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Abstract— This paper considers the problem of solving
Quadratic Programs (QP) arising in the context of distributed
optimization and optimal control. A dual decomposition ap-
proach is used, where the QP subproblems are solved locally,
while the constraints coupling the different subsystems in
the time and space domains are enforced by performing a
distributed non-smooth Newton iteration on the dual variables.
The iterative linear algebra method Conjugate Gradient (CG)
is used to compute the dual Newton step. In this context, it has
been observed that the dual Hessian can be singular when a
poor initial guess for the dual variables is used, hence leading
to a failure of the linear algebra. This paper studies this effect
and proposes a constraint relaxation strategy to address the
problem. It is both formally and experimentally shown that
the relaxation prevents the dual Hessian singularity. Moreover,
numerical experiments suggest that the proposed relaxation
improves significantly the convergence of the Distributed Dual
Newton-CG.

I. INTRODUCTION

Distributed Quadratic Programming (QP) problems arise
in many applications of optimization and optimal control.
They arise when Nonlinear Programs with decomposable
cost functions are solved via Sequential Quadratic Program-
ming (SQP) type methods [1]; or when Model Predictive
Control (MPC) is applied to a set of sparsely interconnected
subsystems, where the control problem is ultimately formu-
lated as a QP whose structure reflects the distributed nature
of the problem; and similarly in Nonlinear Model Predictive
Control (NMPC) once the dynamics of the subsystems are
discretized via e.g. multiple shooting methods [2], [3]. In
this context, the different interconnected subsystems aim at
reaching an overall optimal cost while respecting their local
operational limitations.

In this paper, we will consider generic decomposable
convex QP problem of the form
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directed graph describing the topology of the connecting
subproblems. Matrices A

i,j

2 Rvi,j⇥ni and B
i,j

2 Rvi,j⇥nj

yield the coupling constraints between the subproblems i and
j, respectively, for all (i, j) 2 E.

Set X
k

denotes a polyhedral set representing the
local inequality constraints, i.e. we define X

k

:=

{y 2 Rnk |D
k

y  e
k

} with D
k

2 Rwk⇥nk . In the devel-
opment proposed in this paper, for the sake of simplicity
but without loss of generality, we do not consider equality
constraints. Indeed, since equality constraints can always be
eliminated from the problem via a null-space reformulation,
the arguments presented here remain valid in the case equal-
ity constraints are considered.

Several centralized methods have been proposed to solve
(1), e.g. [4], [5], by exploiting the inherent sparsity structure
of the problem yielded by the distributed nature of the
problem. However, these methods are of limited use once the
problem data does not fit into the shared memory. Moreover,
it is often not desirable or highly impractical to centralise
the data of the problem. This is the case when e.g. the
subsystems are geographically distributed and heavy long-
distance communications are to be avoided, or when the
subsystems do not want to share detailed data of their inner
state. In a distributed framework, a subsystem is aware of
the connected subsystems, but has a very limited access to
their state, hence avoiding both heavy communications and
the sharing of sensible data between subsystems.

In this paper, we treat the coupling constraint (1b) using
a Lagrangian relaxation [6] and decompose (1) into low-
dimensional local subproblems that can be solved indepen-
dently. The resulting dual function is once continuously
differentiable but only piecewise twice differentiable. La-
grangian relaxtion is used in many different contexts to tackle
convex large scale problems, e.g. the authors of [7] propose
a coordinate ascent approach to solve constrained matrix
problems. In [8], [9], [10], a gradient method, whereas in
[11], [12], [13], a fast gradient method is used in order to
attain dual optimality. All these methods make use of only
first order derivatives to obtain a search direction and thus
their theoretical and practical convergence cannot be faster
than sublinear. The authors of [14], [15], [16] overcome this
limitation in practise by using second-order derivatives in the
dual space.

In [16], a distributed method based on dual decomposition
is discussed for optimal control problems, where a non-
smooth Newton step is used to perform the updates of the
dual variables, and a Conjugate Gradient (CG) method is
used to compute the dual step in a distributed fashion. In
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this approach, it has been observed that the presence of
local inequality constraints, in particular state constraints,
can yield singular dual Hessians during the dual iterations.
A singular dual Hessian causes the CG method to fail, which
then temporarily collapses to a classical gradient step. It has
been observed that many gradient steps are needed before a
full rank dual Hessian is recovered, which hinders seriously
the convergence of the method. In this paper, we aim at
tackling this issue by relaxing the local inequalities during
the early phase of the dual iterations.

The paper is organised as follows. Section II presents the
proposed dual decomposition with second-order information
and the L2 constraint relaxation. It presents a formal proof
showing that the relaxation prevents the singularity of the
dual Hessian. Section III presents the Non-Smooth Newton
approach used in this paper which allows for performing
the iterations on the dual variables in an almost completely
distributed fashion. Section IV presents an example of ap-
plication, where we experimentally show that the L2 penalty
can speed the convergence up.

Contribution: this paper presents a constraint relaxation
strategy to prevent the problem of dual Hessian singularity in
the second-order dual decomposition approach. The benefits
of the method are formally established and numerically
demonstrated.

II. DUAL DECOMPOSITION WITH SECOND-ORDER
INFORMATION

In this section, the dual decomposition method is intro-
duced together with a Newton strategy in the dual space.

A. Dual decomposition

We introduce the dual variables �
i,j

2 Rvi,j for all (i, j) 2
E corresponding to constraint (1b). We define the Lagrange
function as
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Here, � 2 Rv, �T

= [�T

i1,j1
, . . . ,�T

iQ,jQ
], and

(i1, j1), . . . , (iQ, jQ) is the enumeration of the edges in G
following a fixed order.

Furthermore, let us denote the set of edges including vertex
i by N

i

, i 2 E, i.e.,

N
i

:= {k|(i, k) 2 E or (k, i) 2 E} , (3)

and let �Ni , i 2 E denote the dual variables that affect
subproblem i, i.e.,
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i
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Note that L(x,�) is separable in x, i.e.
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Thus, one can evaluate the dual function d(�) :=

�min

x2X L(x,�) in parallel as

d(�) = �
NX

i=1

min

xi2Xi

L
i

(x
i

,�Ni). (7)

Note that since (1) is strictly convex, d(�) is convex and con-
tinuously differentiable, but not twice differentiable. How-
ever, the second-order derivative of d(�), or dual Hessian,
exists piecewise [17]. It has been observed in this context that
the dual Hessian can be singular, even if the QP (1) is strictly
convex and satisfies the Linear Independence Constraints
Qualification (LICQ). This issue is studied and addressed
next.

B. Singularity of the Dual Hessian
In this subsection, we discuss the occurrence of a singular

dual Hessian in the framework described in this paper, and
propose a remedy to address that issue.

We describe the conditions leading to the singularity of
the dual Hessian. To that end, we write the dual problem in
the compact form

d (�) = �
✓
min

x

1
2x

THx+ cTx+ �TCx
s.t. Dx� e  0

◆
, (8)

where C summarises all the coupling constraints in (2),
and H, c, D, e gather the local H

k

, c
k

, D
k

, e
k

. The dual
Hessian is then given by

r2
�

d (�) = �C
@x

@�
, (9)

where @x

@�

is the solution of the linear system
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�
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Here, A reports the active set of inequality constraints, i.e.
DAx� eA = 0. Let NA be the null space of the active
constraints, i.e. DANA = 0. Then the solution @x

@�

to (10) is
given by

@x

@�
= �NA

�
NT

AHNA
��1

NT

ACT , (11)

and the dual Hessian reads as

r2
�

d (�) = CNA
�
NT

AHNA
��1

NT

ACT . (12)

It follows that the dual Hessian becomes singular if CNA is
rank deficient. In the context of the original problem (1), this
situation occurs if the coupling constraints (1b) together with
the active local inequality constraints (1c) are not linearly
independent. Thus, certain values of � can yield a singular
dual Hessian, which forces the algorithm proposed in [16]
to make gradient steps.
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In [16], we have used d(�) directly, which may result in
numerous gradient steps, instead of the more efficient New-
ton steps. In order to avoid this phenomenon, we introduce a
modified dual function, which uses penalties, instead of the
hard local inequality constraints. More precisely, we regard

d
�

(�) := �
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i=1

 
min
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i

(x
i

,�Ni) +

�

2

ks
i

k22
s.t. D
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x
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� e
i
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i

!
. (13)

Here, � 2 R is the weight of the L2 penalty of the
constraints, and s

i

2 Rwi is a slack variable. Note that once
� = 0, the local inequalities are completely relaxed and thus
not effective, whereas if � ! 1 the local inequalities are
becoming more and more important, i.e. less and less relaxed.
Moreover, in the limit, the modified dual d1(�) is equivalent
to d(�). Observe that the positivity of the slack variables does
not need to be enforced. Indeed, it can be easily verified that
inequality constraints of the form s

i

� 0 included in (13)
would never be strictly active, and can therefore be discarded.

The L2 relaxation proposed in (13) offers a remedy to
render the dual Hessian non-singular. The following lemma
establishes the effect of the relaxation.

Lemma 1: Assume that C is fullrank, for any � and � >
0, the Hessian of the modified dual function d

�

(�) is non-
singular.

Proof: We write the modified dual problem in the
compact form
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Here, IB is a full row rank matrix with single unitary entries
at the row indices reported by B. We use the fact that IB I

T

B =

I to eliminate the last row in (15) and obtain
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which has the solution
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The dual Hessian therefore reads as

r2
�

d
�

(�) = C
�
H + �DB

TDB
��1

CT , (18)

which is non-singular since C is full row rank.

III. NON-SMOOTH NEWTON METHOD
IN THE DUAL SPACE

In this section, we revise the main algorithm presented in
[16] when applied to d

�

(�). The optimal dual variables for
a fixed � can be found as the solution of the unconstrained
dual optimization problem defined by

min

�

d
�

(�). (19)

Since this is a convex, non-smooth, once continuously dif-
ferentiable problem, we utilize a non-smooth Newton method
[18], [19], while driving � to a sufficiently large number. In
each iteration of the non-smooth Newton method, a second-
order model of d

�

(�) in �(k) is minimized that is

m(p) = d
�

(�(k)
) +rd
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(�(k)
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T p+
1
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pT ˆH(k)p, (20)

where ˆH
(k)
�

2 @
�
rd

�

(�(k)
)

�
in the sense of Clarke [20].

Solving p(k) := argmin

p

m(p) yields a descent direction in
the space of � and can be obtained as the solution of the
linear system

ˆH(k)
�

p+rd
�

(�(k)
) = 0. (21)

This Newton system, in the view of Lemma 1, is non-singular
and can be solved inexactly by a conjugate gradient (CG)
method [21].

Algorithm 1: Singularity-free Dual Newton-CG method

Input : �(0), � > 0, ⌧ > 1, ✏1 > 0, ✏2 > 0

1 while krd
�

(�)k > ✏1 or ksk > ✏2 do
2 Compute rd

�

(�) and r2d
�

(�) in a distributed
fashion.

3 Solve ˆH(k)p+rd
�

(�(k)
) = 0 with CG.

4 Find proper stepsize t.
5 �(k+1)

:= �(k)
+ tp

6 � := ⌧ · �
7 k := k + 1

8 end
9 return �(k)

In Algorithm 1, we have summarized the most important
steps of the proposed approach. Observe that termination
takes place if a dual optimal and a primal feasible solution is
found up to accuracy ✏1 and ✏2, respectively. In the following,
we discuss each step in more detail.

A. Calculation of the dual sensitivities
In the proposed approach, the knowledge of the dual

derivatives are necessary, thus we show that both the gra-
dient and the Hessian is computable via local exchange of
contributions.

The dual function d
�

(�) is continuously differentiable [22,
p. 100] and its derivative in the direction of �

i,j

is given by
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(�Nj ), (22)
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where x⇤
i

(�Ni) := argmin

xi2Xi Li

(x
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�
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2
i

. It should
be understood that only subproblems i and j need to be
solved in order to calculate the dual gradient in the direction
of �

i,j

. Moreover, this slice of the gradient can be computed
in subproblems i and j by a simple local exchange of
contributions. This is one of the reasons why first order
methods are often used in a dual decomposition framework.

We obtain an ˆH(k) by differentiating (22). It is important
to observe that the dual Hessian has a well-defined sparsity
structure, which is essentially determined by the interconnec-
tions of subsystems. The block corresponding to variables
�
i,j

, (i, j) 2 E can be written as
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In other words, the second derivatives with respect to �
i,j

and �
k,l

are nonzero if and only if edge (k, l) is connected
to the node i or j.

Now, let us compute the sensitivity of the solution in
subproblem i with respect to all influential dual variables,
i.e. @x

⇤
i (�Ni )
@�Ni

. To this end, we follow the procedure presented
in Lemma 1. Let A
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report the active set at the actual
optimal solution for problem i. For notational convenience,
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where µ⇤
i

is the optimal dual variable corresponding to the
constraints reported by A

i

. It can be easily verified that
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Note that the cost of this operation is dominated by the
matrix inversion, which is carried out locally in each sub-
problem. Also, the local contributions to (23) are directly
computable.

B. Products between vectors and the dual Hessian

Since the Newton system is solved via a CG procedure,
the product of the Hessian with a vector is of major interest.

We consider first rows in the dual Hessian corresponding to
�
i,j

that is
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Here, p 2 Rv, pT = [pT
i1,j1

, . . . , pT
iQ,jQ

] and the order
(i1, j1), . . . , (iQ, jQ) corresponds to the one defined in �.
It should be noted that the vector slice @

2
d(�)

@�i,j@�
p can be

calculated on both nodes i and j via only local exchange
of contributions to the sum in (27). In fact, in each CG
iteration, a local exchange of vectors, i.e. a matrix-vector
product, takes place in between subproblem i and j for each
(i, j) 2 E.

We use (27) to calculate the quadratic form pT @

2
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@�

2 p,
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Note that in (28) a summation over all (i, j) 2 E takes place.
Each term of this sum can be calculated via local commu-
nication as mentioned earlier. However, the calculation of
the sum itself requires a global operation, such that all local
contributions are collected and the result is broadcasted. This
operation is often referred to as a global summation [23].

Based upon the previous discussion the residual ˆHp +

rd(�) is computable in slices with respect to �
i,j

and is
available in subproblems i and j.

C. Conjugate gradient method and line-search strategy

For algorithmic details on how to solve the Newton system
(21), we refer to Algorithm 2 in [16].

Upon obtaining a search direction p(k), i.e., an approxi-
mate solution of (21), one can perform the following update
of the dual variables

�(k+1)
:= �(k)

+ t(k)p(k), (29)

where t(k) is an appropriately chosen stepsize. To this end,
we use an Armijo line search strategy with backtracking. In
each iteration of the Newton method, we would like to find
a t(k) such that

d
�

(�(k)
+ t(k)p(k))  d

�

(�(k)
) + �t(k)rd

�

(�(k)
)

T p(k),
(30)

holds. For further algorithmic details we refer to Algorithm
1 in [16].
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IV. NUMERICAL EXAMPLE: OPTIMAL CONTROL OF
CONNECTED MASSES

The numerical experiments are carried out on an academic
optimal control problem (OCP). We consider a linear model
of a unidimensional chain consisting of connected masses.
Each mass n 2 {1, . . . , N} is described by its position
p
n

2 R and its velocity v
n

2 R and can be controlled via
a force F

n

. For the sake of simplicity, we directly present
the equations obtained by using the distributed multiple
shooting method, i.e., after discretization. To that end, a
single step of the explicit Euler method is used. Let �t and
M denote the length of time intervals and the number of time
intervals, respectively. The system dynamics are enforced by
the constraints

"
p
(m+1)
n

v
(m+1)
n

#
=


1 �t 0 0 0

�2�t 1 �t �t �t

�

2

6666664

p
(m)
n

v
(m)
n

z
(m)
n,n�1

z
(m)
n,n+1

F
(m)
n

3

7777775
.

(31a)

Here, m = 1, . . . ,M � 1, n = 1, . . . , N and the variables
z
(m)
n,n�1 and z

(m)
n,n+1 belong to the masspoint n on time interval

m and represent a finite discretization, e.g. polynomial
coefficients, of the positions of masspoints n� 1 and n+1,
respectively. The spatial coupling between the mass points
is ensured by

z
(m)
n,n+1 = p

(m)
n+1 n = 1, . . . , N � 1, (31b)

z
(m)
n,n�1 = p

(m)
n�1 n = 2, . . . , N. (31c)

The objective function penalizes the deviation from the
steady state 0 using the L2-norm. The bounds on the forces
are given by

F  F (m)
n

 F , m = 1, . . . ,M, n = 1, . . . , N, (32a)

whereas the positions and velocities are constrained by

p(m)
n

 p(m)
n

 p(m)
n

, v(m)
n

 v(m)
n

 p(m)
n

, (32b)

m = 2, . . .M, n = 1, . . . , N.

Furthermore, the first and last mass points are fixed

pm1 = pfirst, pm
n

= plast, m = 1, . . . ,M. (33)

Let us introduce S := NM and for all n = 1, . . . , N, and
m = 1, . . . ,M , and let

yT(m�1)N+n

:= (p(m)
n

, v(m)
n

, z
(m)
n,n�1, z

(m)
n,n+1, F

(m)
n

)

T . (34)

We summarize the discretized OCP as a convex QP of the
form

min

y1,...yS

1

2

SX

k=1

yT
k

R
k

y
k

(35a)

s.t C
i,j

y
i

= D
i,j

y
j

, (i, j) 2 E (35b)
y
l

2 Y
l

, l = 1, . . . , S. (35c)

TABLE I
SOLUTION STATISTICS WITH DIFFERENT INITIAL GUESSES TO ACHIEVE

CONVERGENCE.

Init. guess Newt. it. QP sol. CG it. RFG

random 46 92 1261 14045
1 46 92 1171 9877
2 · 1 46 92 1183 10151
3 · 1 46 92 1189 11619

Here, (i, j) 2 E if and only if j = i+N or (j = i+ 1 and
j mod N 6= 0). Moreover, C

i,j

and D
i,j

can be directly
computed from (31) and Y

l

can be derived from (32).
Note that (35) has the same structure as (1) and thus the

proposed algorithm is applicable. We generated an instance
of (35) with m = 20 mass points and n = 15 time intervals
resulting in a decomposable QP with 320 subproblems. The
full QP has a total of 1540 primal variables, 1170 dual
variables, and 2340 inequality constraints.

The proposed stopping criterion was krd
�

(�)k1 < 10

�5

and ksk1 < 10

�5. The convergence of our algorithm was
tested with many different initial guesses, including random
initialization. In each test case, convergence was attained in
46 Newton iterations taking only full steps. See Table I,
where the number of Newton iterations, the number of local
QP solutions per subproblem, and the overall number of CG
iterations is reported for a couple of test cases. In the last
column, one can observe the number of dual iterations made
by a state-of-the-art restarted fast gradient method (RFG)
[24], applied in the dual space. We note that the overall
computational cost of one dual iteration with our proposed
method is somewhat more than one of the RFG method due
to more communication and local linear algebraic operations.
It was also observed that in all test cases, the original method
without the relaxation technique was never successful and
always got stuck due to a singular dual Hessian.

We show one test case, where the initial guess was chosen
randomly, and plotted the evolution of kd

�

(�)k and ksk with
the proposed method versus kd(�)k given by the approach
with hard constraints in Figure 1.

We conclude that for this particular example, the number
of iterations and thus the number of local QP solutions is an
order of magnitude smaller than with a first order method.
Moreover, the use of L2 penalty on the constraints acceler-
ates the practical convergence speed of the dual Newton-CG
approach.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of solving dis-
tributed Quadratic Programs efficiently, and improve on
the method proposed in [16] where a dual decomposition
approach alongside a distributed Newton iteration based
on the Conjugate Gradient method is used, yielding faster
convergence than first-order techniques. An issue has been
observed in the original method resulting in a rank deficiency
of the dual Hessian, which forces the Newton iteration to
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Fig. 1. Illustration of the relaxation-based approach (plain line) versus the
original method (dashed line), initialized at a random point. The dotted line
displays the convergence of the slack variables, resulting from gradually
increasing the � parameter over the dual iterations.

collapse into a simple gradient step for many dual iterations.
This paper investigates that issue, explains it, and proposes
an L2 relaxation of the local inequality constraints to address
it. A formal proof is proposed, showing that the relaxation
prevents the rank deficiency problem.

Future work will consider improving the constraints relax-
ation using a barrier approach. The possibility of designing
a heuristic to tune the barrier parameters efficiently as the
dual iteration converges will be investigated. Early numer-
ical results suggest that the relaxation strategy improves
significantly the convergence rate of the second-order dual
decomposition algorithm. This effect will be further studied.
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