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A single-electron tunneling (SET) device with a nanoscale central island that can move with respect

to the bulk source- and drain electrodes allows for a nanoelectromechanical (NEM) coupling

between the electrical current through the device and mechanical vibrations of the island. Although

an electromechanical “shuttle” instability and the associated phenomenon of single-electron

shuttling were predicted more than 15 years ago, both theoretical and experimental studies of

NEM-SET structures are still carried out. New functionalities based on quantum coherence,

Coulomb correlations and coherent electron-spin dynamics are of particular current interest. In this

article we present a short review of recent activities in this area. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4887060]

1. Introduction

Electric weak links play a crucial role in modern nanoe-

lectronics since they offer a natural way to inject electrons

into small conducting areas. At the same time weak links of

nanometer size offer new functionality due to the meso-

scopic properties of the small conductors that form such

links. Coulomb blockade of tunneling, resonant tunneling,

quantum spin coherence, spin-dependent tunneling and weak

superconductivity are just examples of new phenomena

(compared to bulk transport phenomena) that lead to new

physics in nanometer sized weak electric links. Special inter-

est is focused on the nonequilibrium evolution of “hot” elec-

trons with voltage-controllable excess energy. Point-contact

spectroscopy of elementary excitations and nanoelectrome-

chanical (NEM) shuttle instabilities are the brightest exam-

ples of functionalities based on properties of accelerated

electrons in point contacts. The nonequilibrium nature of an

electronic system is most prominently manifested if

excitation modes, which are spatially localized in the vicin-

ity of a weak link, interact with the “hot” electrons. Then

even a low level of energy transfer from the electrons does

not prevent these excitations from accumulating a significant

amount of energy, with the energized electrons acting as

power supply.

Single-electron tunneling (SET) transistors are nanode-

vices with particularly prominent mesoscopic features. Here,

the Coulomb blockade of single-electron tunneling at low

voltage bias and temperature1 makes Ohm’s law for the elec-

trical conductance invalid in the sense that the electrical cur-

rent is not necessarily proportional to the voltage drop across

the device. Instead, the current is due to a temporally dis-

crete set of events where electrons tunnel quantum-

mechanically one-by-one from a source to a drain electrode

via a nanometer size island (a “quantum dot”). This is why

the properties of a single electronic quantum state are crucial

for the operation of the entire device.
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Since the probability for quantum mechanical tunneling

is exponentially sensitive to the tunneling distance, it follows

that the position of the quantum dot relative to the electrodes

is crucial. On the other hand the strong Coulomb forces that

accompany the discrete nanoscale charge fluctuations, which

are a necessary consequence of a current flow through the

SET device, might cause a significant deformation of the

device and move the dot, hence giving rise to a strong elec-

tromechanical coupling. This unique feature makes the so-

called nanoelectromechanical SET (NEM-SET) devices,

where mechanical deformation can be achieved along with

electronic operations, to be one of the best nanoscale realiza-

tions of electromechanical transduction.

In this review we will discuss some of the latest achieve-

ments in the nanoelectromechanics of NEM-SET devices fo-

cusing on the new functionality that exploits the coherence

of quantum charge and spin subsystems in their interplay

with mechanical subsystem. By choosing magnets as compo-

nents of the device one may take advantage of a macroscopic

ordering of electrons with respect to their spin. We will dis-

cuss how the electronic spin contribute to electromechanical

and mechano-electrical transduction in a NEM-SET device.

New effects appear also due to many-body reconstruction of

the electron spectrum in the metallic leads related to

exchange interaction with spin localized in the moving shut-

tle. This interaction opens a new channel of Kondo reso-

nance tunneling between the shuttle and the leads, which

contributes to specific “Kondo-nanomechanics.”

This review is an update of our earlier reviews of

shuttling.2–4 Other aspects of nanoelectromechanics are only

briefly discussed here. We refer readers to the well-known

reviews of Refs. 5–9 on nanoelectromechanical systems for

additional information.

2. Shuttling of single electrons

A single-electron shuttle can be considered as the ulti-

mate miniaturization of a classical electric pendulum capable

of transferring macroscopic amounts of charge between two

metal plates. In both cases the electric force acting on a

charged “ball” that is free to move in a potential well

between two metal electrodes kept at different electrochemi-

cal potentials, eV¼lL – lR, results in self-oscillations of the

ball. Two distinct physical phenomena, namely the quantum

mechanical tunneling mechanism for charge loading (unload-

ing) of the ball (in this case more properly referred to as a

grain) and the Coulomb blockade of tunneling, distinguish

the nanoelectromechanical device known as a single-electron

shuttle10 (see also Ref. 11) from its classical textbook analog.

The regime of Coulomb blockade realized at bias voltages

and temperatures eV,T� EC (where EC¼ e2/2C is the charg-

ing energy, C is the grain’s electrical capacitance) allows one

to consider single-electron transport through the grain.

Electron tunneling, being extremely sensitive to the position

of the grain relative to the bulk electrodes, leads to a shuttle

instability—the absence of any equilibrium position of an ini-

tially neutral grain in the gap between the electrodes.

2.1. Shuttle instability in the quantum regime of Coulomb
blockade

First, we consider the single-electron shuttle effect in the

simplest model12 where the grain is modeled as a single-

level quantum dot (QD) that is weakly coupled (via a tunnel

Hamiltonian) to the electrodes (see Fig. 1). The Hamiltonian

corresponding to this model reads

Htot ¼
X
j¼L;R

H
jð Þ

l þ HQD þ Hv þ
X
j¼L;R

H
jð Þ

t ; (1)

where the Hamiltonian

H
jð Þ

l ¼
X

k

ekj � ljð Þa†
kjakj; (2)

describes noninteracting electrons in the left (j¼ L) and right

(j¼R) leads, which are kept at different chemical potential

lj and have a constant density states �j; a†
kj akjð Þ creates (anni-

hilates) an electron with momentum k in lead j. The quantum

dot is described by two parts. It is single-electron level

Hamiltonian and Hamiltonian of harmonic potential in

which QD vibrates

HQD ¼ e0c†c� dxc†c; (3)

Hv ¼
1

2
x2 þ p2
� �

; (4)

where c† cð Þ is the creation (annihilation) operator for an

electron at the dot, e0 is the energy of the resonant level, x is

the dimensionless coordinate operator (normalized by the

amplitude of zero-point fluctuations, x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=Mx0

p
, M is

the mass of QD), p is the corresponding momentum operator

([x,p]¼ i), x0 is the frequency of vibrons, d ¼ eE= Mx2
0x0

� �
is the characteristic electromechanical interaction constant.

For convenience we use dimensionless variables. The physi-

cal meaning of the second term in Eq. (3) for usual shuttle

systems is the interaction energy due to the coupling of the

electron charge density on the dot with the electric field (E)

in the gap between electrodes. Here, for convenience, all

energies measure in units �hx0, time in units of x�1
0 . Note,

that in general the mechanism of electromechanical interac-

tion could have different nature (electrostatic interaction

charge on the dot with gate electrode, interaction in magnetic

field due the Lorentz force, due exchange force between

electrons with spin and spin polarized leads, see next

sections).

FIG. 1. Model system consisting of a movable quantum dot placed between

two leads. An effective elastic force acting on the dot due to its connections

to the leads is described by a parabolic potential. Only one single electron

state is available in the dot and the noninteracting electrons in the leads are

assumed to have a constant density of states. Reprinted with permission

from Ref. 12, D. Fedorets et al., Europhys. Lett. 58, 99 (2002). # 2002,

EDP Sciences.
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The tunneling Hamiltonian H
jð Þ

t in Eq. (1) has the form

H
jð Þ

t ¼
X

k

t0j exp jx=kð Þa†
kjcþ h:c: (5)

Here j¼6 for L/R electrodes, t0 j is the bare tunneling am-

plitude, which corresponds to a weak dot-electrode coupling,

k is the characteristic tunneling length. The explicit coordi-

nate dependence in the tunneling Hamiltonian indicates sen-

sitivity of tunnel matrix elements to a shift of the quantum

dot center-of-mass coordinate with respect to its equilibrium

(xcm¼ 0) position. The x-dependence in Eq. (5) represents

also additional interaction with vibronic degree of freedom.

Even in such a simple formulation the single-electron

shuttle problem is quite complex. In this section we review

some main results of electron shuttling (without involving

the spin degree of freedom) and present the basic idea of the

methods of solution based on the equation of motion for the

matrix density. The advantage of this method is that it is pos-

sible to explicitly consider the quantum dot dynamics in

quantum regime and take into account the coherent dynam-

ics of spin electron states in a magnetic field, see the next

section.

The time evolution of the system is obtained from the

Liouville-von Neumann equation for the total density matrix

i�h@tr̂ tð Þ ¼ H; r̂ tð Þ½ �: (6)

In order to consider the dynamics of the electronic state in

the dot and the vibronic degrees of freedom we reduce the

total density operator by tracing over all electronic states in

the leads, q tð Þ ¼ Trleads r tð Þ
� �

. We assume that electrons in

the leads are in equilibrium and that they are not affected by

the coupling to the dot. So, we factorize the density matrix,

r tð Þ � q tð Þ � rleads (this approximation is always valid for

Cj ¼ 2p�jjt0jj2exp 7x=k½ � � 1). After shifting the x axis by

d/2 we get the system of equation of motion for the diagonal

elements of density matrix q0 ¼ h0j q j0i and q1 ¼ h1j q j1i,
where j1i ¼ d†j0i, as

@tq0 ¼ �i Hv þ
d

2
x; q0

� �
� 1

2
�CL xð Þ; q0

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�CR xð Þ

q
q1

ffiffiffiffiffiffiffiffiffiffiffiffi
�CR xð Þ

q
; (7)

@tq1 ¼ �i Hv �
d

2
x; q1

� �
� 1

2
�CR xð Þ; q1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�CL xð Þ

q
q0

ffiffiffiffiffiffiffiffiffiffiffiffi
�CL xð Þ

q
; (8)

where �Cj xð Þ ¼ Cj xþ d=2ð Þ. The off-diagonal density matrix

elements are decoupled from the equation of motion of the di-

agonal elements. It is easy to take into account dissipation of

the system. The corresponding dissipation term is Lcq
¼�ðic=2Þ½x;fp;qg��ðc=2Þ½x;½x;p�� (c is the dissipation rate).

Now we find the condition under which the vibrational

ground state of the oscillator becomes unstable. For this we

consider the time evolution of the expectation value of the

coordinate, �xðtÞ ¼ Tr fxqþg, and the momentum operators,

�p tð Þ ¼ Tr pqþf g, of the island (here qþ � q0 þ q1). To the

first order by k–1, for symmetric tunneling couplings
~CL 0ð Þ ¼ ~CR 0ð Þ ¼ C=2 and in the high bias voltage limit

ðlL � lR ¼ eV !1Þ the equations of motion for the first

vibrational moments become closed, so that13

_�x ¼ �p; _�p ¼ �c�p � �x � d

2
n ; _n ¼ �Cn þ 2C

k
�x; (9)

where n_¼ 1 – 2 Tr q1. The solution of Eq. (9) for the

quantum dot displacement is �x tð Þ � A ertcos t, where

r¼ 1/2(cthr – c) is the increment of the shuttle instability.

If the dissipation rate c is below the threshold value

cthr¼Cd/[k (C2) þ 1], then the expectation value of the dot

coordinate grows exponentially in time and the vib-rational

ground state is unstable. It was shown13 that this exponential

increase of the displacement drives the system into the non-

linear regime of the vibration dynamics, where the system

reaches a stable steady state of developed shuttle motion.

In order to analyze this stable state (i.e., the solution of

the system Eqs. (7) and (8)) it is convenient to use the

Wigner function representation.13,14 The Wigner distribution

function for the density operator qþ is defined as

Wþ x; pð Þ �
1

2p

ðþ1
�1

dn e�ipnhxþ n=2jqþjx� n=2i: (10)

The dynamics of the oscillating QD is characterized by its

trajectory (distribution) in the phase space (x, p) for p2/2

þ x2/2¼ const. Now we proceed to polar coordinates (A,u),

where x¼A sin u and p¼A cos u . An equation for Wþ
(A,u) is derived from Eqs. (7) and (8) after straightforward

calculations (for details see Ref. 13). In the leading order of

perturbation theory by the small parameters d/k, k�2, and c
this equation takes the form of a stationary Fokker–Planck

equation for the zeroth Fourier component of the Wigner

function �Wþ Að Þ

@

@A
�D0 Að Þ @

@A
� �D1 Að Þ

	 

�Wþ Að Þ ¼ 0; (11)

where �D1 ¼ A2D1 Að Þ; �D0 ¼ AD0 Að Þ are drift- and diffu-

sion coefficients (analytical expression of this coefficients

will be presented in Sec. III D). The normalized solution of

Eq. (11) has the form of a Boltzman distribution

�Wþ ¼ Z�1 exp

ðA
0

dA
�D1 Að Þ
�D0 Að Þ

0
B@

1
CA: (12)

The stationary solution of the oscillating dot is localized in

the phase space around points where �Wþ is maximal. From

Eq. (12) one can see that the maximum of the Wigner func-

tion is determined by zeros of the drift coefficient
�D1ðAmÞ ¼ 0ð �D

0
1ðAmÞ < 0Þ. In the vicinity of this point, �Wþ

can be approximated by a Gaussian distribution function.

For the spinless shuttle problem it can be shown that �Wþ
always has an extremum at A¼ 0: maximum for c > cthr and

minimum for c < cthr. So the vibrational ground state is

unstable when the dissipation is below threshold value as has

been shown by solving the equation system (9). The function
�Wþ has also a maximum for the non-zero amplitude Ac,

which corresponds to the stable limit cycle amplitude of

shuttle oscillations (for more details see Ref. 13).
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One can distinguish two regimes of “quantum”

ðd=k� k�4Þ and “quasiclassical” ðd=k� k�4Þ shuttle

motion.15 In the quasiclassical regime Gaussian distribution

is narrow and in quantum regime the width of distribution

“bell”’ is of the order of k� 1, i.e., the Wigner function is

smeared around classical phase trajectory. It is interesting to

note that there is a range of parameters where both vibra-

tional and shuttle regimes are present (a region where the

Wigner function has two maxima).

3. Electro- and spintro-mechanics of magnetic shuttle
devices

In this section we will explore new functionalities that

emerge when nanomechanical devices are partly or com-

pletely made of magnetic materials. The possibility of mag-

netic ordering brings new degrees of freedom into play in

addition to the electronic and mechanical ones considered so

far, opening up an exciting perspective towards utilising

magneto-electromechanical transduction for a large variety

of applications. Device dimensions in the nanometer range

mean that a number of mesoscopic phenomena in the elec-

tronic, magnetic and mechanical subsystems can be used

for quantum coherent manipulations. In comparison with the

electromechanics of the nanodevices considered above the

prominent role of the electronic spin in addition to the elec-

tric charge should be taken into account.

The ability to manipulate and control spins via

electrical,16–18 magnetic19 and optical20,21 means has gener-

ated numerous applications in metrology22 in recent years. A

promising alternative method for spin manipulation employs

a mechanical resonator coupled to the magnetic dipole

moment of the spin(s), a method which could enable scalable

quantum information architectures23 and sensitive nanoscale

magnetometry.24–26 Magnetic resonance force microscopy

(MRFM) was suggested as a means to improve spin detec-

tion to the level of a single spin and thus enable three dimen-

sional imaging of macro-molecules with atomic resolution.

In this technique a single spin, driven by a resonant micro-

wave magnetic field interacts with a ferromagnetic particle.

If the ferromagnetic particle is attached to a cantilever tip,

the spin changes the cantilever vibration parameters.27 The

possibility to detect27 and monitor the coherent dynamics

of a single spin mechanically28 has been demonstrated

experimentally. Several theoretical suggestions concerning

the possibility to test single-spin dynamics through an elec-

tronic transport measurement were made recently.29–32

Complementary studies of the mechanics of a resonator

coupled to spin degrees of freedom by detecting the spin

dynamics and relaxation were suggested in Refs. 29–36 and

carried out in Ref. 37. Electronic spin-orbit interaction in

suspended nano-wires was shown to be an efficient tool for

detection and cooling of bending-mode nanovibrations as

well as for manipulation of spin qubit and mechanical quan-

tum vibrations.38–40

An obvious modification of the nanoelectromechanics of

magnetic shuttle devices originates from the spin-splitting of

electronic energy levels, which results in the known phe-

nomenon of spin-dependent tunneling. Spin-controlled nano-

electromechanics which originates from spin-controlled

transport of electric charge in magnetic NEM systems is

represented by number of new magneto-electromechanical

phenomena.

Qualitatively new opportunities appear when magnetic

nanomechanical devices are used. They have to do with the

effect of the short-ranged magnetic exchange interaction

between the spin of electrons and magnetic parts of the

device. In this case the spin of the electron rather than its

electrical charge can be the main source of the mechanical

force acting on movable parts of the device. This leads to

new physics compared with the usual electromechanics of

nonmagnetic devices, for which we use the term spintro-

mechanics. In particular it becomes possible for a movable

central island to shuttle magnetization between two magnetic

leads even without any charge transport between the leads.

The result of such a mechanical transportation of magnetiza-

tion is a magnetic coupling between nanomagnets with a

strength and sign that are mechanically tunable.

In this section we will review some early results that

involve the phenomena mentioned above. These only

amount to a first step in the exploration of new opportunities

caused by the interrelation between charge, spin and

mechanics on a nanometer length scale.

3.1. Spin-controlled shuttling of electric charge

By manipulating the interaction between the spin of

electrons and external magnetic fields and/or the internal

interaction in magnetic materials, spin-controlled nano-elec-

tromechanics may be achieved.

A new functional principle—spin-dependent shuttling of

electrons—for low magnetic field sensing purposes was pro-

posed by Gorelik et al. in Ref. 41. This principle may lead to

a giant magnetoresistance effect in external magnetic fields

as low as 1–10 Oe in a magnetic shuttle device if magnets

with highly spin-polarized electrons (half metals42–46) are

used as leads in a magnetic shuttle device. The key idea is to

use the external magnetic field to manipulate the spin of

shuttled electrons rather than the magnetization of the leads.

Since the electron spends a relatively long time on the shut-

tle, where it is decoupled from the magnetic environment,

even a weak magnetic can rotate its spin by a significant

angle. Such a rotation allows the spin of an electron that has

been loaded onto the shuttle from a spin-polarized source

electrode to be reoriented in order to allow the electron

finally to tunnel from the shuttle to the (differently) spin-

polarized drain lead. In this way the shuttle serves as a very

sensitive “magnetoresistor” device. The model employed in

Ref. 41 assumes that the source and drain are fully polarized

in opposite directions. A mechanically movable quantum dot

(described by a time-dependent displacement x(t)), where a

single energy level is available for electrons, performs driven

harmonic oscillations between the leads. The external

magnetic field, H, is perpendicular to the orientations of the

magnetization in both leads and to the direction of the

mechanical motion.

The spin-dependent part of the Hamiltonian is specified as

Hmagn tð Þ ¼ J tð Þ a†
"a" � a†

#a#
� �

� glH

2
a†
"a# þ a†

#a"
� �

; (13)

where J(t)¼ JR(t) – JL(t), JL(R) (t) are the molecular fields

induced by exchange interactions between the ongrain
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electron and the left (right) lead, g is the gyromagnetic ratio

and l is the Bohr magneton. The proper Liouville–von

Neumann equation for the density matrix is analyzed and an

average electrical current is calculated for the case of large

bias voltage.

In the limit of weak exchange field, Jmax � lH one may

neglect the influence of the magnetic leads on the on-dot

electron spin dynamics. The resulting current is

I ¼ ex0

p
sin2 #=2ð Þtanh w=4ð Þ

sin2 #=2ð Þ þ tanh2 w=4ð Þ
; (14)

where w is the total tunneling probability during the contact

time t0, while # 	 pglH/�hx0 is the rotation angle of the spin

during the “free-motion” time.

The theory41 predicts oscillations in the magnetoresist-

ance of the magnetic shuttle device with a period DHp,

which is determined from the equation �hx0 ¼ gl 1þ wð Þ
DHp. The physical meaning of this relation is simple: every

time when x0/X¼ n þ 1/2 (X¼ glH/�h is the spin precession

frequency in a magnetic field) the shuttled electron is able to

flip fully its spin to remove the “spin-blockade” of tunneling

between spin polarized leads having their magnetization in

opposite directions. This effect can be used for measuring

the mechanical frequency thus providing dc spectroscopy of

nanomechanical vibrations.

Spin-dependent shuttling of electrons as discussed above

is a property of noninteracting electrons, in the sense that

tunneling of different electrons into (and out of) the dot are

independent events. The Coulomb blockade phenomenon

adds a strong correlation of tunneling events, preventing

fluctuations in the occupation of electronic states on the dot.

This effect crucially changes the physics of spin-dependent

tunneling in a magnetic NEM device. One of the remarkable

consequences is the Coulomb promotion of spin-dependent

tunneling predicted in Ref. 47. In this work a strong voltage

dependence of the spin-flip relaxation rate on a quantum dot

was demonstrated. Such relaxation, being very sensitive to

the occupation of spin-up and spin-down states on the dot,

can be controlled by the Coulomb blockade phenomenon. It

was shown in Ref. 47 that by lifting the Coulomb blockade

one stimulates occupation of both spin-up and spin-down

states thus suppressing spin-flip relaxation on the dot. In

magnetic devices with highly spin-polarized electrons elec-

tronic spin-flip can be the only mechanism providing charge

transport between oppositely magnetized leads. In this case

the onset of Coulomb blockade, by increasing the spin-flip

relaxation rate, stimulates charge transport through a mag-

netic SET device (Coulomb promotion of spin-dependent

tunneling). Spin-flip relaxation also modifies qualitatively

the noise characteristics of spin-dependent single-electron

transport. In Refs. 48 and 49 it was shown that the low-

frequency shot noise in such structures diverges as the spin

relaxation rate goes to zero. This effect provides an efficient

tool for spectroscopy of extremely slow spin-flip relaxation

in quantum dots. Mechanical transportation of a spin-

polarized dot in a magnetic shuttle device provides new

opportunities for studying spin-flip relaxation in quantum

dots. The reason can be traced to a spin-blockade of the

mechanically aided shuttle current that occurs in devices

with highly polarized and collinearly magnetized leads. As

was shown in Ref. 50 the above effect results in giant peaks

in the shot-noise spectral function, wherein the peak heights

are only limited by the rates of electronic spin flips. This

enables a nanomechanical spectroscopy of rare spin-flip

events, allowing spin-flip relaxation times as long as 10 ls to

be detected.

The spin-dependence of electronic tunneling in magnetic

NEM devices permits an external magnetic field to be used

for manipulating not only electric transport but also the me-

chanical performance of the device. This was demonstrated

in Refs. 51 and 52. A theory of the quantum coherent

dynamics of mechanical vibrations, electron charge and spin

was formulated and the possibility to trigger a shuttle insta-

bility by a relatively weak magnetic field was demonstrated.

It was shown that the strength of the magnetic field required

to control nanomechanical vibrations decreases with an

increasing tunnel resistance of the device and can be as low

as 10 Oe for gigaohm tunnel structures.

A new type of nanoelectromechanical self excitation

caused entirely by the spin splitting of electronic energy

levels in an external magnetic field was predicted in Ref. 54

for a suspended nanowire, where mechanical motion in a

magnetic field induces an electromotive coupling between

electronic and vibrational degrees of freedom. It was shown

that a strong correlation between the occupancy of the spin-

split electronic energy levels in the nanowire and the veloc-

ity of flexural nanowire vibrations provides energy supply

from the source of dc current, flowing through the wire, to

the mechanical vibrations thus making possible stable, self-

supporting bending vibrations. Estimations made in Ref. 54

show that in a realistic case the vibration amplitude of a sus-

pended carbon nanotube (CNT) of the order of 10 nm can be

achieved if magnetic field of 10 T is applied.

3.2. Spintro-mechanics of magnetic shuttle devices

New phenomena, qualitatively different from the electro-

mechanics of nonmagnetic shuttle systems, may appear in

magnetic shuttle devices in a situation when short-range mag-

netic exchange forces become comparable in strength to the

long-range electrostatic forces between the charged elements

of the device.54 There is convincing evidence that the

exchange field can be several tesla at a distance of a few

nanometers from the surface of a ferromagnet.55–58 Because

of the exponential decay of the field this means that the force

experienced by a single-electron spin in the vicinity of mag-

netic electrodes can be very large. These spin-dependent

exchange forces can lead to various “spintro-mechanical”

phenomena.

Mechanical effects produced by a long-range electro-

static force and short-ranged exchange forces on a movable

quantum dot are illustrated in Fig. 2. The electrostatic force

acting on the dot, placed in the vicinity of a charged elec-

trode (Fig. 2(a)), is determined by the electric charge accu-

mulated on the dot. In contrast, the exchange force induced

by a neighboring magnet depends on the net spin accumu-

lated on the dot. While the electrostatic force changes its

direction if the electric charge on the dot changes its sign,

the spin-dependent exchange force is insensitive to the elec-

tric charge but it changes direction if the electronic spin pro-

jection changes its sign. A very important difference
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between the two forces is that the electrostatic force changes

only as a result of injection of additional electrons into (out

of) the dot while the spintronic force can be changed due

to the electron spin dynamics even for a fixed number of

electrons on the dot (as is the case if the dot and the leads are

insulators). In this case interesting opportunities arise from

the possibility of transducing the dynamical variations of

electronic spin (induced, e.g., by magnetic or microwave

fields) to mechanical displacements in the NEM device. In

Ref. 59 a particular spintro-mechanical effect was dis-

cussed—a giant spin-filtering of the electron current (flowing

through the device) induced by the formation of what we

shall call a “spin-polaronic state.”

The Hamiltonian that describes the magnetic nanome-

chanical SET device in Ref. 59 has the standard form

(its spin-dependent part depends now on the mechanical dis-

placement of the dot). Hence

H ¼ Hlead þ Htunnel þ Hdot;

where

Hleads ¼
X
k;r;s

eksra†
ksraksr

describes electrons (labeled by wave vector k and spin

r¼",#) in the two leads (s¼L, R). Electron tunneling

between the leads and the dot is modeled as

Htunnel ¼
X
k;r;s

Ts xð Þa†
ksrcr þ h:c: ; (15)

where the matrix elements Ts xð Þ ¼ T 0ð Þ
s exp 7x=kð Þ (k is the

characteristic tunneling length) depend on the dot position x.

The Hamiltonian of the movable single-level dot is

Hdot ¼ �hx0b†bþ
X

r

nr e0 � sgn rð ÞJ xð Þ½ � þ UCn"n#; (16)

where sgn (", #)¼61, UC is the Coulomb energy associated

with double occupancy of the dot and the eigenvalues of the

electron number operators nr is 0 or 1. The position depend-

ent magnitude J(x) of the spin-dependent shift of the

electronic energy level on the dot is due to the exchange

interaction with the magnetic leads. Here we expand J(x) to

linear order in x so that J(x)¼ J(0) þ jx and without loss of

generality assume that J(0)¼ 0.

The modification of the exchange force, caused by

changing the spin accumulated on the dot, shifts the equilib-

rium position of the dot with respect to the magnetic leads of

the device. Since the electron tunneling matrix element is

exponentially sensitive to the position of the dot with respect

to the source and drain electrodes one expects a strong spin-

dependent renormalization of the tunneling probability,

which exponentially discriminates between the contributions

to the total electrical current from electrons with different

spins. This spatial separation of dots with opposite spins is

illustrated in Fig. 3. While changing the population of spin-

up and spin-down levels on the dot (by changing, e.g., the

bias voltage applied to the device) one shifts the spatial posi-

tion x of the dot with respect to the source/drain leads. It is

important that the Coulomb blockade phenomenon prevents

simultaneous population of both spin states. If the Coulomb

blockade is lifted the two spin states become equally popu-

lated with a zero net spin on the dot, S¼ 0. This removes the

spin-polaronic deformation and the dot is situated at the

same place as a nonpopulated one. In calculations a strong

modification of the vibrational states of the dot, which has to

do with a shift of its equilibrium position, should be taken

into account. This results in a so-called Franck–Condon

blockade of electronic tunneling.60,61 The spintro-

mechanical stimulation of a spin-polarized current and the

spin-polaronic Franck–Condon blockade of electronic tun-

neling are in competition and their interplay determines a

nonmonotonic voltage dependence of the giant spin-filtering

effect.

To understand the above effects in more detail consider

the analytical results of Ref. 59. A solution of the problem

can be obtained by the standard sequential tunneling approx-

imation and by solving a Liouville equation for the density

matrix for both the electronic and vibronic subsystems. The

spin-up and spin-down currents can be expressed in terms of

transition rates (energy broadening of the level) and the

occupation probabilities for the dot electronic states. For

FIG. 2. A movable quantum dot in a magnetic shuttle device can be dis-

placed in response to two types of force: (a) a long-range electrostatic force

causing an electromechanical response if the dot has a net charge, and (b) a

short-range magnetic exchange force leading to “spintro-mechanical”

response if the dot has a net magnetization (spin). The direction of the force

and displacements depends on the relative signs of the charge and magnet-

ization, respectively. Reprinted with permission from Ref. 59, R. I. Shekhter

et al., Phys. Rev. B 86, 100404 (2012). # 2012, American Physical Society.

FIG. 3. Diagram showing how the equilibrium position of the movable dot

depends on its net charge and spin. The difference in spatial displacements

discriminates transport through a singly occupied dot with respect to the

electron spin. Reprinted with permission from Ref. 59, R. I. Shekhter et al.,
Phys. Rev. B 86, 100404 (2012). # 2012, American Physical Society.
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simplicity we consider the case of a strongly asymmetric

tunneling device. At low bias voltage and low temperature

the partial spin current is

Ir 	
eCL

�h
exp

1

2

x2
0

k2
� x0

�hx0

	 
2
" #

� sgn rð Þb
 !

; (17)

where b ¼ x2
0=�hx0k: In the high bias voltage (or tempera-

ture) regime, max eV; Tf g � Ep, where the polaronic block-

ade is lifted (but double occupancy of the dot is still

prevented by the Coulomb blockade), the current expression

takes the form

Ir	
eCL

�h
exp 2nB þ 1½ � x

2
0

k2
� 2 sgn rð Þb

	 

; (18)

where nB is Bose–Einstein distribution function. The scale of

the polaronic spin-filtering of the device is determined by

the ratio b of the polaronic shift of the equilibrium spatial

position of a spin-polarized dot and the electronic tunneling

length. For typical values of the exchange interaction and

mechanical properties of suspended carbon nanotubes this

parameter is about 1–10. As was shown this is enough for

the spin filtering of the electrical current through the device

to be nearly 100% efficient. The temperature and voltage de-

pendence of the spin-filtering effect is presented in Fig. 4.

The spin-filtering effect and the Franck–Condon blockade

both occur at low voltages and temperatures (on the scale of

the polaronic energy; see Fig. 4(a)). An increase of the volt-

age applied to the device lifts the Franck–Condon blockade,

which results in an exponential increase of both the current

and the spin-filtering efficiency of the device. This increase

is blocked abruptly at voltages for which the Coulomb

blockade is lifted. At this point a double occupation of the

dot results in spin cancellation and removal of the

spin-polaronic segregation. This leads to an exponential drop

of both the total current and the spin polarization of the tun-

nel current (Fig. 4(b)). As one can see in Fig. 4(b) prominent

spin filtering can be achieved for realistic device parameters.

The temperature of operation of the spin-filtering device is

restricted from above by the Coulomb blockade energy. One

may, however, consider using functionalized nanotubes62 or

graphene ribbons63 with one or more nanometer-sized metal

or semiconductor nanocrystal attached. This may provide a

Coulomb blockade energy up to a few hundred kelvin, mak-

ing spin filtering a high-temperature effect.59

3.3. Spintronics of shuttles

In this subsection we discuss the possibility to manipu-

late the spin of tunneling electrons by an external magnetic

field and how it can affect electron transport through a nano-

electromechanical device. In the simplest model, we assume

that the left and right electrodes are fully spin polarized. The

movable single level quantum dot (in the absence of a mag-

netic field) can vibrate in the gap between two leads. A bias

voltage is applied but electron transport through the system

is blocked since the source and drain leads are fully spin

polarized in opposite direction. An external magnetic field

applied perpendicular to the direction of the magnetization

in the electrode leads to precession of the electron spin of

the quantum dot and as a consequence the electron transport

is unblocked. The Hamiltonian of the system has the form52

of Eq. (1) with Hleads ¼
P

jkejkc†
jkcjkðj ¼ L;R! j ¼ ð"; #ÞÞ

and

HQD¼ e0�dxð Þ
X

r

c†
rcr�

h

2
ðc†
"c#þc†

#c"ÞþUc†
"c"c

†
#c#; (19)

where h ¼ glBH=�hx0 is the dimensionless magnetic field. To

analyze this system we use the method described in Sec. II.

A quantum master equation for the reduced density matrix

operator q0 � h0j q j0i, q" � h" j q j "i, q# � h# j q j #i and

q"# � h" j q j #i is obtained in analogy with the spinless case

@q0

@t
¼ �i Hv þ xd; q0½ � �

�CL xð Þ; q0

� �
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�CR xð Þ

q
q#

ffiffiffiffiffiffiffiffiffiffiffiffi
�CR xð Þ

q
; (20)

@q#
@t
¼ �i Hv;q#

 �þ i
h

2
q"# � q"#ð Þ �

1

2
�Cþ xð Þ;q#
n o

; (21)

@q"
@t
¼� i Hv; q"

 �� i
h

2
q"# � q"#ð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�CL xð Þ

q
q0

ffiffiffiffiffiffiffiffiffiffiffiffi
�CL xð Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�CR xð Þ

q
q2

ffiffiffiffiffiffiffiffiffiffiffiffi
�CR xð Þ

q
; (22)

@q"#
@t
¼ �i Hv; q"#

 �þ i
h

2
q# � q"½ � �

1

2
q"#�Cþ xð Þ; (23)

@q#"
@t
¼ �i Hv; q#"

 �� i
h

2
q# � q"½ � �

1

2
�Cþ xð Þq"#; (24)

@q2

@t
¼�i Hv � xd;q2½ � �

�CR xð Þ;q2

� �
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�CL xð Þ

q
q"

ffiffiffiffiffiffiffiffiffiffiffiffi
�CL xð Þ

q
;

(25)

where �Cþ xð Þ ¼ �CL xð Þ þ �CR xð Þ. The set of Eqs. (20)–(25) is

derived in the high bias voltage limit

eV=2� e0 � U � �hx0:

In general, the problem can be solved in two limits with and

without the Coulomb blockade regime. In the Coulomb

blockade regime the second electron cannot tunnel onto the

quantum dot due to Coulomb repulsion. Hence the probabil-

ity for double occupancy q2 ! 0. First we focus on the case

without Coulomb blockade.

Here we repeat the analysis scheme for the evolution of

the stationary solution �Wþ Að Þ for the probability of the

FIG. 4. Spin polarization of the current through the model NEM-SET device

under discussion. Reprinted with permission from Ref. 59, R. I. Shekhter

et al., Phys. Rev. B 86, 100404 (2012). # 2012, American Physical Society.
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shuttle to vibrate with an amplitude A. Expanding the func-

tion �D1 Að Þ around A¼ 0 one can get the condition for the

shuttle instability c < cthr ¼ Cð2h2dÞ=kðh2 þ C2Þ. As in the

case of spinless electron, the function �Wþ has a maximum at

A¼ 0 (stable point) when dissipation rate c is above the

threshold value. In the opposite case the vibrational ground

state is unstable.

The positive bounded function

b0 A; hð Þ ¼ 2 �D1 Að Þ � c
� �

k=d

has only one maximum and monotonically decreases for

large A. It was shown in Ref. 52 that if h <
ffiffiffi
3
p

C, the func-

tion b0 has a maximum at A¼ 0, while for h >
ffiffiffi
3
p

C, this

function has a minimum at A¼ 0. The structure of the func-

tion b0 determines the behavior of the system in the parame-

ter space d – h (or c – h). There are several areas or phases.

In the first phase (vibronic), defined by d/ck < 1/h[max b0

(A)], the system is in the lowest vibrational state (A¼ 0 is a

stable point). The shuttle phase is developed when c < cthr

and there is only one stable point at A 6¼ 0. The third phase

is the mixed phase. It appears because the two above phases

become unstable if h exceeds the critical value
ffiffiffi
3
p

C.

In the Coulomb blockade regime the same analysis gives

that �D1 Að Þ is positive for all values of h if U < 4/3. On the

other hand, if U > 4/3, there is a range of magnetic field

strengths where a shuttle instability does not occur. In partic-

ular, when U � 1 his interval is 0 < h < U=
ffiffiffi
2
p

. This

implies that in the adiabatic regime of charge transport

ðU� 1Þ in weak magnetic field there is no instability and

the electrically driven electron shuttle is realized only in

strong magnetic fields.

3.4. Electron shuttle based on electron spin

In the previous subsection we studied the shuttle insta-

bility in the case of an electromechanical coupling between

the quantum dot and the leads. In the Coulomb blockade

regime a shuttle instability appears if an external magnetic

field h exceeds the critical value hcr ¼
ffiffiffi
3
p

C. Here we will

study the shuttle instability in the case when the interaction

between the dot and the leads is due to a magnetic

(exchange) coupling.53

The Hamiltonian of the system is similar to the one con-

sidered in Sec. III C. The only difference is that the quantum

dot Hamiltonian reads

HQD ¼ e0 a†
"a" þ a†

#a#
� �
� JL xð Þ a†

"a" � a†
#a#

� �
� JR xð Þ a†

#a# � a†
"a"

� �
� glH

2
a†
"a# þ a†

#a"
� �

� Ua†
"a

†
#a"a#: (26)

In what follows we will consider the symmetrical case,

JR(x)¼ JL(–x) and restrict ourselves to the Coulomb block-

ade regime, U	 e2=2C > jeV=2� e0j.
Following Ref. 52 one gets equations of motion for

the reduced density matrix operators q0 � h0j q j0i,
q" � h" j q j "i, q# � h# j q j #i, and q"# � h" j q j #i:

@q0

@t
¼ �i Hv; q0½ �� CL xð Þ; q0

� �
=2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
CR xð Þ

p
q#

ffiffiffiffiffiffiffiffiffiffiffiffi
CR xð Þ

p
;

(27)

@q"
@t
¼� i Hv; q"

 �þ i J xð Þ; q"
 �

�ih q"# � q†
"#

� �
=2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
CL xð Þ

p
q0

ffiffiffiffiffiffiffiffiffiffiffiffi
CL xð Þ

p
; (28)

@q#
@t
¼� i Hv; q#

 �� i J xð Þ; q#
 �

þ ih q"# � q†
"#

� �
=2� CR xð Þ; q#

� �
=2; (29)

@q"#
@t
¼� i Hv; q"#

 �þ i J xð Þ; q"#
� �

þ ih q# � q"ð Þ=2� q"#CR xð Þ=2: (30)

In Eqs. (27)–(30) Uj(x)¼U exp (j2x/k) and J(x)¼ JL (x) –JR (x).

In what follows we assume a linear x -dependence of

J xð Þ : J xð Þ ’ �axþ…; a ¼ 2J
0
R 0ð Þ > 0.

The difference between our operator equations and the

corresponding equations in Ref. 52 (rewritten for the

Coulomb blockade case) is the appearance of terms induced

by the coordinate-dependent exchange interaction J (x).

These appear in Eqs. (27)–(30) as a commutator term for q"
and q# and as an anti-commutator term for q"#. In contrast to

the electrically driven shuttle, the driving force in our case is

strongly connected to the spin dynamics, which results in a

completely different dependence of the shuttle behavior on

magnetic field.

Both linear and nonlinear regimes of the shuttling

dynamics can be conveniently analyzed by using the Wigner

function representation of the density operators.14 This

approach allows one to calculate the Wigner distribution func-

tion Wq (x, p) for the vibrational degree of freedom to lowest

order in the small parameters a and 1/k for small (compared to

k) shuttle vibration amplitudes A. The relevant Wigner func-

tion, W 0ð Þ
R Að Þ, averaged over the shuttle phase u (x¼A sin u),

solves the stationary Fokker-Planck equation as in Eq. (11)

with drift- and diffusion coefficients containing the factors

D1 ¼
a
k

h2C3

C2 þ 3h2

3C2 þ 3� h2

Q0 C; hð Þ ; (31)

D0 ¼
h2C

C2 þ 3h2

a2Q1 C; hð Þ þ k�2Q0 C; hð Þ
2Q0 C; hð Þ

" #
; (32)

respectively, where

Q0 C; hð Þ ¼ 1� h2 � 2C2ð Þ2 þ C2

4
C2 þ 3h2 � 5ð Þ2; (33)

Q1 C; hð Þ ¼ 1þ 9C2

4

	 

1þ h2 þ 2C2ð Þ � 5C4

4
: (34)

In Eqs. (31)–(34) all energies are normalized with respect to

the energy quantum �hx of the mechanical vibrations

�hx! 1; glH=�hx! h; J xð Þ=�hx! J xð Þ;
Cj xð Þ=x! Cj xð Þ

[�hCj xð Þ ¼ 2p�jTj xð Þj2 are partial level widths].

For A� 1 the solution of Eq. (11) takes the form of a

Boltzmann distribution function, W 0ð Þ
R 	exp �bEð Þ, where

E ¼A2/2 is the dot’s vibrational energy, and 1/b, where

Low Temp. Phys. 40 (7), July 2014 Shekhter et al. 607



b¼ 2aC2

k
h2 � 3C2 � 3

a2Q1 C; hð Þ þ k�2Q0 C; hð Þ
(35)

is an effective temperature. Since the functions Q0 and Q1

are positive, the sign of the effective temperature is deter-

mined by the relation between magnetic field, level width

and vibration quantum. In particular the effective tempera-

ture is negative at small magnetic fields, |H| < Hc, where

glHc ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 C2 þ x2ð Þ

p
(reverting to dimensional variables).

A negative b implies that the static state of the dot

(A¼ 0) is unstable and that a shuttling regime of charge

transport (A 6¼ 0) is realized. It is interesting to note that b is

finite even as h! 0. This apparent paradox may be resolved

by considering the Fokker–Planck equation in its time-

dependent form and noting that the rate of change of the

oscillation amplitude at the instability is defined by the coef-

ficient D1. This coefficient scales as D1 hð Þ / h2 as h ! 0

and therefore the shuttle phase is only realized formally after

an infinitely long time in this limit. As a function of mag-

netic field D1 has a maximum, Dmax
1 ¼ 0:6 a=kð ÞC�1, at

hopt¼ 0.4U. Therefore, optimal magnetic fields are in the

range 0:1� 1 T if �hC ¼ 10� 100 leV. For high magnetic

fields, jHj > Hc, there is no shuttling regime (at least not

with a small vibration amplitude, A� 1) and the vibronic

regime, corresponding to small fluctuations of the quantum

dot around its equilibrium position, is stable.

The amplitude of the shuttle vibrations that develop as

the result of an instability is still described by Eq. (11) for

the Wigner distribution function. However, for large ampli-

tudes, A � 1, the drift- and diffusion coefficients A2D1 and

AD0 can no longer be evaluated analytically. Fortunately, it

is sufficient to know the amplitude- and magnetic-field

dependence of D1 for a qualitative analysis. This is because

a positive value of the drift coefficient means that energy is

pumped into the dot vibrations, while a negative value corre-

sponds to damping (cooling) of the vibrations. Therefore,

magnetic fields for which D1(A)¼ 0 and D10(A) < 0 corre-

spond to a stable stationary state of the dot and a local maxi-

mum of the Wigner function. Based on this picture one

concludes (see Fig. 5) that at low magnetic fields, h < hc1, a

shuttling regime with a large vibration amplitude is realized,

while at high magnetic fields, h > hc1, the situation is more

complicated. Here one of two (hc1 < h < hc2; h > hc) or

three (hc2 < h < hc) shuttling regimes with different ampli-

tudes can be stable depending on the initial conditions. If the

dot is initially in the static state (A¼ 0) a stable shuttle

regime only appears for h < hc as already mentioned.

Thus the magnetic shuttle device acts in “opposite” way

as compared to electromechanical one. A particularly trans-

parent picture of how spintro-mechanics affects shuttle

vibrations emerges in the limit of weak magnetic field H and

large electron tunneling rate Us(D) between dot and source-

and drain electrodes. In order to explore this limit, where

US � x� ðlH=�hÞ2=CD and x/2p is the natural vibration

frequency of the dot, we focus first on the total work done by

the exchange force F as the dot vibrates under the influence

of an elastic force only. In the absence of an external mag-

netic field the dot is in this case occupied by a spin-up

electron emanating from the source electrode. This spin is a

constant of motion and hence no electrical current through

the device is possible since only spin-down states are avail-

able in the drain electrode. During the oscillatory motion of

the dot the exchange force is therefore always directed

towards the source electrode while its magnitude only

depends on the position of the dot, F¼F0 (x). As a result, no

net work is done by the exchange force on the dot. This is

because contributions are positive or negative depending on

the direction of the dot’s motion and cancel when summed

over one oscillation period. A finite amount of work can

only be done if the exchange force deviates from F0(x) as a

result of spin-flip processes induced by the external magnetic

field. Such a deviation can be viewed as an additional ran-

dom force FH that acts in the opposite direction to F0 (x).

In the limit of large tunneling rate, C� lH=�h, and small

vibration amplitude a spin flip occurs with a probability /
lH=�hð Þ2= xCDð Þ during one oscillation period and is

instantly accompanied by the tunneling of the dot electron

into the drain electrode, thereby triggering the force FH.

The duration of this force is determined by the time

dt 	 1=CS x tð Þð Þ it takes for the spin of the dot to be “restored”

by another electron tunneling from the source electrode.

The spin-flip induced random force FH¼ –F0(x) is

always directed towards the drain electrode. Hence, its effect

depends on the dot’s direction of motion: as the dot moves

away from the source electrode it will be accelerated, while

as it moves towards the source it will be decelerated. Since a

spin flip may occur at any point on the trajectory one needs

to average over different spin-flip positions in order to calcu-

late the net work done on the dot. The result, which depends

on the competition between the effect of spin flips that occur

at the same position but with the dot moving in opposite

directions, is nonzero because dt is different in the two cases.

As the dot moves away from the source electrode the tunnel-

ing rate to this electrode will decrease while as the dot

moves towards the source it will increase. This means that

the duration of spin-flip induced acceleration will prevail

over the one for deceleration. As a result, in weak magnetic

fields, the dot will accelerate with time and one can expect a

spintro-mechanical shuttle instability in this limit.

The situation is qualitatively different in the opposite

limit of strong magnetic fields, where C� lH=�h and the

spin rotation frequency therefore greatly exceeds the

FIG. 5. Regions of positive and negative values of the increment coefficient

D1(A,h) for U¼ 10. Solid (dashed) lines indicate where the Wigner distribu-

tion function for the oscillation amplitude A has a local maximum (mini-

mum) and hence where the stationary state [D1(A, h)¼ 0] is stable

(unstable) with respect to small perturbations.
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tunneling rates. In this case the quick precession of the elec-

tron spin in the dot averages the exchange force to zero if

one neglects the small effects of electron tunneling to and

from the dot. If one takes corrections due to tunneling into

account (having in mind that the source electrode only sup-

plies spin-up electrons) one comes to the conclusion that the

average spin on the dot will be directed upwards. This results

in a net spintro-mechanical force in the direction opposite to

that of the net force occurring in a weak magnetic field limit.

As a result, in strong magnetic fields one expects on the av-

erage a deceleration of the dot. Therefore, there will be no

shuttle instability for such magnetic fields.

As we have discussed above spin-flip assisted electron

tunneling from source to dot to drain in our device results in

a magnetic exchange force that attracts the dot to the source

electrode. It is interesting to note that this is contrary to the

effect of the Coulomb force in the same device. Indeed,

since the Coulomb force depends on the electric charge of

the dot it repels the dot from the source electrode. Hence,

while the dot is empty as the result of a spin-flip assisted tun-

neling event from dot to drain, an “extra” attractive
Coulomb force FQ is active. An analysis fully analogous

with our previous analysis of the “extra” repulsive magnetic

exchange force FH leads to the conclusion that the effect of

the Coulomb force will be just the opposite to that of the

exchange force. This means that in the Coulomb blockade

regime in the limit of weak magnetic field there is no shuttle

instability, while in strong magnetic fields electron shuttling

occurs. As was shown the detailed analysis confirms these

predictions.

3.5. Mechanically assisted magnetic coupling between
nanomagnets

The mechanical force caused by the exchange interac-

tion represents only one effect of the coupling of magnetic

and mechanical degrees of freedom in magnetic nano-

electromechanical device. A complementary effect is the of

mechanical transportation of magnetization, which we are

going to discuss in this subsection.

In the magnetic shuttle device presented in Fig. 6, a

ferromagnetic dot with total magnetic moment m is able to

move between two magnetic leads, which have total

magnetization ML,R. Such a device was suggested in Ref. 64

in order to consider the magnetic coupling between the leads

(which in their turn can be small magnets or nanomagnets)

produced by a ferromagnetic shuttle. It is worth to point out

that the phenomenon we are going to discuss here has noth-

ing to do with transferring electric charge in the device and

it is valid also for a device made of nonconducting material.

The main effect, which will be in the focus of our attention,

is the exchange interaction between the ferromagnetic shut-

tle (dot) and the magnetic leads. This interaction decays

exponentially when the dot moves away from a lead and

hence it is only important when the dot is close to one of the

leads. During the periodic back-and-forth motion of the dot

this happens during short time intervals near the turning

points of the mechanical motion. An exchange interaction

between the magnetizations of the dot and a lead results in a

rotation of these two magnetization vectors in such a way

that the vector sum is conserved. This is why the result of

this rotation can be viewed as a transfer of some magnetiza-

tion Dm from one ferromagnet to the other. As a result, the

magnetization of the dot experiences some rotation around a

certain axis. The total angle / of the rotation accumulated

during the time when the dot is magnetically coupled to the

lead is an essential parameter which depends on the mechan-

ical and magnetic characteristics of the device. The continu-

ation of the mechanical motion breaks the magnetic

coupling of the dot with the first lead but later, as the dot

approaches the other magnetic lead an exchange coupling is

established with this second lead with the result that magnet-

ization which is “loaded” on the dot from the first lead is

“transferred” to this second lead. This is how the transfer of

magnetization from one magnetic lead to another is induced

mechanically. The transfer creates an effective coupling

between the magnetizations of the two leads. Such a none-

quilibrium coupling can be efficiently tuned by controlling

the mechanics of the shuttle device. It is particularly interest-

ing that the sign of the resulting magnetic interaction is

determined by the sign of cos(//2). Therefore, the mechani-

cally mediated magnetic interaction can be changed from

ferromagnetic to antiferromagnetic by changing the ampli-

tude and the frequency of mechanical vibrations.64

4. Resonance spin-scattering effects. Spin shuttle as a
“mobile quantum impurity”

Many-particle effects add additional dimension to the

shuttling phenomena. These effects accompany electronic

tunneling between the gate electrodes and the moving nano-

island. The common source of many-particle effects is the

so-called “orthogonality catastrophe” related to multiple

creation of electron–hole pairs both with parallel and anti-

parallel spins65,66 as a response of electronic gas in the leads

to single electron tunneling. The second-order cotunneling

processes under strong Coulomb blockade result in effective

indirect exchange between the shuttle and the leads. This

exchange is the source of strong scattering and the many-

particle reconstruction of the electron ensemble in the leads

known as the Kondo effect. Various manifestations of the

Kondo effect in shuttling are reviewed in this section.

The Kondo effect in electron tunneling close to the uni-

tarity limit manifests itself as a sharp zero bias anomaly in

FIG. 6. Single-domain magnetic grains with magnetic moments ML and MR

are coupled via a magnetic cluster with magnetic moment m, the latter being

separated from the grains by insulating layers. The gate electrodes induce an

ac electric field, concentrated in the insulating regions. This field, by con-

trolling the heights of the tunnel barriers, affects the exchange magnetic cou-

pling between different components of the system. Reprinted with

permission from Ref. 64, L. Y. Gorelik et al., Phys. Rev. Lett. 91, 088301

(2003). # 2003, American Physical Society.
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the low-temperature tunneling conductance. Many-particle

interactions renormalize the electron spectrum enabling

“Abrikosov–Suhl resonances” both for odd67 and even68,69

electron occupations. In the latter case the resonance is

caused by the singlet-triplet crossover in the ground state

(see Ref. 70 for a review). In the simplest case of odd occu-

pancy a cartoon of a quantum well and a schematic density

of states (DoS) is shown in Fig. 7. For simplicity we consider

a case when the dot is occupied by one electron (as in a SET

transistor). The corresponding electronic level in the dot is

located at an energy –Ed, deep beyond the Fermi level of the

leads (eF). The dot is in the Coulomb blockade regime, and

the corresponding charging energy is denoted as EC. The

Abrikosov–Suhl resonance71–73 at eF arises due to multiple

spin-flip scattering, so that the narrow peak in the DoS is

related mainly to the spin degrees of freedom (see Fig. 7,

upper right panel). The width of this resonance is defined by

the unique energy scale, the Kondo temperature TK, which

determines all thermodynamic and transport properties of

the SET device through a one-parametric scaling.73 The

Breit-Wigner (BW) width U of the dot level associated with

the tunneling of dot electrons to the continuum of levels in

the leads, is assumed to be smaller than the charging energy

EC, providing a condition for nearly integer valency regime.

Building on an analogy with the shuttling experiments

of Refs. 74 and 75, let us consider a device where an isolated

nanomachined island oscillates between two electrodes.

The applied voltage is assumed low enough so that the field

emission of many electrons, which was the main mechanism

of tunneling in those experiments, can be neglected. We

emphasize that the characteristic de Broglie wave length

associated with the dot should be much shorter than typical

displacements allowing thus for a classical treatment of the

mechanical motion of the nanoparticle. The condition

�hx0 � kBTK , necessary to eliminate decoherence effects,

requires for, e.g., planar quantum dots with the Kondo tem-

perature TK � 100 mK, the condition x0 � 1 GHz for oscil-

lation frequencies to hold; this frequency range is

experimentally feasible.74,75 The shuttling island is then to

be considered as a “mobile quantum impurity,” and transport

experiments will detect the influence of mechanical motion

on the differential conductance. If the dot is small enough,

then the Coulomb blockade guarantees the single electron

tunneling or cotunneling regime, which is necessary for the

realization of the Kondo effect.70,76

The above configuration is illustrated in the lower panel

of Fig. 7: the shuttle of nanoscale size is mounted at the tight

string. Its harmonic oscillations are induced by external elas-

tic force. Unlike the conventional resonance case the reso-

nance level belongs not to the moving shuttle but develops

as a many-body peak at the Fermi level of the leads. When

the shuttle moves between source (S) and drain (D) (see the

lower panel of Fig. 7), both the energy Ed and the width U
acquire a time dependence. This time dependence results in

a coupling between mechanical, electronic and spin degrees

of freedom. If a source-drain voltage Vsd is small enough

(eVsd� kBTK) the charge degree of freedom of the shuttle is

frozen out while spin flips play a very important role in

cotunneling processes. Namely, the Abrikosov–Suhl reso-

nance is viewed as a time-dependent Kondo cloud built up

from conduction electrons in the leads dynamically screen-

ing moving spin localized at the shuttle. Since the electrons

in the cloud contain information about the same impurity,

they are mutually correlated. Thus, NEM providing a cou-

pling between mechanical and electronic degrees of freedom

introduces a powerful tool for manipulation and control of

the Kondo cloud induced by the spin scattering and gives a

very promising and efficient mechanism for electromechani-

cal transduction on the nanometer length scale.

Cotunneling is accompanied by a change of spin projec-

tion in the process of charging/discharging of the shuttle and

therefore is closely related to the spin/charge pumping

problem.77

A generic Hamiltonian for describing the resonance

spin-scattering effects is given by the same Anderson model

as above

H0 ¼
X
k;a

ekr;aa†
kr;aakr;a þ

X
ir

Ed � eEx½ �d†
irdir þ ECn2;

Htunnel ¼
X
ikr;a

T ið Þ
a xð Þ a†

kr;adir þ h:c:
h i

; (36)

where E is the electric field between the leads. The tunneling

matrix element depends exponentially on the ratio of the time-

dependent displacement x(t) and the electronic tunneling length

k, see Eq. (15). The time-dependent Kondo Hamiltonian for

slowly moving shuttle can be obtained by applying a time-

dependent Schrieffer–Wolff transformation78,79

HK ¼
X

kar;k0a0r0
J aa0 tð Þ rrr0Sþ

1

4
drr0

� �
a†

kr;aak
0r0;a0 ; (37)

where

J a;a0 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca tð ÞCa0 tð Þ= pq0Ed tð Þ

� �q

and S ¼ 1
2

d†
rrrr0dr0 , Ca tð Þ ¼ 2pq0jTa x tð Þð Þj2 are level widths

due to tunneling to the left and right leads.

As long as the nanoparticle is not subject to an external

time-dependent electric field, the Kondo temperature is

given by kBT0
K ¼ D0exp � pECð Þ= 8C0ð Þ

 �
(for simplicity we

assumed that UL(0)¼UR (0)¼U0; D0 plays the role of effec-

tive bandwidth). As the nanoparticle moves adiabatically,

�hx0 � C0, the decoherence effects are small provided

�hx0 � kBT0
K .

FIG. 7. Nanomechanical resonator with spin as a “mobile quantum

impurity.”
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Let us first assume a temperature regime T� TK (weak

coupling). In this case we can build a perturbation theory

controlled by the small parameter q0J tð Þln D0= kBTð Þ
 �

< 1

assuming time as an external parameter. The series of pertur-

bation theory can be summed up by means of a renormaliza-

tion group procedure.73,79 As a result, the Kondo

temperature becomes oscillating in time

kBTK tð Þ ¼ D tð Þ exp � pEC

8C0 cosh 2x tð Þ=k
� �

" #
: (38)

Neglecting the weak time-dependence of the effective band-

width D(t) � D0, we arrive at the following expression for

the time-averaged Kondo temperature:

hTKi ¼ T0
K exp

pEC

4C0

sinh2 x tð Þ=k
� �

1þ 2sinh2 x tð Þ=k
� �

" #* +
: (39)

Here h…i denotes averaging over the period of the mechani-

cal oscillation. The expression (39) acquires an especially

transparent form when the amplitude of the mechanical

vibrations A is small: A � k. In this case the Kondo tempera-

ture can be written as hTKi ¼ T0
K exp �2Wð Þ, with the

Debye–Waller-like exponent W ¼ �pEChx2 tð Þi= 8C0k
2

� �
,

giving rise to the enhancement of the static Kondo

temperature.

The zero bias anomaly (ZBA) in the tunneling conduct-

ance is given by

G Tð Þ ¼ 3p2

8
G0

4CL tð ÞCR tð Þ
CL tð Þ þ CR tð Þ½ �2

1

ln T=TK tð Þ
� � �2

* +
; (40)

where G0¼ e2/h is a unitary conductance. Although the

central position of the island is most favorable for the BW

resonance (UL¼UR), it corresponds to the minimal width of

the Abrikosov–Suhl resonance. The turning points corre-

spond to the maximum of the Kondo temperature given by

Eq. (38) while the system is away from the BW resonance.

These two competing effects lead to the effective enhance-

ment of G at high temperatures (see Fig. 8).

Summarizing, it was shown in Ref. 80 that Kondo shut-

tling in a NEM-SET device increases the Kondo temperature

due to the asymmetry of coupling at the turning points com-

pared to at the central position of the island. As a result, the

enhancement of the differential conductance in the weak

coupling regime can be interpreted as a pre-cursor of strong

electron-electron correlations appearing due to formation of

the Kondo cloud.

Next we turn to the strong coupling regime, T � TK.

We consider this regime for an oscillating cantilever with a

nanotip at its end (Fig. 9). Then the motion of a shuttle in y
direction is described by the Newton equation which we

rewrite in a form

€y þ x0

Q0

_y þ x2
0y ¼ 1

m
F; (41)

where x0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the oscillator frequency of free canti-

lever, Q0 is the quality factor. F is the Lorentz force acting

on moving cantilever in perpendicular magnetic field

F ¼ L 
 I� B ¼ 0;F; 0ð Þ: (42)

Here L is the length of the cantilever, I is the current through

the system.

In this configuration the Kondo cloud induced by spin

scattering is formed both in the immovable part of the setup

(drain electrode) and in the oscillating cantilever. The

current I subject to a constant source-drain bias Vsd can be

separated in two parts: a dc current associated with a time-

dependent dc conductance and an ac current related to the

periodic motion of the shuttle. While the dc current is mostly

responsible for the frequency shift, the ac current gives an

access to the dynamics of the Kondo cloud and provides

information about the kinetics of its formation. In order to

evaluate both contributions to the total current we rotate the

electronic states in the leads in such a way that only one

combination of the wave functions is coupled to the quantum

impurity. The cotunneling Hamiltonian may be rationalized

by means of the Glazman–Raikh rotation, parametrized by

the angle #t defined by the relation tan #t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCR tð Þ=CL tð Þj

p
.

Both the ac and dc contributions to the current can be

calculated by using Nozière’s Fermi-liquid theory (see

FIG. 8. Differential conductance G of a Kondo shuttle for which

U0/EC¼ 0.4. The solid line denotes G for a shuttle with UL¼UR, A¼ k, the

dashed line shows G for a static nanoisland with CL ¼ CR, A¼ 0, the dotted

line gives G for UL/UR¼ 0.5, A¼ 0. The inset shows the temporal oscilla-

tions (here X � x0) of TK for small A¼ 0.05 k (dotted line) and large

A¼ 2.5 k (solid line) shuttling amplitudes. Reprinted with permission from

Ref. 80, M. N. Kiselev et al., Phys. Rev. B 74, 233403 (2006). # 2006,

American Physical Society.

FIG. 9. Shuttling quantum dot mounted on a moving metallic pendulum.

Magnetic field B is applied along z axis.
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Ref. 81 for details). The ac contribution, associated with the

time dependence of the Friedel phase dr,82 is given by

�Iac tð Þ ¼ _y tð Þ
k

eEC

8C0

eVsd

kBTK tð Þ
tanh 2 y tð Þ � y0½ �=k

� �
cosh2 2 y tð Þ � y0½ �=k

� � ; (43)

(exp (4y0/k)¼UR (0)/UL (0)). Equation (43) acquires a sim-

ple form if we assume that the size of Kondo cloud RK y tð Þð Þ
¼ �hvF= kBTK y tð Þð Þð Þ where vF is a Fermi velocity. According

to Nozières,81 the Friedel phase dr can be Taylor-expanded

in the vicinity of its resonance value d0r¼p/2 as

dr tð Þ ¼ p
2
þ eVsdRK y tð Þð Þ

�hvF
þ glB rBð ÞRK y tð Þð Þ

�hvF
; (44)

and, therefore, dðd" þ d#Þ=dt / _ydRK yð Þ=dy. As a result,

�Iac tð Þ ¼ 2G0Vsd
_y tð Þ
vF

dRK yð Þ
dy

: (45)

Thus, the ac current generated in the device due to the me-

chanical motion of the shuttle contains information about

spatial variation of the Kondo cloud.

The “ohmic” dc contribution is fully defined by the adia-

batic time dependence of the Glazman–Raikh angle

�Idc tð Þ ¼ G0Vsd sin22#t

X
r

sin2dr: (46)

As a result, the ac contribution to the total current can be

considered as a first nonadiabatic correction

Itot ¼ Iad y tð Þð Þ � _y
dIad

dy

�hpEC

16C0kBT 0ð Þ
K

; (47)

where Iad¼ 2G0Vsd cosh–2 (2[y(t) – y0]/k) and T 0ð Þ
K is the

Kondo temperature at the equilibrium position. The small

correction to the adiabatic current in (47) may be considered

as a first term in the expansion over the small nonadiabatic

parameter x0s� 1, where s is the retardation time associ-

ated with the inertia of the Kondo cloud. Using such an inter-

pretation one gets

s ¼ �hpEC= 16C0kBT 0ð Þ
K

� �
:

Equation (47) allows one to obtain information about

the dynamics of the Kondo clouds from an analysis of an

experimental investigation of the mechanical vibrations. The

retardation time associated with the dynamics of the Kondo

cloud is parametrically large compared with the time of

formation of the Kondo cloud sK ¼ �h= kBTKð Þ and can be

measured owing to a small deviation from adiabaticity. Also

we would like to emphasize a supersensitivity of the quality

factor to a change of the equilibrium position of the shuttle

characterized by the parameter u (see Fig. 10). The influence

of strong coupling between mechanical and electronic

degrees of freedom on the mechanical quality factor has

been considered in Ref. 82. It has been shown that both sup-

pression Q > Q0 and enhancement Q < Q0 of the dissipation

of nanomechanical vibrations (depending on external param-

eters and the equilibrium position of the shuttle) can be

stimulated by Kondo tunneling. The latter case demonstrates

the potential for a Kondo induced electromechanical

instability.

In order to describe these instability, one should discuss

the contribution of “Kondo force” FK to the right hand

side part (42) of Eq. (41). This force consists of two

components83

FK ¼ �
aK þ aret

cosh2 y� y0ð Þx2
0k
; (48)

where

aK ¼
pECkBTK tð Þ

8C0k
; (49)

aret ¼ 2 _yG0VbiasBLtanh y� y0ð Þsrete
�b 1þtanh y�y0ð Þ½ �=2

:

Here b¼ pEC/4U0 is the coupling strength of electronic

states. The first term stems from the Kondo cloud adiabati-

cally following the change of TK (t) induced by the moving

shuttle in the source electrode and metallic cantilever. The

second term describes the temporal retardation related to

dynamics of Kondo cloud with the characteristic time

sret ¼ �hx0b= 2kBTmin
K

� �
. The time-dependent Kondo temper-

ature in the strong coupling limit at T � Tmin
K is given by

kBTK tð Þ ¼ kBTmin
K exp

b
2

1þ tanh y tð Þ � y0ð Þ½ �
� �

: (50)

The kBTmin
K plays the role of the cutoff energy for Kondo

problem.

The instability is controlled by the bias Vbias entering

aret. Figure 11 illustrates two regimes of Kondo shuttling.

Namely, at small bias the Kondo force controlled by external

fields further damps the oscillator, and we obtain an efficient

mechanism of cooling the nanoshuttle. On the other hand, at

Vbias above some threshold value, the contribution of the

Kondo force enhances the oscillations, and we arrive at the

nonlinear steady state regime of selfsustained oscillations.

Summarizing, we emphasize that the Kondo phenom-

enon in single electron tunneling gives a very promising and

efficient mechanism for electromechanical transduction on a

FIG. 10. Time dependence of the current I0 for different values of asymme-

try parameter u¼ x0/k. Here red, blue and black curves correspond to

u¼ 0.5; 1.0; 1.5. For all three curves shuttle oscillates with amplitude

xmax¼ k, �hx0= kBTmin
K

� �
¼ 10�3, jeVbiasj= kBTmin

K

� �
¼ glBB= kBTmin

K

� �
¼ 0:1

with T 0ð Þ
K ¼ 2K, k/L¼ 10–3. Reprinted with permission from Ref. 82, M. N.

Kiselev et al., Phys. Rev. Lett. 110, 066804 (2013). # 2013, American

Physical Society.
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nanometer length scale. Measuring the nanomechanical

response on Kondo-transport in a nanomechanical single-

electron device enables one to study the kinetics of the for-

mation of Kondo-screening and offers a new approach for

studying nonequilibrium Kondo phenomena. The Kon-do

effect provides a possibility for superhigh tunability of the

mechanical dissipation as well as supersensitive detection of

mechanical displacement.

5. Conclusions

During the last several years there has been significant

activity in the study of nanoelectromechanical shuttle struc-

tures. In this review we concentrate on description of the

influence of spin-related effects on the functionality of shut-

tle devices. In particular, we emphasize the importance of

electronic spin in shuttle devices made of magnetic materi-

als. Spin-dependent exchange forces can be responsible for

a qualitatively new anomechanical performance opening a

new field of study that can be called spintro-mechanics.

Electronic many-body effects, appearing beyond the weak

tunneling approach, result in single electron shuttling

assisted by Kondo-resonance electronic states. The possibil-

ity to achieve a high sensitivity to coordinate displacement

in electromechanical transduction along with the possibility

to study the kinetics of the formation of many-body Kondo

states has also been demonstrated.

There are still a number of unexplored shuttling regimes

and systems, which one could focus on in the nearest future.

In addition to magnetic shuttle devices one could explore

hybrid structures where the source/drain and gate electrodes

are hybrids of magnetic and superconducting materials.

Then one could expect spintro-mechanical actions of a

supercurrent flow as well as superconducting proximity

effects in the spin dynamics in magnetic NEM devices. An

additional direction is the study of shuttle operation under

microwave radiation. In this respect microwave assisted

spintro-mechanics is of special interest due to the possibility

of microwave radiation to resonantly flip electronic spins.

As in ballistic point contacts such flips can be confined to

particular locations by the choice of microwave frequency,

allowing for external tuning of the spintro-mechanical

dynamics of the shuttle.
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