
Thesis for the Degree of Doctor of Philosophy

Improving Community Detection
Methods for Network Data Analysis

Farnaz Moradi

Division of Networks and Systems
Department of Computer Science and Engineering

Chalmers University of Technology

Göteborg, Sweden 2014



Improving Community Detection Methods for Network Data Analysis

Farnaz Moradi
ISBN: 978-91-7597-041-7

Copyright © Farnaz Moradi, 2014.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3722
ISSN: 0346-718X

Technical report 112D
Department of Computer Science and Engineering

Division of Networks and Systems
Chalmers University of Technology
SE-412 96 GÖTEBORG, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: moradi@chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden 2014



ABSTRACT

Empirical analysis of network data has been widely conducted for understanding
and predicting the structure and function of real systems and identifying interesting
patterns and anomalies. One of the most widely studied structural properties of
networks is their community structure. In this thesis we investigate some of the
challenges and applications of community detection for analysis of network data
and propose different approaches for improving community detection methods.

One of the challenges in using community detection for network data analysis is
that there is no consensus on a definition for a community despite excessive studies
which have been performed on the community structure of real networks. There-
fore, evaluating the quality of the communities identified by different community
detection algorithms is problematic. In this thesis, we perform an empirical com-
parison and evaluation of the quality of the communities identified by a variety
of community detection algorithms which use different definitions for communi-
ties for different applications of network data analysis. Another challenge in using
community detection for analysis of network data is the scalability of the existing
algorithms. Parallelizing community detection algorithms is one way to improve
the scalability of community detection. Local community detection algorithms are
by nature suitable for parallelization. One of the most successful approaches to
local community detection is local expansion of seed nodes into overlapping com-
munities. However, the communities identified by a local algorithm might cover
only a subset of the nodes in a network if the seeds are not selected carefully. The
selection of good seeds that are well distributed over a network using only the lo-
cal structure of a network is therefore crucial. In this thesis, we propose a novel
local seeding algorithm, which is based on link prediction and graph coloring, for
selecting good seeds for local community detection in large-scale networks.

Overall, mining network data has many applications. The focus of this thesis is
on analyzing network data obtained from backbone Internet traffic, social networks,
and search query log files. We show that mining the structural and temporal
properties of email networks generated from Internet backbone traffic can be used to
identify unsolicited email from the mixture of email traffic. We also show that a link
based community detection algorithm can separate legitimate and unsolicited email
into distinct communities. Moreover, we show that, in contrast to previous studies,
community detection algorithms can be used for network anomaly detection. We
also propose a method for enhancing community detection algorithms and present
a framework for using community detection as a basis for network misbehavior
detection. Finally, we show that network analysis of query log files obtained from
a health care portal can complement the existing methods for semantic analysis of
health related queries.

Keywords: Networks, Community Detection Algorithms, Overlapping Communities,
Seed Selection, Misbehavior Detection, Spam, Medical Query Logs
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1 INTRODUCTION

Advances in technology and computation have provided the possibility of collecting
and mining a massive amount of real-world data. Mining such “big data” allows us
to understand the structure and the function of real systems and to find unknown
and interesting patterns.

Many types of real-world datasets can be modeled with networks. A network
provides a powerful mathematical tool to represent the relations in the data. Net-
works generated from real-world data are often divided into four categories, so-
cial, information, technological, and biological networks [1]. A social network is
a network connecting the people who contact or interact with each other. Social
networks are not limited to “online social networks” such as Facebook, Twitter, or
LinkedIn. Other examples of social networks are the network of people collabo-
ration, co-authorships, and co-appearance, as well as networks of communication
between people such as telephone calls and emails. An information network is a
network of entities containing information such as World Wide Web, network of
citations, and word co-occurrence networks. A technical network refers to a man-
made network such as the Internet, the electric power grid, networks of roads,
railways, and airline routes. A biological network represents a biological system
such as a network of metabolic pathways, protein-protein interactions, the food
web, and the network of blood vessels.

In this thesis we consider networks from two categories, i.e., social networks
and information networks. The focus of the thesis is on the structural properties
of these networks and the algorithms which exist for study of these properties,
particularly their community structure.

This thesis is organized into two parts. The first part is an introduction to
the thesis and the second part consists of a collection of papers. The remainder
of the introduction is organized as follows. In Section 1.1 we briefly summarize
the structural properties of social and information networks. In Section 1.2 we
focus on the community structure of networks and existing algorithms for identi-
fying network communities and investigate a number of challenges in community
detection, namely quality evaluation, scalability, and seed selection. In Section 1.3
we look into a number of applications of mining real network data for identifying

3



4 CHAPTER 1

interesting patterns and anomalies. In particular we look into identifying sources
of unsolicited email traffic based on the communication patterns observed on an
Internet backbone link. We also study the application of intrusion detection using
network flow data, scalable identification of communities in social networks, and
analysis of large query log files by identifying communities of related words from
a word co-occurrence network. In Section 1.4 we present the real datasets which
we have used in this thesis for generating different networks and analyzing their
structural properties. More specifically we describe the collection process of email
and flow data from an Internet backbone link, as well as the data which was ob-
tained from different social networks and the query logs of a health care portal. In
Section 1.5 our approaches towards analysis of network data and a brief description
of the appended papers are presented. Section 1.6 summarizes our contributions in
the thesis and, finally, Section 1.7 concludes the thesis and present possible future
research directions.

1.1 Structural Properties of Networks

A great deal of work has been devoted to study the structure and dynamics of
networks generated from real-world data. These networks are not random networks
and the nodes in these networks are organized into specific structures. A wide
variety of network mining methods and algorithms exists which can be used to
uncover the structure of such networks.

Traditionally, network data was modeled as random graphs [2]. However, em-
pirical studies on different types of real network data have revealed interesting
properties such as the “small-world effect” [3], also known as “six degrees of sep-
aration” [4], and the scale-free behavior of networks [5, 6]. These properties show
that social and information networks are fundamentally different from other types
of networks such as random networks [1]. A review of the structural properties of
these networks can be found in [7].

Many real networks have been modeled as small-world networks. A small-world
network has a small effective diameter and the distance between any pair of nodes
in the network is relatively short. The distance between two nodes is measured as
the number of edges in the shortest path connecting them. In addition to small
effective diameters or short average path lengths, small-world networks tend to be
highly clustered which can be quantified using the average clustering coefficient of
the networks [3].

Another robust measure of the structure of networks is their degree distribution
which characterizes the spread in the node degrees. It has been shown that for
social and information networks the degree distribution has a power law tail. This
means that in these networks most of the nodes have a very low degree while a few
of the nodes have very high degrees. Such networks are also known as scale-free
networks [5, 6].



1.2. COMMUNITY DETECTION 5

Numerous attempts to model the structure of social networks have also taken
other structural properties into account: the distribution of the size of the con-
nected components of the network, the presence of a giant connected component
(GCC), and the community structure of the networks. The studies of the changes of
structural properties of networks over time have also revealed interesting properties
of network evolution. As the networks grow over time, they become more dense
(densification power law) and the average distance between their nodes shrinks
(shrinking diameter) [9]. There are many other patterns which have been observed
in real world networks. A summary of different patterns, particularly the patterns
observed in weighted networks can be found in [8].

1.2 Community Detection

An excessively studied structural property of real-world networks is their commu-
nity structure. The community structure captures the tendency of nodes in the
network to group together with other similar nodes into communities. This prop-
erty has been observed in many real-world networks. Despite excessive studies of
the community structure of networks, there is no consensus on a single quantitative
definition for the concept of community and different studies have used different
definitions. A community, also known as a cluster, is usually thought of as a group
of nodes that have many connections to each other and few connections to the
rest of the network. Identifying communities in a network can provide valuable
information about the structural properties of the network, the interactions among
nodes in the communities, and the role of the nodes in each community.

1.2.1 Algorithms

A wide variety of community detection algorithms, also known as clustering al-
gorithms, have been proposed to identify the communities in a network. Since
different community detection algorithms use different definitions of a community,
they yield different communities. Figure 1.1 shows an example of the communities
identified by two fundamentally different community detection algorithms on a real
network (Zachary’s network of karate club members [10]).

Many traditional community detection methods are borrowed or inspired from
graph clustering algorithms. Partitioning the nodes in a network into a pre-
determined number of disjoint communities is one of the traditional methods for
identifying communities. However, since the community structure of real-world
networks are not usually known, making assumptions about the number of com-
munities or the size of the communities are not realistic. Moreover, many real-world
networks have a hierarchical structure where meaningful communities at different
scales can exist and such community structures cannot be captured by partition-
ing algorithms. Therefore, another group of community detection algorithms have
been introduced which can identify hierarchical communities. Hierarchical clus-
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Figure 1.1: The square and round nodes show the two groups of the members in the

Zachary karate club network. The four grey communities are found by applying a node-

based modularity optimization algorithm [11]. The solid and dashed edges show the two

communities identified by a link-based community detection algorithm [12].

tering techniques can be divided into agglomerative and divisive methods [13].
Agglomerative algorithms use a bottom-up approach where clusters are iteratively
merged. Divisive algorithms use a top-down approach where the clusters are iter-
atively split. Overall, using hierarchical algorithms allow us to choose the suitable
level of hierarchy and study the communities at that level of hierarchy.

In many real-world networks, nodes can naturally belong to multiple communi-
ties, therefore the communities can overlap. In social networks, an individual can
belong to a community of family members, to a community of friends, and to a
community of colleagues. In an information network, a web page can cover topics
that are associated with different communities. Traditional community detection
algorithms fail to uncover the community overlaps. Not being able to identify
community overlaps in networks with naturally overlapping communities means
missing valuable information about the structure of the network [14]. Therefore,
overlapping community detection algorithms have gained a lot of attention. Over-
lapping communities can be identified using different approaches. One of these
approaches is based on partitioning the edges of a network into communities rather
than partitioning the nodes [12, 15]. A thorough review and comparison of different
types of overlapping community detection algorithms can be found in [16].

The majority of existing community detection algorithms implicitly assume that
the entire structure of the network is known and is available. We refer to these
types of algorithms as global algorithms, since they require a global knowledge of
the whole network in order to uncover all the communities in that network. Since
such knowledge might not be available for large networks, local algorithms are gain-
ing more popularity [23, 27–29]. Local algorithms typically start from a number
of given seed nodes and expand them into possibly overlapping communities by
examining only a small part of the network. Since it is possible to find local com-
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Table 1.1: Community Detection algorithms.

Algorithm Type Description Complexity

N
o
n

-O
v
er

la
p

p
in

g

Blondel [11] G,H Fast modularity maximization (Louvain) is a
greedy approach to modularity maximization
and unfolds a hierarchical community struc-
ture.

O(m)

Infomap [17],
InfoH [18]

G,H Maps of random walks finds communities
based on the compression of the description
length of the average path of a random walker
over the network. Multilevel compression of
random walks is the hierarchical version of
infomap which minimizes a hierarchical map
equation to find the shortest multilevel de-
scription length.

O(m)

RN [19] G,H Potts model community detection minimizes
the Hamiltonian of a local objective function
(the absolute Potts model).

O(m1.3)

MCL [20] G,NH Markov Clustering is based on the probability
of random walks remaining for a long time in
a dense community before moving to another
community.

O(nK2)

O
v
er

la
p

p
in

g

LC [15] G,H Link Community detection uses the similarity
of the edges to identify hierarchical communi-
ties of edges rather than communities of nodes.

O(nK2)

LG [12] G,H Line Graph and graph partitioning runs a non-
overlapping node-based algorithm on a line
graph induced from the original graph to iden-
tify overlapping link-based communities.

O(nm2)

SLPA [21] G,H Speaker listener Label Propagation is an exten-
sion to the label propagation algorithm where
nodes adopt multiple labels based on the ma-
jority labels in their neighborhood.

O(tm)

OSLOM [22] L,H Order Statistics Local Optimization Method
identifies significant communities with respect
to a Null model similar to modularity.

O(n2)

DEMON [23] L,NH Democratic Estimate of the Modular Organi-
zation of a Network is a local algorithm which
uses the label propagation algorithm to find
communities in the egonet of each node and
then merges them into larger communities.

O(nK3−α)

PPR [24] L,NH Personalized PageRank-based, is a local al-
gorithm which uses the PageRank-Nibble al-
gorithm [25] to approximate a personalized
PageRank vector from a given seed node and
then uses the method in [26] to create the com-
munities based on a scoring function.

O(
∑

C∈C

vol(C))

In the “Type” column, L and G denote local and global, and H and NH denote hierarchical and
non-hierarchical, respectively. The LG algorithm can find hierarchical communities if the node-based
algorithm is hierarchical.
In the “Complexity” column, n denotes the number of nodes, m denotes the number of edges, K is the
maximum node degree, t is the number of algorithm iterations selected, α is the power-law exponent,
vol(C) is the sum of the degree of all the nodes in a community C, and C is the set of all the identified
communities.
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munities from each seed independently, they are very suitable for being parallelized
and therefore can scale well. The local communities identified from each seed can
be aggregated in order to uncover the global community structure of the network.
However, if the local community detection algorithm is naively started from each
node in a network, it can lead to many redundant communities and therefore is
computationally expensive. Therefore, it is important to identify a number of good
seeds which are well distributed over the network by using a seeding algorithm be-
fore running the local community detection. On the other hand, if the seeding
algorithm does not select enough seeds, the communities might only cover a sub-
set of the nodes in a network and therefore, the problem of selecting a reasonable
number of seeds which are well-distributed over the network is challenging. These
challenges are further investigated in Section 1.2.4.

In addition to different types of community detection algorithms, recently, a
number of studies have focused on proposing methods for improving the quality
of the existing community detection algorithms. Ciglan et al. [30] introduced a
method for adding edge weights to unweighted networks as a pre-processing step
to improve the quality of the identified communities with respect to ground truth
data. Soundarajan et al. [28] introduced a template for using existing community
detection algorithms for identifying more realistic communities. Another approach
for improving community detection is to use ensemble clustering, which is inspired
by ensemble learning, where multiple community detection algorithms run as an
ensemble and the identified communities are combined to improve the community
qualities. Staudt et al. [31] showed that ensemble clustering can be used to achieve
the best trade-off between quality of the communities and the speed of community
detection.

Thorough reviews of different types of community detection algorithms can
be found in [13, 16, 32]. Table 1.1 summarizes the algorithms which are used
throughout this thesis.

1.2.2 Quality Evaluation

Given the diverse nature of real-world networks and the high diversity of community
detection algorithms, it is necessary to perform experimental evaluation of the
algorithms to find the most suitable method for each type of network. However,
due to the ambiguity in the definition of a community, extracting communities and
evaluating their quality is proven to be very difficult.

Figure 1.2 shows the communities identified by different community detection
algorithms (see Table 1.1) in a toy network. It can be seen that different types
of algorithms identify different communities in the network since they use differ-
ent definitions for communities and take different approaches for identifying these
communities. In order to find out which algorithm yields the best set of commu-
nities, it is necessary to use a quantitative measure to evaluate the quality of the
communities identified by each algorithm.
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(a) Blondel, Infomap, RN, MCL, PPR (b) OSLOM

(c) LC (d) LG

(e) DEMON (f) SLPA

Figure 1.2: A comparison of the communities yield by different community detection

algorithms on a toy example network.

The most widely used structural quality function is modularity [33] which is also
widely used as an objective function or scoring function to be optimized by commu-
nity detection algorithms. In addition to modularity, many other quality functions
have been used and proposed in the literature. However, it has been shown that
there is no single perfect quality function for comparison of the quality of the com-
munities identified by different algorithms [34]. Moreover, many of the existing
quality functions are designed for evaluating disjoint communities and extending
them for evaluation of overlapping communities is not straightforward [16].
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One of the methods which is widely used for evaluating and comparing the
identified communities by different algorithms is to use synthetic networks from
different benchmarks. In the GN benchmark [35], communities of the same size are
embedded into a network for a given expected degree and a given ratio of internal
to external connections between the communities. Other benchmarks have been
proposed to improve and complement GN for example for overlapping communities.
One such widely used benchmark is the LFR benchmark [36] which introduces
heterogeneity into degree and community size distributions of a network.

The main reason for using benchmark graphs for evaluating community detec-
tion algorithms, is the lack of ground truth information about the communities in
real-world networks. Recently, more studies have used ground truth data. Ground
truth data is usually obtained from meta data or explicit group memberships of
the nodes. Ahn et al. [15] used meta data, e.g., tags assigned by users to annotate
the items in a co-purchase network, to define a number of quality functions based
on the purity of the attributes of nodes in communities and to assess how well the
identified communities reflect the meta data. Abrahao et al. [37] identified ground
truth communities from annotations, e.g., product categories and groups of pro-
tein functions, and compared the structural properties of the communities detected
by different algorithms with ground truth communities. Yang and Leskovec [24]
have studied a large number of social, collaboration, and information networks to
define ground truth communities based on the explicit declaration of group mem-
bership by the nodes. Their comparison of the ground truth communities with
different definitions of communities have shown that conductance is the best scor-
ing function for networks with well-separated and non-overlapping communities,
while the triad-participation ratio is the best scoring function for networks with
densely overlapping communities.

In this thesis, in addition to the above methods for evaluating community qual-
ity, we also propose to evaluate the logical quality of the communities identified by
different algorithms. The logical quality is defined based on the type of the edges
inside communities and how homogeneous these edges are. In other words, the
communities in which all of the edges are homogeneous, i.e., are of the same type,
are considered to have perfect logical quality (see Section 1.5.2).

1.2.3 Scalability

Identifying high quality communities from large-scale real-world networks is typ-
ically computationally expensive and does not scale well. One approach for im-
proving the scalability of community detection is to use parallelism. Parallelism
can significantly speed up the community detection and is also necessary for coping
with the massive volume of real-world datasets.

Recently, a number of studies have proposed parallel community detection algo-
rithms. Yang and Leskovec [42] proposed BigClam which is a model-based parallel
algorithm for community detection. Prat-perez [43] proposed SCD which is a par-
allel scalable algorithm which identifies disjoint communities.
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In addition to designing new parallel algorithms, there has been a number of
attempts to parallelize conventional community detection algorithms in order to
improve their scalability. Staudt et al. [31] provided the parallel implementation
of the Louvain algorithm by Blondel et al. [11] and the label propagation algo-
rithm [38]. Cheong et al. [39] proposed a hierarchical parallel algorithm based on
the Louvain algorithm implemented on single- and multi-GPU (Graphics Process-
ing Unit). Soman et al. [40] proposed a community detection algorithm based on
label propagation optimized for GPU architectures. Kuzmin et al. [41] proposed
a parallel version of the SLPA [21] algorithm for shared and distributed memory
machines.

Another fast and scalable approach to community detection is to use local
community detection algorithms. In local algorithms, the computations can be
done in parallel starting from seed nodes and expanding them into communities
by only investigating the neighborhood of the seed nodes in the network. A naive
approach to local community detection is to expand every node in the network
into a community. However, this approach is computationally expensive and will
generate many duplicate communities. Therefore, the challenge is to select an
optimal number of seeds to be expanded into communities which can cover the
majority of the nodes in a network.

1.2.4 Seed Selection

One of the most successful community detection methods is local seed expansion
which is, as mentioned earlier, also very scalable since it is parallelizable by nature.
However, the problem of selecting good seeds to be expanded into high quality
overlapping communities is far from trivial and is not widely studied.

A good seed is usually assumed to have many neighbors inside the target com-
munity. Andersen et al. [25] theoretically showed that a seed set that is “nearly
contained” in a target community is a good seed set for that community. They also
showed that a randomly selected seed set from a target community can also be a
good choice for identifying that community. However, Whang et al. [29] showed
that careful selection of seeds leads to better results compared to a simple random
selection.

One approach for selecting good seeds in a network is to use non-structural
knowledge of the network if such information exists. As an example, Gargi et
al. [14] have considered non-structural properties of the Youtube video network
and have selected the nodes which correspond to videos with the highest view
count as the seeds. Unfortunately, such non-structural information might not be
available for many types of networks particularly when no global knowledge about
the network exists.

In other studies, the structural properties of the networks have been used for
seed selection. Shen et al. [44] proposed to use maximal cliques as seeds since
they form the core of the communities. However, this approach is computationally
expensive. It was shown by Gleich et al. [45] that the egonets with low conductance
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(a) SH (k=3), MD (b) EC (c) CN+coloring (our algo-
rithm)

Figure 1.3: A comparison of the seeds yield by different seed selection algorithms on a

toy example network.

(EC) are good seeds for finding the best communities of a network with respect to
conductance. However, Whang et al. [29] showed that the communities expanded
from these egonets do not achieve a good coverage of the network. Chen et al. [46]
proposed an algorithm for selecting the nodes with local maximal degree (MD)
as seeds and suggested to repeatedly remove the identified communities expanded
from the selected seeds from the network and find new seeds in the remaining parts
of the network to improve the coverage.

Whang et al. [29] have proposed two seeding algorithms which can achieve good
coverage: Graclus centers and Spread hub. In the Graclus centers, first a parti-
tioning algorithm is used in order to find k partitions, where k is pre-determined,
and then the nodes in the center of these partitions are selected as seeds. In the
spread hub algorithm (SH), first the nodes in the network are sorted based on their
degree, then the nodes with the highest degree are selected as seeds until at least k
nodes are selected. These seeding methods are both shown to perform well in large
real-world networks. However, these methods require that the number of seeds to
be selected is known in advance. Unfortunately, making assumptions about the
number of communities in a network is not realistic since the community structure
of real-world networks is normally unknown to us.

Figure 1.3 shows the seed nodes which are selected by different seeding methods.
It can be seen that different algorithms pick different nodes as seeds since they take
different structural properties of the nodes into account. In this thesis, we propose
a new seed selection algorithm which does not require global information about
the network nor the number of seeds to be picked, and still is able to select a
reasonably small number of good seeds which are well distributed over the network
(see Section 1.5.4).

1.2.5 Other Challenges

Despite the excessive number of community detection algorithms proposed in the
literature, identifying communities in real-world networks is still a challenge. The
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challenges are not limited to quality evaluation of the identified communities and
the scalability of the algorithms. Some other challenges, which are not covered in
the thesis, but are very important to be studied are as follows.

• Identifying communities in dynamic networks, where new nodes can join, ex-
isting nodes can leave the network and new edges can be formed and existing
edges can break.

• Studying the stability of communities identified by different algorithms, par-
ticularly in evolving networks.

• Combining structural and non-structural information, where such knowledge
exists, for identifying more realistic communities.

• Interpreting what the identified communities show about the function of the
system and how the output of a community detection algorithm can be used
for different applications.

1.3 Applications

Mining large-scale real-world network data has many different applications such as
understanding the function of a system, modeling and predicting its behavior, and
identifying outliers and anomalies. In this section we present three network data
analysis applications which are the focus of this thesis.

1.3.1 Unsolicited Email Detection

Email is one of the most common services on the Internet with everyday business
and personal communications depending on it. Unfortunately, the vast amount
of unsolicited email (spam) consumes network and mail server resources, imposes
security threats, and costs businesses significant amounts of money. Spam can also
be exploited for phishing and scam and it can carry Trojans, worms, or viruses,
making email unreliable.

It is known that a large fraction of spam originates from botnets [47, 48]. A
botnet is a collection of compromised hosts (bots) where each bot contributes to con-
ducting malicious activities or attacks such as distributed denial of service (DDoS),
scanning, click frauds, and sending spam. Therefore, identifying the source of spam
can lead to the detection of the source of other malicious activities on the Internet.

Numerous attempts to fight spam have led to implementation of anti-spam
tools that are quite successful in hiding the spam from users’ mailboxes. Most of
the conventional approaches inspect email contents at the receiving mail servers,
and are very resource-intensive. Although such content-based filters are effective
in learning what the content of spam looks like, the spammers are very agile in
obfuscating email contents and encapsulating their messages in other formats such
as images to bypass these filters.
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As a complement to content-based filters, pre-filtering strategies are widely used
to stop spam before the email content is received and examined by the mail servers.
A commonly used pre-filtering method is IP blacklisting. The receiving mail servers
can consult IP blacklists to decide whether to accept or reject an incoming email.
However, IP addresses are not persistent, they can be obtained from dynamic pools
of addresses and they can be stolen [47, 49]. In addition, bots usually send spam
at a low rate to each individual domain and do not reuse IP addresses that have
become blacklisted.

In addition to the above mentioned anti-spam strategies, numerous other spam
detection and prevention techniques have been introduced. Approaches such as
enforcing laws and regulations, requesting proof-of-work (e.g., processing time) [50],
mail quota enforcement [51], port blocking, and user monitoring are proposed to
stop spam at the sender side. Greylisting [52], reputation-based approaches, sender
authentication, and domain verification are approaches that can be used on the
receiver side before accepting email contents. Replacing SMTP with a new protocol
or deploying overlay authentication protocols, are some other ideas proposed to stop
spam during transit.

Recently, approaches that focus on the network-level behavior of spam have
gained attention. These approaches are concerned about email sending behavior
of the spammers, which is expected to be more difficult for them to change than
the content of the email [53–55]. In order to improve and come up with more such
methods, there is a need to understand the network-level characteristics of spam
and how it differs from legitimate email (ham) traffic.

It is known that spam is sent automatically, therefore it is expected that it
does not exhibit the social properties of human-generated communications [56–59].
The social properties of email communications can be studied by analyzing the
structure of email networks generated from email traffic. An email network is an
implicit social network in which each node represents an email address and each
edge represents an email. It has been shown that email networks have the same
structural properties that other social and interaction networks have [60–62]. Our
intuition is that the structural properties of email networks containing unsolicited
email are not similar to the structure of email networks containing only legitimate
email. Therefore, analysis of email networks generated from a mixture of email
communications can be used for identifying the distinguishing properties of ham
and spam which can potentially be used for detecting the botnets based on their
anti-social behavior rather than on the content of what they send.

1.3.2 Network Intrusion Detection

Networked systems are continuously under attack causing considerable damages,
therefore, network intrusion detection systems are widely deployed. Network in-
trusions can be identified using two different approaches, i.e., misuse detection
and anomaly detection. Techniques for misuse detection rely on the signatures of
attacks, and search for patterns of well-known attacks to identify intrusions, there-
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fore, they lack the ability to detect new intrusions or zero-day attacks. Anomaly
detection techniques, on the other hand, do not require prior knowledge of an attack
signature. However, they might have a high false positive rate.

In this thesis, we focus on anomaly detection-based intrusion detection systems.
Anomaly detection has been extensively studied in the context of different appli-
cation domains and a variety of techniques have been proposed. An overview of
anomaly detection methods can be found in [63].

Anomalies are patterns in network traffic that do not conform to normal be-
havior. Any change in the network usage behavior or malicious activities such as
DoS attacks, port scanning, unsolicited traffic, and worm outbreaks, can be seen
as anomalies in the traffic.

The main challenge in using anomaly detection for identifying misbehaving
hosts is to define normal behavior and draw boundaries between normal and ab-
normal communication patterns. One approach to defining normality is to look
into the social behavior of normal nodes. Since many types of intrusions are au-
tomatically generated, it is expected that they do not conform to the expected
normal social behavior. Therefore, a number of features that are representative of
(anti)social communication patterns can be extracted for identification of misbe-
having nodes.

Recently, it was shown that network intrusions can successfully be detected
by examining the network communications that do not respect the community
boundaries [64]. In such an approach, normality is defined with respect to social
behavior of nodes concerning the communities to which they belong and intrusion
is defined as “entering communities to which one does not belong”. In this thesis we
propose an alternative definition for anomaly/intrusion and study how the network
structure and the community structure of graphs generated from network traffic
can be used for network misbehavior detection (see Section 1.5.3).

1.3.3 Query Analysis

Logs of search engines contain a wealth of information from the queries submitted
by users. Query logs have been widely studied and analyzed in order to improve the
service provided to the users and to better understand their behavior and needs.
Analysis of web query logs can provide useful information regarding the use of a
site considering when and how users seek information for topics covered by the
site [65]. Extracting information from query logs can also be useful for different
types of users such as terminologists, infodemiologists, and web analysts, as well as
specialists in Natural Language Processing (NLP) technologies such as information
retrieval and text mining.

Medical and health information seeking on the Internet is quite common. Min-
ing query logs of medical search can be beneficial to public officials in health and
safety organizations, epidemiologists, and medical data analysts. Information ex-
tracted from large-scale logs can be used both for a general understanding of public
health awareness and the information seeking patterns of users, and for optimizing
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search indexing, recommendations, query completion and presentation of results
for improved public health information.

In order to study query logs, several graph-based relations among queries can
be used [66]. A co-occurrence network for the words which co-occurred in different
queries is an information network which we use to capture the relations between
the words. We further study the structural and temporal properties of the co-
occurrence network and show that it is similar to other information and social
networks. We also look into the community structure of the network and how the
identified communities can potentially be used for improving our understanding of
the language used by users of the health care portal and improving their search
experience (Section 1.5.5).

1.4 Data Collection

Getting access to and performing analysis of large-scale real-world datasets is cru-
cial for many different applications. Collection and processing of real data is far
from trivial. The challenges involved are both of general and technical nature. Get-
ting access to the data, privacy and ethical concerns, pre-processing and analysis
of the dataset are just a number of challenges that need to be addressed before
the data can be used for an application. The main challenge, however, is handling
the massive amount of data. The data collection process has to keep up with the
speed in which the data is being produced or received. It is usually inevitable to
sample the data, to process summaries of the data or to only focus on analyzing
snapshots of data obtained during limited time windows. In some cases such as In-
ternet traffic collection, special measurement equipments which can cope with full
link-speed or allow high sampling frequencies are required. After the collection,
the data also needs to be parsed or pre-processed before it is possible to extract
relevant information for example to create a network from the relations observed in
the datasets. In many cases, obtaining ground-truth data for evaluating the results
of the data analysis can also be impossible or non-trivial. In this thesis we have
collected and obtained different types of real data including data captured from a
high speed Internet backbone link, data from social and information networks, and
query log files from a health care portal.

1.4.1 Email Dataset

One of the datasets which is collected by us is an email dataset which is used
for understanding the characteristics of legitimate and unsolicited email. The
study of the characteristics of email and spam can be conducted using different
types of email data. A number of studies have used SMTP log files from mail
servers [49, 57, 59, 67–69]. Although such datasets are limited to communications
to/from a single domain, they contain detailed information about each email and
the statistical summaries of accepted and rejected email communications, which
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allows comparison of the behavior of spam, ham, and the rejected traffic. The
spam captured in honeypots or relay sinkholes have also been used to study the
characteristics of spam [53, 70]. The honeypots only attract spammers, therefore
they do not allow the comparison of different characteristics and communication
patterns of spam and ham. Flow-level data collected on access routers have also
been used to study the properties of spam and rejected traffic [71]. These flows
only contain packet headers, and although they are not limited to a single domain,
they do not carry enough information to allow distinguishing spam from ham to
study their distinct characteristics. Another type of data that has been used to
understand the sending behavior of spam was collected from inside spam cam-
paigns [48, 72, 73]. The data collected at these campaigns has the view point of
spammers and makes it possible to closely investigate how spam is sent.

In our studies, we have used yet another type of email data. Our dataset enables
us to study the behavior of legitimate and unsolicited traffic from the perspective
of a network device which monitors the traffic traversing a backbone link. The
collected email traffic is not limited to a single organization or domain and allows
us to classify the observed email into ham, spam, and rejected communications to
compare their characteristics.

Collection of large datasets from backbone Internet traffic can face several chal-
lenges [74]. Not only is mere physical access to optical Internet backbone links
needed, but also rather expensive equipment in order to deal with the large data
volumes arriving at high speeds. Adding to the complexity, the collected data
traces must be desensitized since they may contain privacy-sensitive data. Packets
also need to be reassembled into application level “conversations” so that, finally
and maybe the most challenging part, methods and algorithms suitable for analysis
of massive data volumes can be run [75].

Our datasets were generated passively capturing traffic on a 10 Gbps backbone
link of SUNET (the Swedish University Network) [76]. The collection location is
shown in Figure 1.4. Each dataset was collected over 14 consecutive days with
roughly a year time span between them.

The process of collecting data and generating the first dataset is described in
more detail in the following. Table 1.2 summarizes the collected data during 14
consecutive days in March 2010. The second dataset was also collected similarly
during 14 consecutive days in spring 2011.

We used a hardware filter to only capture traffic to and from port 25 which
resulted in more than 183 GB of SMTP data. The captured packets belonging to a
single flow were then aggregated to allow the analysis of complete SMTP sessions.

The collected data contained both SMTP requests and SMTP replies. As each
SMTP request flow corresponds to an SMTP session, it can carry one or more
emails, thus we had to extract each email from the flows by examining the SMTP
commands. The resulting extracted email transaction contained the SMTP com-
mands including the email addresses of the sender and the receiver(s), email head-
ers, and the email content.



18 CHAPTER 1

Figure 1.4: OptoSUNET core topology. All SUNET customers are via access routers

connected to two core routers. The SUNET core routers have local peering with Swedish

ISPs, and are connected to the international commodity Internet via NORDUnet. SUNET

is connected to NORDUnet via three links: a 40 Gbps link and two 10 Gbps links. Our

measurement equipment collects data on the first of the two 10 Gbps links (black) between

SUNET and NORDUnet.

After the collection phase, first the dataset was pruned of all unusable email
traces. For example, flows with no payload are mainly scanning attempts and
should not be considered in the classification. Also, SMTP flows missing the proper
commands were excluded from the dataset as they most likely belong to other ap-
plications using port 25. Encrypted email communications cannot be analyzed, and
were also eliminated.1 Any email with an empty sender address is a notification
message, such as a non-delivery message [77]; it does not represent a real email
transmission and was also excluded. Finally, any email transaction that was miss-
ing either the proper starting/ending or any intermediate packet was considered
as incomplete. Possible reasons for having incomplete flows include transmission
errors and measurement hardware limitations caused by a framing synchronization
problem.

The remaining email transactions were then classified as accepted, i.e. those
emails that are delivered by the mail servers, or rejected. An email transaction can
fail at any time before the transmission of the email data (header and content) due
to rejection by the receiving mail server. Therefore, rejected emails are those that
do not finish the SMTP command exchange phase and consequently do not send
any email data. The rejections are mostly because of spam pre-filtering strategies

1Around 3.8% of the flows carried encrypted SMTP sessions.
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Table 1.2: Email dataset statistics (2010).

Incoming (/106) Outgoing (/106)

Packets 626.9 170.1
Flows 34.9 11.9
Distinct source IPs 2.30 0.01
Distinct destination IPs 0.57 1.94
SMTP Replies 2.84 9.14
Email: 19.3 0.73

Ham email 1.32 0.21
Spam email 1.66 0.20
Rejected email 16.3 0.31

deployed by mail servers including blacklisting, greylisting, DNS lookups, and user
database checks.

Finally, we discriminated between spam and ham in our dataset. As we have
captured the complete SMTP flows, including IP addresses, SMTP commands,
and email contents, we can establish a ground truth for further analysis of only the
spam traffic properties and a comparison with the corresponding legitimate email
traffic. We deployed the widely-used spam detection tool called SpamAssassin2

to mark emails as spam and ham. SpamAssassin uses a variety of techniques
for its classification, such as header and content analysis, Bayesian filtering, DNS
blocklists, and collaborative filtering databases.3

The final pre-processing step of the dataset was to desensitize any user data.
Immediately after the classification of emails into ham and spam, we discard the
content of the emails and anonymized the email and IP addresses in the headers [75].
Once the sensitive data was discarded, the resulting anonymized dataset had a size
of 37 GB.

The second dataset from 2011 was collected and pre-processed similarly to the
first dataset. The infrastructure and the data collection equipment was updated
during the one year time span between the collections. Although, the changes have
caused differences in the collected data, these differences are in our favor since they
allow us to compare our observations over time and verify that our findings are not
limited to a single vantage point.

2http://spamassassin.apache.org
3The well-trained SpamAssassin applied to our dataset was in use for a long time at our

university, incurring an approximate false positive rate of less than 0.1%, and an detection rate
of 91.3% after around 94% of the spam being rejected by blacklists.
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Table 1.3: Unique hosts during the data collection 2010-04-01.

Inside SUNET Outside SUNET

Incoming Link Destination IPs 970,149 Source IPs 24,587,096
Outgoing Link Source IPs 23,600 Destination IPs 18,780,894

1.4.2 Flow Dataset

In order to study other types of misbehavior in network traffic such as network
intrusions, we have used network flow data collected from the backbone link of
SUNET. The network flow data was collected from the same location as the email
dataset (see Figure 1.4).

For a period of more than six months, a 24 hour snapshot of all flows was
regularly collected once a week. The dataset contains a total of 12 billion flows
in both directions. Table 1.3, summarizes all unique IP addresses found during
a single collection day to give an idea of the scale of the traffic passing by the
measuring point.

This dataset also contains metadata, including, for example, hosts known to
aggressively spread malware at the time of the collected snapshots. The source
addresses of these malicious sources in the dataset were defined by using the lists
reported by DShield and SRI Malware Threat Center during the data collection
period [78, 79]. By using the flow data together with this information, we can
then make more targeted types of analysis of hosts, despite their addresses being
anonymized.

We have used flow data from seven days in the dataset in order to study a
community-based network intrusion detection method (Section 1.5.3). More details
about the collection of the dataset and other analysis performed on the data can
be found in [80].

1.4.3 Social and Information Network Datasets

In addition to data from real network traffic, we have used data from other types of
social and information networks. We have used publicly available datasets provided
by the Stanford Large Network Collection [81] including a product network from
Amazon, a collaboration network from DBLP computer science bibliography, and
the social networks of users in Youtube and Livejournal. These datasets also include
the information about the ground truth communities.

In the Amazon network, nodes are products in the Amazon website and two
products have an edge if they were co-purchased frequently. The ground truth is
based on the product categories defined by Amazon. In the DBLP network, nodes
are authors and two authors are connected with an edge if they have co-authored
at least one paper, and the ground truth is obtained based on the publication
venues. In the Youtube and LiveJournal networks the nodes are the users of the
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video sharing and online blogging websites, respectively, and the edges correspond
to friendships and the ground truth is based on user-defined groups.

In addition to above datasets, we have collected a dataset from the SoundCloud
sound sharing site (http://soundcloud.com/). In SoundCloud, similar to Twitter,
users can follow each other, and popular artists tend to attract a large number of
followers. For the collection of Soundcloud data, we alternated between random
sampling and breadth-first-search, so that we could capture local neighborhood
information while covering different parts of the network [82]. After data collection,
we generated a network of “follow” relations, where the nodes are the users, and
an edge (u, v) exists if the user u follows the user v.

The data collection from SoundCloud is an ongoing process and by the time
this thesis is being written, we have collected data from more than 39 million users
with more than 642 million follows and around 76 thousand groups. We are going
to publish a more complete version of the datasets after finishing the collection
process. By the time we started to use the SoundCloud dataset, we had around 5
million users in the dataset. Even though our work is focused on a small subset
of the whole user base, this network has been the largest social network which we
used in our studies. In this thesis, we have used the datasets presented in this
section for evaluating our proposed local seed selection algorithm. Our algorithm
selects seeds by merely investigating the direct neighborhood of each node in the
network and therefore does not require the global structure of the network to be
accessible, so our analysis is not affected from the lack of global data.

1.4.4 Medical Query Logs

The last dataset which we used was obtained from the query logs of a Swedish
health care portal. We obtained 67 million queries for the period October 2010 to
the end of September 2013. The data was provided by vardguiden.se through an
agreement with the company Euroling AB which provides indexing and searching
functionality to vardguiden.se. 27 million of the queries are unique before any kind
of normalization, and 2.2 million after case folding.

The obtained queries are then automatically annotated with semantic labels
using two medically-oriented semantic resources, i.e., the Systematized Nomencla-
ture of Medicine - Clinical Terms (SNOMED CT) and the National Repository for
Medicinal Products (NPL), as well as a named entity (including the ontological
categories location, organization, person, time, and measure entities) recognizer.
We used these labels to identify semantic communities based on the co-occurrence
of words in the queries.

Moreover, from each query which contained more than one word/term, we ex-
tracted the words and created a network of word co-occurrences. We are interested
in analyzing the relations between the words and the language being used in the
queries, so the single-word queries were not of interest to us. This network was
used for structural analysis and identification of graph communities.
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Overall, the semantic and graph analysis of query logs can be of great inter-
est for different types of studies and can reveal important information about the
usage patterns, information needs, and the language of the users of the website
(Section 1.5.5).

1.5 Our Approach

As presented in the previous section we have collected and obtained large volumes
of real-world data and constructed different networks from the datasets and studied
their structural properties. In this section we summarize our approaches towards
the different applications which we had at hand. The details of our approaches are
covered in the appended papers.

1.5.1 Structural and Temporal Analysis of Email Networks

In order to understand the characteristics of unsolicited email traffic and how they
differ from legitimate traffic, we have performed a social network analysis of real
email traffic (Section 1.4.1). Our hypothesis is that social network analysis of email
traffic can reveal the differences in the communication patterns of legitimate and
unsolicited email traffic and can be used for identifying the sources of spam.

In order to verify our hypothesis, we have generated email networks from the
observed email communications in which each node represents an email address and
each edge represents an observed email communication between a pair of nodes.
The generated email network from the larger dataset contains 10,544,647 nodes
and 21,562,306 edges, and the email network from the smaller dataset contains
4,525,687 nodes and 8,709,216 edges. Based on our ground truth, we have gen-
erated a number of ham, spam, rejected, and complete email networks, and have
studied and compared their structural and temporal properties. We have looked
into the (in-/out-)degree distribution, average shortest path length, average cluster-
ing coefficient, distribution of the size of the connected components, the percentage
of total nodes in the giant connected component, as well as how these properties
change over time as the networks grow.

Our study reveals that the legitimate email traffic exhibit similar structural
properties as other social and interaction networks, and therefore a ham network
can be modeled as a scale-free small-world network. We also show the similarities
and differences in the structural and temporal properties of email networks of ham
and spam, and show that the anti-social behavior of spam and rejected traffic is not
hidden in a mixture of email traffic and causes anomalies (outliers) in the structural
properties of email networks. We also propose a method for identifying spamming
nodes by finding the outliers in the structural properties of email networks which
mainly are caused by the spammers.
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1.5.2 Evaluation of Community Detection Algorithms

Despite the excessive number of studies on community detection there is no consen-
sus on a definition for a community and different community detection algorithms
have been proposed in the literature based on the different definitions. Therefore, it
is not clear how to evaluate which algorithm is most suitable to be used for different
types of networks. Moreover, due to the ambiguity in the definitions for commu-
nity, assessing the quality of the communities identified by different algorithms can
be challenging.

In this thesis, we have conducted an empirical study to compare and evaluate a
variety of community detection algorithms based on a set of structural and logical
quality functions on our email networks. We have evaluated the structural quality
of the communities using different well-known and widely-used quality functions,
namely modularity, coverage, and conductance. We have also proposed to use the
logical quality of the communities based on how homogeneous the edges inside the
communities are. A community which only contains the same type of edges is
considered to have a perfect logical quality. Our aim is to find the most suitable
approach that can separate ham and spam emails from the mixture of traffic into
distinct communities.

Our study shows that both ham and spam networks, as well as networks contain-
ing a mixture of both, exhibit a community structure, and that different commu-
nity detection algorithms can be used to unfold the communities of these networks.
However, we also show that there is a trade-off in creating high structural quality
and high logical quality communities. We reveal that although different community
detection algorithms use different approaches to define and extract the communities
of a network, algorithms that create communities with similar granularity and size
distribution also achieve similar structural and logical qualities. We confirm that
community detection algorithms which find coarse-grained communities achieve
high structural quality. However, we reveal that they fail to find communities with
high logical quality since they tend to combine smaller homogeneous communities
into mixed communities in favor of better structural quality. We also show that an
edge-based community detection algorithm can achieve a high logical quality since
it can separate ham and spam emails into distinct communities.

1.5.3 Identifying Misbehavior Using Community

Detection Algorithms

Recently, it was shown that the community structure of a flow network can be used
for successful intrusion detection [64]. In a community-based anomaly detection
method, normality is defined with respect to the social behavior of nodes concern-
ing the communities to which they belong. Nodes that participate in anti-social
communications and disrespect community boundaries by “entering communities
to which they do not belong” can be identified as anomalous by a community-based
anomaly detection method. Despite the fact that these methods use a notion of
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community, Ding et al. [64] showed that a traditional modularity maximizing com-
munity detection algorithm is not suitable for intrusion detection in network flow
data since the majority of intruders end up inside a large community and do not
enter other communities.

Our intuition is that, in contrast to Ding et al. [64], community detection al-
gorithm can be used for successful network anomaly/intrusion detection. In order
to verify this, we look into communities identified by different types of community
detection algorithms to extend and complement the work in [64]. Our hypothesis
is that misbehaving nodes tend to belong to multiple communities. However, a vast
variety of community detection algorithms partition network nodes into disjoint
communities where each node only belongs to a single community, therefore they
cannot be directly used for verifying our hypothesis. Therefore, we introduce aux-
iliary communities to enhance non-overlapping community detection algorithms.
This enhancement is achieved by adding a layer of auxiliary communities over the
boundary nodes of neighboring communities, allowing nodes to be members of
several communities. Therefore, this enhancement enables us to show that, in con-
trary to [64], it is possible to use community detection algorithms for identifying
anomalies in network traffic.

In addition to traditional community detection algorithms, numerous overlap-
ping algorithms exist which allow a node to belong to several overlapping communi-
ties [16]. We also compare our proposed enhancement method for non-overlapping
community detection algorithms with a number of overlapping algorithms for net-
work anomaly detection, and show that they have comparable performance.

Finally, we propose a framework for network misbehavior detection. The frame-
work allows us to incorporate a community detection algorithm for identifying
anomalous nodes that belong to multiple communities. However, since legitimate
nodes can also belong to several communities [24], we also introduce a number
of application-specific filters based on different graph properties to be used for
discriminating the legitimate nodes from the anti-social nodes in the community
overlaps, thus reducing the induced false positives. Our experiments show that our
framework is suitable for identifying intruders and the sources of scanning attacks
from flow networks, and the sources of spam from email networks.

1.5.4 Local Seed Selection for Overlapping Community

Detection Algorithms

Local community detection algorithms are gaining more attention than global al-
gorithms which require the structure of the whole network to be known. In local
algorithms, first local communities are identified independently of each other only
based on local knowledge of the network, then they are combined to provide the
global community structure of the network. Local algorithms are easy to parallelize
and therefore can scale well. However, the selection of good seeds to be expanded
into communities that achieve good coverage of the network is challenging. Our
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aim is to design a local seeding algorithms which can select a reasonable num-
ber of seeds which are well-distributed over the network and therefore can lead to
communities covering the majority of the nodes.

Existing seeding algorithms either require a global knowledge of the entire net-
work to be available or they will fail to pick an adequate number of seeds which
can lead to incomplete coverage of the network. Therefore, in this thesis we further
study the problem of local seed selection for finding a reasonably small number of
seeds. The seeds identified by such a seeding algorithm can then be expanded into
high quality overlapping communities using high quality local community detection
algorithms such as the Personalized PageRank-based algorithm (PPR) [24, 83].

We propose a novel seed selection algorithms for local overlapping community
detection. First, we define a similarity score which is calculated as the sum of the
similarity of a node with all of its connected neighbors by adopting the similarity
indices from link prediction techniques. In link prediction, the aim is to estimate
connections that are very likely to be formed between nodes in a network, therefore
link prediction methods typically use a similarity index to calculate the similarity
of the nodes which are not directly connected. If two nodes have a high similarity, it
is predicted that an edge will be formed between them. However, in our algorithm,
we use similarity indices to calculate the similarity of the nodes which already
share an edge. Our intuition is that a node that has a high aggregated similarity
with its neighbors is expected to belong to the same community as its neighbors.
Therefore, we propose to select the node with the highest score in its neighborhood
as a seed and expand it into a community. We have compared a number of different
widely used similarity indices for our seeding algorithm and have also compared
our seeding algorithm with a number of existing local seeding algorithms.

Although we show that by using similarity scores we can identify a small number
of very good seeds, we can also show that similar to other local seeding algorithms,
the expanded communities from these seeds do not achieve a high coverage of
the network. Therefore, we propose to use distributed random graph coloring
for enhancing our local seed selection algorithm. In order to combine similarity
scores with graph coloring for seed selection, we propose a biased graph coloring
algorithm in which the nodes with high similarity score are assigned a specific color
and color conflicts between neighbors are resolved at random. This enhancement of
our seeding algorithm makes sure that good seeds which have received the specific
color are well distributed over the network. Our biased coloring algorithm can also
be used for enhancing and improving other existing local seeding methods.

Our novel local seeding algorithms is parameter free, finds seeds that are well
distributed over the network, and does not pick neighboring nodes as seeds and
therefore does not lead to many duplicate communities. We empirically evaluate
the execution time of local community detection when seeding is used as the first
step of community detection and compare the quality and the coverage of the com-
munities expanded from the selected seeds using large-scale real-world networks.
Our experiments show that by using seeding, the execution time of community
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detection is dramatically reduced and the average quality of the communities is
preserved and a high coverage is achieved.

1.5.5 Graph-based Analysis of Medical Queries

Large search query logs carry a wealth of information about the behavior of the
users in information seeking and the language they use. Similar to many other
types of data, query log files can also be modeled as networks.

Our hypothesis is that graph-based analysis of words which have co-occurred
in different queries can provide a better understanding of the relations of words
and terms in different domains and in different languages. In order to verify our
hypothesis, we have generated a word co-occurrence network from the query logs
of a Swedish health care website. We study the structural and temporal properties
of the generated network and show that it is similar to other existing information
and social networks. We also look into the community structure of the word co-
occurrence network in order to understand the relation between the words in a
medical domain.

Moreover, we have introduced semantic communities which are communities
of words which have co-occurred with a semantic label. These labels are added
to the queries using medically-oriented semantic resources. We also apply a per-
sonalized PageRank-based community detection algorithm to the generated word
co-occurrence network and compare the identified graph communities with the se-
mantic communities. Our experiments show that while semantic communities can
cover only a small percentage of all the words in the logs, the graph communi-
ties can cover the vast majority of the words. Therefore, the graph-based analysis
can capture more relations among the words which have been used in the queries.
Moreover, the graph and semantic analysis capture different relations between the
words and identify communities which are only partially similar and therefore can
be used to complement each other. Overall, our graph-based approach can be used
as the first step towards a better understanding of the language usage in medical
domain as well as for providing better services and recommendations to the users
of the health care portal.

1.6 Summary of Contributions

This section summarizes the contributions of the papers included in this thesis.

1.6.1 PAPER I

In this paper, we show that an email network generated from legitimate email
traffic collected on an Internet backbone link (a ham network) can be modeled as
a scale-free small-world network similar to other social and interaction networks.
We also show the similarities and the differences in the structure of ham and spam
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networks and how they change over time. We reveal that the anti-social behavior of
spam is not hidden in a mixture of email traffic and causes anomalies (outliers) in
the structural properties of email networks. Moreover, we propose a simple method
for identifying the nodes that correspond to outliers in the degree distribution of
email networks and show that they are mainly sending spam.

1.6.2 PAPER II

In this paper, we study the community structure of ham, spam, and email networks
generated from real email traffic and compare a number of well-known community
detection algorithms for identifying the communities of these networks. Our ex-
periments reveal that there is a trade-off in creating high structural quality and
high logical quality communities. We propose to evaluate the logical quality of the
communities based on the homogeneity of the edges inside each community, and
show that regardless of the approaches used to define and extract communities,
the algorithms that create communities with similar granularity and size distribu-
tion also achieve similar structural and logical qualities. We also show that the
most successful community detection algorithm for achieving high logical quality
(i.e., clustering ham and spam emails into distinct communities), finds overlapping
communities by partitioning the edges of the network instead of the nodes.

1.6.3 PAPER III

In this paper, we extend and complement the previous work on community-based
intrusion detection. We hypothesize that misbehaving nodes tend to belong to mul-
tiple communities. To investigate our hypothesis, we consider different definitions
for communities, and propose a framework in which different types of community
detection algorithms can be used as the basis for network anomaly and intrusion
detection. We propose two enhancement methods for adding auxiliary communities
over the disjoint communities identified by non-overlapping community detection
algorithms. We show that by using our enhancement methods, it is possible to use
traditional community detection algorithms for identifying anomalies in network
traffic which is in contrast to the observations in [64].

Moreover, we propose a framework that allows us to incorporate communities
identified by overlapping algorithms for identifying anomalous nodes that belong
to multiple communities. We show that the algorithms which tend to identify
coarse-grained communities are not suitable for network misbehavior detection.
We also propose to use application-specific filters to filter out legitimate nodes
which can naturally belong to several communities. Our experiments reveal that
our framework is suitable for identifying scanning nodes from network flow traffic
as well as spammers from email traffic.
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1.6.4 PAPER IV

In this paper, we propose a novel distributed seed selection algorithm for local
overlapping community detection. We define a similarity score using the similarity
indices from link prediction techniques and propose an algorithm in which each
node compares its similarity score with all its neighbors, and the nodes which
have the highest score in their neighborhood are selected as seeds. We show that
this algorithm succeeds in selecting a small number of very good seeds which are
expanded into high quality communities but cannot cover the whole network. We
also propose to use graph coloring for enhancing our local seed selection algorithm
in order to improve the coverage. We propose a biased graph coloring algorithm in
which the nodes with high similarity score are assigned a specific color and color
conflicts between neighbors are resolved at random. Our experiments using large-
scale real-world social networks show that our seeding algorithm is fast, and leads
to high quality communities with a good coverage of the networks.

1.6.5 PAPER V

In this paper, we create a word co-occurrence network from query log files obtained
from a medical and health care portal. We show that this network has the same
structural and temporal properties that other information networks exhibit. We
use a local overlapping community detection algorithm to identify the communi-
ties in the co-occurrence network. We also use the semantic labels assigned to the
queries in the log files and define semantic communities which are communities of
words which have co-occurred with a semantic label. We compare the graph com-
munities with the semantic communities and show that our graph-based analysis of
queries can improve and complement the semantic analysis. We also study how the
length of the time window in which queries are observed can affect our graph-based
analysis.

1.7 Conclusions and Future Work

In this thesis, we have looked into algorithms and methods for analyzing networks
generated from large-scale real-world datasets. Particularly, we have focused on
the community structure of networks and have looked into the challenges and the
applications of community detection algorithms.

One of the challenges in identifying communities in a network is the selection of
the most suitable algorithm for the network, since different algorithms use different
definitions for communities and use different methods for identifying the commu-
nities. In this thesis we have performed an empirical comparison and evaluation
of a number of different community detection algorithms and show that there is a
trade-off between the structural and the logical quality of the communities identi-
fied by different algorithms. Therefore, an algorithm which can create communities
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with very high structural quality might not be the most suitable algorithm for the
application at hand, for example, separating different types of edges into distinct
communities.

Another challenge in using community detection algorithms for analysis of large
datasets is scalability. It has been shown that local seed expansion algorithms
are very successful in fast and scalable detection of high quality communities. In
this thesis, we have proposed a fast local seed selection algorithm which can be
used as a pre-processing step for local community detection using seed expansion.
Our algorithm can dramatically reduce the execution time of community detection
while preserving the quality of the identified communities and achieving a good
coverage of the network. Moreover, there are many interesting trade-offs between
the number of selected seeds, the quality, and the coverage of communities which
can be further studied. Another property which can further be taken into account
for seed selection is to reduce the number of duplicate communities.

In addition to investigating and addressing some of the challenges of community
detection, we have also looked into some of the applications of network analysis
and community detection. One of the applications which has been considered in
this thesis is identifying the source of unsolicited email. Our goal has been to re-
veal the differences and similarities in the communication patterns of legitimate
and unsolicited email by mining email networks generated from traffic seen on an
Internet backbone link. To pursue this goal, we have taken a social network anal-
ysis approach and show that the behavior of spam senders causes anomalies in
the structural properties of email networks, and these anomalies can be detected
using an outlier detection approach. We can also show that spam and ham, which
are mixed in the observed traffic, can be separated into distinct communities by
deploying a link community detection algorithm. Moreover, we have proposed a
framework for network misbehavior detection which takes advantage of overlap-
ping communities for identifying sources of spam as well as sources of other types
of malicious traffic such as scanning. We are able to show that misbehaving nodes
belong to multiple communities and they can be identified by either using overlap-
ping community detection algorithms or by enhancing non-overlapping algorithms
with auxiliary communities.

The proposed approaches in this thesis for identifying sources of misbehavior
are promising and can potentially be used to complement existing anti-spam and
intrusion detection methods. The advantage of deploying our approaches is that
they provide us with the possibility of stopping unwanted traffic closer to its source
by merely observing the communication patterns of network traffic, for example
email communications. However, there is more work to be done before our findings
can be deployed practically as part of a working anti-spam or intrusion detection
tool. One desirable future direction is to investigate how our methods can be
combined with each other to be used as a stand-alone detection system or in co-
operation with existing tools. One possibility is to deploy a network device that
monitors the traffic on a link and that is able to tag suspicious traffic or populate
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a blacklist. Moreover, a study of the robustness of our findings in order to see how
easy it is for the spammers or intruders to change their sending behavior and how
easy it is to evade detection is another future research area.

Another goal of this thesis has been to improve community detection algorithms
so that they could be used for different applications. We have introduced auxiliary
communities to enhance existing non-overlapping community detection algorithms
in order to identify sources of misbehavior from real network traffic. However,
our approach can potentially be extended for converting disjoint communities into
overlapping communities which will allow the use of existing non-overlapping com-
munity detection algorithms for identifying overlapping communities.

In this thesis, we have also shown how to use network mining and community
detection methods to analyze other types of large datasets such as the query logs
obtained from a Swedish health care portal. A future direction is to improve
our graph-based query analysis by improving the pre-processing of the data, for
example by representing different variations of words with a single node in the word
co-occurrence network, filtering out non-medical related words, and introducing
edge weights based on the frequency of word co-occurrences. Moreover, other
information from the logs can be deployed to better understand the language used
by users and to be able to improve the search experience of the users by providing
better suggestions and recommendations to them.

Overall, with advances in technology and computation and proliferation of
smart and mobile devices, new opportunities for collecting and analyzing big data
emerge and more and more applications can benefit from the extracted knowledge
from the data. Therefore, there is an increasing need for fast, dynamic, and scal-
able solutions which also open more research questions. One of the challenges is
to design new network mining algorithms and to improve existing ones to run in
parallel and in distributed settings. The designed parallel and distributed algo-
rithms also need to cope with the lack of global knowledge of the networks, as well
as the dynamically changing structure of networks. Moreover, there is also a need
for improving the quality of the network mining algorithms, particularly commu-
nity detection algorithms. Recent studies using ground truth data have revealed
that existing community detection algorithms are not very successful in identifying
the real communities in large networks, therefore new approaches to community
detection which for example take non-structural properties of the networks into
account, are desirable. Another interesting future research direction is to develop
efficient methods, such as visualization, for interpreting the output of different
graph algorithms, to allow better understanding of the structure of networks and
identifying interesting patterns and anomalies. Finally, extending the applicabil-
ity of network mining algorithms to more real-time domains and applications is
another challenging future direction.
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