCP[4][1];
long double L5tToTCP[4][1];
long double L6tToTCP[4][1];

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool
Centre Point) - see line 307.
long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).
long double Ll1tCur[4] = {0};
long double L2tCur[4] {0};
long double L3tCur[4] {0}
long double L4tCur[4] = {0};
[
[

long double L5tCur[4] {0}
long double L6tCur[4] = {0};

//Lower attachemnt points on each leg (in Base coordinates)
long double L1b[3];

long double L2b[3];

long double L3b|[
long double L4b|[
long double L5b|[
long double L6b|[
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After the declarations, matrix elements should be appointed to T6 matrix — which is, as said earlier,

standard definition and input of DELMIA V5 to describe the transformation between two coordinate

frames. This operation is done by

//Importing the current TCP values from Delmia through the T6 matrix and

putting proper context

nx = T6[0][0];
ny = T6[0][1];
nz = T6[0][2];
ox = To[1][0];
oy = Te6[1][1];
oz = To6[1]1[2];
ax = To[2][0];
ay = Te[2][1];
az = To[2][2]);
px = T6[3][0];
py = T6[3][1];
pz = T6[3][2];

In order to perform the matrix multiplication, the transformation matrix should be rearranged in

column vector format. This operation can be skipped and the rest of the calculation can be done

accordingly with the row vector form; however, for this thesis work column vector form is chosen. So

this arrangement is done via

//The transforming T6 matrix from row vectors form to column vector form

TCP[0][0] = nx; TCP[O][1] = ox; TCP[O0][2] = ax; TCP[O][3] = px;
TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;
TCP[2] [0] = mnz; TCP[2][1] oz; TCP[2][2] = az; TCP[2][3] = pz;
TCP[3][0] = 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3]I[3] = 1;

At this point, by measuring the coordinates of upper and lower attachment points in hexapod when

all the actuators are zero, LitToTCP and Lb vectors can be defined with actual vector values. Thus the

corresponding values are declared as

//The vector between the TCP and the upper attachmentpoints for each leg

L1tToTCP[0][0] = 31; L1tToTCP[1][0] = 48.799; L1tToTCP[2][0] =
L1tToTCP[3][0] = 1;

L2tToTCP[0] [0] = -31; L2tToTCP[1][0] = 48.799; L2tToTCP[2][0] =
L2tToTCP[3] [0] = 1;

L3tToTCP[0] [0] = =-57.761; L3tToTCP[1][0] = 2.447; L3tToTCP[2][0] =
L3tToTCP[3][0] = 1;

LAtToTCP[0] [0] = -26.761; L4tToTCP[1][0] = -51.246; LA4tToTCP[2][0] =
L4tToTCP[3][0] = 1;

L5tToTCP[0] [0] = 26.761; L5tToTCP[1][0] = -51.246; L5tToTCP[2][0] =
L5tToTCP[3][0] = 1;

L6tToTCP[0][0] = 57.761; L6tToTCP[1][0] = 2.447; L6tToTCP[2][0] =
L6tToTCP[3][0] = 1;

//The lower attachmentpoints for each leg (in Base-coordinates).
L1b[0] = 31; Llb[1l] = 118.156; L1b[2] = 40.205;
L2b[0] =-31; L2b[1] = 118.156; L2b[2] = 40.205;
L3b[0] =-117.826; L3b[l] = -32.231; L3b[2] = 40.205;
L4b[0] =-86.826; L4b[1] = -85.925; L4b[2] = 40.205;
L5b[0] = 86.826; L5b[1] = -85.925; L5b[2] = 40.205;

-31.

-31.

-31.

-31.

-31.

-31.

45;

45;

45;

45;

45;

45;
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Lob[0] = 117.826; Lob[l] = -32.231; Lob[2] = 40.205;
Lref = 376.5;

Since the coordinates are appointed to the vectors, equation 3.1 can be executed. Thus the

multiplication and summation R x L,tToTCP + Pyy is done with for six legs where R matrix is TCP

//Calculating the current position (in x,y,z in Base coordinates) of each
upper attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)
and the upper attachmentpoint for each leg (LxToTCP[][])

//Calculate upper position on Legl (The array L1tCur)
for (rowl = 0; rowl < 4; rowl++) {
for (coll = 0; coll < 1; coll++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (innerl = 0; innerl < 4; innerl++) {
LltCur[rowl] += TCP[rowl][innerl] * L1tToTCP[innerl] [coll];

}
}
//Calculate upper position on Leg2 (The array L2tCur)
for (row2 = 0; row2 < 4; row2++) {

for (col2 = 0; col2 < 1; col2++) {

// Multiply the row of A by the column of B to get the row,
column of product.
for (inner2 = 0; inner2 < 4; inner2++) {
L2tCur[row2] += TCP[row2] [inner2] * L2tToTCP[inner2] [col2];

}
}
//Calculate upper position on Leg3 (The array L3tCur)
for (row3 = 0; row3 < 4; row3++) {
for (col3 = 0; col3 < 1; col3++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner3 = 0; inner3 < 4; inner3++) {
L3tCur[row3] += TCP[row3] [inner3] * L3tToTCP[inner3][col3];

}
}
//Calculate upper position on Leg4 (The array L4tCur)
for (rowd4d = 0; rowd < 4; rowd++) {
for (cold = 0; cold < 1; cold++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner4 = 0; inner4 < 4; innerd++) {
L4tCur[rowd] += TCP[rowd] [innerd4] * L4tToTCP[innerd] [cold];
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//Calculate upper position on Leg5 (The array L5tCur)
for (rowb = 0; rowb < 4; rowb++) {
for (col5 = 0; colb < 1; colb5++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner5 = 0; inner5 < 4; inner5++) {
L5tCur[row5] += TCP[row5] [inner5] * L5tToTCP[inner5][col5];
}
}
}
//Calculate upper position on Leg6 (The array Lo6tCur)
for (row6 = 0; row6 < 4; rowb++) {
for (col6 = 0; col6 < 1; col6++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner6 = 0
LotCur [rowb

inner6 < 4; innero6o++) {

}

The result of this operation is LitCur. Since the transformation matrix is 4x4 in which translation

] +4= TCP[row6] [inner6] * LotToTCP[inner6] [col6];

vector Pyy, is included, the summation operation is automatically done as the multiplication operation

continues. So LitCur is then

L;tCur = R x L,tToTCP + Pgy; = TCPx L,tToTCP

(3.3)

Then, the subtraction operation will be done. With the result of the subtraction operation in hand,

it is instantly normalized by adding the squares of vector components of the resulting vector. This is
achieved via

// Calcultates the distance between the upper and lower attachment points for

each leg.
Ll = sqrt (((pow ((L1tCur[0]-L1b[0]),2)))+ ((pow((LltCur[l]-
L1b[11),2)))+ ((pow ((L1tCur([2]-L1b[2]),2))));

L2 = sgrt(((pow((L2tCur[0]-L2b[0]),2)))+ ((pow((L2tCur([l]-
L2b[1]),2)))+ ((pow ((L2tCur[2]-L2b[2]),2))));

L3 = sgrt(((pow ((L3tCur[0]-L3b[0]),2)))+ ((pow((L3tCurll]-
L3b[1]),2)))+ ((pow((L3tCur[2]-L3b[2]),2))));

L4 = sqrt (((pow((L4tCur[0]-L4b[0]),2)))+ ((pow((L4tCur[l]-
Ldb[1]),2)))+ ((pow ((L4tCur[2]-L4b[2]),2))));

L5 = sqrt(((pow((L5tCur[0]-L5b[0]),2)))+ ((pow((L5tCur([1l]-
L5b[1]),2)))+ ((pow ((L5tCur[2]-L5b[2]),2))));

L6 = sqgrt(((pow((L6tCur[0]-L6b[0]),2)))+ ((pow((L6tCurll]-
L6b[1]),2)))+ ((pow((L6tCur[2]-L6b[2]),2))));
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Then from total leg lengths, the reference length (notated as Lref) — which is the total length when
joint command is zero — will be subtracted. This way, joint values will be achieved and these values J1, J2,
J3, )4, )5 and J6 will be fed back to ‘solutions’ array. This is accomplished by

//Calculates the joint values by calulating the differnce in distance between
the two attachmentpoints on each leg and a reference length (Lref)

//(the lenght between attachment points when the joints are 0)

Jl = L1 - Lref;

J2 = L2 - Lref;
J3 = L3 - Lref;
J4 = L4 - Lref;
J5 = L5 - Lref;
J6 = L6 - Lref;

D11 = LltCur ; D12 = LltCur
D21 = L2tCur ; D22 = L2tCur
D31 = L3tCur ; D32 = L3tCur

[0]; [1]; D13 = LltCur
[0]; [
[0] [
D41 = L4tCur[0]; D42 = L4tCur]|
(017 [
(017 [

] [
]; D23 = L2tCur]|
]; D33 = L3tCur]|
1; D43 = L4tCur|
D51 = L5tCur ; D52 = L5tCur([1] [
D6l = LotCur ; D62 = L6tCur[l] [

1
1
1
1
1]; D53 = Lb5tCur
1]; D63 = Lé6tCur
//Sending the final joint values back to the "solutions"-matrix which is the
input matrix for Delmia.

solutions[0] [0] = J1;
solutions[1][0] = J2;
solutions[2][0] = J3;
solutions[3][0] = J4;
solutions[4][0] = J5;
solutions[5][0] = J6;

With the lines above, the calculation phase is accomplished. After this point, the user can also print
any value on debugging window in order to verify that the inverse kinematics is working. Such printing
operation, in this case, can be done for leg lengths and their corresponding coordinates with

//Printing some of the variable values out in the debug window to ease
debugging and get an overview of what is going on
printf( "\n The leg lengths\n" );

printf( "J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3 );
printf( "J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6 );
printf( "L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3 );
printf( "L4 L5 L6: %12.4f ,%12.4f ,%12.4f\n", L4 ,L5 ,L6);
printf( "\n The legs' upper attachment point coordinates \n" );

~e

(
(
(
(
(
printf( "\D11 D12 D13: %12.4f ,%12.4f ,%12.4f\n", D11 ,D12 ,D13
(
(
(
(
(

)
printf ( "\D21 D22 D23: %12.4f ,%12.4f ,%12.4f\n", D21 ,D22 ,D23 );
printf( "\D31 D32 D33: %12.4f ,%12.4f ,%12.4f\n", D31 ,D32 ,D33 );
printf( "\D41 D42 D43: %$12.4f ,%12.4f ,%12.4f\n", D41 ,D42 ,D43 );
printf( "\D51 D52 D53: %12.4f ,%12.4f ,%12.4f\n", D51 ,D52 ,D53 );
printf( "\D6l D62 D63: %$12.4f ,%12.4f ,%12.4f\n", D61 ,D62 ,D63 );

After printing values the code continues with the declaration of an acceptable solution via

warnings[ O ] = WARN GOOD SOLUTION;
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And the C-file is terminated with

return (0);

}

With termination, the transfer of the theory is completed. It must be noted that the coordinates
used in this code belong to hexapod. For Flexapod 6P case, the corresponding lines can be altered
according to values in Table 2.
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4.3. EXECHON INVERSE KINEMATICS - THEORY

The inverse kinematics theory of Exechon has been presented in literature in various ways. One of
those ways is presented by Bi (2011). In the respective theory, inverse kinematics is treated by using
intermediate variables defining the position and orientation of the mobile platform; and through these
variables, the coordinates of the attachment points are calculated. Zoppi (2010) is also adopting a
similar way where the inverse kinematics approach is defined via intermediate variables that are not
defining the direct value of the joints. Thus, a parallel theory employed for Stewart platforms can be
applied to Exechon.

The idea of this similar inverse kinematics is that with a transformation matrix, the vectors that
connect mobile platform to legs’ lower attachment points can be described with respect to base
coordinate frame, which is done by multiplication of these vectors with a T6 matrix. Then, the constant
vectors that connect the base coordinate frame to fixed upper attachment points — which are the
centers of RR-joints for identical legs and spherical joint for the perpendicular leg — are subtracted from
the product of the multiplication operation. Then, the resulting vectors that define the legs are
normalized and the standard leg lengths when the actuators are zero are subtracted from the
normalized vectors — which results in the joint values under actuation (Bi 2011).

Mobile
Platform

LtToTCP L,tToTCP

XYZg

Figure 35: The vector description of Exechon robot's parallel structure
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In order to clarify the calculations, the vectors need to be illustrated with their notations. These
vectors are shown in figure 35. Then, the theory of inverse kinematics for the parallel part of Exechon
will be presented.

The necessary vectors and the coordinate frames are then

e  XYZ,— Base coordinate system

o XYZs;— Mobile platform’s coordinate system located at the center of a possible wrist

e |, —The set of vectors to define the corresponding leg’s position and orientation.

e Lib—The constant vectors that define the location of upper attachment points of legs

e LtToTCP —The set of vectors that connect XYZs to attachment points on mobile platform

As put earlier, the methodology is somewhat similar to hexapod; and that is the reason same
notation is used for this robot as well.

First step in the calculation is to describe LitToTCP vectors in the base coordinate system (Bi 2011).
To achieve that, the use of transformation matrix T6 — which is input from DELMIA V5 —is required. The
transformation matrix for this robot will be measuring the coordinate frame XYZ4's orientation and
position. Thus, description of the mobile platform’s vectors in base coordinate frame is

O(LtToTCP) = 2T6 x °(L,tToTCP) (3.4)

Then, since transformation matrix includes translation the result of equation 3.4 is now equal to the
summation of Lib and L. When Lb is subtracted, the result will be the vector describing L; (Bi 2011).
Hence,

O(LtToTCP) = L,b + L, (3.5)
L, = °(L,tToTCP) — L,b (3.6)

Finally, the normalization of this vector will yield the total length, which is

| = \/Lixz + Ly + Ly, (3.7)

In the case of Exechon as with hexapod, the reference length must be subtracted from the product
of equation 3.7 so that the result of subtraction can be fed back to solutions matrix of the C-code. This
part is not described in the theory section for it is defined when the assembly is completed in DELMIA
V5. However, it must be noted that the reference lengths of Exechon robot may differ from each other
depending on the CAD-models. These lengths in this thesis work are 803.887 mm for identical legs and
886.021 mm for leg 3. As in the case of hexapod, these constant vectors should be defined and these
values for the coordinates of the respective vectors are given in table 3.
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HEXAPOD From Base Coordinate System to Upper Mobile Platform’s Lower Attachment
Attachment Points L;b Points LitToTCP
Coordinates Leg 1 Leg 2 Leg 3 Leg1 Leg 2 Leg 3
X-coordinate 420 -420 0 173 -173 0
Y-coordinate 0 0 670 -50 -50 173
Z-coordinate 0 0 0 485 485 485

Table 3: Coordinates for the vectors of Exechon

4.4. THEORY OF EXECHON TO C-FILE

As with the case of Flexapod 6P and hexapod cases, the c-file starts with declarations of
coordinates. These coordinates and corresponding vectors are declared as

//The vector between the TCP and the upper attachmentpoints for each leg
3; L1tToTCP[1][0] =

L1tToTCP[O0][0] =
L1tToTCP[3][0] = 1;

17

L2tToTCP[0] [0] -17

L2tToTCP[3][0] = 1;

L3tToTCP[O0] [0] =
L3tToTCP[3][0] = 1;

//The lower attachmentpoints for each leg

L1b[0] 420;
L2b[0] = -420;
L3b[0] = 0;

3; L2tToTCP[1][0] =

0; L3tToTCP[1][0] =

Llb[1l] = 0;
L2b[1l] = 0;
L3b[1l] = 670;

-50;

-50;

173;

L1tToTCP[2][0] =

L2tToTCP[2][0] =

L3tToTCP[2] [0] =

(in Base-coordinates).
Llb[2] = 0;
L2b[2]
L3b[2]

0;
0;

485;

485;

485;

Then, the calculations start with transforming or in other words describing LtToTCP vectors in base

coordinate system by using a matrix multiplication function for three LtToTCP vectors.

//Calculate upper position on Legl

for (rowl = 0; rowl <

for (coll = 0;

// Multiply the row of A by the column of B to get the row,

column of product.
for (inner

4; rowl++)
coll < 1;

1 =20;

innerl < 4;

{
coll++) {

LltCur([rowl] += TCP[rowl] [innerl]

}
}

//Calculate upper position on Leg2
row2 < 4;

for (row2 = 0;

for (col2 = 0;

col2 < 1;

col2++) {

(The array LltCur)

innerl++) {

* L1tToTCP[innerl] [coll];

(The array L2tCur)
row2++) {
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// Multiply the row of A by the column of B to get the row,
column of product.
for (inner2 = 0; inner2 < 4; inner2++) {
L2tCur[row2] += TCP[row2] [inner2] * L2tToTCP[inner2] [col2];

}
}
//Calculate upper position on Leg3 (The array L3tCur)
for (row3 = 0; row3 < 4; row3++) {
for (col3 = 0; col3 < 1; col3++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner3 = 0; inner3 < 4; inner3++) {
L3tCur[row3] += TCP[row3] [inner3] * L3tToTCP[inner3] [col3];

Then, from LtToTCP vectors the base vectors Lib will be subtracted and the product of this
operation will be normalized. This operation is done via

// Calcultates the distance between the upper and lower attachment points for
each leg.

L1l = sgrt(((pow ((L1tCur[0]-L1b[0]),2)))+ ((pow((L1ltCur[l]-

Lib[11),2)))+((pow ((LltCur[2]-L1b[2]),2))));

L2 = sqgrt (((pow((L2tCur[0]-L2b[0]),2)))+ ( (pow((L2tCur[l]-
L2b[11),2)))+ ((pow ((L2tCur([2]-L2b[2]),2))));

L3 = sqgrt (((pow((L3tCur[0]-L3b[0]),2)))+( (pow((L3tCur[l]-
L3b[1]),2)))+ ((pow ((L3tCur[2]-L3b[2]),2))));

From this total length, the reference length of for identical legs and leg 3 will be subtracted and the
result will be fed back to solutions matrix.

//The distance between upper and lower leg attachmentpoint when the command
joint is zero. Used as a reference to get the current leg length

Lrefl2 = 803.887;

Lref3 = 886.021;

//Calculates the joint values by calulating the differnce in distance between
the two attachmentpoints on each leg and a reference length (Lref)

// (the lenght between attachment points when the joints are 0)

Jl = L1 - Lrefl2;

J2 = L2 - Lrefl2;

J3 = L3 - Lref3;

//Sending the final Jjoint values back to the "solutions"-matrix which is the
input matrix for Delmia.

solutions[0][0] = J1;

solutions[1] [0] = J2;

solutions[2] [0] = J3;
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4.5. GANTRY-TAU ROBOT

The inverse kinematics aspect of Gantry-Tau robots bears some similarities to previous robots of
this thesis work since it is comprised of a parallel structure. The schematic description of this robot can

be seen in figure 36.

Cluster 3 (Cs) Z

Cluster 1 (C,)

Prismatic (Ps)

[]Prsmatc(n)

Figure 36: Gantry-Tau robot

Cluster 2 (Cy)
Prismatic(P,)

In order to develop the inverse kinematics, the kinematic description of Gantry-Tau is essential.

Each link in the clusters have the kinematic chain of prismatic joint with actuation, universal joint and a
spherical joint that connects the link to the mobile platform. Therefore, from the inverse kinematics
perspective, the outcome of calculations should yield values for prismatic actuators P; (i = 1-3). To find
these joint values, then, each cluster will be analyzed separately; and in each cluster, one link and its
constituting vectors will be used due to parallel formation of the mechanism (Johannesson 2003).
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TCP

Figure 37: Link 1's vector definition

In figure 37, the vectors that constitute link 1’s kinematic chain can be seen. From these vectors, it
is possible to develop the equation 3.8 for link 1

P +d, +1; =2T6 x 1y (3.8)
0T6 xn; =T 4 R6 X 17 (3.9)

where 2T6 is the transformation matrix between the TCP and base frame whereas JR6 is the
rotational part of 2T6. Since [, is a constant length in the mechanism as well as n; and d, the actuators

coordinate’s coordinates can easily be found (Johannesson 2003). Let N_l) be equal to 2T6 x n; and
equation 3.8 be arranged as

—

I, =N, —P,—d; (3.10)

If the vectors and their components are rewritten in matrix form, then

Nl,x Pl,x dl,x
|—>_ N,, B 0 B d1’y
1=
1z dl,z
1 1 1
Nl,x - Pl,x - dl,x
- N,, —d
l, = by Ly (3.11)
Nl,z dl,z
1
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As put before, the lengths of the links are constant and known; thus, when the right hand side of
equation 3.11 is normalized

L% = (Nyx —Pyx —dix)* + (Nyy —dyy)® + (Nyz — dy 2)? (3.12)

Then, when the variable P, x is separated

T 2
Py x =Nyy—dyx+ \/11 = (Nyy —diy)* — (Nyz — dy z2)? (3.13)
From equation 3.13, the actuator value P; x has two solutions (Johannesson 2003).

This chain of calculations will be repeated for the remaining prismatic actuators as well. The
schematic description of the vectors that comprise link 3 is in figure 38.

TCP

P>

Figure 38: Prismatic joint 2 and the corresponding vectors

For the second actuator, the same type of calculation done for the first will be created. The sum of
the vectors presented in figure 38 corresponds to

S,+P, +dy +1, =T6xT, (3.14)

As in link 1, let the right hand side of equation 3.14 be N_z) and when the left hand side of the
equation is separated and represented in matrix form

L-N-5-7%-4;
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N2,x 2y P2,x d2,x
r_ N2y Y2y | 0 _ d2,y
, =
2,z Sz,z d2,z
1 1 1 1
N2,x _SZ,X - Pz,x d2,x
Lo| Ney™Sey 70y (3.15)
’ N2,z _SZ,Z _d2,z
1

When both hand sides of equation 3.15 are normalized, then
1L, = (Noy = Sz — Pox — dpy)® + (Noyy — Sz — day))* + (Npy, — Spp — da )P (3.16)

With separation of variables of equation 3.16, the prismatic joint value

Pyy =Npy — Sy —dy, + lez — N2y — Sz —dp )2 — (Npz — Sy, — dy 2)? (3.17)

As in earlier joint, two solutions exist for P, xas well (Johannesson 2003). The last actuator is
attached to the last link /g in the robot. Thus the vectors that constitute this chain can be seen in figure
39.

TCP

Figure 39: Prismatic joint 3's vectors
Repeating the same idea for other joints, the sum of the vectors for the last prismatic joint will yield

Ss+P;+ 13 =9T6 x13 (3.18)
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Let the right hand side of equation 3.18 be N_3) and when the left hand side of the equation is
separated and represented in matrix form

_— -

I_3)=N3—53_P—3)_d_3)

N3,x SB,x P3,x d3,x
|—> _ N, B Sy B 0 B ds,
’ N3,z S3,Z 0 d3,z
1 1 1 1
N3,x _83,x - P3,x - d3,x
- N, -S.,, —d
l, = Sy TSy TR (3.19)
N3,z _S3,z - d3,z

1

When both hand sides of equation 3.19 are normalized, then

l32 = (N3 x — S3x — P3x—d3x)*> + (N3y — Szy—dsy)* + (N3 z — S3,—d3 2)*
(3.20)

With separation of variables of equation 3.16, the prismatic joint value is

P3,X = N3,X - S3,X - d3,X + Jl32 - (NS,Y - SB,Y_d3,Y)2 - (NS,Z - S3,Z_d3,Z)2 (321)

The last joint has two solutions as well as the earlier joints. Thus, in total Gantry-Tau robot has eight
different postures for given TCP values. The robot chooses the best configuration/posture in real-time
applications whereas in DELMIA V5 users are allowed to specify the posture. Another important point to
keep in mind is that the forward kinematics of Gantry-Tau robot also offers various postures for given
joint values (Johannesson 2003). Since such situation cannot be defined in DELMIA V5, it is possible to
have some errors when a change is made between the postures offered by inverse kinematics. This
problem usually changes the coordinates TCP when the current posture is changed (for the forward
kinematics calculation, refer to the appendix).

Before proceeding to the creation of C-file, the necessary coordinates for Gantry-Tau is given in
table 4.

S: S, S; d, d, d; n, n, n;

X 0 -1100 -2200 -96.569 0 96.569 | 224.999 0 -182.574
700 0 -185 -322.843 0 -240.001 | 39.705 -80

z 0 0 0 -400 -173.726 | -400 171.568 | 336.862 | 213.994

Table 4: Coordinates of the vectors for Gantry-Tau
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4.6. THEORY OF GANTRY-TAU ROBOT TO C-FILE

As with previous cases, the variables should be defined. These variables for the given vectors in
Table 4 are defined as

s User code begins here ----------------"--"-"—"——"—\——"——\—~——~———

//The vectors to define the prismatic joints where Pi[2][0] is the prismatic
joint value in negative direction

P1[0][0] = 0; P1[1][0] = 0; P1[2][0] = 0; PL[3][0] = 1;
2[0][0] = -1100; P2[1][0] = 700; P2[2][0] = 0; P2[3][0] = 1;
3[0][0] = -2200; P3[1][0] = 0; P3[2][0] = 0; P3[3]I[0] 1;

//The constant vectors to define the upper attachment points from prismatic
joint end

1[0][0] = -96.569; d1[1][0] = -185; dil[2][0] = -400; di1[3]1[0] = 1;
2[01[0] = 0; d2[1][0] = -322.843; d2[2][0] = -173.726; d2[3][0] = 1;
d3[0][0] = 96.569; d3[1]1[0] = 0; d3[2][0] = -400; d3[3]1[0] = 1;

//The vectors that connect TCP to lower attachment points.

1[0][0] = 224.999; nl1[1][0] = -240.001;n1[2][0] = 171.568; nl[3][0] = 1;
2[01[0] = 0; n2[1][0] = 39.705; n2[2][0] = 336.862; n2[3][0] = 1;
n3[0][0] = -182.574; n3[1][0] = -80; n3[2][0] = 213.994; n3[3][0] = 1;

//Reference lengths
Lref=1500 ;
Lref2=1499.775;

Again TCP matrix will be formed from T6 matrix as following

//Importing the current TCP values from Delmia through the T6 matrix and
putting proper context

nx = T6[0][0];
ny = T6[0][1],
nz = T6[0][2];
ox = T6[1][0];
oy = Te[1][1];
oz = T6[1][2];
ax = T6[2][0];
ay = T6[2][1];
az = T6[2][2];
px = T6[3]1[0];
py = T6[3]1[1];
pz = T6[3]1[2];

//The transforming T6 matrix from row vectors form to column vector form

TCP[O0][0] = nx; TCP[O][1l] = ox; TCP[O0][2] = ax; TCP[O][3] = px;
TCP[1][0] = ny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;
TCP[2][0] = nz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;
TCP[3][0] = 0; TCP[3][1] = O; TCP[3][2] = O0; TCP[3]1[3] = 1;
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Then, the multiplication of n;vectors with TCP matrix will be accomplished via

//Calculating the current position (in x,y,z in Base coordinates) of each
lower attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)
and the lower attachmentpoint for each leg

//Calculate upper position on Legl (The array L1tCur)
for (rowl = 0; rowl < 4; rowl++) {
for (coll = 0; coll < 1; coll++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (innerl =

0; innerl < 4; innerl++) {
NT1[rowl] [O

] += TCP[rowl] [innerl] * nl[innerl][coll];

}

}
//Calculate upper position on Leg2 (The array L2tCur)

for (row2 = 0; row2 < 4; row2++) {
for (col2 = 0; col2 < 1; col2++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner2 = 0; inner2 < 4; inner2++) {
NT2 [row2] [0] += TCP[row2] [inner2] * n2[inner2] [col2];

}

}
//Calculate upper position on Leg3 (The array L3tCur)

for (row3 = 0; row3 < 4; row3++) {
for (col3 = 0; col3 < 1; col3++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner3 = 0; inner3 < 4; inner3++) {
NT3[row3] [0] 4+= TCP[row3] [inner3] * n3[inner3][col3];

Now, equations 3.13, 3.17, and 3.21 will be directly applied as following

//Finding the joint values by using the theory. Multiplication with -1 stems
from the direction of the joints.

J11=-1* (NT1[2][0]-d1[2] [0]+ sqrt (pow (Lref,2)-pow((P1[0][0]+d1[0][0]-
NT1[0][0]),2)-pow ((PL[1][0]+d1[1][0]-NT1[1]1[01),2)));

J12=-1*(NT1[2][0]-d1[2][0]- sgrt(pow(Lref,2)-pow ((P1[0][0]+d1[0][0]-
NT1[0][0]),2)-pow ((P1[1][0]+d1[1][O]-NT1[1][0]),2)));

J21=-1*(NT2[2] [0]-d2[2][0]+ sgrt(pow(Lref,2)-pow ((P2[0][0]+d2[0][0]~-
NT2[0][0]),2)-pow ((P2[1][0]+d2[1][0]-NT2[1]1[0]),2)));

J22=-1* (NT2[2][0]- [2][ ]- sqgrt (pow (Lref,2)-pow ((P2[0][0]+d2[0][0]~-
NT2[0] [0]),2)—pOW(( [1]1[0]1+d2[1][0]-NT2[1][0]),2)));
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J31=-1*(NT3[2][0]~- [2][ 1+ sgrt (pow(Lref2,2)-pow ((P3[0] [0]+d3[0][0]-
NT3[0] [O]),Z)—pow(( 3[11[0]+d3[1][0]-NT3[1][0]),2)));

J32=-1*(NT3[2][0]-d3[2][0]- sqgrt (pow(Lref2,2)-pow ((P3[0][0]+d3[0][0]~-
NT3[0][0]),2)-pow ((P3[1][0]+d3[1][0]-NT3[1]1[0]),2)));

Then, the joint values are sent back to solutions matrix for all possible eight postures that can be
created with J1, J2 and J3’s two different values. The matrix then should be as

//Sending the final Jjoint values back to the "solutions"-matrix which is the
input matrix for Delmia.

solutions[0][0] = J11; solutions[1][0] = J21; solutions([2][0] = J31;
solutions[0][1] = J11; solutions[1l][1l] = J21; solutions[2][1l] = J32;
solutions[0] [2] = J11; solutions[1l][2] = J22; solutions[2][2] = J31;
solutions[0] [3] = J11; solutions[1][3] = J22; solutions[2][3] = J32;
solutions[0][4] = J12; solutions[1][4] = J21; solutions[2][4] = J31;
solutions[0] [5] = J12; solutions[1][5] = J21; solutions[2][5] = J32;
solutions[0][6] = J12; solutions[l][6] = J22; solutions[2][6] = J31;
solutions[0][7] = J12; solutions[1l][7] = J22; solutions[2][7] = J32;



5. RECOMMENDED COURSE OF ACTION FOR MECHANISM BUILDING IN
DELMIA V5 - THE USER-FRIENDLY METHODOLOGY

As the title suggests, this chapter is dedicated to describe the methodology employed to create a
mechanism beyond the scope of technical knowledge required for any user to utilize DELMIA V5's
Device Building module. One of the most important aspects of mechanism building in the respective
software is that any user can encounter various types of obstacles. Thus, in the preceding parts of this
chapter each step of the designed methodology will be described.

The first step of each device building project in DELMIA V5 is to first investigate the relative theory
for inverse and forward kinematics of mechanism. By building this knowledge in advance, the users will
not only learn about the inverse kinematics, but also be able to inherit the necessary understanding for
the expected behavior of the target mechanism.

The next step, as expected, is to create the forward kinematics of the mechanism in hand.
Specifically, each mechanism may require a different approach than the next; however, the very basics
of the mechanism building will still remain within the idea that first appoint the fixed part and
successively build the mobile parts of the mechanism. When the end-effector is reached, the behavior
of the mechanism should be checked via jogging the mechanism. Thus, the schematic methodology will
look like for forward kinematics as in figure 40.

Bring in the Create Successively Control the
Create the nod 8 mechanism via Appoint the create joints to behavior of the
parts of X X
tree X new mechanism fixed part reach the end- created
mechanism .
button effector mechanism

Figure 40: Forward kinematics steps

After reaching a correct state in forward kinematics, the users now should analyze the inverse
kinematics theory. The available literature may offer various ways to define inverse kinematics; however,
since DELMIA V5 offers transformation matrix for the end-effector it would be important to apply the
relevant theory with respect to such opportunity. After having defined the relative theory, users should
also define the inverse kinematics parameters via the interface offered by DELMIA V5. This
wizard/interface walks the users through the necessary parameters, which are well described in the
appendices of this thesis work. Thirdly, it is highly-recommended for users to transfer the inverse
kinematics theory to a MATLAB function as well, where users will be able to compare their simulation
results to those coming from MATLAB. However, it is also important to verify MATLAB functions via
using the created mechanism that has only forward kinematics definition. Users can verify these
MATLAB functions by simply jogging the mechanism to a certain TCP position and orientation; and when
these TCP values are applied to MATLAB, the outcome of the function should match the joint values in
DELMIA V5. When these steps are collected and put in a scheme, the result will be as figure 41.

Ay Ene Define inverse

. transform N L Create MATLAB .

Analyze inverse . . . kinematics in X Verify MATLAB

. ¥ information with functions for the .

kinematics theory DELMIA V5 . N " functions
respect to DELMIA TTerams inverse kinematics

V5

Figure 41: Inverse kinematics steps
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After the parameter definition and verification of MATLAB functions, users are guided to create the
C-file with analyzed and applied inverse kinematics description. Firstly, users should appoint the
administrative commands of the C-file, which are plainly described in the theory section. Then, users
should transfer the inverse kinematics theory to the file and compile it. The final step before proceeding
to the testing phase is the compilation of the C-file. This phase requires the use of a compilation tool.
Such necessity is discussed in section 3.3.3 and APPENDIX F: COMPILATION OF C-FILES. Users are not
expected to have any problems while using this step of the methodology employed for this thesis work.
So the steps then will be as in figure 42.

Appoint names of
Define Transfer the theor thecreated files
administrative ¥ Y Compile back to DELMIA V5
to the C-file X . .
commands inverse kinematics
interface

Start a clean C-file
page

Figure 42: C-file creation

After the compilation, debugging phase of the mechanism should be done. During the compilation,
it is possible for layman users to encounter with syntax or semantic errors. Thus, these errors can easily
be spotted on the debugging window. If the compilation in the first place is successful, the accuracy of
the calculations should be verified. Hence, it is recommended for users to move the mechanism with
inverse kinematics definition to a certain position and orientation; and compare the results to those
coming from MATLAB for the same TCP values. If there is a mismatch between the results, the source of
error should be spotted and rectified. When the rectification is done, the new C-file should be
recompiled. And this circle should continue until it is proven that the mechanism is fully functional and
free of errors. When these steps are grouped in a schematic description, the result will be as in figure 43.

— Compare Mechanism is
Compilation
results

completed

Rectify Error

s

Figure 43: Compilation and debugging

Finally, when all the steps so far described are to be redefined in a complete tree like concept, the
resulting figure will be as in figure 44; and the methodology applied to the robots of this thesis work can
be seen in figure 45.
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Mechanism is completed

Find relevant theory and analyze the behaviour of the mechanism

Build the forward kinematics

Control the behaviour of the robot

Analyze inverse kinematics theory

Reevaluate theory with respect to DELMIA V5

Create the MATLAB function for inverse kinematics

Verify MATLAB function via using forward kinematics in DELMIA V5

Create the C-file

Compile

Debug the C-file

Error

YES

Sy Mismatch with results

different TCP values

A

from MATLAB for

. | |

Contol the input on the debuggin

window

Determine the source of the error

Assembly errors

Calculation error in C-file

Fix the error

Figure 44: The recommended course of action
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Robots

Hexapod

Flexapod 6P/ Exechon / Gantry Tau

Find the relevant theory

Find the relevant theory

Analyze the calculation results by
using MATLAB simultaneously

Build the forward kinematics

Determine the cause of the
problem

Build the inverse kinematics via
DELMIA V5R21 interface

Rearrange the code accordingly

Transfer the respective theory to a
C-file

Compile the C-file

Compile the C-file

Start testing the code by using
MATLAB simultaneously

Start testing the code by using
MATLAB simultaneously

Figure 45: Application of methodology to respective robots
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6. RESULTS AND DISCUSSION

The aftermath of this thesis work is fully functional Hexapod, Flexapod 6P, Exechon and Gantry-Tau
robots along with a methodology enabling the simulation of most parallel kinematics structures in
DELMIA V5 by using a C-file for inverse kinematics.

The methodology developed for this thesis work can be used by any layman users for the purpose
of simulating advanced mechanisms in not only DELMIA V5 but also any other simulation environment
that supports the use of inverse kinematics via a C-file. However, it is very likely to encounter some
obstacles at some points of the methodology that cannot be classified and illustrated easily in the
methodology.

One of these stages that problems are most likely to occur is whilst the creation of forward
kinematics. During the assembly, it is observed that the creation of joints may not be possible due to the
fact that the mechanism sometimes becomes over-constrained. The reason of such a case is usually
resulting from the fact that the algorithm behind DELMIA V5’s forward kinematics is not able to find a
point in the working space to create the necessary constraints for the joint. In order to overcome such a
problem, users can easily drag/rotate the respective part to a point that is close to the center of
prospective joint. Usually, the relocation of these parts results in the successful assembly; however, the
outcome may differ from what users expect. Even if the over-constraint case did not happen, the
algorithm described above can cause unexpected problems such as the case in which the mobile parts of
the robot are diving through each other and the end-effector is at some point and orientation other
than home position. Such a case is illustrated in figure 46.

Figure 46: Parts diving each other

Since these problems are randomly occurring and their reasons are somewhat ambiguous, they
have not been classified in the methodology. However, this situation clearly shows that the
methodology can further be elevated in terms of forward kinematics to decipher all the dynamics of
mechanism creation in DELMIA V5.
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Another step that is possible for users to run into problems is the inverse kinematics creation. In
this step, the methodology reduces problems into two categories — syntax/semantic errors and
calculation mistakes. In this thesis work all the errors that occurred during this phase were related to
either syntax/semantic or calculation. However, this situation still can be open-ended, meaning users
may have to overcome other problems if they need to change the parameters in the DELMIA V5’s
interface for inverse kinematics or they might suffer from the incapability of C-language when very
advanced calculations must be made.

Having described the results of using the methodology, it is also important to represent the key
findings with created robots. Consequently, the hexapod robot was the first to be analyzed as it was
handed over from the previous owner of the project, Torbjérn Jakobsson. Thus, its forward kinematics
was built in advance by him. On the other hand, Flexapod 6P — which shares the same theory with
hexapod — was completely built from already available CAD-parts. The theory for inverse kinematics of
these robots was completely adopted and it proved to be completely sufficient for the simulation to be
used in real-life applications. The error rate of joint values observed throughout the testing phase was
approximately in the span of £0.0004 mm with respect to the output coming from MATLAB functions —
the reason of which is presumed to be related to C-language bitwise operations.

The Exechon robot is simulated with only parallel structure, meaning the wrist attached after the
mobile platform was not included in inverse kinematics. The reason behind this choice stemmed from
the fact that available published theory regarding the inverse kinematics of hybrid structure (parallel
and serial attached to each other successively) was not available at the time of this thesis work carried
out. In addition, due to its limitations in the kinematics structure Exechon robot is not responding
accurately to the commands given by DELMIA V5’s Cartesian tab — in which rotational and translational
motion cannot happen simultaneously unless a separate tag for the target TCP is created. Particularly,
when pure translational motion is performed DELMIA V5 first calculates the necessary joint values for
pure translation; and for these joint values Exechon reaches the closest possible point in its workspace.
In table 5, such situation is disclosed for 100 mm of translation in X-direction. When the motion is
performed DELMIA V5 takes the robot to the nearest point [95.7935, 49.4846, -1252.5967]" via
translational and rotational motion. When analyzed further, these limitations in the capability of the
robot motion are stemming from the fact that the mobile platform is only capable of doing rotations
about X and Y axes and pure translation in Z-direction (Bi 2011).

Joint values for Joint values Joint values
Intended Intended Actual intended TCP for aCtI:Ia| Tce for actual TCP
TCP Actual TCP TCP . coordinates .
Tcp orientation | Coordinates | orientati coordinates from coordinates
Coordinates from MATLAB . from MATLAB
(deg) on (deg) . debugging .
function (mm) . function(mm)
window (mm)
X 100 95.7935 -0.024 -24.8915 -24.8915 -24.8920
Y 50 49.4846 -4.372 36.1332 36.1332 36.1329
Z -1250 -1252.5967 0.002 5.6258 5.6258 5.6257

Table 5: Exechon's forward kinematics results
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The Gantry-Tau robot has been simulated and proved to be mostly functional in simulation
environment. The theory of inverse kinematics for this robot was easily integrated into a C-file except
for switching between the eight different postures that the inverse kinematics of Gantry-Tau robot
offers. Specifically, for a given TCP values, the inverse kinematics calculates eight different postures.
When changing the posture, it was observed that TCP values changed even though they should have
remained the same as in the earlier posture. The reason for this problem was resulting from the fact
that when joint values are fed back to DELMIA V5, forward kinematics of the robot recalculates the TCP
coordinates and sends these values back to the transformation matrix. However, the forward kinematics
calculation of Gantry-Tau results in multiple postures as for its inverse kinematics (see APPENDIX E:
GANTRY-TAU ROBOT for forward kinematics calculation). Since DELMIA V5 does not include this option
to choose between postures in forward kinematics calculation, the software randomly chooses an
available posture and sends different TCP coordinates to C-file than the values of intended TCP. To
illustrate, when Gantry-Tau robot is jogged to [-1200, -750, -1900]" mm and forced to switch between
the postures resulting from the inverse kinematics calculation, the next posture causes TCP to move to
another point [-725.0365, 714.1958, -2274.3482]" although it is intended to remain in its former position
as seen in table 6. As Johannesson (2003) explains this situation is stemming from the fact that when
posture 2’s joint values are applied to forward kinematics, it produces multiple TCP values; and as
DELMIA V5 is not offering this choice between TCPs, it is randomly appointing one TCP location for the
robot. On the other hand, it was also observed that this situation does not happen for some postures as
well. Hence, it is enough to make the point that if users choose to remain in the same posture as the TCP
propagates, they would be able to reach a somewhat stable simulation environment for Gantry-Tau

robot.
. Joint values Joint values Joint values for
Joint values for the New TCP ,
. . for Posture for Posture 2 . posture 2’s TCP
Intended TCP | intended coordinates coordinates .
coordinates from debugging lat When when switched coordinates
window intended switching to bosture 2 from MATLAB
TCP location postures P function (mm)
X -1200 417.2158/2239.6689 | 417.2158 417.2158 -725.0365 417.2157
Y -750 361.0962/2417.7485 361.0962 361.0962 714.1958 361.0964
yA -1900 265.8219/2306.2108 265.8219 2306.2108 -2274.3482 2306.2107

Table 6: Gantry-Tau's inverse kinematics results

This thesis work shows that there is still much to be done to reach a complete robust simulation
of parallel kinematics mechanisms in DELMIA V5 since the forward kinematics of these structures
requires more delicate care than of serial robots. Thus, an interface that calculates the forward
kinematics of parallel structures would pave the way for DELMIA V5 to enhance its simulation ability
over advanced mechanisms. Also, further exploration of the assembly creation algorithm and input
parameters of inverse kinematics can lay the foundations for other opportunities in the field of
mechanism creation in DELMIA V5.
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7. CONCLUSION

In this thesis work, a methodology to create advanced mechanisms in DELMIA V5 has been
developed and by using this methodology hexapod, Flexapod 6P, Exechon and Gantry-Tau robots have
been simulated. The methodology covers the complete steps that range from mechanism assembly to
the application of inverse kinematics theory to DELMIA V5. The compilation and environment set-up
along with the testing procedure have also been methodically defined. Therefore, with this
methodology layman users would be able to create any type of mechanism in DELMIA V5 or similar
environments in which inverse kinematics is defined with a C-file. In addition, a how-to style
documentation for layman users have been created in which users can find the steps of how to
implement the methodology to respective robots. The simulation of hexapod and Flexapod 6P robots
have proved to be completely functional whereas the simulation of Exechon and Gantry-Tau robots still
needs some improvements due to the reasons stated in the result section.

57



REFERENCES

Bi, Z. and Jin, Y., 2011. Kinematic modeling of Exechon parallel kinematic machine. Robotics and
Computer-Integrated Manufacturing, 27(1), pp.186-193.

Craig, J., 2005. Introduction to robotics. 1st ed. Upper Saddle River, N.J.: Pearson/Prentice Hall.
Hartenberg, R. and Denavit, J., 1964. Kinematic synthesis of linkages. 1st ed. New York: McGraw-Hill.
Jazar, R., 2010. Theory of applied robotics. 1st ed. New York: Springer.

Ji, P. and Wu, H., 2001. A closed-form forward kinematics solution for the 6-6 p Stewart platform. |[EEE
Transactions on Robotics and Automation, 17(4), pp.522-526.

Johannesson, L., Berbyuk, V. and Brogardh, T., 2003. Gantry-Tau A New Three Degrees of Freedom
Parallel Kinematic Robot. Proceedings of the Mekatronikmé6te2003, August 27-28, 2003, Goteborg,
Sweden. pp.1-6

Locomachs.eu, (2014). LOCOMACHS - LOw COst Manufacturing and Assembly of Composite and Hybrid
Structures - Welcome to the official website of the LOCOMACHS project!. [online] Available at:
http://www.locomachs.eu/ (2014-06-10).

Yang, J. and Geng, Z., 1998. Closed form forward kinematics solution to a class of hexapod robots. IEEE
Transactions on Robotics and Automation, 14(3), pp.503-508.

Zoppi, M., Zlatanov, D. and Molfino, R., 2010. Kinematics analysis of the Exechon tripod. Proceedings of
the ASME 2010 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, August 15-18, 2010, Montreal, Quebec, Canada. pp.1381-
1388.

58



APPENDICES

The appendices section is structured as how-to style documentation where layman users can easily

follow steps to build the respective robots described in the main part of this work without having
prerequisite knowledge. In appendix A, environment set-up is clarified. In appendix B, C, D and E

complete forward and inverse kinematics of the respective robots are given. In appendix F compilation

of a C-file and final arrangements for simulation are depicted. The respective MATLAB functions are
given in appendix G.

APPENDIX A: HOW TO SET UP ENVIRONMENT FOR FORWARD AND
INVERSE KINEMATICS

e  First, debugging window should be arranged as following. Right-click on DELMIA V5 and click
properties.

3

Open
Run as...
[ 5can with Microsoft Forefront Endpoint Protection 2010...
E Pin ko Start menu

Willd () Magic1SO »
isiig

Send To 3

Cut
Copy
Create Shorkcut

Delete
Rename

Properties

Figure A.1. Properties tab

e On Shortcut Tab, remove the “-nowindow” section from the target directory. Then click ‘OK’.

DELMIA V5R21 Properties

DELMIA WER21

3

Target type: Application

Taiget location: bin

Target: | ion D atatD assaultSystemestCAT Eny' Tilsagaag

Start in | ‘

Shortcut key: |Nnne ‘

Run: | Mormal window =3 ‘

Comment: | ‘

[ Find Target... l [ Change |con... ] l Advanced... ]

[ Ok ][ Cancel ][ Apply ]

Figure A.2. Properties tab-nowindow
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Now, an environment variable should be created for DELMIA V5.

a) Go to directory “C:\Documents and Settings\All Users\Application
Data\DassaultSystemes\CATEnv”

b) If that directory doesn’t work, go to “C:\Program Files\Dassault Systemes\B21\intel_a”
and open EnvDir.txt file and see the directory of the folder for environment files.

c) Inthe CATEnv folder, open DELMIA.V5.B21.txt file and at the end of the text file enter
the following command

CNEXTOUTPUT=console

G- (R Foider symc

o B2t

Other Places

My Documents

|2 Shared Documents
i My Computer

N3 My Network Places

Fle Edt Format View Help
Size  Type Date Modified !
| DASSAULT SYSTEMES - V5 ENVIROMMENT FILE
1 File Folder 2014-02-14 22:49 .
File Folder 2014-02-14 23:07 | MODE : Global
File Folder 2014-02-14 23:06 | TYPE : Dgﬂégussss
-02-14 234 TMSTMP
File Folder 2014-02-14 23:05 | ARGS : -¢5 DELMIA -a global -icon yes -menu yes -tools
File Folder 2014-02-14 22:57 I

File Falder
File Falder

2014-02-14 22:57
2014-02-14 23:05 CATInstallPath=C:M\Program Files‘Dassault Systemes\B2l\intel_a
y CATDLLRath=C:\Program Files\bassault Systemes\621\intel_a\code\bin

File Folder 2014-02-14 23:07 program Files\passault systemes\B2l\intel a\cnde\prnductlc
File Folder 2014-02-14 23:06 CATCOmmandpPat \Prngram Filestpassault systemesig21\intel_a‘codehcommand
File Folder 2014-02-14 23:06 catpicrionarypath: g‘]ram Files\passault s stemes\ﬁzl\inteLa\mde\di(tiunary
CATDOCY ew=C \Prugram Files\Dassault Systemes\B2l\intel_a\do
File Folder 2014-02-14 22148 CATR&FfilesPath=C:\Pragram Filas\Dassallt Systamas\azl\v\ta'\ a\raff i1es
File Folder 2014-02-14 23:06 CATFORTPAt S\Program Files\bassault systemesh\Bzlintel_a\resourceshfonts
(£ 3DSMIPEGHFW_32-64.2p 1ZKE  Compressed (dippe...  2010-12-16 09:23 cATGaTax)_/Pat program Filesh\passault systemes‘\g2lhintel_a\resourceshgalax

2014-02-14 23:07 caTGraphicPat “program Files\passault SyStEmeS\EZl\1n(g'\,a\r‘esuur‘EES\gr‘ap%i(?C:\
§ CATMsgCatalogPath=C:\Program Files\Dassault 5¥Steme5\521\1nte'\,a\resDurceS\msgcata]

Text Document 2014-02-14 23:07 CATFeaturacatalograt SProgram Files\Dassault Systemes\B21\intel_a\resources\feat

Text Document 2014-02-14 2307 CATDEfa%TEEDT'|E(t1'D<S(andar‘ : P{ugram _‘FﬂES\DaSSa{\t i S(qus§521\1ntE'\\E\r‘E_S‘DsrC

! caTknowledgepath=C:\Program Files\passault Systemes\s2l\intel_a\resourcessknowledge

(e SfEENE KB MANIFEST File 2007-02-16 13135 CATStartupgath= \Prngrgm Files\Dassault =: S¥Emes\521\1nte'\ _a\startup o

(EIMIPEGYF#Setup.m.2ip 1KE Compressed (zsippe...  2007-10-03 17:39 CATW3REsOUrCesPat :S\Program FW'IES\DasSau{t Systemes\B21l%intel_a\docs

[Flurinstall.bat ME-DOSBatch File  2014-02-14 22146 CaTraconcilerat

caTreferencesettingpath=

CATUsersettingPath=CSIDL_APPDATANDaSsauUlTSysTemes\CATSettings

CATCollectionitandar

CATTemp=CSIDL_LOCAL_AFFDATA\DassaultSystemes\CATTemp

CATMET asear chPath=DSKEY_TMPDIR

LPFie

= o

Other Places

o = catw3publishpaths=|
) b L) search Folders ~ [ Folder Sync caTsharedworkbookpPath=DSKEY_TMPDIR
© 3£ i CATErrorLog=CSIDL_LOCAL_APPDATA\DassaultSystemes\CATTemgherrar. log
B CATREpOr SIDL_LOCAL _APPDATADAaSSaUtSysTemes \CATREpOrT
T Documents and Settings Al Lsers\Applcation Data|DassaultSystemesiCATEY o] B efCatoieotpinapathe A Y A "
U SIDL_PERSONAL

Pe Date Modfied
2008-10-22 14:24
2012-01-15 21:50 DEC%; %CLASSPATHSE

2014-02-17 16:04 1 ssault SystemeshBz1\intel_a\codehbin;C:\program Files\passa
4B Text Document 2011-08-51 17:28
Text Document 2011-08-51 18:18

IAVA_HOMEX

Tex: Document
Tex: Document
Tex: Document

Details

() My Documen
[ Shared Docurfen
i My Computer

N My etwork Places

InteropRSS0.txt 4 KB Text Document 2008-10-21 L4:04
InteropRS514. bt 4 KB Text Document 2012-08-29 07:14

Figure A.3. Opening debugging window

When the text file is saved and closed, the environment set-up is completed.
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APPENDIX B: BUILDING OF FLEXAPOD 6P

Building of the mechanism is going to start with creation of mechanism which builds the forward
kinematics automatically. Then inverse kinematics arrangement will be made. It is important to notify
here as well that only Flexapod 6P will be built in forward kinematics since hexapod was already built by
the previous owner, Torbjorn Jakobsson.

MECHANISM CREATION OF FLEXAPOD 6P

e First step in the creation is to create the new elements under the node tree. This is done by New
Component command under Insert menu.

-0 Tools  Analvze  wind:

25
Mew Component I
E‘*éj Mew Product

o
=

#ok | Mew Part

@ Existing Component, ..

Fobot Contraller k

Figure B.1. Opening debugging window

e Create new components under the main node tree as the number of components that the
Flexapod 6P has. In this case, 32 new components are required. Then name the components
accordingly. The result should look like

Figure B.2. The nod-tree for Flexapod 6P
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These 32 components are
a) Base platform
b) 12 cubes
c) 6 lower leg parts
d) 6 upper leg parts
e) 6 upper leg connections
f) Mobile platform

(a) (b)

(c) (d)

(e) (f)

Figure B.3. The components of Flexapod 6P
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Now, importing the cad or cgr parts into is of topic. To do that, click on the newly created

component under the node tree, and insert the respective part via Insert — Existing Component.

Now, repeat this procedure of inserting components for the remaining 31 parts. The resulting

e
ETY

§§ Mew Carnpanent
Tew Product

Mew COM Component

Tools  Analyze  Wind:

Exzisting Component, .. I

E;E Mew Part

Robot Contraller L4

Figure B.4. Inserting CAD-models via Existing Component

node tree should look like

3

L

3

3

L

3

a¥Flexapods P _Kinematic

=B Base (Base)
L@ Base Flate P (Base Plate P. 1)

.-f‘i«b Lower CUBE_1 {Lower CUBE_1)
#-@] CUBE (CUBE.7)

=~ B | ower CUBE_2 (Lower CUBE_Z)
#-95] CUBE (CUBE.)

=~ 8 | ower CUBE_3 (Lower CUBE_3)
#~85] CUBE (CUBE.9)

58 | ower CUBE_4 (Lower CUBE_4)
#-85] CUBE (CUBE. 10)

=~ B | ower CUBE_S (Lower CUBE_S)
#~8] CUBE (CUBE. 11)

=B | ower CUBE_6 (Lower CUBE_6)
#-85] CUBE (CUBE. 12)

=By | ower Leg_1 (Lower Leg_1)
t—@ Lower Leg P (Lower Leg P.1)

5By Lower Leg_2 (Lower Leg_2)
#—@ Lower Leg F (Lower Leg P.2)

== B | ower Leg_3 (Lower Leg_3)
#—@ Lower Leg P (Lower Leg P.3)

f‘%} Lower Leg_4 (Lower Leg_4)
*"@ Lower Leg P (Lower Leg P.4)

-—’-%3 Lower Leg_5 (Lower Leg_5)
*"@ Lower Leg P {Lower Leg P.5)

=~ 8 Lower Leg_6 (Lower Leg_g)
t—@ Lomer Leg P (Lower Leg P.&)

-] Upper Leg_1 (Upper Leg_1)

t«-@ UpperLegl (UpperLegl. 1)

.-’%) Upper Leg_2 (Upper Leg_2)

*"@ UpperLegl (UpperLegl. 1)

.-% Upper Leg_3 (Upper Leg_3)

*—@ UpperLeg1 (LUpperLegl.1)

% Upper Leg_4 (Upper Leg_4)
t’@ UpperLegl (UpperLegl.1)

I B Upper Leg_5 (Upper Leg_5)
tl«-@ UpperLegl UpperLegl. 1)
i"% Upper Leq_& {(Upper Leg_&)
t—@ UpperLegl UpperLegl. 1)
N Upperleg_con_1 (Upperleq_con_1)
*"@ Part? (Part2.1)
% Upperleg_con_2 (Upperleg_con_2)
#@ Partz (Partz.1)
% Upperleg_con_3 (Upperleq_con_3)
#@ Part? (Part2. 1)
=% Upperleg_con_4 {Upperleg_con_d)
#—@ Part2 (Partz.1)
Q;) Upperleq_con_5 (Upperleq_con_S)
#‘@ Partz (Partz.1)
Y Upperleq_con_& (Upperleq_con_g)
#-Bypart2 (Partz. 1)
By Upper CUBE_1 (Upper CUBE_1)
#-B5) CUBE (CUBE. 1)
C‘i-b Upper CUBE_2 (Upper CUBE_2)
#-8] CUBE (CURE.2)
% Upper CUBE_3 (Upper CUBE_3)
*‘@CUBE (CUBE.3)
‘%} Upper CUBE_4 (Upper CUBE_4)
#-95) CUBE (CUBE.4)
By Upper CUBE_S (Upper CUBE_S)
ia-@ CUBE (CLUBE.5)
@ Upper CUBE_5 (Upper CUBE_S)
#-95 CUBE (CUBE.5)
% Top Ass (Top Ass)
| #@Top Flate (Top Flate. 1)

Figure B.5. The components of Flexapod 6P with CAD-models
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After bringing all necessary components, a new mechanism should be created first. Click New

Mechanism and the result will be a new section under the node tree.

ki

2
&2

-

=
&

i;i’ﬂ]D[::uIicah‘z::ur‘ﬁ
=-Mechanisms
=% Mecharism. 1, DOF=0
—Joints
—Commands

LA

—Speads-Accelerations

Figure B.6. Creating new mechanism

Now, set the fixed part of the mechanism, which is the Base by using the Fixed Part button and
then selecting the component named Base.

Fl

:NF= 6_P_Kinematic|

?a Lower CUBE_L (Lower CUBE_1)
@8] CUBE (CLEE.7Y

Mew Fixed Part sy
Mechanis I|Mechanism.1 vI Mews Mechanism I

By |ower CUBE_Z (Lower CUBE_2)
#-3]CUBE (CLEE.8)

=-B | ower CUBE_3 (Lower CUBE_3)
#~8,] CUBE (CLBE.S)

At this moment, Frames of Interests will be created as folders under the node tree. For each

Figure B.7. Defining fixed-part

component, create the folder Frames of Interests by clicking & button. The result should look
like this for each component. Name the folders as seen fit.

) _P_Kinematic
B Base (Base)
@Base Plate P {Base Flate F. 1)
*"E: Base Frames Of Interest
By | ower CUBE_1 (Lawer CUBE_1)
Byl CUBE (CLEE.7)
#- T Frames OF Interest. 1
=B | ower CUBE_? (Lowsr CUBE_2)
B CLIBE (CUBE.S)
#-T& Frames Of Interest2.1
By | ower CUBE_3 (Lawer CUBE_3)
I Byl CUBE (CLEE.9)
#- T Frames Of Interest3.1
By Lower CUBE_4 (Lower CUBE_4)
B CUBE (CUEE. 10)
# T2 Frames Of Interest4.1

Figure B.8. Creating FOI folders
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Now, the first mechanism will be created. Start with appointing FOI to the Base part as in the
figure. Click #* button and select the FOI folder under the Base. A new menu will appear and it

will ask for the location and orientation of the new FOI. Select the center of the prospective joint

and make sure that rotation is about the Z-axis of FOI. The steps should look like

Define Plane |§|

Moj:@l@@l@l@l@lalﬁl @ Design
e Lrgin ——
ER e

o Cancel l 0 UStDm

Figure B.9. Creating FOls in the fixed part

Now, a FOI will be appointed to the corresponding Cube part. Same procedure for the Base part

should be followed and the corresponding FOI at the center of the cube should look like

Figure B.10. Creating FOls in the cube
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e At this moment, the creation of joint will be done. First, click Joint From Axis button a new
menu will appear and select Revolute as joint type and then for Axis 1 and 2 choose the FOIs
created. The order for this work does not matter. Then click OK and a new revolute joint will
be created and the cube part will be automatically placed at its corresponding point in the
Base part. The menu for joint creation should look like

y Axis-based Joint Creation
Mechanism: IMechanism.l ;I Tew Mechanisri ]
Jaink name: |Revolute.1

@ Joint bype: IRevqute LI I

Current selection

Q@P Ais 11 Cube_base_1 Az 21 [Base_cube_L

- R.atio: 1

@ [ angle driven Command 2

@ @ oK I o Cancel I

Figure B.11. Creating a revolute joint

o Now, repeat the same procedure for the remaining 5 cubes that should be connected to
Base part. The result should be looking like

Figure B.12. Fixed part with 6 cubes
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At this point, the assembly of the lower legs to the cubes will be made. The FOIs will be
appointed again. One for the lower cube with different Z-direction than the previous FOI.
The other will be created on the lower leg. The respective FOIs should look like

Figure B.13. FOlIs for leg-assembly

After the creation of FOls, same procedure of joint creation for the cube will be followed.
Then the result will be

Figure B.14. Completed leg-assembly
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e Now the creation of prismatic joints will be made. First, prospective FOIs will be created at
joint zeros.

e The tricky point about prismatic joints that, when the joint is created DELMIA V5 takes
exactly the positions of FOIs at that moment as zero point. It is because prismatic joints do
not require FOIs to coincide at origins; thus, only coinciding in Z-direction any point can be
zero point for the joint. This case is important to consider because when inverse kinematics
is calculated, the joint range will be crucial and what is fed back as solution must be within
that range to have a good posture. Therefore, it is very important to have a standard way of
creating prismatic joints. One of these standard points will be presented here as well.

e The first FOl on Lower Leg part will be created the same way for previous parts. The
respective FOI should be appointed at the zero point of the joint. It should look like

,_.‘

Figure B.15. FOI for the prismatic joint

e The second FOI will be created in the upper leg part at the bottom. The FOI will look like

z

~

Figure B.16. The second FOI for the prismatic joint
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Normally, prismatic joints can be created immediately; but before, the origin points of
FOIs must be coincided. The first way is to snap the Upper Leg part from the created FOI
and propagate the part to the FOI of the Lower Leg. This can be done by copying-pasting
the coordinates of the FOI of the Lower Leg to the FOI of Upper Leg.

The second way is somewhat more error proof. The idea is to first create a revolute joint
between the FOIs. This would result in a perfect coincidence at both Z-axes and origin
points of each FOI. After the revolute joint creation, it must be deleted so that over that
joint, a prismatic one can be created. One important point is to delete also the
constraints that come with revolute joints. To make sure that there is no constraint left,
delete the revolute joint with Delete All Children button activated. The steps than should
look like

Selection
Flexapods_P_Kinematicl Applications\Mechanismsi
£ I 2
Parent:

@ Coincidence, 112 (Upper Leg_1,Lower Leg_|

L?_

:ﬁ Offset. 113 {Upper Leg_1Lower Leg_1)

F-Commands

B=Fix Part [ Base )

Mare >> I

i Deleks ol chidren
[Laws

—Speeds-Accelerations

Figure B.17. Revolute joint creation and deleting
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Note that when the revolute joint is deleted, the current positions of the parts remain
the same. Without making any changes, prismatic joints will be created. Note also that
in Flexapod 6P or hexapod, prismatic joints are actuators. Thus Length Driven is
activated for this step. The steps in creation should look like

T

Axis-based Joint Creation

Mechanism: {wecharism, 1 - | Hew Methanlsml

Joink name: | Prismatic, 33

Joink EYRe: | prismatic -

Current selection
Axis 1 |Design.19.1 Axis 2! [Design.20.1

O
@ oK I Qcance\l

Figure B.18. Prismatic joint creation

When these steps are repeated for other legs as well the result should be

Figure B.19. Completed prismatic joint creation for all legs
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In this step, the intermediary part between Upper Leg and Upper Cube will be
assembled. This part is named as Upper Leg Connection (ULC) that grants the third
degree of freedom to the upper attachment point where the other two degrees of
freedom are given by the Upper Cube part.

As usual, first, FOIs will be created. The FOI for ULC part is

Figure B.20.FOIs for connecting parts

The FOI for the Upper Leg part should be created at the top. Then the result should be

Figure B.21. Corresponding FOIs of connecting parts
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e Now the revolute joint will be created.
“'"*m
8]
D o | Scwe
Figure B.22. Revolute joint creation for connecting parts
e Same operation will be repeated for the remaining 5 legs and the result will look like

Figure B.23. Completed revolute joint creation
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e Inthis step, the cubes that will connect the mobile platform to ULCs will be assembled.
First, respective FOIs will be appointed to cubes and ULCs. The FOI of the cube will be
the same as the lower cubes. The FOls of the respective parts are then

0 ¥

Figure B.24. FOIs for upper cubes and connecting parts

e Now the revolute joint will be created between these parts.

Joint bype:

Current selection
Axis 1t [Design.43.1 Axis 2 [Design.&s. 1
Ratie: [T

[ anale driven O command 2.

@ ok | & coneal

Figure B.25. Revolute joint creation
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When this operation is repeated for the remaining legs, the result will be

Figure B.26. Completed revolute joint creation

The most important part of the assembly is to attach the mobile platform to the Upper
Cubes. In order to achieve the right state, mobile platform must be fixed to some point
with respect to the base platform. This way DELMIA will treat the legs as mobile and
move the location of theirs in order to create the joints. If this way is not chosen, both

legs and mobile platform will be moved and the result might be different than intended.
An example of these unintended result

Figure B.27. Parts diving through each other
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In order to avoid this result or some other that is similar, the users must create a Rigid
Joint between the base platform and the mobile. To achieve the right state, first the
mobile platform should be propagated to the right coordinates. These coordinates are
the ones that make all the joints zero and keep the mobile platform’s Z-axis coincided
with the base platform’s Z-axis. The coordinates are [0, 0, 500.515]". The point of
snapping is TCP and can be seen in the following figure

Figure B.28. Moving mobile platform

The rigid joint then will be created by using Rigid Joint button & . Choose the respective
parts from the node tree and click OK. This way the mobile platform will be fixed to the
base platform.

Joint Creation: Rigid

Mechanism: IMechanism.l ;I Mew Mechanism I

Joint name:| Rigid. 38

Current selection:
Park 1; IBase Part 2: ITUD fss

@ Ok I ﬂCanceIl

Figure B.29. Creating a rigid joint

After the creation of the rigid joint, it is now assured that the assembled legs will give
the correct posture.

In this step, the revolute joints between the Upper Cubes and the mobile platform. As
standard, the respective FOIs will be produced first. The FOIs for the cubes and on the
mobile platform will be at the center of the rotation. Thus, the FOIs will be
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Figure B.30. Creating FOIs in the mobile platform and upper cubes

Now revolute joint will be created with Joint from axis button.

Figure B.31. Creating revolute joint

Then, the result will be

Figure B.32. Final revolute joint
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When this operation is repeated for the rest of the legs, the mechanism will be
completed. The result of the top assembly will look like

Figure B.33. Completed revolute joint creation

The complete structure then should look like

Figure B.34. Completed Flexapod 6P
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To complete the forward kinematics, users also have to define another FOI as TCP
coordinate frame. The new FOI will be created under mobile platform in the same
orientation as base coordinate frame since the starting transformation values should be
standard position and same orientation as base. The FOI then should look like

Figure B.35. FOI for TCP

In this step, specifications regarding joints will be appointed. These specifications can be
related to any joint, but in the case of Flexapod 6P these specifications are limited to
actuators that are prismatic joints. The specifications are

o Joint actuation direction

o Jointrange

o Reference length
The joint range can be arranged in two ways. The first way to define the limits for joints
is double-clicking on the prismatic joint under Mechanism-Joints node. When clicked,
Joint Edition menu will appear and on that menu users can define the travel limits and
joint’s actuation direction for each joint. The Joint Edition menu for the first prismatic
joint will be

Figure B.36. Joint control
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The direction of joint is highlighted and the users can change the positive direction of
the joint accordingly.

The most convenient way to define limits is to click Travel Limits button and in the
new menu define the joint limits for actuators. The travel limits for Flexapod 6P are [-
1,275] mm. The reason that the lower limit is less than zero is the fact that when inverse
kinematics is calculated, the code in the C-file might generate negative values that are
very close to zero. This way a correct posture is guaranteed to be within the limits when
inverse kinematics is loaded. Then, the menu for travel limits should look like

Modify Command Limits

Mechanism |'LFIexapodsfPfKinematic'LMechanism.1 j

Caution Zone is T phsalute Value

@ Percentage of Limits Range

Command Lowwer Lirnik Upper Lirnit Caution Zone
Command. 1 [-1 [275 [0
Command.2 [-1 |275 [EE3 =
Command.3 [-1 |275 K3
Command. 4 |-1 |275 |D Y
Command.5 |-1 |275 |D Y
Command. & [-1 |75 [EE3

[ Local definition

@ Ok I aCanceII

Figure B.37. Defining travel limits

Second part of arranging properties of the joints can be done by clicking Mechanism
Properties & button. When clicked, a new menu will pop up, and on that menu users
can see degrees of freedom with and without command, and also if the mechanism can
be simulated. In addition, the user can see the joints and their constituting parts. The
menu looks like

Mechanism Analysis E]@
General Properties
Mechanism namme: [Mechanism. ~|
Mechanism can be simulated: Yes
Mumber of joints: [z
Mumber of commands: [3

Degress of frasdom without commandis): [&
Deqress of fresdom with commandis). [0

Fixed part: [Base
Joints visualisation: () o, @ cff save | i
Toint [command [ Type [ Part1 | Geometry 1 [ part 2 Geometry 2 | Part 3 [A
Revolie.2 Revalute Base CATLINGCGM  Lower CUBE_1  CATLIneCGM
Revolute, 3 Revolute  Lower CUBE_2 CATLINeCGM  Base CATLINeCGM
Revolute.4 Revoluts Bass CATLiNeCGM  Lower CUBE 3 CATLineCGM
Revolute.5 Revoluts Bass CATLiNeCGM  Lower CUBE 5 CATLineCGM
Revolute.? Revoluts Bass CATLiNeCGM Lower CUBE 6 CATLineCGM
Revolute.B Revolts Lower CUBE_I  CATLIneCGM Lowerleg i  CATLineGM
Revolute.d Revolte Lower CUBE_Z  CATLINECGM Lowerleg 2 CATLinetGM
Revolute.10 Revolute Lower CUBE3  CATLINECGM Lowerleg 3 CATLineGM
Revolute.11 Revolute Lower CUBE4  CATLINECGM Lowerleg 4 CATLineGM
Revolute.12 Revolute Lower CUBES  CATLINECGM Lowerleg 5 CATLineGM ~
Mechanism dressup information:
[ Part 1 | Part 2 | Part s
s

Figure B.38. Mechanism analysis

When the definition and arrangements are made, the testing of the created mechanism
will be made.
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TESTING OF THE FLEXAPOD 6P’S FORWARD KINEMATICS

e The testing of the forward kinematics is simply done by testing the behavior of the joints
for different values on actuators. This is done by Jog Mechanism ® button. When
clicked, a new menu will appear and on that menu users can manipulate the actuators.
If the joints are responding as intended then it means the built mechanism is working

properly.

ol s 7
el ors [mooonn
4 ol o ~[momnn
mmand.4 Ty % 275 |20.000mm
. -
. <

25,000 mm

ol 275 25,000 mm

E E
s
neer Step : [TEERTARY Fnaular sen ¢ [ 10,00 dog

Predefined Position
fome.

30,000 mm

Figure B.39. Mechanism testing

e Ifan error is observed, it is possible to go to joints menu and check their properties once

again.

THE CREATION OF INVERSE KINEMATICS

e Before creating the inverse kinematics, the users have to create a part that will be
attached to the mobile platform’s TCP. Thus, go to Insert-New part and create a part
under the parent node. Then, name the part accordingly. In this case, the new part is

named as TCP.

Tools  Anakvze

’:'tk Mew Campaonent
E'a Mew Product

@ Existing Compaonent. ..

Robot Controller

Winde

3

% Upper CUBE_S (Upper CUBE_6)
% Top Ass (Top Ass)
@Tcp (TCP. 1) I

' Constraints

I-Af)plicah'ons
=Mecharisms

--??’ Mecharism, 1, DOF=0

Figure B.40. Creating a new part for TCP
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e After the creation of the new part, propagate it to the same location to the TCP. To
achieve it, take the coordinates of FOIl located at TCP and apply it to the new part. After
the propagation, create a rigid joint between the new part and the mobile platform.

Joint Creation: Rigid

Mechanism: [Mechanism, 1 ~| Hew Mechanism]

Joint name:| rigid. 35

Current selection:
Part 1: |TCP.1 Part 2: |Tnp Bss

@ oK I ‘Cantell

Figure B.41. Attaching TCP to mobile platform

e When the new rigid joint is created, the inverse kinematics is now ready to be defined.

e The inverse kinematics is created through the button Inverse Kinematics & . Click the
button and select the parent element on the node tree. A new menu will appear. On the
menu, appoint accordingly as below

o Mount Part: TCP.1 ( the part created after the mechanism creation named as

TCP)

Mount Offset: The FOI created to represent TCP

Reference part: Base platform

Base: Base platform

Approach axis: Z-axis

O O O O

o Solver type: User Inverse (for C-file method)
e After appointing the sections in Basic tab, click Advanced. Note that new tabs now
appear next to Basic tab.
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In the Configurations tab, make sure that the Posture 1 is valid. Then proceed to the
next tab Actuator Space Map.

Flexapod6_P_Kinematic's Inverse Kinematic Attributes

Inverse Kinematic Chain |yinematics chain,l  «|  Create Mew IK Chain | Delete Current IK Chain |

Maunik Part [TCP.1

Mount Offset | Designi

Reference Part |Base

Base Part |Base

Approach Axis |z [~
Approach Direction |o._||; j
Solver Type |User Inverse j

Advanced. .. I
@ Ck I laCancell

Flexapod6_P_Kinematic's Inverse Kinematic Attributes

Inverse Kinematic Chain | yinematics chain, 1 v | Create New IK Chain | Delste Current 1€ Chain |

Basic Maore Actuator Space Map | Solver Attributes (User Defined) |

Zonfig Info
W alidity
L:paosture_1 |‘v'a|id ﬂ

@ oK I & cancel |

Figure B.42. Defining Inverse Kinematics parameters of DELMIA V5
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In the Actuator Space Map tab, appoint each leg to the corresponding dof. These dofs and
Kin DOF parameters are
o Leg1(Command 1) : dof(1) — Translational —Trans Z- Kin DOF 1
Leg 2 (Command 2) : dof(2) — Translational —Trans Z- Kin DOF 2
Leg 3 (Command 3) : dof(3) — Translational —Trans Z- Kin DOF 3
Leg 4 (Command 4) : dof(4) — Translational —Trans Z- Kin DOF 4
Leg 5 (Command 5) : dof(5) — Translational —Trans Z- Kin DOF 5
o Leg6 (Command 1) : dof(6) — Translational =Trans Z- Kin DOF 6
The Kin Part section asks the user to appoint the mobile parts of the prismatic joints. In this

O O O O

case these parts are Upper Legs. To appoint the corresponding parts, click on the Kin Part
area and then go to node tree and choose the corresponding part. These parts are

Leg 1 (Command 1) : Upper_Leg 1

Leg 2 (Command 2) : Upper_Leg 2

Leg 3 (Command 3) : Upper_Leg 3

Leg 4 (Command 4) : Upper_Leg 4

Leg 5 (Command 5) : Upper_Leg 5

o Leg 6 (Command 6) : Upper_Leg 6

O O O O O

The corresponding figure can be seen below for this tab.

Flexapodt_P_Kinematic's Inverse Kinematic Attributes
Inverse Kinematic Chain |yvireratics chain 1 | Create Mew IK Chain | Delete Current IK Chain |
Basic Mare | Configurations | Solver Attributes (User Defined) |
Map Info
Jaints Map Jaints Tvpe Kin Axis Type Kin DOF Kin Park
Carnrnand 1 :|l:|l:lfl:1:l |Tran5|atigna| lerans 7 jl 1 |L||3|DEI" Leg_1 Clear .ﬁ.lehaNode 1 I
Command 2 :[ dof () [Translational ||ransz ~||2 | Upper Leg_2 Clesr Alphahinde 2 |
Command 3 :[ dof(3) [Translational R R E | Upper Leg_3 Clesr Alphahinde 3 |
Carnmand 4 :|l:|l:lfl:4:l |Tran5|atigna| lerans 7 jlq' |L||3|DEI" Leg_4 Clear .ﬁ.lehaNode 4 I
Command & :[ dof(5) [Translational ||ransz  ~|IS |Upper Leg 5 Clesr Alphatiode 5 |
Command & :[ dof (£ [Translational r||ransz ~||6 |Upper Leg_6 Clesr Alphahinde 6 |
_Compute |
@ ok | @ cancel |

Figure B.43. Defining Actuator’s parameters
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e The last tab and operation is Solver Attributes tab. In this tab, only the names of the C-

code and library files will be entered. The remaining sections should be left empty since

the code covers these values. Hence, the tab should look like

Flexapod6, P_Kinematic's Inverse Kinematic Attributes

Inverse Kinematic Chain [yinamatics chain.l  w |  Create Mew Ik Chain | Delete Current IK Chain I

EBiasic More | Configurations | Actuator Space Map Solver Attributes {(User Defined) |

Link Parameters

Length 1 : {0,000 mm

Offset 1 : 0,000 mm

Length 2 : {0,000 mm

Offset 2 ¢ |0,ugg mm

Length 3 : {0,000 mm

Offset 3 ¢ |o,uog mm

Lenath 4 : {0,000 mm

OFffset 4 ¢ (0,000 mm

Length 5 : {0,000 rm

Offset 5 ¢ |g,ugu mm

Length & : [0.000 rmm

Offset 6 & |g,ugu mm

Auxiliary Daka

Ao Daka 10 | 0,000 mm Ao Daka S
Aux Daka 2 0 | 0,000 mm A Daka 6
Ao Daka 30 0,000 mm Ao Daka 7
Ao Daka 4 ! {0,000 mm Ao Daka 5 ¢

1[1]

Define Library and Routine Mames

Shared Library Mame : libflexapod
Routine Mame | kin_flexapod

el =i

@ oK W Cancel l

Figure B.44. Defining library and C-file names

Then click OK, and the inverse kinematics definition will be complete.

TESTING OF THE INVERSE MECHANISM

First click on Jog Mechanism button and see that there is a new tab in the menu called

Cartesian. In this menu, DELMIA allows its users to manipulate the mechanism by using

TCP tag — which is only activated when the inverse kinematics is defined. The menu then

Jog(Mechanism. 1) gl
Move

Mechanism. L Cartesian ‘

TCP Conkrols

Coordinates
#i[o.000mm B [0.000mm B [S00515mm B

¥ 0,000 deg %P +|-0,000 deg @R +|0.000 deg %
Reference Frame|yord -
Steps

Linear Step ¢ | 100,000 mm Angular Step: [ 10,000 deg

Snap Compass cp
[ cControl Location | @rlentation| ool -
[ control Grientation |Pefintion  [pefayl: -

Configurations

Posture_1  Good

o Immediate

Close I I Reset I

| -
Figure B.45. Jogging mechanism with inverse kinematics definition
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e To test the mechanism, one may enter the TCP coordinates and orientation or simply
drag the TCP tag to some random locations.

e When the movement is made, go to Mechanism.1 tab and check the joint values with
results printed on the debugging window. If they match each other, then the inverse
kinematics is working as intended.

ogram Files\Dassault Systemes\B21\intel_a\code\bin\DELMIA.exe

1.0000
580.5163

00000 . 99.9992 \3-‘
-0.0000 . ©.0008 reve
{0088 . 500.5163 Mecharism 1 | Cartesian |
DOF Cantrols
: . . 8.6747 . 3.6321 ezl 275 93987 mm S
T4 J5 Jb: 3.6321 0.6746 . 33.9888 Conmend2™ g o7 [f[osmn
[L4 L5 L6: 380.1321 ,  397.1746 .  410.4880 Command3Y | ogw. 275 M|3atmm [
gs? upper attachnent point coordinates Command4 [~ | oy, 275 WGealwm  [2]
B 1.2328 425.5165 Command.s ¥ ) 5% 275 0,673 mm £
Commend6 ™ | 4 275 55567 m [E
Steps
Lnear step: [0} Anaulr ten 15000 523 2]
Predefined Postion
ome [ ]
3 Immediste
Close ] | Reset |
.

Figure B.46. Comparing results to debugging window

THE C-FILE FOR INVERSE KINEMATICS OF FLEXAPOD 6P

In section 4.2, the relevant theory was transferred to a C-file for hexapod. The notations and the
way of working are also described in that section. Thus, here the complete code will be given.

/****************************************************************************
* kK
* %

xx USER KINEMATICS EXAMPLE

* x

**  Copyright (c) 1990 Delmia Corporation, All rights reserved.

* %

** This file contains an example of a kinematics routine for the

** shared library. This example will work for 4 DOF 2 Config (left and
right

** elbow) scara robots such as the ASEA/IRB300. By default,

** kin usrl is mapped to this routine.

* %

** For a description of kinematics solutions refer to:

* x

* ok Paul, Richard P., "Robot Manipulators: Mathematics, Programming

*x and Control", The MIT Press, Cambridge, Massachusetts, 1981.

* %

**  DESCRIPTION OF ARGUMENTS

* x

** double T6[4][4] 4x4 position matrix of center of wrist. This is
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* Kk

* x

* x

* x

* x

* x

* x

* x

* x

* x

* x

* x

* x

* x

* x

** double link lengths[]

* %

** double link offsets[]

* x

* %

* %

* %

* x

** double solutions[][]

* %

* %

* %

* x

* x

* %

* %

* %

** int warnings/[]

* %
warning
* %

* %

* %

* %

* %

* %

* %

* %

* %

* %
building
* %

* %

* %

* %

**  Words of encouragement

* %

* k

* k

* %

* %

* %

NOTE:

definition.

the goal point MINUS the tool frame and mounting
plate offsets. This is the easiest point to start
the inverse kinematic solution from, and is the
traditional approach.

NOTE: T6 matrix may be transposed from your usual
notation.

| nx ny nz 0 | \\

T6 = | ox oy oz 0 | > direction cosines (9)
| ax ay az 0 | /
| px py pz 1 | -> position terms (3)

px = T6[31[0];
Distance between joint axis along link length
Offset between joint axis along joint axis

These two arrays can be considered the Denevitt-
Hartenburg variables described in Paul's book, or
any convenient scheme the user desires.

A two dimensional array contains all possible
solutions for robot arm. It is up to user to
decide how many solutions are possible, and to
provide all solutions when routine is called:
elbow up, elbow down, etc. The CONFIGS

Button in IGRIP allows user to view all possible
solutions and may provide insight into importance
of this array.

Array providing warning states for each solution
such as unreachable, singular, etc. Possible

states are defined in include file shlibdefs.h
and are:

WARN GOOD_SOLUTION

WARN JOINT LIMIT EXCEEDED
WARN UNREACHABLE

WARN SINGULAR SOLUTION

shlibdefs.h is automatically included by the IGRIP Shared
Library Make system. For further details regarding the

of the shared library, refer to the IGRIP Motion Pipeline
Reference Guide

Writing inverse kinematics routines is a challenge. Invariably
you will make mistakes which later seem trivial. Even experts on
the subject loathe writing a new routine. The usual problems

are matching the routines view of the world with the device

You must check that where this routine thinks is
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xx the axis origin, or the zero reference position, is the same

xH as the IGRIP device. Also make sure that each agree upon the
positive

*x sense of direction. These are the most common foul ups. Next,

xx the mounting plate offset may be wrong, so when first debugging

xH your routine, set the mounting plate and tool frame offsets to

xx zero. Next check for dropped signs in your equations. Maybe

*x an inverse trig function is returning an angle in a different
quadrant

x K than the one you want. Perhaps you should be using atan? instead

* of atan (or vice-versa). Remember that trig and inverse trig
function

*x angles are in radians. Also, check array indices. Remember that

X arrays start at zero not one, so link 4's offset is at

link offsets[3].

* Are you referring to T6[3][2], when you mean T6[2][3]? Remember that
xx transformation matrices may be transposed from standard text book

xx definitions. Once you get your routine to work you will have earned
xx the title of kinematician.

* %
KA A A AR AR A A A A A A A A A A A A A A A A AR AR A A AR A A KA A AR A KRR A A A A A A A A AR A AR A AR A A AR A AR A AR A ARk Ak Ak k%

**/
#include <shlibdefs.h>

/*

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

* %

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

* % ‘

* x ‘

* % \ /
* % v */
#define NUM SOLUTIONS 1 /* Number of possible solutions */
#define NUM_ DOFS 6 /* Number of joints to be solved */
/* ”

* * / \

* % ‘

* % I

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

* %

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** TIMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
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** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
*/

/*
* User must supply this function

*/

DllExport int
get kin config( char *kin routine, int *kin dof, int *solution count, int
*usrKinDataHint )
{
if( strcmp( kin routine, "kin flexapod" ) == 0 )
{
*kin dof = NUM DOFS;
*solution count = NUM SOLUTIONS;
/*
* this indicates kin usr's last argument (void *pData)
* will be DLM Data KinStat
*/
*usrKinDataHint = USR_KIN DATA KINSTAT;
return 0;
}

return 1;

static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };
static char KinMode[2][24] = { "Normal", "TrackTCP" };

/*

** Routine Name

*/

DllExport int
kin flexapod/(
link lengths,
link offsets,
T6, /* See above for description of these arguments */
solutions,
warnings,

pData
)
/*
** Passed Variable Declarations
*/

double T6[4][4],

link lengths[],

link offsets][],

solutions[] [NUM_SOLUTIONS] ;
int warnings|[];

void *pData; /* usr routine should NEVER delete pData */

{
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/*

** TLocal Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, 0z, ax, ay, az, pPX, pPY, PzZ;
long double D11, D12, D13, D21, D22, D23, D31, D32, D33, D41,
D52, D53, D61, D62, D63;

long double Ll1,L2,L.L3,L.L4,1L5,L6,J1,J2,33,J4,J5,Jd6, Lref;

//Variables to perform matrix multiplication
int rowl, row2,row3, rowd, rowb, rowb6;

int coll,co0l2,co0l3,cold4,col5,colb;

int innerl,inner2,inner3, inner4, inner5, inner6;

// The upper attachmentpoints for each leg (The vector between

each upper attachment point).
long double L1tToTCP[4][1];

long double L2tToTCP[4][1];
long double L3tToTCP[4][1];
long double L4tToTCP[4][1];
long double L5tToTCP[4][1];
long double L6tToTCP[4][1];

D42, D43, D51,

the TCP and

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool

Centre Point) - see line 307.
long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).

long double L1tCur[4]
long double L2tCur[4
long double L3tCur[4] = {0};
long double L4tCur[4] {0}
[
[

{0};
1 = {0};

long double L5tCur[4] {0}
long double L6tCur[4] = {0};

//Lower attachemnt points on each leg (in Base coordinates)
long double L1b[3]; long double L2b[3]; long double L3bI[3];
long double L4b[3]; long double L5b[3]; long double L6bI[3];

#if 1

/*

* using pData
*/

int 1i;

DLM Data KinStat *pDLM Data = (DLM Data KinStat *) pData;

if ( pDLM Data )
{

printf( "\n\ndof count: %d\n", pDLM Data->dof count );

printf( "\njoint types:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )

printf( "%s ", JointTypel (pDLM Data->joint types) [i]] );

printf( "\n\nkin mode: %s\n", KinMode[pDLM Data->kin mode] );

printf( "\njoint values:\n" );
for( i = 0; i1 < pDLM Data->dof count; i++ )
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printf( "%12.4f ", pDLM Data->joint values[i] );

printf( "\n\njnt trvl lmts lower:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[0][i] );

printf( "\n\njnt trvl Imts upper:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[1][i] );

printf ( "\n\n" );

#endif

/*
** DO NOT REMOVE THIS BLOCK OF CODE

** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC
** DOFS FOR THE DEVICE

*/

if( !'kin check definition( NUM DOFS, NUM SOLUTIONS ) )

{

/*

** TInconsistency between device definition and inverse

** kinematics routine exists. A warning message has been
** issued and routine aborted

*/

return( 1 );

//The vector between the TCP and the upper attachmentpoints for each leg
L1tToTCP[O0] [0] = -48.767; L1tToTCP[1l][0] = 32.466; L1tToTCP[2][0] = -75;
L1tToTCP[3]1[0] = 1;

L2tToTCP[0][0] = =3.733; L2tToTCP[1]1[0] = 58.466; L2tToTCP[2][0] = -75;
L2tToTCP[3][0] = 1;
L3tToTCP[0] [0] = 52.5; L3tToTCP[1][0] = 26; L3tToTCP[2][0] = -75;
L3tToTCP[3]1[0] = 1;
L4tToTCP[0][0] = 52.5; L4tToTCP[1][0] = -26; L4tToTCP[2][0] = -75;
L4tToTCP[3][0] = 1;
L5tToTCP[0][0] = =-3.733; L5tToTCP[1]1[0] = -58.466; L5tToTCP[2][0] = -75;
L5tToTCP[3]1[0] = 1;
LotToTCP[0] [0] = -48.767; L6tToTCP[1][0] = -32.466; L6tToTCP[2][0] = -75;

L6tToTCP[3][0] = 1;



//The lower attachmentpoints for each leg (in Base-coordinates).

L1b[0] = -132.5; Llb[1l] = 26; L1lb[2] = 58.5;

L2b[0] = 43.733; L2b[1] 127.748; L2b[2] = 58.5;

L3b[0] = 88.767; L3b[1] 101.748; L3b[2] = 58.5;

L4b[0] = 88.767; L4b[1l] = -101.748; L4b[2] = 58.5;

L5b[0] = 43.733; L5b[1] = -127.748; L5b[2] = 58.5;

L6b[0] = -132.5; L6b[1] = -26; L6b[2] = 58.5;
//Importing the current TCP values from Delmia through the T6 matrix and
putting proper context

nx = T6[0][0];

ny = T6[0][1];

nz = T6[0][2];

ox = T6[1][0];

oy = T6[1][1];

oz = To[1][2];

ax = T6[2][0];

ay = T6[2][1];

az = T6[2][2];

px = T6[3]1[0];

py = T6[3][1];

pz = T6[3][2];

//Printing the current TCP values in the debug window for evaluation purposes
printf( "\nx ny nz: %12.4f ,%12.4f ,%12.4f\n", nx ,ny ,nz );

printf( "\ox oy oz: %12.4f ,%12.4f ,%12.4f\n", ox ,0y ,0Z );

printf( "\ax ay az: %12.4f ,%12.4f ,%12.4f\n", ax ,ay ,az );

printf( "\px py pz: %$12.4f ,%12.4f ,%12.4f\n", px ,py ,Pz )’

//The transforming T6 matrix from row vectors form to column vector form
TCP[0][0] = nx; TCP[QO][1l] = ox; TCP[0][2] = ax; TCP[O0][3] = px;
TCP[1][0] = ny; TCP[1][1] = oy; TCP[1]([2] = ay; TCP[1][3] = py;
TCP[2][0] = mnz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;
TCP[3]1[0] 0; TCP[3][1] = 0; TCP[3][2] = 0; TCP[3][3] = 1;
//Printing the transformed matrix TCP

printf( "\n Transformed T6 matrix - TCP matrix\n");

printf ( "\nx ox ax px: %$12.4f ,%12.4f ,%12.4f ,%12.4f\n", nx ,0xX ,ax, pPx
printf( "\ny oy ay py: %$12.4f ,%12.4f ,%12.4f ,%12.4f\n", ny ,o0y ,ay, py
printf( "\nz oz az pz: %$12.4f ,%12.4f ,%12.4f ,%12.4f\n", nz ,o0z ,az, pz
//Calculating the current position (in x,y,z in Base coordinates) of each

upper attachment point for each leg by multiplying the transformation
with the vector between the current TCP
(LxTOTCP[][])

// matrix TCP[4][4]
and the upper attachmentpoint for each leg

//Calculate upper position on Legl
rowl < 4;
(coll = 0;

for

(rowl
for

0;

rowl++)

coll < 1;

{

coll++) |

(The array LltCur)

(the T6 matrix)

// Multiply the row of A by the column of B to get the row,
column of product.

for

(innerl

:0;

innerl < 4;

innerl++)

LltCur[rowl] += TCP[rowl] [innerl]

{

* L1tToTCP[innerl] [coll];
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//Calculate upper position on Leg2 (The array L2tCur)
for (row2 = 0; row2 < 4; row2++) {
for (col2 = 0; col2 < 1; col2++) {

// Multiply the row of A by the column of B to get the row,
column of product.
for (inner2 = 0; inner2 < 4; inner2++) {
L2tCur[row2] += TCP[row2] [inner2] * L2tToTCP[inner2] [col2];

}
}
//Calculate upper position on Leg3 (The array L3tCur)
for (row3 = 0; row3 < 4; row3++) {
for (col3 = 0; col3 < 1; col3++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner3 = 0; inner3 < 4; inner3++) {
L3tCur[row3] += TCP[row3] [inner3] * L3tToTCP[inner3] [col3];

}
}
//Calculate upper position on Leg4 (The array L4tCur)
for (rowd = 0; rowd < 4; rowd++) {
for (cold = 0; cold < 1; cold++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner4 = 0; inner4 < 4; innerd++) {
L4tCur[rowd] += TCP[rowd] [innerd] * L4AtToTCP[innerd] [cold];

}
}
//Calculate upper position on Leg5 (The array L5tCur)
for (row5 = 0; rowS5 < 4; rowS++) {
for (colb = 0; colb < 1; colb5++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner5 = 0; inner5 < 4; inner5++) {
L5tCur[rowb5] += TCP[row5] [inner5] * L5tToTCP[inner5] [col5];

}

//Calculate upper position on Leg6 (The array L6tCur)
for (row6 = 0; row6 < 4; rowb6++) {
for (col6 = 0; col6 < 1; col6++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner6 = 0; inner6 < 4; inner6++) {
LotCur[row6] += TCP[rowb6] [inner6] * L6tToTCP[inner6] [col6];
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// Calcultates the distance between the upper and lower attachment points for

each leg.

Ll = sgrt(((pow ((L1tCur[0]-L1b[0]),2)))+((pow((L1ltCur[l]-
Llb[1]),2)))+ ((pow((L1ltCur[2]-L1b[2]),2))));

L2 = sqgrt(((pow((L2tCur[0]-L2b[0]),2)))+((pow((L2tCur([l]-
L2b[11),2)))+((pow ((L2tCur([2]-L2b[2]),2))));

L3 = sqrt(((pow((L3tCur[0]-L3b[0]),2)))+ ((pow((L3tCur([1l]-
L3b[1]),2)))+ ((pow((L3tCur[2]-L3b[2]),2))));

L4 = sgrt(((pow((L4tCur([0]-L4b[0]),2)))+ ((pow((L4tCur[l]-
L4b[11),2)))+((pow((L4tCur([2]-L4b[2]),2)))):

L5 = sqgrt (((pow ((L5tCur[0]-L5b[0]),2)))+((pow((L5tCur[l]-
L5b[11),2)))+ ((pow ((L5tCur[2]-L5b[2]),2))));

L6 = sqgrt(((pow((L6tCur[0]-L6b[0]),2)))+ ((pow((L6tCur[l]-
L6b[1]),2)))+ ((pow((L6tCur[2]-L6b[2]),2))));

//The distance between upper and lower leg attachmentpoint when the command

joint is zero. Used as a reference to get the current leg length
Lref = 376.5;

//Calculates the joint values by calulating the differnce in distance between

the two attachmentpoints on each leg and a reference length (Lref)
//(the lenght between attachment points when the joints are 0)
Jl = L1 - Lref;

J2 = L2 - Lref;
J3 = L3 - Lref;
J4 = L4 - Lref;
J5 = L5 - Lref;
J6 = L6 - Lref;

//Sending the final joint values back to the "solutions"-matrix which is the

input matrix for Delmia.

solutions[0] [0] = J1;
solutions[1][0] = J2;
solutions[2][0] = J3;
solutions[3][0] = J4;
solutions[4][0] = J5;
solutions[5][0] = J6;

//Printing some of the variable values out in the debug window to ease
debugging and get an overview of what is going on
printf( "\n The leg lengths\n" );
printf( "J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3 );
printf( "J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6 );
printf( "L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3 );
(

printf( "L4 L5 Le: %$12.4f ,%12.4f ,%12.4f\n", L4 ,L5 ,L6);
D11 = L1tCur[0]; D12 = L1ltCur[l]; D13 = LltCur[2];
D21 = L2tCur[0]; D22 = L2tCur[l]; D23 = L2tCur[2];
D31 = L3tCur[0]; D32 = L3tCur[l]; D33 = L3tCur[2];
D41 = L4tCur[0]; D42 = L4tCur[l]; D43 = L4tCur[2];
D51 = L5tCur[0]; D52 = L5tCur[l]; D53 = L5tCurl[2];
D6l = LetCur[0]; D62 = Lo6tCur[l]; D63 = L6tCurl[2];
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printf (

printf( "\DI11
printf( "\D21
printf( "\D31
printf( "\D41
printf( "\D51
printf ( "\D6l

warnings|[ 0 ]

return (0);

D12
D22
D32
D42
D52
D62

= WARN_GOOD SOLUTION;

"\n The legs'
D13:
D23:
D33:
D43:
D53:
D63:

4f
4f
4f
4f
4f
4f

4f
4f
4f
4f
4f
4f

upper attachment point coordinates \n"

D11
D21
D31
D41
D51
D61

Ne Ne Ne N N

—_— — — — — —
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APPENDIX C: THE CREATION OF INVERSE KINEMATICS FOR HEXAPOD

The hexapod as stated in section 2.1 is an equivalent structure to Flexapod 6P where the upper
attachment points are spherical joints instead of three successive revolute joints as with Flexapod 6P.

Figure C.1. Hexapod with forward kinematics created

As put earlier, the forward kinematics was received ready from the previous project owner thus in
this appendix, the creation of forward kinematics will not be given. Hence, the inverse kinematics will be
the topic of this section.

THE INVERSE KINEMATICS CREATION

e As with the Flexapod 6P case, the same procedure will be followed. Thus the Basic tab
should look like

TCP.1: The part created to mount with the TCP point

Tool1: The FOI at TCP point

BasePlateAssyKin.1 : The base platform part

Z: Approach axis

Out is the approach direction

o O O O O

User inverse method is for C-file use
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LinAktinvKinHexapodFullTest's Inverse Kinematic Attributes

Inverse Kinematic Chain |yinematics chain.t «|  Create Mew IK Chain I Delete Current IK Chain I
Basic
Mounk Park TCP.1 I
Maunt: Cffset | Taol1
Reference Part |BasePlateAssykin. 1 I
Base Part | BasePlateAssykin, 1
Approach Axis |Z j
Approach Direction |Out ﬂ
Solver Type |Llser Inverse ﬂ
Advanced. . I
& Cancel l
Lo

Figure C.2. Defining Inverse kinematics parameters

When clicked Advanced, the remaining tabs are the same as Flexapod 6P. These tabs than

LinAktInvKinHexapodFullTest's Inverse Kinematic Attributes

Inverse Kinematic Chain |vinematics chain. 1w | Create New IK Chain | Delete Current 1 Chain |

Basic More | Configurations

| Actuator Space Map | Solver Attributes (User Defined) |

Config Info
Mame Walidity
1 Pasture_1 |‘v'alid ﬂ

Pl el |

@ 0K & Cancel I

Figure C.3. Checking configurations
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The Actuator Space Map tab follows the same procedure with Flexapod 6P. The Kin Part has
the mobile parts of the prismatic joints.

LinAktInvKinHexapodF ullTest's Inverse Kinematic Attributes

Inverse Kinematic Chain [yinematics chain,1  » | _Create New IK Chain I Delete Current IK Chain I

Easic Moare | Configurations

| Solver Attributes {User Defined) |

Jainks Map Jainks Type Kin Axis Type Kin DOF Kin Part

Command 1 [ dof{1) [Translational r||ransz |1 |LinActRod. 1 Clear Alphatiode 1 |
Command 2 :[ dof(2) [Translational w||ransz ]2 |LinActRod.2 Clear Alphaniode 2 |
Command 3 {| dof(3) | Translational w||ransz |3 |LinActRod. 3 Clear Alphatiods 3 |
Command 4 :[ dof(4) [Translational ||transz |l4 |LinActRod. Clear Alphaiads 4 |
Command 5 {| dof(5) | Translational w||ransz |5 |LinActRod.5 Clear Alphatiods 5 |
Command 6 :|.:|.;,F(5) |Translationa| j |Trans ? ﬂ |& |Lin.°.ctRod.6 Clear Alphahlods & I

Compute I

JRTE
@ oK I @ cancel |
[N

Figure C.4. Defining Actuators

The Solver Attributes tab has no offset or any auxiliary values since the C-file covers those
values in the code. Thus, the tab should only have a change in the C-file and library names.

LinAktinvKinHexapodFullTest's Inverse Kinematic Attributes

Inverse Kinematic Chain |ginematics chain, 1+ |  Create Mew IK Chain | Delete Current Ik Chain |

Easic More | Configurations | Actuskor Space Map Solver Attribukes {User Defined) |

Link Parameters Auxiliary Data

Length 1 : W Offset 1 : ’m fux Datal: [o.o00mm  AuxDatas:
Length 2 : |0.000 rmm Offset 2 ¢ {0,000 mm Aux Data 2 @ | 0,000 mm Aux Data 6
Length 3 [o,000mm  Offset 3: [0.000mm | AuxData3:[p000mm  AuxData?:
Length 4 : [p,000mm  Offset<: [0.000mm | AuxData4:[p000mm  AuxDatas:
LengthS: [0.000mm  Offset5: (0,000 mm

/1]

Define Library and Routine Mames :

Shared Library Name :[libhexapodFullTest
Routing Name ¢ | kin_hexapodFullTest

Pl iezchin |
@ oK I o Cancel
| S Cancel |

Figure C.5. Defining C-file and library names
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THE C-FILE FOR HEXAPOD

/****************************************************************************

* Kk

* x

* x

* x

* x

* x

* x

* x

* x

* x

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* k

* k

* %

* %

* %

* k

* k

* %

* %

* %

USER KINEMATICS EXAMPLE

Copyright (c) 1990 Delmia Corporation, All rights reserved.

This file contains an example of a kinematics routine for the

shared library. This example will work for 4 DOF 2 Config (left and
right
elbow) scara robots such as the ASEA/IRB300. By default,
kin usrl is mapped to this routine.

For a description of kinematics solutions refer to:

Paul, Richard P.,

"Robot Manipulators: Mathematics, Programming

and Control", The MIT Press, Cambridge, Massachusetts, 1981.

DESCRIPTION OF ARGUMENTS

double T6[4][4]

double link lengths/[]

double link offsets][]

double solutions[][]

4x4 position matrix of center of wrist. This is
the goal point MINUS the tool frame and mounting
plate offsets. This is the easiest point to start
the inverse kinematic solution from, and is the
traditional approach.

NOTE: T6 matrix may be transposed from your usual
notation.

| nx ny nz 0 | \\

T6 = | ox oy oz 0 | > direction cosines (9)
| ax ay az 0 | /
| px py pz 1 | -> position terms (3)

px = To6[3][0];
Distance between joint axis along link length
Offset between joint axis along joint axis

These two arrays can be considered the Denevitt-
Hartenburg variables described in Paul's book, or
any convenient scheme the user desires.

A two dimensional array contains all possible
solutions for robot arm. It is up to user to
decide how many solutions are possible, and to
provide all solutions when routine is called:
elbow up, elbow down, etc. The CONFIGS

Button in IGRIP allows user to view all possible
solutions and may provide insight into importance
of this array.
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** int warnings/[] Array providing warning states for each solution

*H such as unreachable, singular, etc. Possible
warning

*x states are defined in include file shlibdefs.h
*ox and are:

* *

* % WARN GOOD SOLUTION

* ok WARN JOINT LIMIT EXCEEDED

* ok WARN UNREACHABLE

* % WARN SINGULAR SOLUTION

* *

x K NOTE: shlibdefs.h is automatically included by the IGRIP Shared
x*x Library Make system. For further details regarding the
building

xx of the shared library, refer to the IGRIP Motion Pipeline
xx Reference Guide

* %

* x

**  Words of encouragement
* %

xx Writing inverse kinematics routines is a challenge. Invariably

xx you will make mistakes which later seem trivial. Even experts on
xx the subject loathe writing a new routine. The usual problems

xx are matching the routines view of the world with the device

xx definition. You must check that where this routine thinks is

xx the axis origin, or the zero reference position, is the same

xx as the IGRIP device. Also make sure that each agree upon the
positive

*x sense of direction. These are the most common foul ups. Next,
xx the mounting plate offset may be wrong, so when first debugging
xx your routine, set the mounting plate and tool frame offsets to

*x zero. Next check for dropped signs in your equations. Maybe

*x an inverse trig function is returning an angle in a different
quadrant

xx than the one you want. Perhaps you should be using atan2 instead
**x of atan (or vice-versa). Remember that trig and inverse trig
function

* ok angles are in radians. Also, check array indices. Remember that
X arrays start at zero not one, so link 4's offset is at

link offsets[3].

**x Are you referring to T6[3][2], when you mean T6[2][3]? Remember that
xx transformation matrices may be transposed from standard text book
xx definitions. Once you get your routine to work you will have earned
xx the title of kinematician.

* %
R IR R I S b I S b I S IR I S b I b b I S S S I S db e S S e S 2 e S b I Sb b I S b I S b I Sb R 3 Sb b S Sb S S S e S Jb e S Sb I Sb b I Sb b b Sb b I S b 3

**/

#include <shlibdefs.h>

/*

** TIMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** TIMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** TIMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

* %

*
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** USER SHOULD CHANGE THESE VALUES APPROPRIATELY
*

* % ‘

* % \ /

* x v */
#define NUM SOLUTIONS 1 /* Number of possible solutions */
#define NUM DOFS 6 /* Number of joints to be solved */
/* "

* x / \

* * ‘
* % ‘
** USER SHOULD CHANGE THESE VALUES APPROPRIATELY
* *
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
*/
/*
* User must supply this function
*/
Dl1lExport int
get _kin config( char *kin routine, int *kin dof, int *solution count, int
*usrKinDataHint )
{
if( strcmp( kin routine, "kin hexapodFullTest" ) == 0 )
{
*kin dof = NUM DOFS;
*solution count = NUM SOLUTIONS;
/*
* this indicates kin usr's last argument (void *pData)
* will be DLM Data KinStat
*/
*usrKinDataHint = USR_KIN DATA KINSTAT;
return 0;
}
return 1;
}
static char JointTypel[2] [
static char KinMode([2] [24
/*
** Routine Name
*/
DllExport int
kin hexapodFullTest (
link lengths,
link offsets,
T6, /* See above for description of these arguments */
solutions,
warnings,
pData

{ "ROTATIONAL", "TRANSLATIONAL" };

24] =
] = { "Normal", "TrackTCP" };

)
/%
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** Passed Variable Declarations
*/
double T6[4][4],
link lengths[],
link offsets][],
solutions[] [NUM_ SOLUTIONS] ;
int warnings|[];

void *pData; /* usr routine should NEVER delete pData */

{
/*
** Local Variable Declarations (add variable declarations as appropriate)

*/

long double nx, ny, nz, ox, oy, oz, ax, ay, az, pPx, PY, PzZ;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33, D41, D42, D43, D51,

D52, D53, D6l, D62, D63;
long double 1L1,L2,L3,1L4,L5,L6,J1,J2,33,J4,35,J6, Lref;

//Variables to perform matrix multiplication
int rowl,row2, row3,rowd,row5, row6;

int coll,co0l2,co0l3,co0ld4,col5,col6;

int innerl,inner?2,inner3, inner4, inner5, inner6;

// The upper attachmentpoints for each leg (The vector between the TCP and
each upper attachment point).
long double L1tToTCP[4][1];

long double L2tToTCP[4][1];
long double L3tToTCP[4]1[1];
long double L4tToTCP[4][1];
long double L5tToTCP[4][1];
long double L6tToTCP[4][1];

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool
Centre Point) - see line 307.
long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).

long double LltCur[4] {0},
long double L2tCur[4] = {0};
long double L3tCur[4] {0}

[
[
long double L4tCur[4] {0}
[
[

long double L5tCur[4] = {0};
long double L6tCur[4] = {0};

//Lower attachemnt points on each leg (in Base coordinates)
long double L1b[31];
long double L2b[31];
long double L3b[3];
long double L4b[3];
long double L5b[3];
long double L6b[31];
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#if 1

/*
* using pData
*/
int i;
DLM Data KinStat *pDLM Data = (DLM Data KinStat *) pData;
if ( pDLM Data )
{
printf( "\n\ndof count: %d\n", pDLM Data->dof count );
printf( "\njoint types:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%s ", JointTypel (pDLM Data->joint types) [i]] )
printf( "\n\nkin mode: %s\n", KinMode[pDLM Data->kin mode] );
printf( "\njoint values:\n" );
for( i = 0; i < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->joint values[i] );
printf( "\n\njnt trvl Imts lower:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[0][i] );
printf( "\n\njnt trvl Imts upper:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[1][i] );
printf ( "\n\n" );
}
#endif
K Execution Begins Here —-——————-—-—————————"—"—————"—~—~—~———————
***/
/*
** DO NOT REMOVE THIS BLOCK OF CODE
** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC
** DOFS FOR THE DEVICE
*/
if( !'kin check definition( NUM DOFS, NUM SOLUTIONS ) )
{
/*
** Inconsistency between device definition and inverse
** kinematics routine exists. A warning message has been
** issued and routine aborted
*/
return( 1 );
}
[RAH e User code begins here -—--—------—-———————-———————
*k*k*k/
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//The vector between

L1tToTCP[0][0]
L1tToTCP[3] [0]

L2tToTCP[0][0]
L2tToTCP[3]11[0]

L3tToTCP[0] [0]
L3tToTCP[3][0]

L4tToTCP[0][0]
L4tToTCP[3]110]

L5tToTCP[
L5tToTCP [

[

0][0]
311

0
0]
L6tToTCP|
L6tToTCP|

0] 0]
3] (0]

//The lower attachmentpoints for each leg

L1b [0

//Importing the current TCP values from Delmia through the T6 matrix and

1;

-117
-86.
86.
117.

the TCP and the upper attachmentpoints for each leg
-31.

31;

-31;

.761;

.761;

.761;

.761;

31;

-31;

.8

8
8
8

26;
26;
26;
26;

putting proper context

nx = T6[0][0];
ny = T6[0][1];
nz = T6[0][2];
ox = T6[1][0];
oy = T6[1][1];
oz = To[1l][2];
ax = T6[2][0];
ay = Tel[2][1];
az = To[2]11[2];
px = T6[3][0];
py = T6[3]1[1];
pz = T6[3][2];

L1tToTCP[1]11[0]

L2tToTCP[1]11[0]

L3tToTCP[1] [0]

L4tToTCP[1]11[0]

L5tToTCP[1] [0]

L6tToTCP[1][0]

Llb[1] = 118.
L2b[1] = 118.
L3b[1l] = -32
L4b[1] = -85.
L5b[1] = -85.
Leb[1l] = =32

48.

48.

-51

-51

156;
156;

.231;

925;
925;

.231;

//Printing the current TCP values in the debug
$12.4f ,%12.4f ,%12.4f\n",
$12.4f ,%12.4f ,%12.4f\n",
$12.4f ,%12.4f ,%12.4f\n",

printf( "\nx ny nz:
printf( "\ox oy oz:
printf( "\ax ay az:
printf ( "\px py pz:

//The transforming T6 matrix from row vectors form to

$12.4f ,%12.4f ,%12.4f\n",

TCP[0][0] = nx; TCP[O][1]
TCP[1][0] = ny; TCP[1][1]
TCP[2][0] = mnz; TCP[2][1]
TCP[3]110] 0; TCP[3]1[1]

= ox; TCP[0][2]
= oy; TCP[1][2]
= oz; TCP[2][2]
= 0; TCP[3][2]

799;

799;

.447;

.246;

.246;

.447;

L1tToTCP[2][0]

L2tToTCP[2][0]

L3tToTCP[2] [0]

L4tToTCP[2][0]

L5tToTCP[2] [0]

L6tToTCP[2] [0O]

(in Base-coordinates) .

L1b[2] = 40
L2b[2] = 40
L3b[2] = 40
L4b[2] = 40
L5b[2] = 40
L6b[2] = 40

.205;
.205;
.205;
.205;
.205;
.205;

-31.

-31.

-31.

-31.

-31.

45;

45;

45;

45;

45;

45;

window for evaluation purposes

nx ,ny ,nz );

oxX ,0Y ,0Z );

ax ,ay ,az );

pPx ,pPYy ,PZ ) ;
column

ax; TCP[O][3] = px;

ay; TCP[1][3] = py;

az; TCP[2]1[3] = pz;

0; TCP[3][3] = 1;

vector form
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//Printing the transformed matrix TCP

printf( "\n Transformed T6 matrix - TCP matrix\n");

printf( "\nx ox ax px: %$12.4f ,%12.4f ,%12.4f ,%12.4f\n", nx ,0x ,ax, pPx );
printf( "\ny oy ay py: %$12.4f ,%12.4f ,%12.4f ,%12.4f\n", ny ,o0y ,ay, Py );
printf( "\nz oz az pz: $12.4f ,%12.4f ,%12.4f ,%12.4f\n", nz ,o0z ,az, pz );

//Calculating the current position (in x,y,z in Base coordinates) of each
upper attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)
and the upper attachmentpoint for each leg (LxToTCP[][])

//Calculate upper position on Legl (The array L1tCur)
for (rowl = 0; rowl < 4; rowl++) {
for (coll = 0; coll < 1; coll++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (innerl = 0; innerl < 4; innerl++) {
LltCur[rowl] += TCP[rowl][innerl] * L1tToTCP[innerl] [coll];

}
}
//Calculate upper position on Leg2 (The array L2tCur)
for (row2 = 0; row2 < 4; row2++) {

for (col2 = 0; col2 < 1; col2++) {

// Multiply the row of A by the column of B to get the row,
column of product.
for (inner2 = 0; inner2 < 4; inner2++) {
L2tCur[row2] += TCP[row2] [inner2] * L2tToTCP[inner2] [col2];

}
}
//Calculate upper position on Leg3 (The array L3tCur)
for (row3 = 0; row3 < 4; row3++) {
for (col3 = 0; col3 < 1; col3++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner3 = 0; inner3 < 4; inner3++) {
L3tCur[row3] += TCP[row3] [inner3] * L3tToTCP[inner3][col3];

}
}
//Calculate upper position on Leg4 (The array L4tCur)
for (rowd = 0; rowd < 4; rowd++) {
for (cold = 0; cold < 1; cold++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner4 = 0; inner4d < 4; innerd++) {
L4tCur[rowd] += TCP[rowd] [innerd] * LA4tToTCP[innerd] [cold];
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//Calculate upper position on Leg5 (The array L5tCur)
for (row5 = 0; rowb5 < 4; rowbS++) {
for (col5 = 0; colb < 1; colb++) {
// Multiply the row of A by the column of B to get the row,
column of product.

for (inner5 = 0; inner5 < 4; inner5++) {

L5tCur[rowb5] += TCP[row5] [inner5] * L5tToTCP[inner5] [col5];

}
//printf ("$1f\t",L5tCur[row5]) ;
}
}
//Calculate upper position on Leg6 (The array Lo6tCur)
for (row6 = 0; row6 < 4; rowb6++) {
for (col6 = 0; col6 < 1; colo++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner6 = 0; inner6 < 4; innero6++) {

Lo6tCur[rowb] += TCP[row6] [inner6] * L6tToTCP[inner6] [col6];

}
//printf ("$1f\t",LotCur[row6]) ;
}
}

// Calcultates the distance between the upper and lower attachment points for

each leg.
Ll = sgrt(((pow ((L1tCur([0]-L1b[0]),2)))+ ((pow((L1ltCur[l]-
Lib[1]1),2)))+((pow ((LltCur[2]-L1b[2]),2)))):

L2 = sqgrt(((pow ((L2tCur[0]-L2b[0]),2)))+ ((pow((L2tCur[l]-
L2b[1]),2)))+((pow ((L2tCur[2]-L2b[2]),2))));

L3 = sqrt(((pow ((L3tCur[0]-L3b[0]),2)))+ ((pow((L3tCur[l]-
L3b[1]),2)))+ ((pow ((L3tCur[2]-L3b[2]),2)))):

L4 = sqgrt(((pow((L4tCur[0]-L4b[0]),2)))+((pow((L4tCur[l]-
L4b[1]),2)))+ ((pow ((L4tCur([2]-L4b[2]),2))));

L5 = sqrt(((pow ((L5tCur[0]-L5b[0]),2)))+ ((pow((L5tCur[l]-
L5b[1]),2)))+ ((pow ((L5tCur[2]-L5b[2]),2))));

L6 = sqrt(((pow ((L6tCur[0]-L6b[0]),2)))+ ((pow((L6tCur[l]-
Leb[1]),2)))+ ((pow ((L6tCur[2]-L6b[2]),2))));

//The distance between upper and lower leg attachmentpoint when the command

joint is zero. Used as a reference to get the current leg length
Lref = 399.413;

//Calculates the joint values by calulating the differnce in distance between

the two attachmentpoints on each leg and a reference length (Lref)
// (the lenght between attachment points when the joints are 0)
Jl = L1 - Lref;

J2 = L2 - Lref;
J3 = L3 - Lref;
J4 = L4 - Lref;
J5 = L5 - Lref;
J6 = L6 - Lref;
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//Sending the final Jjoint values back to the "solutions"-matrix which is the
input matrix for Delmia.

solutions[0] [0] = J1;
solutions[1][0] = J2;
solutions[2][0] = J3;
solutions[3][0] = J4;
solutions[4][0] = J5;
solutions[5][0] = J6;

//Printing some of the variable values out in the debug window to ease
debugging and get an overview of what is going on
printf( "\n The leg lengths\n" );

printf( "J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3 );

printf( "J4 J5 J6: %12.4f ,%12.4f ,%12.4f\n", J4 ,J5 ,J6 );

printf( "L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3 );

printf( "L4 L5 Le6: %$12.4f ,%12.4f ,%12.4f\n", L4 ,L5 ,L6);

D11 = Ll1tCur([0]; D12 = LltCur[l]; D13 = LltCur([2];

D21 = L2tCur[0]; D22 = L2tCur[l]; D23 = L2tCur[2];

D31 = L3tCur[0]; D32 = L3tCur[l]; D33 = L3tCur[2];

D41 = L4tCur[0]; D42 = L4tCur[l]; D43 = L4tCur[2];

D51 = L5tCur[0]; D52 = L5tCur[l]; D53 = L5tCur[2];

D61 = L6tCur[0]; D62 = LotCur[l]; D63 = LotCur[2];

printf( "\n The legs' upper attachment point coordinates \n" );

printf( "\D11 D12 D13: %12.4f ,%12.4f ,%12.4f\n", D11 ,D12 ,D13 );

printf ( "\D21 D22 D23: %$12.4f ,%12.4f ,%12.4f\n", D21 ,D22 ,D23 );

printf( "\D31 D32 D33: %12.4f ,%12.4f ,%12.4f\n", D31 ,D32 ,D33 );

printf ( "\D41 D42 D43: %$12.4f ,%12.4f ,%12.4f\n", D41 ,D42 ,D43 );

printf( "\D51 D52 D53: %12.4f ,%12.4f ,%12.4f\n", D51 ,D52 ,D53 );
( )

"\D61 D62 D63: %12.4f ,%12.4f ,%12.4f\n", D61 ,D62 ,D63

~e

warnings[ 0 ] = WARN GOOD SOLUTION;

return (0);

}
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APPENDIX D: THE FORWARD AND INVERSE KINEMATICS CREATION OF
EXECHON

In this section, the forward kinematics of complete structure of Exechon (including the wrist) and
inverse kinematics (without the wrist attached) will be explained.

FORWARD KINEMATICS: EXECHON
The parts necessary to build an Exechon robot

a) 2 fixed base parts named Basel3 and Base2

b) 3 legs named Act2 and Act1

¢) 3 prismatic actuators IG13 and IG2_a

d) 1 mobile platform named MP

e) 1 revolute joint component named IG2_b for spherical joint in leg 3

f) 1 part for the wrist’s first revolute joint named Ax4

g) 1 part for the wrist’s second revolute joint named Ax5

h) 1 part named OG13 to connect 2 identical legs via revolute joints

i) 1 part named OG2 to connect the perpendicular leg (leg 3) to base part Base2
j) 1 pseudo part named O to serve as the reference frame and base for the robot.

(b) (c)
(e) (f)

\ 4

(a)
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(8)

(h)

$re

Figure D.1. Parts of Exechon

First step in building of the mechanism is to form the node tree by first creating components

using New Component button and inserting the necessary parts by Existing Component

button. The steps and resulting tree should look like

Tools  Analyze  Windo Tools

analvze

P
2

mponent & MNew Component

Pers| Mew Produck i Mew Produck

]

o | Mew Part

@ Existing Component. ..

Robob Controller 4

Robot Contraller

=By 1 To00_0 (XTS005_0)

#- B, XT5005_0G13 (KTS005_0613.1)

b B, (TS005_062 (T5005_062.1)

b= B, (TS005_1613 (KTS005_1513.1)

¥ By, (5005 _Actl_3 ({TSO0S_Act1_3.1)
# B, 175005 1624 (¥T500S 1G24.1)

¥ B, (5005 _162b (KTS005_IG2b.1)

#- B, XT5005_ct? (XTS00S_ACt2.1)
BB, (T5005_1513.1 TS005_1613.2)

¥ @5, 175005 _act1_3.1 (<TS00S_act1_3.2)
¥ B, xTS005_MP (TS005_MP.1)

¥ B, XTS005_axd (XTS005_Axd. 1)

b~ B, XT5005_AxS (KTSO05_AXS. 1)

#- B, XT5005_Base 13 (XT5005_Base13.2)
P%XTSOOS_BaseZ (XTS005_Base2. 1)

windo

Figure D.2. Respective nod-tree

The second step is to create the FOI folders as in Flexapod 6P case. Thus, click % and then

create the folders under each component.

The third step is to create a new mechanism ¥ and appoint the pseudo part O fixed by

clicking % putton and selecting part 0.
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e The fourth step is to place the base frame into pseudo part 0. Click B and select the FOI

folder under the part 0. For the location of FOI, select Design and place it in the same

location at the world coordinate frame of DELMIA.

[

0] &|59|m | [ ¢

Move Origin

Bt [LAD |1

 Defin

Mode:

@ oK I aCanceII

)] Drezign

1 Tool
@ Base
) Custom

Figure D.3. FOI for base

The next step is to create the revolute joint between pseudo part 0 and OG13. First, create a

FOI at the center of 0G13 and another FOI at the base. The directions are then

£

Figure D.4. FOIs for base and 0G13
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Now, create a revolute joint between these FOIs by clicking P button and select the

revolute joint and respective FOIs. Then click OK.

Axis-based Joint Creation

Mecharism: |Mechanism.1 ﬂ Mew Mechanism I

Joink name:! | Revaolute, 17

Joink bype: (ST

Current selection

fxis 11 |Design.z Axis 2! |Designl. 1

[] angle driven []

@ ok l !ﬂCanceII

Figure D.5. Revolute joint for base and 0G13

In this step, create a new revolute joint without actuation. First, create the respective

FOls at the center of rotation for OG13. Then, create the FOIs as below. The respective

FOIs then

Figure D.6. FOIs for 0G13 and actuators
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e The result of revolute joint creation should look like

Figure D.7. Assembled actuators to 0G13

e Before legs are attached, rigid joint between mobile platform and base part should be
created in order to keep the prismatic joints equal to each other and compliant with
standards of the robot. Thus, the required coordinates for mobile platform MP are [0,
50, -1250]".

e Along with the MP also bring the base part Basel2 and create another rigid joint
between pseudo part 0 and Basel2. Propagation of all the parts should be done with
respect to the centers appointed while the parts are being created. The result should
look like

Figure D.8. Propagated mobile platform with respect to 0G13
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e Now, the legs 1 and 2 can be assembled via revolute joints to MP. First, appoint FOlIs (for
prismatic joints) to the centers of rotation at lower attachment points for both legs as
shown in the next figure.

Figure D.9. FOI for prismatic joint

e Next, appoint another set of FOIs for revolute joints to both legs as

Figure D.10. FOI for revolute joint
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e The second set of FOIs will be created for MP’s revolute joints. The respective FOls
should look like

Figure D.11. FOI for mobile platform

e Now, create the revolute joints for each leg, and the result should look like

Figure D.12. Leg 1 and 2 assembled to mobile platform
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e In this step, the prismatic joints will be created. First, create a set of FOIs at actuators.
The FOIs must be at the center of rotation and should look like

Figure D.13. FOlIs in actuators for prismatic joints

e The tricky point is to directly create the prismatic joints without making any changes in
the rotation of legs and the actuators. This convenient method is provided by the fact
that MP is fixed to the base. Thus, when prismatic joints are created the result is

Figure D.14. Leg 1 and 2 assembled to actuators
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e Now, the third leg will be connected to MP. The FOlIs for the lower attachment points
are the same as the leg 1 and 2. The FOIl on MP will be the same as others as well. Thus,
the result of FOI creation for MP and leg 3 should look like

Figure D.15. FOIs for Leg 3 and mobile platform

e When the revolute joint is created, the result is then

Figure D.16. Leg 3 and mobile platform assembled
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o Now, the creation of the spherical joint of leg 2 will be done. It is important to start from
the second base because attaching successively prismatic joints first and the spherical
joint later may result in a state where standards for prismatic joint and the second base
are out of limits. Thus, first create a FOI in the pseudo part 0 at the coordinates [0, 670,
0]". The respective FOI should look like

Figure D.17. FOIs for the second base

e Now, propagate Base2 to the same location as previous FOI and create a rigid joint
between pseudo part 0. The result should look like

Figure D.18. Rigid joint creation for base2 with pseudo base 116



e Inthis step, the 3 successive revolute joints which correspond to a spherical joint will be
built. The first revolute joint will be the rotation between Base 2 and the OG2. As usual,
the FOIs will be appointed first. This time, though, pseudo part 0’s second FOI will be
used since its Z-axis corresponds to the rotation of this joint. Thus, only one FOI will be
created in OG2. The FOI and the result of joint creation should look like

Figure D.19. FOIs for 0G2 and pseudo base

e Now, the second revolute joint will be created between OG2 and IG2a. This time 2
separate FOIs will be created in both parts. The FOIs should be at the center and look

like

Figure D.20. FOIs for OG2 and actuator
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e The result of the joint creation for the second revolute joint should look like

Figure D.21. Revolute joint creation between OG2 and actuator

e The last revolute joint will create the rotation between /G2a and IG2b. The respective
FOls that should be created for both parts should look like

Figure D.22. FOIs for actuator components

118



e Then, the result of the joint creation will be

Figure D.23. Revolute joint creation for actuator components

e Now, the last joint — the prismatic — will be built. In the earlier steps, the necessary FOI

for prismatic joint on the leg 3 was created. The FOI for the revolute joint used in part

1G2b will also be used here as well. Thus, go directly the joint creation and select the
respective joints. The steps should be

Axis-based Joint Creation E|E|
Mechanism: (e charism, 1 ~| Mew Mecharism I
Joink name: [Prismatic. 17
Jaink LYPe: | prismatic A

Current selection
Ads 1 [Designid.1 Axis 21 [Designl3. 1
= Length driven O

@ oK I & Cancel I

Figure D.24. Prismatic joint creation for leg and the actuator
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e Hence, the result should be

Figure D.25. Parallel structure of Exechon

e The rest of the joints will be used to build the wrist. On the other hand, the inverse
kinematics will only cover for the parallel structure, which is the figure above. Thus for
the joints in the wrist, a FOI in part MP will be created at the center of MP which also
corresponds to the center of rotation for the wrist as stated in the theory section. Thus,
the FOIs in MP and Ax4 should look like

a

[~

Figure D.26. FOIs for wrist and mobile platform
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e The result, then, for the first revolute joint of the wrist should look like

Figure D.27. Revolute joint between wrist and mobile platform

e Now the second revolute joint will be created. For this operation the respective FOls
should look like

Figure D.28. FOIs for wrist and driller
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Thus, the result of the final joint creation should result as

Figure D.29. Exechon’s hybrid structure

e Now, check the directions of the prismatic joints. Make sure that they all move in the

same direction. This step is important when defining the joint limits. Thus, chosen

directions for this thesis work are all in positive direction towards the wrist. Hence, the

directions should look be as

Figure D.30. Joint check
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Now, test the mechanism by using the Jog Mechanism property as in Flexapod 6P case.
When confirmed that the system is working as intended, the measurements will be
made for inverse kinematics.

On the other hand, at some steps, DELMIA V5 might exhibit unexpected behaviors at
the joints where the fixed part acts as mobile instead of the intended mobile part. In
those situations, change the direction of the joint and DELMIA is most likely to respond
as expected. If not, it is recommended to rebuild the system.

When the mechanism jogged, the behavior should be as

Jog(Mechanism.1) E‘

zz.c00 3

280.000 o 2]

150 4 sss
150 17fRl L ses
Comman 43 26 4Bl 509 230.000mm [
Comman d5 ¥ zep 0% 360 0000deg 2
Command.6 ¥ _soq 0% 360 ~180.000 deg |2

4 4| 4 4 4«

Steps

Linear Step : (10,000 mm angular Step : (10,000 deg

Predefined Position

Home [ ]
3 Inmediste
cose | | Reset |

Figure D.31. Motion check

At this point, it is also important to check the posture of the joints to make sure that the
complete structure is at zero position and fits the standards. To achieve this, measure
the prismatic joints total lengths. Identical legs 1 and 2 should yield the same number
whereas leg 3 will be different. The measurements should be done by using FOIs, and
they should look like

~B86.021mm

~B03.887mm

Figure D.32. Measuring travel limits
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e The second set of measurements will be done to get the limits for the prismatic joints.
These measurements should look like
~341.021mm
~B86.021mm
~EEE7mm
~B03.887mm
Figure D.33. Measuring other lengths to define travel limits
e Then, with the measurements the following table can be created to set the travel limits.
The table then
Prismatic Joint 1 Prismatic Joint 2 Prismatic Joint 3
Total Length 745 745 745
Lower Limit -150 -150 -225
Upper Limit 595 595 520
Modify Command Limits
Mechanism [\xT5005\Mechanism. 1 |
Caution Zone is (7 phelute Yalue
¥ Percentage of Limits Range
Command Lower Limnik Upper Limik Caution Zone
Comrmand. 1 [-150 | 53] |0
Command.2 [-150 |5a0 |D %
Command.3 [-z25 |20 |D %
Command.4 [-3e0 EX EE2
Command.5 [-360 | 380 |D %
[ Local definition
@ Ok W Cancel I
R e |
Figure D.34. Defining travel limits
e Since the mechanism is set and ready to use, now the inverse kinematics can be defined.
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EXECHON INVERSE KINEMATICS

e Asin Flexapod 6P and hexapod cases, the inverse kinematics definition will be made for
DELMIA V5 environment. To start with, create a part named TCP and place it at the
center of the wrist. The result should look like

Figure D.35. Attaching new part to a TCP

e Now, click on Inverse Kinematics button and define the properties as following
o Mount Part: TCP

Mount Offset: The FOI at the center of the wrist

Base: Pseudo part 0

Base reference: Pseudo part 0

Approach Axis: Z

Approach Direction: Out

O O O O O

Solver Type: User Inverse
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e The result should look like
XT500S’s Inverse Kinematic Attributes EJEl
Inverse Kinematic Chain [iinematics chain. | v | _Create New Ik Chain | _Delete Current Ik Chain_|
Basic
Maunt Part =
Mount OFFsat [Design4
Reference Part XTS005_0
Base Part XTS005_0
Approach Axis [z =
Approach Direction [our =]
Solver Typs [lser trwveres =
Advanced. .. I
& ok | iICance\I
Figure D.36. Basic tab for inverse kinematics
e Now, click on Advanced and proceed to the Configurations and Actuator Space Map tabs.
The Configurations tab should look like
XT500S's Inverse Kinematic Attributes [[E3
Inverse Kinematic Chain [ynematics chain1 | _Create New IK Chain_| _Delete Current ¢ Chain_|
Basic More | Configurations | Actustor Space Masp | Solver Attrbutes (User Defined) |
Corfig Info
Name walidity
1 t[Posture_1 ﬂ
|
| @ oK | JCanza\|
Figure D.37. Configurations tab for inverse kinematics
e The attributes in the Actuator Space Map should be as
Joints Map Joints Type Kin Axis Type Kin DOF Kin Part
Command 1 dof(1) Translational Trans Z 1 Leg1
Command 2 dof(2) Translational Trans Z 2 Leg 2
Command 3 dof(3) Translational Trans Z 3 Leg 3
Command 4 dof(4) Rotational Rot Z 4 Ax4
Command 5 dof(5) Rotational Rot Z 5 Ax5
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e Then, the tab should look like

XT5005's Inverse Kinematic Attributes
Inverse Kinematic Chaif [y nematics chain.1 v | _Create New 1K Chain_| _Delete Current Tk Chain
Basic More | Configurations Actuator Space Map | Solver Attributes (User Defined) |
e
Joinks Map Joints Type Kin Axis Type  Kin DOF Kin Part
Command 1 :[ dof(1) [Translational ~|[ransz ~It [<T5005_Ackl 3.2 _Clear Alphatinde 1 |
Command 2 ;| dof (2) [Translational ~|[ransz ~l2 [#T5005_Actt 3.1 Clear Alphahiode 2 |
Cormand 3 :|dnf(3) ‘T,anshtmnd jh,ans z j 3 ‘XTSDDS_Ath.l Clear Alphahinde 3 |
Command 4 ;[ dof(4) [Ratational ~llretz  ~l4 [%T5005_Ax4.1 Clear Alphahiods 4 |
Cormmand 5 :|dnf(5) \Rutatiunal j|Rut z j 5 ‘XTSDDS_AXS.[ Clear Alphahinde 5 |
Compute |
@ ok I ' Cancel I

Figure D.38. Actuator parameters for inverse kinematics

e The final tab Solver Attributes should only contain C-file and library names

XT5005's Inverse Kinematic Attributes

Inverse Kinematic Chain [inematics chain, 1 v | _Create New Ik Chain | _Delete Current Ik Chain

Basic Mare | Configurations ‘ Actuator Space Map | Solver Attributes (User Defined) ‘

Link Parameters Auxiliary Daka

Lengthi 1 1 0,000 mm Offset 1 ¢ 0,000 mm AuxDatal:[poo0mm  AuxDataS:[g
Length 2 : [0.000 mm Offset 2 : [0,000 mm AuxData2:[nooomm  AuxDatas: (o |
Length 3 (0,000 mm  OFfset 3 : [0,000 mm AuxData3:[p000mm  AuxDataZ:[p
Length 4 : [0.000 mm Offset 4 1 [0,000 mm AuxDatad:[p000mm  AuxData8:fo
Length 5 : ‘0,000 i OFfset 5 ¢ |g,ggg mm

Length 6 ¢ Cffset 6 ¢

Define Library and Routine Mames :

Shared Library Name [ |bexechon
Routine Mame ! [kin_exechon

Pl |
@ 0K @ Cancel I
[

Figure D.39. Library and C-file names for solver tab

e Then click OK, and start jogging the mechanism. As in earlier cases, compare the joint
values on Mechanism tab to the solutions displayed on the debugging window.
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EXECHON C-FILE

The C-file that should be directly transferred can be copied and pasted as seen below.

/****************************************************************************

* Kk

* x

* %

* %

* x

* x

* x

* %

* x

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

* %

* k

* k

* %

* %

* %

* k

* k

* %

* %

USER KINEMATICS EXAMPLE

Copyright (c) 1990 Delmia Corporation, All rights reserved.

This file contains an example of a kinematics routine for the

shared library. This example will work for 4 DOF 2 Config (left and
right
elbow) scara robots such as the ASEA/IRB300. By default,
kin usrl is mapped to this routine.

For a description of kinematics solutions refer to:

Paul, Richard P.,

"Robot Manipulators: Mathematics, Programming

and Control", The MIT Press, Cambridge, Massachusetts, 1981.

DESCRIPTION OF ARGUMENTS

double T6[4][4]

double link lengths/[]

double link offsets][]

double solutions[][]

4x4 position matrix of center of wrist. This is
the goal point MINUS the tool frame and mounting
plate offsets. This is the easiest point to start
the inverse kinematic solution from, and is the
traditional approach.

NOTE: T6 matrix may be transposed from your usual
notation.

| nx ny nz 0 | \\

T6 = | ox oy oz 0 | > direction cosines (9)
| ax ay az 0 | /
| px py pz 1 | -> position terms (3)

px = To6[3][0];
Distance between joint axis along link length
Offset between joint axis along joint axis

These two arrays can be considered the Denevitt-
Hartenburg variables described in Paul's book, or
any convenient scheme the user desires.

A two dimensional array contains all possible
solutions for robot arm. It is up to user to
decide how many solutions are possible, and to
provide all solutions when routine is called:
elbow up, elbow down, etc. The CONFIGS

Button in IGRIP allows user to view all possible
solutions and may provide insight into importance
of this array.
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* Kk

** int warnings/[] Array providing warning states for each solution
*x such as unreachable, singular, etc. Possible
warning

xx states are defined in include file shlibdefs.h
*ox and are:

* *

* ok WARN_GOOD_SOLUTION

* ok WARN JOINT LIMIT EXCEEDED

* % WARN UNREACHABLE

* % WARN SINGULAR SOLUTION

* *

xx NOTE: shlibdefs.h is automatically included by the IGRIP Shared
x*x Library Make system. For further details regarding the
building

xx of the shared library, refer to the IGRIP Motion Pipeline
*x Reference Guide

* %

* %

**  Words of encouragement

* %

xx Writing inverse kinematics routines is a challenge. Invariably

*x you will make mistakes which later seem trivial. Even experts on
xx the subject loathe writing a new routine. The usual problems

xx are matching the routines view of the world with the device

xx definition. You must check that where this routine thinks is

xx the axis origin, or the zero reference position, is the same

*x as the IGRIP device. Also make sure that each agree upon the
positive

xx sense of direction. These are the most common foul ups. Next,
*x the mounting plate offset may be wrong, so when first debugging
xx your routine, set the mounting plate and tool frame offsets to

xx zero. Next check for dropped signs in your equations. Maybe

*x an inverse trig function is returning an angle in a different
quadrant

xx than the one you want. Perhaps you should be using atan2 instead
**x of atan (or vice-versa). Remember that trig and inverse trig
function

* ok angles are in radians. Also, check array indices. Remember that
* %

arrays start at zero not one, so link 4's offset is at

link offsets[3].

* %

* x

* x

* %

* %

Are you referring to T6[3][2], when you mean T6[2] [3]? Remember that
transformation matrices may be transposed from standard text book
definitions. Once you get your routine to work you will have earned
the title of kinematician.

R S R I S b I S b I S b I S 2 I b b I S b S S S SR Sh SR S 2 e S b I Sb b I S R I Sb b b Sb b I S b I Sb I S Sb e S db I S S Sb b Sb b I Sb b I S b S 3

**/

#include <shlibdefs.h>
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/*

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

*% IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

* *

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

* * I

* % ‘

xx \ /
* * v */
#define NUM SOLUTIONS 1 /* Number of possible solutions */
#define NUM DOFS 3 /* Number of joints to be solved */
/* »
* * /\

* % ‘

* % ‘

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

* %

*% TMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

*% TMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

*% TMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

*% TMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

*/

/*
* User must supply this function

*/

DllExport int
get _kin config( char *kin routine, int *kin dof, int *solution count, int
*usrKinDataHint )
{
if( strcmp( kin routine, "kin exechon" ) == 0 )
{
*kin dof = NUM DOFS;
*solution count = NUM SOLUTIONS;
/*
* this indicates kin usr's last argument (void *pData)
* will be DLM Data KinStat
*/ B B
*usrKinDataHint = USR_KIN DATA KINSTAT;
return 0;
}

return 1;
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static char JointType[2][24] = { "ROTATIONAL", "TRANSLATIONAL" };

static char KinMode([2][24] = { "Normal", "TrackTCP" };
/*

** Routine Name

*/

DllExport int
kin exechon (
link lengths,
link offsets,
T6, /* See above for description of these arguments */
solutions,
warnings,

pData
)
/*
** Passed Variable Declarations
*/

double T6[4]([4],
link lengths[],
link offsets][],
solutions[] [NUM_ SOLUTIONS] ;
int warnings|[];

void *pData; /* usr routine should NEVER delete pData */

{

/*

** Local Variable Declarations (add variable declarations as appropriate)
*/

long double nx, ny, nz, ox, oy, 0z, ax, ay, az, pPX, PY, PzZ;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33;

long double L1,L2,L3,J1,J2,J3, Lrefl2,Lref3;

//Variables to perform matrix multiplication
int rowl, row2, row3;

int coll,col2,co0l3;

int innerl, inner2,inner3;

// The upper attachmentpoints for each leg (The vector between the TCP and
each upper attachment point).

long double L1tToTCP[4][1];

long double L2tToTCP[4][1];

long double L3tToTCP[4][1];

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool
Centre Point) - see line 307.
long double TCP[4][4];

//The current position for each upper attachmentpoint (in Base coordinates).
long double Ll1tCur[4] = {0};
long double L2tCur[4] {0};
long double L3tCur[4] {0}
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//Lower attachemnt points on each leg (in Base coordinates)
long double L1b[31];
long double L2b[3];
long double L3b[3];

#if 1
/*
* using pData
*/
int i;
DLM Data KinStat *pDLM Data = (DLM Data KinStat *) pData;
if ( pDLM Data )
{
printf( "\n\ndof count: %d\n", pDLM Data->dof count );
printf( "\njoint types:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%s ", JointTypel (pDLM Data->joint types) [i]] );
printf ( "\n\nkin mode: %$s\n", KinMode[pDLM Data->kin mode] );
printf( "\njoint values:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->joint values[i] );
printf( "\n\njnt trvl Imts lower:\n" );
for( i = 0; i < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[0][i] );
printf( "\n\njnt trvl Imts upper:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[1][i] );
printf ( "\n\n" );
}
#endif
[ Execution Begins Here —-——————--—-—-————————"—"—~———"—~—(—(—~—~——————
***/
/*
** DO NOT REMOVE THIS BLOCK OF CODE
** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC
** DOFS FOR THE DEVICE
*/
if( !'kin check definition( NUM DOFS, NUM SOLUTIONS ) )
{
/*
** Inconsistency between device definition and inverse
** kinematics routine exists. A warning message has been
** issued and routine aborted
*/
return( 1 );
}
[RHH e User code begins here ---—----—-—--—--—-—-——-————————————————
***/

132



//Importing the current TCP values from Delmia through the T6 matrix and
putting proper context

nx = T6[0][0];
ny = T6[0][1];
nz = T6[0][2];
ox = To[1][0];
oy = Te[1]1[1];
oz = T6[1][2];
ax = T6[2][0];
ay = Te[2][1];
az = To[2][2];
px = T6[3]11[0];
py = T6[3]1[1];
pz = T6[3][2];

//Printing the current TCP values in the debug

printf( "\nx ny
printf ( "\ox oy
printf( "\ax ay
printf( "\px py

nz:
oz:
az:

pz:

%12
%12
%12
%12

L4f
.4f
.4f
L4f

, 512
, %12
, %12
, 512

L4f
.4f
.4f
L4f

//The transforming T6 matrix from

TCP[0][0] = nx; TCP[0][1]
TCP[1][0] = ny; TCP[1][1]
TCP[2][0] = nz; TCP[2][1]
TCP[3][0] = 0; TCP[3]I[1]
//Printing the transformed
printf( "\n Transformed T6
printf( "\nx ox ax px: %$12.
printf( "\ny oy ay py: %12.
printf( "\nz oz az pz: %$12.

//The vector between the

L1tToTCP[0] [0]
L1tToTCP[3][0]

L2tToTCP[0] [0]
L2tToTCP[3] [0]

L3tToTCP[0] [0]
L3tToTCP[3][0]

//The lower attachmentpoints for each leg

L1b[0] =
L2b[0] =
L3b[0] =

173

420;
-420;

0;

’

, 512,
, %12,
, %12,
, 512,

4f\n",
4f\n",
4f\n",
4f\n",

window

Ny
1Oy
ray
1 PY

row vectors form to

TCP
TCP
TCP
TCP

4f ,%12.4f\n",
4f ,%12.4f\n",

= ox; TCP[0][2]

= oy; TCP[1][2]

= oz; TCP[2][2] =

= 0; TCP[3]1[2]

matrix TCP

matrix - TCP matrix\n");
4f ,%12.4f ,%12.

4f ,%12.4f ,%12.

4f ,%12.4f ,%12.

TCP and the upper
L1tToTCP[1][0]

L2tToTCP[1][0]

L3tToTCP[1][0]

Llb[1l] = 0;
L2b[1l] = 0;
L3b[1] = 670;

//Calculating the current position
upper attachment point for each leg by multiplying the transformation
// matrix TCP[4][4]

(in x,y,z 1in Base coordinates)

-50;

-50;

173;

4f ,%12.4f\n",

L2tToTCP[2][0] =

L3tToTCP[2] [0] =

with the vector between the current TCP

and the upper attachmentpoint for each leg (LxToTCP[][])

— o o— —

vector form
= pys
pz;

,0X ,ax, pPxX

rOY ,2Y¥y, PY
,0z ,az, pz

attachmentpoints for each leg
L1tToTCP[2][0] =

(in Base-coordinates) .

485;
485;
485;
= 0;
= 0;
of each

(the T6 matrix)

evaluation purposes
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//Calculate upper position on Legl (The array L1tCur)
for (rowl = 0; rowl < 4; rowl++) {
for (coll = 0; coll < 1; coll++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (innerl = 0; innerl < 4; innerl++) {
LltCur[rowl] 4= TCP[rowl] [innerl] * L1tToTCP[innerl] [coll];

}

//Calculate upper position on Leg2 (The array L2tCur)
for (row2 = 0; row2 < 4; row2++) {
for (col2 = 0; col2 < 1; col2++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner2 = 0; inner2 < 4; inner2++) {
L2tCur[row2] += TCP[row2] [inner2] * L2tToTCP[inner2] [col2];

}

//Calculate upper position on Leg3 (The array L3tCur)
for (row3 = 0; row3 < 4; row3++) {
for (col3 = 0; col3 < 1; col3++) {
// Multiply the row of A by the column of B to get the row,
column of product.
for (inner3 = 0; inner3 < 4; inner3++) {
L3tCur[row3] += TCP[row3] [inner3] * L3tToTCP[inner3][col3];

}

// Calcultates the distance between the upper and lower attachment points for

each leg.
L1l = sgrt(((pow((L1tCur[0]-L1b[0]),2)))+ ((pow((L1ltCur[l]-
Llb[1]),2)))+ ((pow ((L1ltCur[2]-L1b[2]),2))));

L2 = sgrt(((pow((L2tCur[0]-L2b[0]),2)))+ ((pow((L2tCur([l]-
L2b[1]),2)))+ ((pow ((LZ2tCur[2]-L2b[2]),2))));

L3 = sqgrt(((pow ((L3tCur[0]-L3b[0]),2)))+ ((pow((L3tCurll]-
L3b[11),2)))+ ((pow ((L3tCur[2]-L3b[2]),2))));

//The distance between upper and lower leg attachmentpoint when the command
joint is zero. Used as a reference to get the current leg length

Lrefl2 = 803.887;

Lref3 = 886.021;

//Calculates the joint values by calulating the differnce in distance between
the two attachmentpoints on each leg and a reference length (Lref)

// (the lenght between attachment points when the joints are 0)

Jl = L1 - Lrefl2;

J2 = L2 - Lrefl2;

J3 = L3 - Lref3;
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//Sending the final Jjoint values back to the "solutions"-matrix which is the

input matrix for Delmia.
solutions[0] [0] = J1;
solutions[1][0] J2;
solutions[2][0] = J3;

//Printing some of the variable values out in the debug window to ease
debugging and get an overview of what is going on

printf( "\n The leg lengths\n" );

printf( "J1 J2 J3: %12.4f ,%12.4f ,%12.4f\n", J1 ,J2 ,J3 );

printf( "L1 L2 L3: %12.4f ,%12.4f ,%12.4f\n", L1 ,L2 ,L3 );

D11 L1tCur[0]; D12 LltCur[1l]; D13 LltCur[2];

D21 = L2tCur[0]; D22 = L2tCur[l]; D23 = L2tCur([2]

D31 = L3tCur[0]; D32 = L3tCur[l]; D33 = L3tCur[2];

printf( "\n The legs' lower attachment point coordinates \n" );

printf( "\D11 D12 D13: %12.4f ,%12.4f ,%12.4f\n", D11 ,D12 ,D13 );

printf ( "\D21 D22 D23: %12.4f ,%12.4f ,%12.4f\n", D21 ,D22 ,D23 );
(

’

printf( "\D31 D32 D33: %$12.4f ,%12.4f ,%12.4f\n", D31 ,D32 ,D33 );
warnings[ 0 ] = WARN GOOD SOLUTION;

return (0);
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APPENDIX E: GANTRY-TAU ROBOT

In this appendix, the forward and inverse kinematics of Gantry-Tau robot will be given. The C-file
that can be directly copied to another file is also attached at the end of the inverse kinematics
calculation.

FORWARD KINEMATICS: GANTRY-TAU

The parts that constitute this robot are

a) Three fixed beams for the prismatic joints named Prismatic_fixed 1, 2 and 3
b) Three mobile parts for the prismatic joints named Prismatic_mobile 1, 2 and 3
c) Sixlinksnamedarm_1, 2,...,6

d) A mobile platform named Mobile_platform

e) Six pseudo parts to create successive rotations named ins_sph_1,2,...,6

f) One pseudo part to define the base coordinate frame named Base_ref

(a)

(b) (c) (d)

Figure E.1. Parts of Gantry-TAU

e The first step in building the mechanism is to insert the all parts as in earlier cases. The node
tree then should look like

(NEziry-Tal)
b Prismatic_fixed_2 (Prismatic_fixed_2)
b‘-% Prismatic_fixed_3 (Prismatic_fixed_3)
¥ P Prismatic_fixed_1 (Prismatic_fixed_1)

% Prismatic_mobie_1 (Prismatic_mobile_1)
[ % Prismatic_mabie_2 (Prismatic_mabile_2)
¥ Prismatic_mobie_3 (Prismatic_mobile_3)
- oam 1 farm_1)

h-% arm_2z {arm_2)

B am_3 {arm_3)

b—% arm_d (arm_4)

= wrm_s (arm_9)

¥ ame farm_g)

¥ B moble_platform (mobie_platform)

B ins_sph_1 tns_sph_1)

] ins_sph_2 (ins_sph_2)

# B ins_sph_3 (ins_sph_3)

=M ins_sph_4 (ins_sph_4)

#= @ ins_sph_5 (ins_sph _5)

BB ins_sph_6 fins_sph_6)

[ 9;‘) Base_ref (Base_ref)

Figure E.2. The nod-tree for Gantry-TAU
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Then, click New Mechanism button 5. Afterwards, click Fix button | and select one of the
Prismatic_fixed parts. From their center points, place all the beams with respect to the following

coordinates:

Prismatic_fixed 1 Prismatic_fixed 2 Prismatic_fixed 3
X -2300 100 -1100
Y 0 0 800
Z -3000 -3000 -3000

With the correct orientations, the result should look like

]

Figure E.3. The prismatic joint beams

Then start appointing FOIs to beams for the prismatic joints with Z-directions as

Figure E.4. FOIs for prismatic joints
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e Now, appoint the corresponding FOls to the prismatic joint’s mobile parts as

Figure E.5. FOIs for prismatic joints mobile part
e Inthis step, first create revolute joints between the fixed and mobile parts to make sure that the
origins of each FOI are coinciding with the corresponding ones. Afterwards, delete the newly
created revolute joints and directly create prismatic joints between the same FOI pairs with
Length driven property activated. The result should look like

Figure E.6. Prismatic joint creation for all beams

138



Now, the links will be attached to the mobile platform via spherical joints. First, create the
corresponding FOls at the center of sockets on the mobile platform. Then, create the
corresponding FOIs on each link. The orientation of these set of FOIs do not matter since a
spherical joint only requires a coincidence in the origin. Thus, the result should look like

Figure E.7. FOIs for spherical joints

Next, create the spherical joints by clicking Joint From Axis /T" and selecting Spherical as joint
type. The result should look like as

Axis-based Joint Creation

Mechanism: |Mechanism.1 j Mew Mechanism I

Joint name: [ Spherical 1]

Joint bypes | gpheric) -

Current selection

Ais 1 Diesign.36.1 Axis 2! |Design,30.1
] l

@ oK l aCancell

Figure E.8. Spherical joint creation

Then, repeat this action for the remaining links and the result should be as
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Figure E.9. Spherical joints for all legs

¢ Now, create the FOIs for the successive rotations’ first revolute joints at upper attachment
points. Initially, start creating the respective FOls at the center of sockets in mobile platforms.
The result should look like

Figure E.10. FOIs for universal joint
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e Now, go to pseudo part ins_sph and create a FOI folder. Inside that folder create a FOI and place
it on the previous FOI at the same direction. Then, click Joint From Axis and create the revolute
joint. The result should look like

Figure E.11. First revolute joint of universal joint

e At the same location under the pseudo part, create another FOI with Z-direction matching
previous FOI’s Y-direction. The result should look like

Figure E.12. Second set of FOIs for the second revolute joint of universal joint
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e The corresponding FOI for previous frame will be created in the link’s end that is not connected
to the mobile platform. The orientation of this FOI does not matter since the other end is a
spherical joint. Thus, the FOI in the link should be at the center of the ball and look like

Figure E.13. FOI in the leg for the universal joint

¢ Now, create the second revolute joint between the respective FOIs. The result should look like

Figure E.14. Completed universal joint creation
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e Then, repeat the same pattern for the remaining links and the result should look like

Figure E.15. Completed mechanism

e The last part of the forward kinematics is to place the pseudo part Base_ref to the center of the
prismatic joint 1 (the cluster with 2 links). The result should look like

Figure E.16. FOI for the base reference
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e Inthis step, click on the prismatic joints to make sure that their directions are in negative Z-
direction of the base frame. The result should look like

Figure E.17. Joint check

e Inthis step, appoint the travel limits by clicking % button. The limits for all prismatic joints are [-
1,2600] mm.

e Now, click on Jog Mechanism button D to see that the behavior of the mechanism is correct.

INVERSE KINEMATICS: GANTRY-TAU

e First, create the TCP part and place it under the mobile platform at the center of the surface.
The result should look like

Figure E.18. Attaching new part to TCP
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e Now, create the FOI for the mobile part at the center of TCP with the same orientation as base

coordinate frame. The result should be as

Figure E.19. Attaching tool FOI to TCP

e Then, click on Inverse Kinematics button & and define Basic tab parameters as
Mount Part: TCP

Mount Offset: The FOI at the center of the wrist Tool1

Base: Pseudo part Base_ref

Base reference: Pseudo part Base_ref

Approach Axis: Z

Approach Direction: Out

Solver Type: User Inverse

O O O O O O

Gantry-TAU's Inverse Kinematic Attributes

Inverse Kinematic Chain IKinemat\cs chain.l  w| Create Mew IK Chain | Delete Current IK Chain I

Basic

Maunt Part TCR.2
Mourt Offset Toall

Reference Part Base_ref

Base Part Base_ref

Approach Axis z

Approach Direction out

Salver Type User Inverse

KN {ER(K

Advanced. ., I

Figure E.20. Defining parameters for basic tab
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e Now, click Advanced and make sure that Posture_1 in Configurations tab is valid. The result

should be as

Gantry-TAU's Inverse Kinematic Attributes
Inverse Kinematic Chain [inematics chain.1 v | _Create New Tk Chain | _Delete Current I Chain |
Basic More | Configurations ‘ Actuator Space Map | Solver Attributes (User Defined} |
Config Info
Mame alidity
1| Pasture_1 |\u'a\i\:| j
@ ok ) Cancel I

Figure E.21. Validating Posture for configurations tab

e In Actuator Space Map tab, the parameters should be as

Joints Map

Joints Type

Kin Axis Type

Kin DOF

Kin Part

Command 1 dof(1) Translational Trans Z 1 Prismatic_mobile 2
Command 2 dof(2) Translational Trans Z 2 Prismatic_mobile 3
Command 3 dof(3) Translational Trans Z 3 Prismatic_mobile_1

e The resultin the tab should look like

Gantry-TAU's Inverse Kinematic Attributes

Inverse Kinematic Chain [inematics chain.1 | _Create New IK Chain | _Delete Current Ik chain_|

Basic More | Configurations

Actuator Space Map ‘ Sobver Attributes (User Defined) |
Map Info

Joints Map Joiks Type Kin fxis TypeKin DOF Kin Part
Command 1 {[dof(1) [ ranslational ~[ransz ~|l1 [Prismatic_mobile_2 _clear Alphahiode 1 |
Command 2 i daf(2) [Translational vl[rransz ~|l2 | Prismatic_mobile_3 _Clear Alphahiods 2 |

Command 3 zldgf(j)

~|[ransz ~|l3 [Prismatic_mobile_1 ~_clear Alphatiode 3 |

[ ranslational

Compute I

P el |

@ oK I icancell

Figure E.22. Defining parameters for actuators
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e Inthe last tab — Solver Attributes, fill the library name as libtau and the routine name as kin_tau.

The tab should be as

Gantry-TAU's Inverse Kinematic Attributes

Trvverse Kinematic Chain [yieenabics chain, 1+ | _Create Mew 1K Chain | Delste Current IK Chain I

Link Parameters Auxiliary Data

Length 1 : |n,nnn i Offset 1 |n,ngn mm Aux Data 1 (0,000 mm
Length 2 : [9,000 mm Offset 2 : [0,000 mm Aux Data 2 : (0,000 mm
Length 3 : {0,000 mm Offset 3¢ 0,000 mm Aux Data 3¢ 0,000 mm
Length 4 : [o.000mm  Offset4: [o.000mm | AuxData4: [0.000 mm
Length S : 9,000 mm Offset 5: [0.000 mm

length & : [0.000mm  OFfset 6:[0.000 mm

Define Library and Routine Names :

Shared Library Mamne ¢ [ibtau
Routine Name W

Basic More ‘ Configurations | Actuator Space Map Solver Attributes {User Defined) |

AuxData S
Aux Data 6
AuxData 7 ¢
Aux Data &

Pl |

m W Cancel I

Figure E.23. Defining library and C-file names

e Then, click OK and start testing the robot by using the Jog Mechanism button ) as in earlier

cases and check whether the inverse kinematics’ joint values are matching the actual values by

on the Mechanism tab.
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FORWARD KINEMATICS THEORY OF GANTRY-TAU ROBOT

The theory of forward kinematics of Gantry-Tau robot will be presented in this section in order to
prove that DELMIA V5’s posture change for this robot is resulting in two different TCP coordinates. Also,
not to interrupt the consistency of the structure of the robot it was decided to present the relative
theory as appendix.

As Johannesson (2003) states the forward kinematics of Gantry-Tau robot can be presented as
three spheres created for each cluster; thus, the intersection(s) of these spheres will yield the TCP
coordinates.

Revolute
Revolute 9
VA

Prismatic

\
\\ /,
Prismatic \
Spherical Joints

Figure E.24. Gantry-TAU schematics

Prismatic

If, again, the vectors for each cluster are formulated with respect to TCP values, the result then

— -

+d,+L,=T+n, (i=123)

fael)

where ﬁ; is the vector that defines prismatic actuators, E; is the vector from the end of prismatic joint

vector the universal joints. 1, is the vector that connects TCP (T) to the attachment points of legs on the
mobile platform. Thus, when this equation is written with components and its absolute value is taken
for lengths of the each cluster, the result will be
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L2 = (Tix +nix — Pix — dix)? + (Toy + iy — Poy — diy)? + (Tiz + nyz — Pz — diz)?

Thus, the spherical equation above can be easily solved and since the equation is a second order

polynomial, the result of this equation will yield two sets of solutions for T vector; hence, TCP
coordinates get two different values for a set of given joint values. The MATLAB function of this
calculation can be seen in appendix G.
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THE C-FILE FOR GANTRY-TAU ROBOT
/****************************************************************************
* Kk
* x

*x USER KINEMATICS EXAMPLE

* x

**  Copyright (c) 1990 Delmia Corporation, All rights reserved.

* *

** This file contains an example of a kinematics routine for the

** shared library. This example will work for 4 DOF 2 Config (left and
right

** elbow) scara robots such as the ASEA/IRB300. By default,

** kin usrl is mapped to this routine.

* *

** For a description of kinematics solutions refer to:

* %

xx Paul, Richard P., "Robot Manipulators: Mathematics, Programming

*x and Control", The MIT Press, Cambridge, Massachusetts, 1981.

* %

**  DESCRIPTION OF ARGUMENTS

* %

**  double T6[4][4] 4x4 position matrix of center of wrist. This is
xx the goal point MINUS the tool frame and mounting
xx plate offsets. This is the easiest point to start
*x the inverse kinematic solution from, and is the
*x traditional approach.

* %

xo NOTE: T6 matrix may be transposed from your usual
*x notation.

* %

* * | nx ny nz 0 | \\

*x T6 = | ox oy oz O | > direction cosines (9)

*x | ax ay az 0 | /

*ox | px py pz 1 | -> position terms (3)

* %

*ox px = T6[3]1[0];

* %

** double link lengths[] Distance between joint axis along link length

* %

** double link offsets[] Offset between joint axis along joint axis

* %

*x These two arrays can be considered the Denevitt-
*x Hartenburg variables described in Paul's book, or
*x any convenient scheme the user desires.

* %

** double solutions([] ][] A two dimensional array contains all possible

xx solutions for robot arm. It is up to user to

xx decide how many solutions are possible, and to

*x provide all solutions when routine is called:

el elbow up, elbow down, etc. The CONFIGS

*x Button in IGRIP allows user to view all possible
xx solutions and may provide insight into importance
xx of this array.

* %

** int warnings/[] Array providing warning states for each solution
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* Kk

such as unreachable, singular, etc. Possible

warning

* x

* x

* x

* x

* x

* x

* x

* x

* x

* x

states are defined in include file shlibdefs.h
and are:

WARN _GOOD_SOLUTION

WARN JOINT LIMIT EXCEEDED
WARN UNREACHABLE

WARN SINGULAR SOLUTION

NOTE: shlibdefs.h is automatically included by the IGRIP Shared
Library Make system. For further details regarding the

building

* x

* x

* x

* %

* x

* x

* %

* %

* %

* x

* x

* %

* %

of the shared library, refer to the IGRIP Motion Pipeline
Reference Guide

Words of encouragement

Writing inverse kinematics routines is a challenge. Invariably
you will make mistakes which later seem trivial. Even experts on
the subject loathe writing a new routine. The usual problems

are matching the routines view of the world with the device
definition. You must check that where this routine thinks is

the axis origin, or the zero reference position, is the same

as the IGRIP device. Also make sure that each agree upon the

positive

* x

* x

* %

* %

* %

sense of direction. These are the most common foul ups. Next,
the mounting plate offset may be wrong, so when first debugging
your routine, set the mounting plate and tool frame offsets to
zero. Next check for dropped signs in your equations. Maybe
an inverse trig function is returning an angle in a different

quadrant

xx than the one you want. Perhaps you should be using atan? instead
**x of atan (or vice-versa). Remember that trig and inverse trig
function

*% angles are in radians. Also, check array indices. Remember that

* x

arrays start at zero not one, so link 4's offset is at

link offsets[3].

* %

* %

* %

* x

* x

Are you referring to T6[3][2], when you mean T6[2][3]? Remember that
transformation matrices may be transposed from standard text book
definitions. Once you get your routine to work you will have earned
the title of kinematician.

KA KA AR A A A A A A A A A A A A A A A A A A A AR AR A A AR A A A AR A AR A A A A A A A A A A A A A A A A A A A A A A Ak Ak Ak Ak kA Ak kK k%

**/

#include <shlibdefs.h>

/*

** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
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*% IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT

* %

** USER SHOULD CHANGE THESE VALUES APPROPRIATELY

* x ‘

* x I

* * \ /

* % v */
#define NUM SOLUTIONS 8 /* Number of possible solutions */
#define NUM DOFS 3 /* Number of joints to be solved */
/* "

* % / \

* * ‘
* * ‘
** USER SHOULD CHANGE THESE VALUES APPROPRIATELY
* %
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
** IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT
IMPORTANT
*/
/*
* User must supply this function

*/

DllExport int
get kin config( char *kin routine, int *kin dof, int *solution count, int
*usrKinDataHint )
{
if( strcemp( kin routine, "kin tau" ) == 0 )
{
*kin dof = NUM DOFS;
*solution count = NUM SOLUTIONS;
/*
* this indicates kin usr's last argument (void *pData)
* will be DLM Data KinStat
*/
*usrKinDataHint = USR_KIN DATA KINSTAT;
return 0;
}
return 1;
}
static char JointTypel[2]

[ { "ROTATIONAL", "TRANSLATIONAL" };
static char KinMode([2] [24

241 =
] = { "Normal", "TrackTCP" };
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/*

** Routine Name

*/
DllExport int
kin tau(
link lengths,
link offsets,
T6, /* See above for description of these arguments */
solutions,
warnings,
pData
)
/*
** Passed Variable Declarations
*/

double T6[4][4],
link lengths[],
link offsets][],
solutions[] [NUM SOLUTIONS] ;
int warnings|[];

void *pData; /* usr routine should NEVER delete pData */

{

/*

** Local Variable Declarations (add variable declarations as appropriate)
*/

long double nx, ny, nz, ox, oy, 0z, ax, ay, az, pPX, PY, PzZ;

long double D11, D12, D13, D21, D22, D23, D31, D32, D33;

long double J11,J12,J21,J22,331,d32, Lref,Lref2;

//Variables to perform matrix multiplication

int rowl, row2, row3;

int coll,col2,col3;

int innerl, inner2,inner3;

// The prismatic joint vectors for each leg (The vector between the TCP and
each upper attachment point).

long double P1[4][1];

long double P2[4]1[1];

long double P3[4]1[1];

// The vectors that connect upper attachment points to prismatic joints
long double d1[4]1[1];

long double d2[4]1[1];

long double d3[4]1[1];

// The vectors that connect lower attachment points to TCP

long double nlf[4][1];

long double n2[4]1[1];

long double n3[4]1[1];

// The resulting vectors of multiplication of ni vectors with TCP matrix
long double NT1[4][1] {0};

long double NT2[4][1] {0};

long double NT3[4][1] = {0};

//The transformed T6 matrix named as TCP matrix (do not confuse with Tool
Centre Point) - see line 307.

long double TCP[4][4];
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#if 1

/*
* using pData
*/
int i;
DLM Data KinStat *pDLM Data = (DLM Data KinStat *) pData;
if ( pDLM Data )
{
printf( "\n\ndof count: %d\n", pDLM Data->dof count );
printf( "\njoint types:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%s ", JointTypel (pDLM Data->joint types) [i]] );
printf( "\n\nkin mode: %s\n", KinMode[pDLM Data->kin mode] );
printf( "\njoint values:\n" );
for( i = 0; i < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->joint values[i] );
printf( "\n\njnt trvl Imts lower:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[0][i] );
printf( "\n\njnt trvl Imts upper:\n" );
for( i = 0; 1 < pDLM Data->dof count; i++ )
printf( "%12.4f ", pDLM Data->jnt trvl Imts[1][i] );
printf ( "\n\n" );
}
#endif
[ Execution Begins Here —-——————--—-—————————"—"————"—~—~—(—~———————
***/
/*
** DO NOT REMOVE THIS BLOCK OF CODE
** IT IS REQUIRED TO PROPERLY SET THE NUMBER OF KINEMATIC
** DOFS FOR THE DEVICE
*/
if( !kin check definition( NUM DOFS, NUM SOLUTIONS ) )
{
/*
** Inconsistency between device definition and inverse
** kinematics routine exists. A warning message has been
** issued and routine aborted
*/
return( 1 );
}
[RHH e User code begins here ---—--—--------—--——-——-——————————————
*k*k*k/
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//The vectors to define the prismatic joints where Pi[2][0] is the prismatic
joint value in negative direction

1[01r101 = 0; PI[1][0] = 0; 1[2][0] = 0; P1[3][0] = 1;
2[01[0] = -1100; P2[1][0] = 700; [2][0] = 0; P2[3][0] 1;
P3[0]1[0] = -2200; P3[1]1[0] = 0; P3[2][0] = 0; P3[3]1[0] 1;

//The constant vectors to define the upper attachment points from prismatic
joint end

1[0]1([0] = -96.569; d1[1]1[0] = -185; d1[2][0] = -400; d1[3]1[0] = 1;
d2[0][0] = 0; d2[11[0] = -322.843; d2[2][0] = -173.726; d2[3]1[0] = 1;
d3[0][0] = 96.569; d3[1][ ] 0; d3[21[0] = -400; d3[31([0] = 1;
//The vectors that connect TCP to lower attachment points.

1[0][0] = 224.999; nl[1][0] = -240.001; nl[2][0] = 171.568; nl[3][0] = 1;
n2[0]1[0] = 0; n2[1]1[0] = 39.705; n2[2]1[0] = 336.862; n2[3][0] = 1;
n3[0][0] = -182.574; n3[1][0] = -80; n3[2][0] = 213.994; n3[3][0] = 1;

//Reference lengths
Lref=1500 ;
Lref2=1499.775;

//Importing the current TCP values from Delmia through the T6 matrix and
putting proper context
nx = Toe[0][0];

ny = T6[0][1];

nz = T6[0][2];

ox = T6[1]1[0];

oy = T6[1][1];

oz = T6[1][2];

ax = T6[2]1[0];

ay = Te[2][1];

az = T6[2][2];

px = T6[3][0];

py = T6[3][1];

pz = T6[3][2];
//The transforming T6 matrix from row vectors form to column vector form
TCP[O][0] = nx; TCP[O0][1] = ox; TCP[O][2] = ax; TCP[O0]I[3] = px;
TCP[1][0] = mny; TCP[1][1] = oy; TCP[1][2] = ay; TCP[1][3] = py;
TCP[2][0] = mnz; TCP[2][1] = oz; TCP[2][2] = az; TCP[2][3] = pz;
TCP[3]1[0] 0; TCP[3][1] = O; TCP[3][2] 0; TCP[3][3] = 1;

//Calculating the current position (in x,y,z in Base coordinates) of each
lower attachment point for each leg by multiplying the transformation

// matrix TCP[4][4] with the vector between the current TCP (the T6 matrix)
and the lower attachmentpoint for each leg

//Calculate upper position on Legl (The array L1tCur)
for (rowl = 0; rowl < 4; rowl++) {
for (coll = 0; coll < 1; coll++) {

// Multiply the row of A by the column of B to get the row,
column of product.

for (innerl = 0; innerl < 4; innerl++) {

NT1l[rowl] [0] += TCP[rowl] [innerl] * nl[innerl] [coll];
}
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//Calculate upper position on Leg2
row2 < 4;
col2 < 1;

(row2 =
for

for

for

}
}

//Calculate upper position on Leg3
row3 < 4;
col3 < 1;
// Multiply the row of A by the column of B to get the row,
column of product.
(inner3
NT3[row3] [

(row3 =
for

for

for

}
}

0;
(col2 = 0;
// Multiply the row of A by the column of B to get the row,
column of product.

(inner?2
NT2 [row2] [

0;
(col3

0;

row2++) {

0:
0

row3++) |

= 0; inner3 < 4;
0] += TCP[row3]

col2++)

; inner2 < 4;
] += TCP[row2]

col3++)

(The array L2tCur)

inner2++) {
[inner?2]

(The array L3tCur)

inner3++) {
[inner3]

* n2[inner2] [col2];

* n3[inner3] [col3];

//Finding the joint values by using the theory. Multiplication with -1 stems
from the direction of the joints.

J11=-1*(NT1[2][0]- d1[2][
-pow ( (P

NT1[0][0]),2)

J12=-1*(NT1[2][0]

NT1[0][0])

J21=-1*(NT2[2][0]~-

NT2[0] [0]),2)

-pow ( (P1

[2][

—POW(( (1100

J22=-1* (NT2[2][0]~- d2[

NT2[0] [0])
J31=-1*(NT3[2] [0
NT3[0][0]),2)

J32=-1*(NT3[2][0]1-d3[2
-pow ( (P3[1

NT3[0][0])

-

pOW((

[

—POW((

171110

[0
I
[0
110

]+ sqgrt (pow (Lref, 2)

1+d1[1][0]

1+ sqgrt (pow (Lref, 2)

1+d2[1]11[0]

1+d3[111[0]

-d1[2][0]- sgrt (pow(Lref,2)
(11[001+d1[1][0]-NT1[1]([0]),2)));

]- sqgrt (pow (Lref, 2)
0]+d2[1]1[0]-NT2[1
]+ sqgrt (pow (Lref2, 2)
-NT3[11[01),2))):

1001),2)))

0]- sqgrt (pow(Lref2,2)
1001),2))):

[0]1+d3[1

J[0]-NT3[1

—pow ((P3[0] [0

]+d3 [0

-pow ((P1[0] [0]+d1[0][O]~
-NT1[1]1([01),2)));

-pow ((P1[0][0]1+d1[0][0]~-
-pow ((P2[0][0]1+d2[0][0]~-
-NT2[11[01),2)));
—pow ((P2[0] [0]+d2[0] [0]~-

1101~

-pow ( (P3[0][0]+d3[0][0]~-

//Sending the final Jjoint values back to the "solutions"-matrix which is the

input matrix for Delmia.
= J11;
J11;
J11;
J11;
J12;
J12;
J12;
J12;

solutions[0]
solutions[0]
solutions[0]
solutions[0]
solutions[0]
[0]
[0]
[0]

0]

solutions
solutions
solutions

solutions
solutions
solutions
solutions
solutions
solutions
solutions

0
1
2
3
4
5
6
solutions 7

(1100]
(11[1]
[11[2]
[1103]
[1]104]
[11[5]
(1] (6]
(1107]

J21;
J21;
J22;
J22;
J21;
J21;
J22;
J22;

solutions
solutions
solutions
solutions
solutions
solutions
solutions

0
1
2
3
4
5
6
solutions 7

— o e

2] [0]
2] [1]
2]1[2]
2]11[3]
2]1[4]
2] [5]
2] [6]
21107]

J31;
J32;
J31;
J32;
J31;
J32;
J31;
J32;
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//Printing some of the variable values out in the debug window to ease

debugging and get an overview of what is going on
//Printing the current TCP

printf ( "\nx
printf ( "\ox
printf( "\ax
printf ( "\px

ny

oy
ay

py

nz:
oz:
az:

pz:

$1l2.4f
$12.4f
$12.4f
$12.4f

//Printing the transformed
printf( "\n Transformed T6

printf

"\nx ox ax px: %12

(
printf ( "\ny oy ay py: %12
(

printf

//Joint values

printf (

printf( "J1l1
printf( "J1l1
printf( "J1l1
printf( "J1l1
printf( "Jl2
printf( "Jl2
printf( "J12
printf( "J12

warnings[ O

return (0);

}

J21
J21
J22
J22
J21
J21
J22
J22

"\n The joint
J31:
J32:
J31:
J32:
J31:
J32:
J31:
J32:

"\nz oz az pz: %12

$12.
sl2.
s1l2.
$12.
$12.
$12.
sl2.
sl2.

values in the debug window
,%12.4f ,%12.4f\n", nx ,ny
,%12.4f ,%12.4f\n", ox ,oy
,%12.4f ,%12.4f\n", ax ,ay
,%12.4f ,%12.4f\n", px ,py

matrix TCP

matrix - TCP matrix\n"):;
4f ,%12.4f ,%12.4f ,%12.4f\n",
J4f ,%12.4f ,%12.4f ,%12.4f\n",
JAf ,%12.4f ,%12.4f ,%12.4f\n",

4f
4f
4f
4f
4f
4f
4f
4f

values\n" );
, 512,
,%12.
,%12.
, %512,
, %512,
, %512,
,%12.
,%12.

4f
4f
4f
4f
4f
4f
4f
4f

WARN_GOOD_SOLUTION;

, 512,
, %12,

, %12
, 512

, %12

4f\n",
4f\n",

.4f\n",
.4f\n",
, %512,
, %512,
.4f\n",
, %512,

4f\n",
4f\n",

4f\n",

Jll
J11
J11
Jll
Jl2
Jl2
Jl12
Jl12

for
,NZ
, 02
,az
1Pz

,J21
,J21
,J22
,J22
,J21
,J21
,J22
,J22

evaluation purposes

) ;

) ;
) ;
).

’

nx ,ox

ny ,oy
nz ,oz

,J31
,J32
,J31
,J32
,J31
,J32
,J31
,J32

—_— — — — — — — —

~.

~e

~e

~.

rax,

ray,
rAZy

Px
1
Pz
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APPENDIX F: COMPILATION OF C-FILES

The compilation of C-files and their placement in DELMIA V5 folder will be covered in this section.
Before this operation being explained, there is a prerequisite that users must fulfill — which is a

compilation tool.

Dassault Systemes endorses the use of Microsoft Visual Studio (version 8 or higher). On the other
hand, it would be possible to use other compilation tools which support the use of nmake all command.
It must also be noted that the compilation tool must support C# language since the basic version of
Visual Studio does not support the compilation of C-files.

COMPILATION IN 64-BIT OPERATING SYSTEMS

e Goto “C:\Program Files (x86)\Dassault Systemes\B21\win_b64\startup\DNBUserKinematics” .
The directory may vary depending on the user.

e At this point make sure that the DNBUserKinematics folder has glaux.lib file. If not, copy and paste
the file directly without making any change. This file glaux.lib is a standard library file and it can be
directly found on various sources.

e Create a folder named lib under the same directory.

e Also copy and paste the vcvars.bat file there.

e Copy and paste the C-file created in this directory as well. The result should look like this

— - PR —
I0) CH\Pragram Files\Dassaulk SystemesiB2 1inkel_alstartup| DNBLUserkinematics
Marme Size  Type
and Folder Tasks ¥ [Chexmpl_data File: Folder
[include File: Folder
ot Places #x Mk File Falder
?ﬁ glaw, lib 1171 KB Object File Library
skartup ] kin_hexapadrullTest ¢ 18KE C Source
My Docurnents makefile JIKE File
chared Documents 5 1KB MS-DOS Batch File
Bl T arnmn ko

Figure F.1. DNBUserKinematics folder

e Now, open vcvars.bat file with VS, WordPad or NotePad and it should look like

@9 vovars. bat - Microsoft Visual Studio

Fle Edit “ew Debug Tools Test ‘Window Help
- e o | & G2 @ ERNE % 0@ &

il - el T B 7 U | & & =~ ic

vevars.bat | Spart page
1 BrC:YProgram Files (x86)%Microsoft Wisual 3tudio 11.04VChwovarsall.hat™ amdod
zi

Figure F.2. vcvars.bat file for compilation tool

158



Now, change the directory for the version of Visual Studio used or any other compilation tool
available. For example, in this thesis work VS 9 is used; thus, the line should be

@"C:\Program Files (x86) \Microsoft Visual Studio 9.0\VC\vcvarsall.bat"
amdé4

Save and close vcvars.bat file and proceed to the next step.

At this point, necessary changes in makefile will be made. Open makefile in VS, WordPad or
NotePad.

In makefile, go to lines 1-5 (which specify the names of library and locations that will be created
after compilation) and find the following code and change as following:

#

# library name and locations

#

DEST = .\1lib

LIBRARY =|libhexapodFullTest

Go to line 10 and paste directory of the Visual Studio. It should look like as

#
# set up the MS Visual C++ compiler

#
MS 1OC= c:\Program Files (x86)\Microsoft Visual Studio 9.0\VC

OBS! For other versions of VS, change the directory accordingly.
On line 58, the name of the C-file created before should be specified. Thus, it should look like as

following (notice that it should end with obj extension)
#

# files to compile

#
OBJS =_1\
kin _hexapodFullTest.obj

When the changes are made, save and close the makefile.
OBS! Other versions of DELMIA provide different makefiles; however the changes in the file are still
the same as above. The only difference is in the number of lines in which these changes should be
made.
Now, proceed to compilation operation. First, open the VS command prompt and enter the
following command

cd C:\Program Files\Dassault Systemes\B21\win_b64\startup\DNBUserKinematics

@A Open V52012 x64 Native Tools Command Prompt — @@é‘

C:\Program Files (x86)\Microsoft Uisual Studio 11.8\UC>cd C:\Program Files\Dassa

ult Systemes\B21\win_b84\startup\DNBUserKinematics

Figure F.3. VS command prompt with folder destination
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e Under the same directory, type vecvars.bat and press enter. The result should look like

bat

M Open VS2012 x64 Mative Tools Command Prompt

C:%“Program Files (x88)%Microsoft Uisual Studio 11
ult Systemes\BZ1\win_b&dr\startup\DNBUserKinematics

C:\Program Files\Dassault Systemes\B21\win_b64\startup\DNBUserKinematics>ucvars.

C:%“Program Files‘\Dassault Systemes‘\B21\Zwin_b6i4\startup\DNBUserKinematics>_

.enUC>ed C:“\Program Files“Dassa|

R

Figure F.4. VS command prompt after executing vcvars.bat

e Now, the compilation operation can be done. Again, remain under the same directory in command

prompt, and write nmake all. If C-file has no errors, the command prompt will look like

ematics™*.o0bj

cl -1

cl : Command line
moved in a future
cl Command line
cl Command line
?1 Command line

cl Command line

cl Command line
file assumed

cl : Command line

cl = Command line
assumed

: Command line

: Command line

cl : Command line
cl : Command line

cl Command line
cl : Command line
file assumed

cl : Command line
cl : Command line
file assumed

cl Command line
cl Command line
ude’ . object file
cl : Command line
Making .“\1

removing all ohject files
Could Mot Find C:“~Program Files“Dassault Systemes~B2l-intel_asstartup\DHBUserKi

warning D?835

release
warning
warning
warning

bject file assumed

warning
warning

warning
warning

warning
warning

- ohject file assumed

warning
warning

- object file assumed

warning
warning

warning
warning

warning
warning
assumed
warning

kin_hexapodFullTest.c
11hhexapudFu11Teo‘_

D BR2
D?BR2
D@24

D@27
DB24

D@27
D024

D@27
D624

D@2y
DIa24

D27
D@24

D@2y
D@24

D@27
D024

D@E27 =

Microsoft (R> Program Maintenance Utility Version 2.88.21822.88
Copyright <(C> Microsoft Corporation.

All rights reserved.

.\1nclude TI [ \Program Flle“\ﬂlcru“uft Uluuql Studio ?.85\UCxincl

CE -D DNBUSERLIB DNDEBUG DUIN32 —DUINNT —DWINDOWS_NT —DDOS -nologo —G5 —-UB —
-QIBaf -MD ~c kin hexapndFullTeat c
a

option ‘Ze’

ignoring unknown option *-G5’
ignoring unknown option

unrecognized source file type

source file ’*Files“Microsoft’
unrecognized source file type

source fFile 'Uisual’ ignored
unrecognized source file type

source file 'Studio’ ignored
unrecognized source file type

source file *?.8%UCNinclude’
unrecognized source file type

source file *Files\Microsoft'
unrecognized source file type

source file *Uisual’ ignored
unrecognized source file type

source fFile 'Studio’ ignored
unrecognized source file type

source file

lib ...

Creating llhrary .\11h\11hhexapodFu11Te°t 1ib and ohJect .\11h\11hhexapodFu1
lest.exp
-~libxlibhexapodFullTest.dll iz up—to—date

has heen deprecated and will he »rd

f-qraf’

9 _8~\UCxmf cninc lude!

*FilessMicrosof]

igqored i
*Uisual’, object]

'Studio’ . object

'9.88\UCninc lude

ignored
*Files“Microsof{

ignored
*Uisuwal’,. object]

*Studio’, object]

*2.8s\UC\mfcninc

ignored

Figure F.5. VS command prompt after executing nmake all command

o After seeing the up-to-date message, 2 different files are created in the lib folder created in the

beginning. One of these files end with .lib extension whereas the other has .lib.manifest in the end.

e If the completed message as above cannot be observed, the prompt window will show the errors in

C-files. These errors can be semantic or syntax related; and thus, they should be corrected

accordingly.
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COMPILATION IN 32-BIT OPERATING SYSTEMS

Go to “C:\Program Files\Dassault Systemes\B21\intel_a\startup\DNBUserKinematics”. The
directory may vary depending on the user.

At this point make sure that the DNBUserKinematics folder has glaux.lib file. If not, copy and paste
the file directly without making any changes on the glaux.lib file. This file glaux.lib is a standard
library file and it can be directly found on the web.

Create a folder named lib in the same directory. Copy and paste the C-file created in this directory
as well. The result should look like this

Address ) C\Program FilesiDassault Systemes|B21inkel_alstartupiDNBUserKinematics
Marme Size | Type
File and Folder Tasks ¥ [Chexmpl_data Filz Folder
—include File Folder
oOther Places -3 It File Folder
'fj glauz.lib 1171 KE Object File Library
|2y startup ﬂ kin_hexapodFull Test.c 13KE C Source
=} My Docurnents makefile 3KE File

Figure F.6. DNBUserKinematics folder

At this point, necessary changes in makefile will be made. Open makefile in VS, WordPad or
NotePad.

In makefile, go to lines 1-5 (which specify the names of library and locations that will be created
after compilation) and find the following code and change as following

#

# library name and locations

#

DEST = .\1ib

LIBRARY =|libhexapodFullTest

Go to line 10 and paste directory of the VisualStudio. It should look like as

#
# set up the MS Visual C++ compiler

#
MS LOC= c:\Program Files (x86)\Microsoft Visual Studio 9.0\VC

OBS! For other versions of VS, change directory accordingly.
On line 58, the name of the C-file created before should be specified. Thus it should look like as

following(notice that it should end with obj extension)
#

# files to compile

#
OBJS =1\
kin hexapodFullTest.obj

When the changes are made, save and close the makefile.
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e Now, proceed to compilation operation. First, open the VS command prompt and enter the
following command
cd C:\Program Files\Dassault Systemes\B21\win_b64\startup\DNBUserKinematics

Visual Studio 2008
Setting environment for wsing Microsoft Uisuwal Studio 2008 x86 tools. u

C:“Program Files“Microsoft Uisuwal Studio ?.85UC>cd C:“\Program Files“Daszsault Sys.

temes~B21xintel_asstartup~DNBUserKinematics

C:“Program Fileszs“Dassault SystemessB2i“intel_a“startupsDNBUszserKinematics>_

Figure F.7. VS command prompt with folder destination

e  Now, the compilation operation can be done. Again remain under the same directory in command
prompt, and write nmake all. If C-file has no errors, the command prompt will look like

isual Studio 200 mmand Prompt -8 ﬂ
B

IC-wProgram FilezsDaszault Systemes B2ixintel_asstartup~DNBUzerKinematics>nmake a
11

Microsoft (R> Program Maintenance Utility Uersion 9.88.21822_88
iCopyright <G> Microsoft Corporation. A1l rights reserved.

removing all object files ...
ilessDassault Systemes“BZli\intel_a‘startupsDHNBUserKin

cl -I .~include -I c:~Program Files“\Microsoft Uisual Studio 9?.8~UCxinclu
de -1 c:“Program Fileg“Microszoft Uisuwal Studio ?.8°UC\mfcrinclude -DUINDOWE_SOUR
ICE —D_DNBUSERLIE —-DNDEBUG —-DWIN32 —DWINNT —DUINDOWS_NT -DDOE —nologo —-G5 -WB —Ze
—QIBff -MD sc kin_hexapodFullTest.c
cl : Command line warning D?835 option ‘Ze’ has been deprecated and will be re
moved in a future release
cl : Command line warning D?8ABA2 ignoring wnknown option ‘-G5°
cl : Command line warning D?BB2 ignoring wnknown option ‘-QIBf’
cl : Command line warning D?824 unrecognized source file type ‘Files“Microsoft
'. ohject file assumed
: Command line warning D9B27 source file ‘Files\Microsoft’ ignored
: Command line warning D9B24 unrecognized source file type ‘Uisual’, ohject
file assumed
: Command line warning D9827 source file ‘Uiswal’ ignored
: Command line warning D?824 unrecognized source file type ‘Studio’. object
file assumed
cl : Command line warning D?827 source file ’'Studio’ ignored
: Gommand line warning D824 unrecognized source file type *'?._8°\UCninclude’
hject file assumed
: GCommand line warning D9B27 source file '?.85\UCNinclude’ ignored
: Command line warning D9824 unrecognized source file type ‘Files“Microsoft
'. ohject file assumed
cl : Command line warning D9627 source file ‘Files\Microsoft’ ignored
cl : Command line warning D9824 unrecognized source file type ‘Uisual’, ohject
file assumed
cl : Command line warning D9827 zource file ‘Uizual’ ignored
cl : Command line warning D7824 unrecognized source file type ‘Studio’. object
file assumed
: Gommand line warning D3B27 source file ‘Studio’ ignored
: Gommand line i DeB24 unrecognized source file type ‘?._.B°\UC\mfchincl
» ohject file
1 : Command line warning D627 source File '2.85\UCsmfcsinclude’ ignored

Il

Il

1ib ...
: cannot create directory ' . \\1libh’: File exists
Creating library .“~lib“libhexapodFullTest.lib and obhject .“lib“\libhexapodFull

TEsv i eRp
slibvlibhexapodFullTest.dll is up—to-date

IC:“Program Files“Dassault Systemes“B2isintel_a“startup~DNBUserHKinematics>

Figure F.8. VS command prompt after executing nmake all command

o After seeing the up-to-date message, 2 different files are created in the lib folder created in the
beginning. One of these files end with .lib extension whereas the other has .lib.manifest in the end.

e If the completed message as above cannot be observed, the prompt window will show the errors in
C-files. These errors can be semantic or syntax related.
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APPENDIX G: MATLAB FUNCTIONS
HEXAPOD INVERSE KINEMATICS

function [ ] =hexapod( px,py,pz,tex,tey,tez,T6)

%$Enter your tex,tey,tez values that are rotations of the mobile platform in
%degrees. px,py and pz values are the translations in mm. T6 and TCP
$matrices should be created in the workspace and entered with their names
%into the function.

%Creation of necessary symbols and conversions from degrees to radians.
syms X y z tx ty tz;

tex=tex*pi/180;

tey=tey*pi/180;

tez=tez*pi/180;

$Fix values are assigned to the vectors where L.b is the base vector in
%$base coordinate frame whereas L.tToTCPs are the vectors that connect the
mobiles

%cooridnate frame to upper attachment points.

L1lb=[31;118.156;40.205;1];
L1tToTCP=[31;48.799;-31.45;1];
L2b=[-31;118.156;40.205;17;
L2tToTCP=[-31;48.799;-31.45;11;
L3b=[-117.826;-32.231;40.205;11;
L3tToTCP=[-57.761;2.447;-31.45;1];
L4b=[-86.826;-85.925;40.205;171;
L4tToTCP=[-26.761;-51.246;-31.45;1];
L5b=[86.826;-85.925;40.205;1];
L5tToTCP=[26.761;-51.246;-31.45;1];
L6b=[117.826;-32.231;40.205;1];
L6tToTCP=[57.761;2.447;-31.45;1];
Lref=399.413;

%Creation of transformation matrices for the given values of TCP for T6 and
$TCP matrices.
3R symbolizes rotation here.

R T6=subs
R T6=subs

R T6,z,pz);
R T6, tx, tex);

o)

% Finding leg lengths by using T6 matrix
Ll t6=R T6*L1tToTCP-Llb;
L2 t6=R T6*L2tToTCP-L2b;
L3 t6=R T6*L3tToTCP-L3b;
L4 t6=R T6*L4tToTCP-Ldb;
L5 t6=R _T6*L5tToTCP-L5b;
L6 _t6=R _T6*L6tToTCP-L6b;
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%Vectors to describe upper attachment points from mobile platform with
$respect to the base coordinate system

L1 tTCP=R T6
L2 _tTCP=R T6
L3 tTCP=R T6
L4 tTCP=R T6
L5 tTCP=R T6
L6 _tTCP=R T6

~

N <
=R e e e

~

= e e e
wWwwwww
N

~

*L1tToTCP
*L2tToTCP
*L3tToTCP
*L4tToTCP
*L5tToTCP
*L6tToTCP

~ e~ o~~~ —~

%$total lenght - standard length
J1 té=norm(Ll t6)-Lref;
-Lref;
-Lref;
-Lref;
-Lref;
-Lref;

J2_té=norm (L2 t6)
J3_té=norm (L3 t6)
J4 to6=norm (L4 t6)
J5 t6=norm (L5 t6)
J6_té=norm(L6_t6)

%$Displaying the results

Leg lengths=[Jl t6;J2 t6;J3 t6;J4 t6;J5 t6;J6 t6]

1
1
1:
1:
1
1

W wwwww

joint values for T6 matrix

Ne Ne Ne Ne N

~e

Coordinates T6=[R T6*L1tToTCP,R T6*L2tToTCP,R T6*L3tToTCP,R T6*L4tToTCP,R T6*
L5tToTCP,R T6*L6tToTCP]

R T6

end
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FLEXAPOD INVERSE KINEMATICS

function [ ] =flexapod( px,py,pz,tex,tey,tez,T6)

$Enter your tex,tey,tez values that are rotations of the mobile platform in
%degrees. px,py and pz values are the translations in mm. T6 and TCP
%matrices should be created in the workspace and entered with their names
%into the function.

%Creation of necessary symbols and conversions from degrees to radians.
syms X y z tx ty tz;

tex=tex*pi/180;

tey=tey*pi/180;

tez=tez*pi/180;

$Fix values are assigned to the vectors where L.b is the base vector in
%base coordinate frame whereas L.tToTCPs are the vectors that connect the
mobiles

$cooridnate frame to upper attachment points.

Llb=[-132.5;26;58.5;1];
L1tToTCP=[-48.767;32.466;-75;1];
L2b=[43.733;127.748;58.5;11;
L2tToTCP=[-3.733;58.466;-75;11;
L3b=[88.767;101.748;58.5;1];
L3tToTCP=[52.5;26;-75;1];
L4b=[88.767;-101.748;58.5;1];
L4tToTCP=[52.5;-26;-75;1];
L5b=[43.733;-127.748;58.5;1];
L5tToTCP=[-3.733;-58.466;-75;1];
L6b=[-132.5;-26;58.5;1];
LotToTCP=[-48.767;-32.466;-75;1]1;
Lref=376.5;

%Creation of transformation matrices for the given values of TCP for T6 and
$TCP matrices.
%R symbolizes rotation here.

o)

% Finding leg lengths by using T6 matrix

Ll t6=R T6*L1tToTCP-Llb;

L2 t6=R T6*L2tToTCP-L2b;

L3 t6=R T6*L3tToTCP-L3b;

L4 t6=R T6*L4tToTCP-L4b;

L5 t6=R T6*L5tToTCP-L5b;

L6 t6=R T6*L6tToTCP-L6b;

%Vectors to describe upper attachment points from mobile platform with
$respect to the base coordinate system
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L1 tTCP=R T6
L2 _tTCP=R T6
L3 tTCP=R T6
L4 tTCP=R T6
L5 tTCP=R T6
L6 _tTCP=R T6

~

N \
= e e

~

= e e e
wWwwwww
N

~

*L1tToTCP
*L2tToTCP
*L3tToTCP
*L4tToTCP
*L5tToTCP

(
(
(
(
(
*L6tTOTCP (

%total lenght - standard length
J1l _té=norm(Ll t6)-Lref;
-Lref;
-Lref;
-Lref;
-Lref;
-Lref;

J2_té=norm (L2 t6)
J3_té=norm (L3 t6)
J4 té=norm(L4 t6)
J5 t6=norm(L5 t6)
J6_t6=norm(L6_t6)

%$Displaying the results

Leg lengths=[J1 _t6;J2 t6;J3 t6;J4 t6;J5 t6;J6 t6]

= e e e
e ee ee ee e e

wwwwww

Ne Ne Ne Ne N

~e

joint values for T6 matrix

Coordinates T6=[R T6*L1tToTCP,R T6*L2tToTCP,R T6*L3tToTCP,R T6*L4tToTCP,R T6*
L5tToTCP,R_T6*L6tTOTCP]

R T6

end
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EXECHON INVERSE KINEMATICS

function [ ] =exechon( px,py,pz,tex,tey,tez,T6)

$Enter your tex,tey,tez values that are rotations of the mobile platform in
%degrees. px,py and pz values are the translations in mm. T6 and TCP
%matrices should be created in the workspace and entered with their names
%into the function.

%Creation of necessary symbols and conversions from degrees to radians.
format short e

syms x y z tx ty tz;

tex=tex*pi/180;

tey=tey*pi/180;

tez=tez*pi/180;

$Fix values are assigned to the vectors where L.b is the base vector in
%base coordinate frame whereas L.tToTCPs are the vectors that connect the
mobiles

$cooridnate frame to upper attachment points.

L1b=[420;0;0;11;
L1tToTCP=[173;-50;485;11;
L2b=[-420;0;0;1];
L2tToTCP=[-173;-50;485;1];
L3b=[0;670;0;1];
L3tToTCP=[-0;173;485;1];
Lrefl2=803.887;
Lref3=886.021;

%Creation of transformation matrices for the given values of TCP for T6 and
$TCP matrices.
%R symbolizes rotation here.

[

% Finding leg lengths by using T6 matrix

L1l t6=R T6*L1tToTCP-Llb;

L2 t6=R _T6*L2tToTCP-L2b;

L3 t6=R T6*L3tToTCP-L3b;

%Vectors to describe upper attachment points from mobile platform with
Srespect to the base coordinate system

L1 tTCP=R T6(1:3,1:3)*L1tToTCP(1:3);
L2 tTCP=R _T6(1:3,1:3)*L2tToTCP(1:3);
L3 tTCP=R T6(1:3,1:3)*L3tToTCP(1:3);

4

167



%$total lenght - standard length = joint values for T6 matrix
J1 té=norm(Ll t6)-Lrefl2;

J2 _té=norm(L2 t6)-Lrefl2;

J3 _té=norm (L3 _t6)-Lref3;

J1l t6 1=-norm(Ll t6)-Lrefl2;

J2_t6_l=-norm(L2_ t6)-Lrefl2;

J3 _t6 _1=-norm(L3 t6)-Lref3;

%Displaying the results

Leg lengths=[Jl t6 Jl1 te6 1;J2 t6 J2 t6 1;J3 t6 J3 to 1]
Coordinates T6=[R T6*L1tToTCP,R T6*L2tToTCP,R T6*L3tToTCP]
R T6

end
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GANTRY-TAU FORWARD KINEMATICS

function []=tau forward(pl,p2,p3)
%$The coordinates of presented vectors with joint values of pl,p2 and p3
inserted.

P1=[0;0;-pl];

P2=[-1100;700;-p21;
P3=[-2200;0;-p31;
dl=[-96.569;-185;-400];
d2=[0;-322.843;-173.726];
d3=[96.569;0;-400];
nl=[224.99;-240.001;171.568];
n2=[0;39.705;336.862];
n3=[-182.574;-80;213.9947];
L1=1500;

L2=1499.775;

syms X y z

T=[x;yizl:

%$The equations Al,Bl and Cl1
A=T+nl- (P1+d1) ;

B=T+n2-(P2+d2) ;

C=T+n3- (P3+d3) ;
Al=A(1,1)"2+A(2,1)"2+A(3,1)"2-L1"2;
B1=B(1,1)"2+B(2,1)"2+B(3,1)"2-L1"2;
Cl=C(1,1)"2+4C(2,1)"2+C(3,1)"2-L2"2;

%$The solution

[x,y,2z]=solve (Al,B1,C1);

T=[x(1) y(1) z(1);x(2) y(2) z(2)];
double (T)
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GANTRY-TAU INVERSE KINEMATICS

function [ ] =tau( px,py,pz,tex,tey,tez,T6)
syms x y z tx ty tz;
%$The radian to degree conversion
tex=tex*pi/180;
tey=tey*pi/180;
tez=tez*pi/180;
%The coordinates of presented vectors.
—[O 0;0;11;
=[-1100;700;0;171;
=[-2200;0;0;171;
=[-96.569;-185;-400;11;
=[0;-322.843;-173.726;11;
[96 569;0;-400;11;
=[224.99;,-240.001;171.568;11;
=[0;39.705;336.862;1]1;
n3 [-182.574;-80;213.994;1];
%Reference leg lengths
Lref=1500;
Lref2=1499.775;
%$Inserting TCP values to transformation matrix
R T6=subs (T6, x,px) ;
R T6=subs (R _T6,y,py);
R T6=subs (R _T6,z,pz);
R Té6=subs (R _T6, tx, tex);
R Té6=subs (R T6, ty, tey);
R T6=subs (R _T6,tz,tez);
$Multiplication of mobile platform vectors with transformation matrix
NT1=R T6*nl;
NT2=R T6*n2;
NT3=R T6*n3;
$Applying equations for each joint
J11=-1*(NT1(3,1)-d1(3,1)+sgrt(Lref"2-(P1(1,1)+d1(1,1)-NT1(1,1))" 2~
(P1(2,1)+d1(2 NT1(2,1))A2));
J12:—1*(NT1( ( 1) -sgrt (Lref”2-(P1(1,1)+d1(1,1)-NT1(1,1))" 2~
(P1(2,1)+d1( N (2 1))°2));
J21=-1* (NT2 ( -d2(3,1)+sgrt (Lref”2-(P2(1,1)+d2(1,1)-NT2(1,1)) "2~
(P2 (2,1)+d2( NT2(2 1))72));
J22——l*(NT2( (
(
(
(
(
(

1)
3,1)
2,1)
3,1)
2,1)
3,1)-
2,1)
3,1)-
2,1)-
3,1)-
2,1)

3,1)-sqrt (Lref”2- (P2 (1,1)+d2(1,1)-NT2(1,1))"2-
(P2 (2,1)+d2 (2, N 2(2,1))°2));
J31=-1* (NT3 (3, d (3,1)+sqrt (Lref272- (P3(1,1)+d3(1,1)-NT3(1,1))"2-
(P3(2,1)+d3 (2, 3(2,1))72));
J32——l*(NT3 , (3 1) -sqrt (Lref272- (P3(1,1)+d3(1,1)-NT3(1,1))"2-
(P3(2,1)+d3(2, N 3(2,1))72));

%$Displaying results

R T6

%Joint values

Joint values=[J11,J21,J31;J11,J21,332;J11,J22,331;J11,3J22,332;J12,321,J31;J12
,J21,J32;J12,322,331;J12,322,332]1;

Joint values

end
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