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AVLANT NILSSON
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Chalmers University of Technology

Abstract

Metabolism is central to all life. It provides the energy and the building
blocks from which the cells are constructed and maintained. Synthetic biol-
ogists often make genetic alterations to the enzymes involved in metabolism
to improve product yields. Drastic changes in metabolism are linked to
several diseases, e.g. cancer. It is therefore desirable to understand and
quantitatively predict cell metabolism.

Flux balance analysis (FBA) is a successful mathematical approach for pre-
dicting the metabolic activity of a cell. It makes use of the stoichiometry of
the biochemical reactions and the rates of nutrient uptake. These relations
are used to generate self consistent sets of metabolic fluxes, i.e. rates of
metabolic conversion over the reactions. Amongst these it is common to
select the set that has the highest growth rate as the predicted set. This
has been shown to agree well with experimental data.

One problem with the standard FBA approach is that it does not constrain
the flux levels. In the living cell fluxes are constrained by the fact that they
are performed by a finite amount of enzymes. The enzyme levels are limited
by the amount of energy available for enzyme production and a limited
space for enzymes to occupy. It has been shown that taking such limits in
to account can improve the prediction powers of FBA.

In this master thesis a modified version of FBA has been developed that
uses the fluxes and enzyme kinetic parameters to estimates the weight of
the participating enzymes. The total protein weight is constrained to exper-
imentally observed levels. This allows prediction of the maximum growth
rate for different substrates and shifts in metabolic strategy to fermento
respiration at high growth rates. This might become of use to metabolic
engineers in predicting if a potential pathway might decrease cell fitness.

Keywords: FBA, Resource management, Cost, Crowding, Crabtree effect,
Galactose, Cell size, Saccharomyces cerevisiae, Yeast
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1

1 Background

The cell is the basic unit of life. Improving the understanding of the cell
has therefore potential to improve quality of life through many cell related
applications e.g. treatment of diseases, production of biofuels, increasing
productivity in agriculture. The cell is also a fascinating topic in its own
right. Systems Biology is a field of study that focuses on the interactions
between the components of a cell. These interactions give rise to complex
behavior.

Making computer models of cells can be a method to improve understanding
of their complex behavior. A model integrates knowledge in a structured
framework and allows the modeler to generate verifiable predictions of cell
behavior. A more elaborate discussion on modeling follows below (Section
2.8).

Saccharomyces cerevisiae (S. cerevisiae) is a popular organism for modeling
purposes. Being eukaryote, i.e. cells are compartmentalized like mammalian
cells, but at the same time unicellular, gives it an intermediate level of
complexity, suitable for studies. As a result there are large amounts of data
available. The motivations for using S. cerevisiae will be further elaborated
below (Section 1.1).

Fast growing organisms, such as S. cerevisiae, have a streamlined resource
management system. Metabolites, i.e. food, are taken up from the sur-
roundings at high rates and the cell culture can double its weight in less
than 2 hours. This is performed by a network of biochemical reactions that
transform substrate, e.g. glucose, ammonia, into forms more useful for the
cell, e.g. ATP, proteins. These reactions are in general facilitated by en-
zymes (i.e. catalytic proteins) that enhance the speed of selected reactions
several orders of magnitude compared with the spontaneous reaction speed.
The enzymes are in turn produced from metabolites by other enzymes. This
generates a complex codependency which can be described and predicted by
modeling.

There exist an upper limit on the growth rate for all organisms (Section
1.4). Many causes of this limit have been suggested; metabolite uptake
rate [80], ribosome translation speed [41], metabolic speed [8], etc. For
a dynamic system a single limiting factor is improbable. This since the
optimal response to a limit is to decrees the non-limiting factors to avoid over
capacity and give space to more of the limiting factor, e.g increase ribosomes
and decrease metabolism. This is likely to result in a situations where all
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factors reach a balance where each in turn would appear to be limiting to
an observer. Because of rigidity, e.g. the discrete amount of DNA strands,
such adjustments might however not always be possible. These limits might
interact with each other to form a complex limiting landscape (Section 2.6).

It has been observed that yeast switches metabolic strategy at high growth
rates, the Crabtree-effect (Section 1.3). A similar shift has also been noticed
in fast growing cancer cell, the Warburg effect [74].

Modeling of metabolic networks is commonly performed using flux balance
analysis (FBA). These models predicts the fluxes of metabolites over the
biochemical reactions. This is done using the equations of the reactions and
the uptake rate of metabolites (Section 1.6). The standard version of FBA
does however not take the codependency between metabolism and enzymes
amount into account [47]. It can therefore predict impossible flux levels in
some cases.

Some of the limitations of FBA can be overcome by models that consider
the physical nature of the enzymes [8, 17, 1]. These models constrain the
fluxes by incorporating physical phenomena e.g. enzymatic speed, weight,
transcription, translation. Some of these models are very complex [51] and
consist of almost 100 000 equations. Yet they are currently only implemented
for the simpler prokaryote organisms, i.e. cells without compartmentaliza-
tion, e.g. bacteria. Other models are very simplistic [36] and only include
the cost of enzymes indirectly by minimizing the cellular activity. The cur-
rent state of the modeling field will be reviewed in a section below (Section
1.6).

The purpose of this master thesis is to model how the behavior of S. cere-
visiae changes under different growth rates. This will be done through a
set of models involving a modified version of FBA that takes the limit of
metabolic fluxes imposed by enzymes into account. The models attempt to
tread a middle ground between complexity and simplicity. The purpose and
goal of the thesis will be further discussed below together with the scope
and limitations (Section 1.7).

1.1 What is Saccharomyces cerevisiae?

Saccharomyces cerevisiae (S. cerevisiae) is a yeast. It is commonly used in
baking and brewing and has been an integrated part of human culture for
thousands of years. It is one of the most popular organisms in biotechnology
and serves as a work horse in many industrial fermentation processes. Its
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current use in industrial service alows increased understanding and discov-
eries to be directly translated into increased productivity. Both S. cerevisiae
and humans belong to the eukaryote domain of life. In many cases discover-
ies in yeast can be translated to discoveries in humans, since many proteins
are similar i.e. homologs.

S. cerevisiae is a microrganism and therefore behaves in a comparably sim-
ple way. Many aspects of a mammalian system are almost non-existent,
for instance cell-cell interactions and cell differentiation [57, 39]. The lat-
ter implies that there seldom are several versions of the same protein, i.e.
alternative splicing, which means that one gene codes for one protein.

One noticeable property of S. cerevisiae is that it is surrounded with a thick
cell wall made out of mainly carbohydrates. The thickness of the wall might
be as large as 5% of the cell’s radius, and it can take up more than 20% of
its dry weight [40].

The reproduction of S. cerevisiae also carries some peculiarities. Most uni-
cellular organisms divide in half and become two cells of equal sizes, fission.
S. cerevisiae however reproduces by budding, a process where the mother
cell forms a growing bud that becomes the daughter cell. The daughter
cells are typically smaller than the mother cells, approximately 60% of the
mother cell’s size [24]. For each budding the mother cell gets a scar. By
counting these scars the age of the cells can be determined.

The yeast cell can reproduce both asexually and sexually. The most common
form is asexual reproduction. In this case the cell carries a single copy of
DNA, i.e a haploid cell, which is copied to the daughter creating a genetic
clone. A less common form involves 2 or more copies of DNA, a polyploid cell
in which case the offspring has a different genetic markup than the mother.

S. cerevisiae is a so called model organism, meaning that it is better known,
less complex and more convenient for experimental studies and manipula-
tions than other organisms. Some motivations for modeling S. cerevisiae are
that it has a fully sequenced genome and that the function of most of its
proteins are known1. It also has relatively few genes, around 6000, compared
with the human genome with 30 000 genes [39]. There are many documented
experimental procedures for gathering data on yeast resulting in a rich col-
lection of available measurements. There exist data on its regulation, i.e.
transcriptomics, protein abundance, i.e. proteomics, and metabolite concen-
trations, i.e. metabolomics. A consequence of an efficient genetic toolbox

1 At the time of writing approximately 17% of the genes were annotated with “unknown
function” in Saccharomyces Genome Database (SGD) [19].
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that permits easy modifications of the genome (gene knock outs, over ex-
pression, replacements etc.) as well as libraries of genetically altered strains
[39].

In experimental settings yeast is commonly grown in chemostats or in batch
cultures. In batch cultures all nutrients are added at the beginning of the
experiment and the cells grow at maximum rate until the nutrients are
depleted. In the case of the chemostat, cells are given nutrients at the same
rate as they are being consumed (Figure 1). Cells are removed at the same
rate as they are growing which gives a constant biomass concentration in
the reactor. This setting allows growth rate dependent phenomena to be
studied.

In�ow

Out�ow

Gas in�ow Gas out�ow

Figure 1: Schematic illustration of a chemostat. There is a constant in-
flow of water with dissolved nutrients and a constant outflow of water with
unprocessed nutrients and cells. If the chemostat is ideally stirred the con-
centration of cells and nutrients in the outflow is the same as in the reactor.
To replace the cells flowing out of the reactor, the specific growth rate of
the cells becomes equal to the the dilution rate outflow

reactor volume . If the dilution
rate is higher than the maximum growth rate of the cells, they are washed
out.
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Figure 2: The distribution of the building blocks of a cell for increasing
specific growth rate [63].

1.2 The Functions of Saccharomyces cerevisiae by Mass

In order to survive and reproduce a cell must uphold a range of functions.
A protecting membrane and cell wall, DNA for storing the genetic informa-
tion, RNA for transcribing and translating it in to proteins that catalyse
biochemical reactions. Depending on the growth conditions the cell will
prefer a certain cellular composition (Figure 2). As growth rate increases
there is in general less stored reserves of carbohydrates and more protein
and RNA.

Protein plays the most active role in the cell. The function of each protein
is in general very specific, e.g. catalyzing a certain reaction. With the aid
of protein abundance measurements, i.e. proteomics, and protein functional
annotation and categorization it is possible to get a quantitative picture of
the distribution of the total protein mass for a given condition (Figure 3).
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Protein synthesis

Amino acid synthesis

Central carbon metabolism

Non central Metabolism

Nucleotide synthesis

Cell Wall

Fatty acid synthesis

DNA interacting, transcription and replication

Signaling and RNA interaction

Transport

Other

UnCategorized

Low abundance

Figure 3: The share of the total protein mass for each functional category at
high growth rates and with growth medium including amino acids (Appendix
E).

Protein synthesis is the most abundant category at high growth rates, which
reflects that self replication is the dominant activity. In addition there is also
amino acid synthesis at 8%, reflecting that the cells were grown on media
which already contained amino acids.

Aside from constituting a third of the protein of the cell, protein synthesis
involves all of the RNA, or 10% of the total weight. Approximately 80% of
this is directly in the protein producing ribosomes, rRNA, and 15% indirectly
by carrying amino acids to the ribosomes, tRNA. The remaining 5% are
dedicated to carrying the information on protein production from DNA,
mRNA.

The energy and building blocks required for growth are given by the central
carbon metabolism. Approximately one quarter of the proteins are involved
in this metabolism, it is further discussed below (Section 1.2.1).

1.2.1 Central Carbon Metabolism

The central carbon metabolism is a cellular function that is highly conserved
between organisms. In a network of enzymatic reactions it converts nutri-
ents, e.g. glucose, to a range of metabolites and to energy. The output is
used by the other proteins of the cell to carry out their functions. Central
carbon metabolism involves several well known metabolic pathways such
as glycolysis, the pentos phosphate pathway, the TCA cycle and oxidative
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phosphorylation, where the two latter take place in a separate membrane
enclosed compartment, i.e. mitochondria.

S. cerevisiae has a particularly inefficient respiration chain, the total cen-
tral carbon metabolism can produce approximately 16.5 ATP per glucose
molecule, compared with literature values for other organisms of up to 30
ATP. This is in part a consequence of a difference in the first step of the
respiration chain. In many organisms this is performed by a complex of sev-
eral proteins seated in the mitochondrial membrane, where the location and
structure allows it to pump hydrogen atoms against the proton gradient,
ultimately generating ATP. In yeast, however, this function is performed by
a single small protein that only associates to the membrane and does not
contribute to the gradient.

TCA
Oxida ve 

Phosphoryla on

Glycolysis

Fermenta on

Galactose

Conversion
Galactose

Glucose

2

14.5

ATP synthesis

Ethanol

CO2

Biomass

O2

Figure 4: Glucose enters glycolysis, some sub steps provide precursors for
the lipid, carbohydrate and amino acid synthesis that make up the biomass
equation. Glycolysis results in the net production of 2 ATP and some energy
rich products. These energy rich products are either excreted through the
fermentation pathway or enter the mitochondria and the TCA cycle in which
they generate precursors to the biomass equation and simpler energy rich
products. These products are further used for energy production by oxida-
tive phosphorylation, resulting in the production of 14.5 ATP. If Galactose
is used as substrate it first has to be converted to enter glycolysis.
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1.3 The Crabtree Effect

The Crabtree effect refers to a shift in metabolic strategy from respirative
to fermentative growth at high growth rates [74]. The shift in metabolic
strategy decreases the biomass yield severely i.e. the biomass/substrate ra-
tio decreases [22]. Instead substrate is converted to ethanol. The underlying
reason for this shift has been unknown [22], but recently it has been sug-
gested that it could arise from molecular crowding [47, 74]. The proposed
mechanism being that the space taken up by the enzymes increases with
growth rate because more are needed to handle the increasing fluxes. Since
cells only have a finite volume, the enzymes of oxidative phosphorylation
might be down regulated to make space for more glycolytic enzymes.
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Figure 5: The amount of biomass per consumed substrate remains more or
less constant at low growth rates. At a certain growth rate the cell switches
metabolic strategy followed by an increase of substrate consumption and a
corresponding increase in ethanol production. Data from literature [75].

The Crabtree effect is rather specific for S. cerevisiae. Other organisms, e.g.
Kluyveromyces marxianus can grow at high growth rates, µ = 0.49, without
experiencing the Crabtree effect. At these rates the protein content is very
high, as much as 71% of the dry weight [26].
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1.4 Growth Described by the Monod Equation

All organisms have an upper limit on their growth rate. The growth rate,
µ, of an organism is typically controlled by some limiting substrate, [S]. In-
creasing the substrate increases the growth of the organism until the maxi-
mal growth rate, µmax, is reached. This behavior is described by the Monod
equation (Equation 1).

µ = µmax
[S]

ks + [S] (1)

At low substrate concentrations the growth increases linearly with substrate,
and at high concentrations the relation is logarithmic, reflecting a sinking
margin benefit of substrate (Figure 6). The description is intuitive and the
Monod equation fits experimental data of many microorganisms well.

The maximum growth rate depends on the substrate. For the sugar galactose
the growth rate is 0.17-0.23 [14] compared with 0.46 [26] for growth on
glucose.
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Figure 6: An example of the Monod equation.
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1.5 The differences in enzymatic activity amongst proteins

Also enzymes have a maximal rate by which they catalyze biochemical re-
actions. In the simplest form, enzymatic activity follows Michaelis Menten
kinetics. In similarity to the Monod equation, the rate of enzymes increase
linearly at low concentrations and saturates at some maximal catalytic rate
for high concentrations.

The maximal amount of molecules per second that can be catalyzed by
a single enzyme (turnover) is given by the kcat value. The values of kcat
are available in databases and literature and span several orders of magni-
tude. One of the most famous enzymes catalase can catalyze over a million
molecules each second [60]. For the enzymes of central carbon metabolism,
the kcat values lie between 1 and 104 s−1 with a median speed of 180 s−1

(Section 3.1).

1.5.1 The Effect of Concentration on Enzymatic Activity

The rate by which enzymes operate in cellular conditions will always be
lower than their kcat since not all enzymes will be bound to a substrate. The
concentration of substrate necessary for half of the enzymes to be occupied
is given by km. This value varies for different enzymes, the median km

in brenda is 60 µmol [60]. This value is in the same order of the average
molarity 2. A study of absolute metabolite concentrations has also shown
that most metabolite concentration are above their km value[11], for central
carbon metabolism the values were around their km.

A high enzyme utilization requires large metabolite pools. However there
are limitations to the the pool size given by the solvent capacity of water
and by the amount of undesired reactions that might take place at high
concentrations[6]. It has also been suggested that osmotic pressure might
be limiting [69]. For reactions with small thermodynamic driving force the
concentration of substrate must be considerably larger than the concentra-
tion of product to avoid wasteful backward flux. If several of these reaction
occur in sequence the concentration drop at each step can add up to a sub-
stantial decrease in substrate concentration [69]. A trade off might exist
between enzyme utilization and metabolite concentration[69].

2 Metabolites correspond to 3% of the dry weight in E. coli [53]. The mass to water
ratio of the cell is approximately 0.34. This gives a total metabolite concentration of
10 g/liter. Assuming that all metabolites have the molar weight of glucose (180 g/mol)
the total molarity is 0,056. Assuming there exists approximately 1000 metabolites the
average concentration becomes 55 µmol.
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The use of km in a cellular context might in some cases be misleading since
crowding from macromolecules affects the effective concentration through
the excluded volume [53], macromolecules reduce the space for metabolites
to occupy which increases the concentration in the space that they can
occupy.

1.6 Literature Review

There exist many models of cells with different scopes and purposes, e.g.
constraint based models, kinetic models and whole cell models. Constraint
based models aim to predict the cells’ states by reducing the set of possible
states using constraints [45]. Commonly it is the metabolic network that
is the target of the model. There are many versions of constraint based
models, a recent review article lists over 100 different variants [45].

This project uses a modified FBA model (Section 1.6.1). There are several
relevant modifications to FBA which are assumed to make it more realistic
and thereby more accurate (Section 1.6.3, 1.6.4 and 1.6.5).

1.6.1 Flux Balance Analysis

Flux balance analysis is a constraint based model with increasing popularity
(Figure 7). The model describes the fluxes of metabolites over the cells’
reactions using reaction stoichiometry, reaction directionality and substrate
uptake rates as constraints. Since there is an influx of metabolites there also
has to be a sink. This is commonly taken to be the biomass equation, a set
of metabolites that when drained contribute to growth.

Commonly the biomass equation will involve the cellular components, e.g.
amino acids, lipids, carbohydrates and energy in the form of ATP. Solu-
tions are found by assuming that the concentration of each metabolite does
not change over time, a steady state. The best description of the system
is commonly assumed to be the set of fluxes that optimizes some biologi-
cally relevant sub set of fluxes, e.g. maximizes biomass or ATP production
or minimizes glucose uptake. In practice this is done by setting up the
reactions in a stoichiometric matrix and searching for an optima with lin-
ear programming (Section 1.6.8). Several modifications and extensions to
standard FBA exist, adding different constraints such as thermodynamic
constraints, constraints from gene expression data and kinetic constraints
[56].
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Figure 7: Results for the term "flux balance analysis" in PubMed. The
data suggest that there are currently 60 people working directly with FBA,
assuming one publication each year per active scientist. The slope of the
linear fit is 4.3.

Central to FBA is the assumption that the concentrations of metabolites
does not change. This also means that the fluxes are time invariant. This
is a strong and incorrect assumption that simplifies the modeling. It might
however be considered justified if seen as an average over the cell population
or the single cell cycle, since no metabolite gets depleted or reaches infinity
for continuous cultures.

1.6.2 Kinetic Models

Whilst FBA describes the time averaged behavior of the cell, kinetic mod-
els aim to describe the time dynamic behavior [65]. They normally involve
solving a set of ordinary differential equations and kinetics data from mea-
surements of enzyme activity. Because of their demand on experimental
data and the complexity of the model, they are often limited in scope, e.g.
a kinetic model was used to predict enzymes abundance in glycolysis [66].
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1.6.3 Whole Cell Models

Whole cell models [38] aim to describe the whole cell as a system in order to
predict metabolite functions, life cycle stages or other behavior and pheno-
types. These have become more common as a result of improved data and
integrated modeling methods, e.g. commonly FBA is integrated with other
modules [38, 31].

They may also be done on a more conceptual level with few components and
without experimental data to demonstrate system properties [47]. One such
model has conceptually shown that low and high growth rates might give rise
to different metabolic strategies. This was done by setting up a system with
a pathway that was efficient but slow and one that was fast but wasteful.
The same model showed that it is expected to have a larger fraction of the
proteins devoted to substrate uptake at low substrate concentration and
growth rates, and that a maximum growth rate can be expected based on
the rates of the involved units.

The recently developed Metabolism with gene Expression (ME) models ex-
tend FBA beyond metabolism to also include the transcription and transla-
tion processes [43, 70, 51]. Along sides with the metabolites they therefore
also include the concentration of the enzymes responsible for the metabolic
reactions. The included enzymes are used to regulate the fluxes and there-
fore their cost is taken into consideration by the model. The ME models are
very complex involving as many as 80 000 reactions.

1.6.4 Metabolic Dilution

Standard FBA does not take metabolite dilution in to account [12]. When
the cells grow at a certain rate, the pools of metabolite must grow at the same
rate. This leads to a drain of metabolites after each reaction which has the
effect that reactions will proceed seemingly slower. An effect that increases
with growth rate 3. Since models are normally fitted to experimental results
with a maintenance cost given in ATP [27] neglecting this will not affect
growth predictions. It will however result in an over estimation of reactions
involved in ATP production and an underestimation other reactions. Taking
metabolite dilution in to account requires knowledge of the metabolic pool

3 The growth rate for yeast will be at the most 0.46 and the metabolite concentration is
3% of the cells’ weight, not taking this into account might affect the results by as much
as 1.4%
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sizes which requires experimental data or a model. The dilution effect will
therefore not be considered in this thesis.

1.6.5 Crowding Models

Crowding models acknowledge that all fluxes must be limited since they are
mediated by proteins that only can have a limited concentration (Table 1).
The models require a prediction of protein concentrations from fluxes, which
is commonly done using kcat (Section 1.5). A full scale metabolic model of
E. coli has been made with a limitation on enzyme concentration [8]. In this
model the concentration of each protein was approximated by multiplying
the flux with values drawn from a gamma distribution. This was interpreted
as each flux contributing to a protein volume which is limited by the finite
volume of a cell. They also sanity checked their predictions using kcat values
from databases.

The MOMENTmodel predicts the enzyme concentrations based on database
kcat values [1]. The results are interpreted in terms of each proteins weight
being limited by the total weight of proteins. They find that the trend
for maximum growth rate of E. coli grown on different substrates can be
predicted. They show that the accuracy of the prediction is dependent on
using the real kcat values. Randomly drawn kcat values gives a much worse
prediction pearson correlation 0.2 compared with 0.47. This shows that the
effect does not arise only from the metabolic network, but also from the
weights. Which indicates that using an average turnover for all reactions,
which has been suggested [31], might give incorrect results.

A resent article studies the effect of crowding on a limited membrane surface,
which applies to membrane bond proteins, e.g. transporters and the proteins
of the electron transport chain in the case of E. coli [80].

It has since earlier been noticed that a minimization of the total flux can
give good predictions [36]. This relates to crowding since minimizing flux
also decreases the amount of proteins used. There have also been attempts
at minimizing the metabolic network while preforming the same tasks [48].

Standard FBA only predicts the net flux of reactions. If there is a large
backward flux over the enzyme, the net flux will underestimate the total
amount of enzyme required for the flux [36]. This can possibly be resolved
by using ∆G values [69]. A tug of war simulation has been made where
optimal enzyme utilization is traded for high metabolite concentrations [69].
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Table 1: Table of crowding models.

Name Description
FBA with
Molecular
Crowding
(FBAwMC)

Calculates the volume of enzymes that are
required for a certain flux distribution, and
limits it. For each reaction a crowding
coefficient is calculated describing its
contribution to the total enzyme volume.

[8]

FBA with
Membrane
Economics
(FBAME)

Calculates the area of membrane that is
required for a certain distribution of fluxes over
the membrane bond enzymes, and limits it.
The relative membrane cost of en enzyme is
calculated as the fraction of the membrane
space that would be required for 1 mol of
reaction.

[80]

Metabolic
Modeling with
Enzyme
kinetics
(MOMENT)

Calculates the total weight required for a
certain flux distribution, and limits it. For
each reaction the required enzyme mass is
calculated. Since FBAwMC converts mass to
volume with a constant this a equivalent but
possibly more intuitive formulation.

[1]

ME models,
Whole-Cell
Computational
Model

These models involve some crowding limits
since they predict enzyme concentrations using
kcat.

[43]
[70]
[51]
[38]
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1.6.6 Prediction of Metabolic Strategies

The existence of different metabolic strategies has been experimentally ob-
served and conceptually modeled [47] (Section 1.6.3). A model that describes
this has been developed testing the cost and performance of 5 different
metabolic strategies [17]. Both the fixed and dynamic cost for each strategy
was calculated and the performance was calculated under different condi-
tions. The model showed that different strategies are indeed optimal under
different conditions. This has also been shown cross species, where a model
was able to predict which glycolysis pathway different species were likely to
use [25]. The model compared the energy production of the pathways with
the consumption related to the involved proteins. The Crabtree effect in S.
cerevisiae could be reproduced for some realizations of randomly sampled
kcat values and molecular volumes [74]. The order in which metabolites are
taken up by E. coli has also been predicted [8].

1.6.7 The Meaning of Optimality in a Cellular Context

In the case of modeling it is common to describe the objective, e.g. growth,
of a cell by an objective function. Given an accurate description of the input
to the function and assuming a correct understanding of what is beneficial
for a cell, it could be expected that the cell has been selected for optimality.
By definition optimality for a system occurs when there is no way to make
a change that increases benefit. Optimality is dependent on the objective
of the system. For complex systems in complex environments the objective
will typically also be intricate.

By keeping the surroundings of an organism constant and simple it is pos-
sible to influence what is optimal. After only a few hundred generations of
evolution organisms conform relatively well with the simple types of objec-
tives used by modelers [44]. But also when considering simple objectives
there is some controversy, it has been suggested that there is a trade of be-
tween biomass yield and speed of growth [1]. Another complication is that
organisms in the same culture can acquire different objectives, such as in
the case of free riders [30].

A common definition of optimality is the specific growth rate, the speed
of biomass growth. A growth function is constructed where the metabolic
precursors for growth related macromolecules are drawn together with the
energy demands to assemble them. The composition of macromolecules is
normally taken from dry weight measurements of cells. Since the compo-
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sition changes demanding on the condition, different functions can be used
for different conditions [50].

There is a conflict between optimality and flexibility [61]. It has been dis-
cussed in terms of a trade of between changing configuration totally at some
cost, or preforming slightly worse. This was studied by comparing the pre-
dictions from several different objectives and it was shown that only a ob-
jective that weighted these objectives could explain the behavior. It has
however also been argued that a more complete model can incorporates
these different objectives into a single objective [51].

In a non-constant environment optimality becomes less dependable since
events that are unforeseen might change what is optimal. Such events might
be a sudden increase in glucose rendering the investment in transporter
proteins excessive. Another event might be a decrease in extracellular amino
acids, rendering the amino acid syntheses under dimensioned. The cost of
uncertainty is hard to predict for the cells since it involves uncertainty. A
possible solution is to maintain the ability to quickly adjust the system
[42], some degree of sub optimality is also likely to remain because of the
coarseness of the regulation and a rough fitness surface. Having an excessive
regulatory system might in it self be costly (Figure 8).
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Figure 8: Illustration of the tradeoff between optimal efficiency and space
requiring regulation. The efficiency is assumed to increase with diminishing
returns, modeled as Michaelis Menten. As regulatory enzymes take up space
and resources there is less space for the productive enzymes. Assuming that
work is the product of amount and efficiency there must exist an optimal
regulation level between 0 and 100% of proteins dedicated to regulation.
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Instead of modeling with basis in optimality it is possible to model with
constraints taken directly from experimental data [45]. In the absence of an
objective the model takes the role of descriptive rather than predictive, it
can however be used to calculate the non-measured fluxes.

1.6.8 Linear Programming

Linear program is commonly used to find solutions to FBA problems. It is a
way to find the minimum value for a linear combination c of values in a vector
x. In the case of FBA the vector represents the fluxes. The values of x may
be bounded by an upper xuband lower xlbbound. The vector has to fulfill a
set of inequality constraints b that arise from different linear combinations
of the elements of the vector. The constraints are commonly written on
matrix from S (Equation 2). By combining two inequality constraints it is
possible to get an equality constraint.

S × x 0 b, (2)
min(x× c)

There exist several algorithms for finding the minimum, e.g. simplex algo-
rithm, interior point algorithm. Because of the linearity there can only exist
one optimal value. If the problem is consistent and bounded, the solvers are
guarantied to find the global minimum.

1.6.9 Criticism and Problems with the Crowding Models

A problem that has been noticed by the ME modelers is that the crowding
models will under predicts protein concentration at low growth rates [51].
This is solved in the ME model by switching to a protein maximization
strategy at low growth rates. Although this appears to give a good prediction
of protein concentration it is rather ad hock.

A set of criticisms [23, 42, 20, 32, 72] is related to there not being a strong
correlation between changes in gene expression in terms of mRNA and a
corresponding change in flux. A lot of the criticism applies mainly to the
steps between gene expression and protein expression where interfering phe-
nomena such as gene silencing, mRNA and protein degradation etc might
occur. Some of the criticism however also applies to crowding models and
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the steps between protein concentration and fluxes. Interfering phenomena
might be product inhibition, substrate limitation, alosteric regulation, pH
dependence, phosphorylation, etc. the considerations that are taken into
account in kinetic models (Section 1.6.2). Although a certain protein con-
centration is a necessary condition for a certain flux, there might exist a
range of concentrations above the minimum [42].

The for mentioned criticism is generally directed towards predicting fluxes
from enzyme concentration, rather than the opposite. The criticism is often
based on observations from over expression of a set of proteins, with no no-
ticeable change in the fluxes. Since proteins are involved in pathways, other
proteins might block increased flux through insufficient substrate concentra-
tion from preceding steps, or a product build up at subsequent steps. Over
expression will also increase crowding which might block increased flux. One
article [42] notes that in the cases were fluxes change it is mainly as an result
of changes in growth rate. This is however expected since a decrease in an
important flux will ultimately decrease growth.

A common criticism towards optimality is that it is commonly possible to
improve fitness by gene deletion or other kinds of engineering [42]. That
gene deletion can improve growth could be seen as an argument for crowding
being a limit to growth.

1.7 Purpose, Scope, Limitations and Goal

The purpose of this master thesis is to investigate what will be the con-
sequence of limiting metabolic fluxes by the amount of proteins that are
required to carry them. The main focus will be on the effects on metabolic
strategies, how the metabolic behavior of S. cerevisiae changes with different
growth rates and for different substrates.

This has already been done with good results in E. coli with real data and
conceptually with random data for S. cerevisiae (Section 1.6). There has
however, to the best of my knowing, not been made such a model that uses
real kinetic data for S. cerevisiae.

The model is mainly intended to have a theoretical value in determining if
the introduction of these limitations will change the behavior of the system.
But some qualitative and order-of-magnitude quantitative results are also
expected. Some of the biological questions that the thesis will try to address:

1. Can shifts in metabolic strategy such as the Crabtree effect be ex-
plained by protein related flux limitation?
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2. Can the lower specific growth rate observed for growth on galactose
be explained in a similar way?

3. The concentration of all enzymes involved in the model will be pre-
dicted as a side effect of the main method (Section 2). Do these pre-
dictions agree with literature values?

4. Since higher growth rates require more flux, the protein concentration
is expected to increase. Can this be related to changes in the mean
cell size?

5. Large cells gives a lower uptake per cell volume. Can this impose an
upper bound on the cell size?

6. Central carbon metabolisms share of the total protein mass is approx-
imately 25%. Does competition over space from the ribosomes explain
why this share is not larger?

7. Since low growth rates require very little flux the proteins are expected
to be underutilized. Can this be related to lower metabolite concen-
trations?

1.7.1 Limitations

To keep the project relatively simple it will focus on one organism, Sac-
charomyces cerevisiae. There will be no time dynamics, the steady state
assumption from FBA will be used. The study will be limited to the cen-
tral carbon metabolism. The other cellular components are assumed to be
independent of CCM and will only be modeled through their drain on the
metabolites in CCM and their limiting effect on the protein pool. This
includes transport reaction that are intimately linked to CCM.

Although cells have an extensive regulatory network that controls the cell,
it will not be modeled. It is thereby implicitly assumed that the cell can
reach all possible metabolic states, i.e. enzyme concentrations, through reg-
ulation. And that the regulation is made in such way as to reach optimality.
Optimality will be seen in terms of maximizing growth rate or minimizing
substrate utilization for a given growth rate, which is equivalent [27]. It
should be emphasis that although regulation is not explicitly modeled, all
the metabolic states reached by the system must do so through regulation.
The model can in that sense be viewed as a prediction of which regulations
the cell will impose.

The gathering of stoichiometry data from databases and literature has al-
ready been performed for S. cerevisiae [3, 50, 27], only minor changes will
be made to these reconstructions. To allow different metabolic strategies to
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emerge the network however needs to be of a sufficient size. And the drain
of metabolites from other cellular functions to be reasonably accurate.

No physical experiments will be performeds, the project relies fully on the
experimental work already available in literature.

The result of this project will hopefully be a demonstration of how a simple
extension to FBA can allow modelers as well as experimentalists to get more
accurate predictions when planing pathway additions and substitutions, as
well as in understanding pathology in biological systems.

1.7.2 Ethical and Environmental benefits

The choice to only use in silico models, i.e. computer models of cells, allows
a lot of experiments to be done at high pace and at a low economical and
environmental cost. The use of in silico models allows genetic experiments
to be carried out with out specific permission and without risk for experi-
mentalists and research animals. Improvements of in silico models might in
the long term decrease the research cost in GMO development and thereby
increase its usage. This might have positive effects on the productivity of the
world, but could also result in increased genetic homogeneity which might
make the ecological system more vulnerable.
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2 Methods

FBA was the main method used in this project. It is well founded and
in broad practical use [50]. Some modifications were made to the FBA
formulation to incorporate the enzyme concentration prediction and limi-
tation. Several systems with this purpose are already in use [8, 1, 51], the
framework was however built extending on the Reconstruction, Analysis and
Visualization of Metabolic Networks (RAVEN) framework for FBA [3]. The
motivation being that the changes were relatively simple to implement, and
that no potential additional features were introduced that might affect the
result (Section 2.1).

The results depend on a big set of experimental determined kcat values from
literature. To investigate how measurement errors might affect the result,
simulations with perturbations were made (Section 2.3). To further aid the
analysis of the data, a visualization tool was constructed (Section 2.7).

The proteins of central carbon metabolism are only a part of the cell, ≈
25% of the proteins at high growth rates. The interactions with the other
functions of the cell were taken in to account by analyzing proteomics data
(Section 2.5) and by extracting the biomass equation from a larger model
(Section 2.1.2).

FBA gives an answer to what is optimal given a certain biomass composi-
tion and substrate uptake. For changing growth rates both of these factors
are subject to change. A wrapping framework that allowed a systematic
investigation of the predictions of FBA under different conditions was de-
veloped. This framework did not rely on any specific theoretical foundation
as it is simply a convenient and systematic way to test different parame-
ters. The framework allowed the limitations on protein concentrations to
vary with the condition, and thereby to relate to experimentally measured
protein concentrations.

It has been theorized [54, 80] that substrate uptake rates might be a lim-
iting factor at high growth rates. A simple model testing this alternative
hypothesis was investigated (Section 2.6.3).

It is desirable to model cells in a computer both from an applied and theo-
retical perspective. However care must be taken to avoid common modeling
mistakes (Section 2.8).
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2.1 A Kinetically Constrained Version of FBA

A FBA model requires a stoichiometric description of a metabolic network
(Section 2.1.1), a biomass equation (Section 2.1.2) and a linear programming
solver (Section 2.1.3). The main modification in the kinetically constrained
version of the FBA model, is the prediction of the amount of proteins and
thereby their mass (Section 2.1.4). This requires data on protein kinetics and
weights as well, as data on the protein composition of enzymatic complexes
(Section 2.1.5).

2.1.1 Reconstruction of the Stoichiometric Network

The stoichiometric model that was used in this project was based on the
model “smallYeast, (Central carbon metabolism for yeast)” from the RAVEN
toolbox [3]. The smallYeast model is a scaled down version of the iFF708
[27] model, developed for use in the RAVEN workshop. The model includes
glycolysis, the pentose phosphate pathway, the citric acid cycle and a simpli-
fied version of oxidative phosphorylation. In total it amounts to 54 reactions.
For the purpose of this project some changes were made to the model; the
oxidative phosphorylation was extended (Appendix A.1) and the galactose
pathway was added (Appendix A.2) amounting to 79 reactions.

The reconstructed model produces 16.5 ATP per glucose molecule under
optimal conditions which is in agreement with the iFF708 model and slightly
lower than the 18.4 ATP predicted by the “smallYeast” model.

2.1.2 Biomass Equation

The biomass equation represents the drain of metabolites required for growth.
It is commonly calculated from experimentally determined dry weight com-
position. This composition however varies with both growth rate and nutri-
ent source requiring different biomass compositions to be used for different
conditions [50].

The biomass equation also includes an experimentally fitted maintenance
parameter representing ATP consumption for protein turnover, PH stabi-
lization, etc.[27, 22]. Since this parameter is not explicitly measured, it needs
to be calculated from the biomass yield at each growth rate. Calculating the
maintenance for each growth rate was considered to be beyond the scope of
this thesis and a fixed value of 35.36 ATP was taken from literature [27].
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Some simple calculations of the maintenance cost indicates that this might
be an under estimate for some conditions (Appendix A.4).

A biomass equation was generated based on the iFF708 model. This was
done by running simulations for biomass production in the iFF708 model,
where the model was allowed to use all metabolites in smallYeast as sub-
strates. This simulation calculated the drain of on the metabolites of CCM
imposed by the biomass equation. Care was taken to prevent “unnatural”
fluxes to arise as a result of the broad availability of metabolites (Appendix
A.3).

Although the extracted biomass equation is in good agreement with iFF708
in terms of predicted growth rate and fluxes, it relies on the assumption
that these drains cannot change in response to shifts in metabolic strategy,
etc. This is likely to be incorrect. Correcting for this would however require
the modeling of pathways outside of CCM which is beyond the scope of the
thesis. The alternative of constraining only the fluxes of CCM within a larger
model was avoided since it could allow the optimization algorithm to bypass
the constraints through alternative pathways, giving incorrect predictions.

To simplify experiments of varying biomass composition, a modular version
of the biomass equation was generated where each biological component
was given its own reaction, e.g. protein, RNA. This was done by dividing
the IFF708 model’s biomass equation into components and running simula-
tions, maximizing each in turn. The total biomass equation was recreated
as the superposition of these components. This is should not be completely
accurate since there exist synergy effects in formation of the different com-
ponents, e.g. RNA formation creates amino acids as a byproduct, that are
utilized by the protein formation. The pathways for forming the different
components are however relatively independent and the resulting fluxes and
predicted growth rates were almost identical.

2.1.3 Linear Programming Solver and Modeling Framework

The RAVEN [3] tool was used as a basis for the FBA solving framework.
It is written for MATLAB and uses MOSEK (MOSEK ApS, Copenhagen,
Denmark) as the linear programming solver. In RAVEN the stoichiometric
matrix is stored as a list of equations in an excel sheet. Modifications were
made to the source code to allow kcat and weight parameters to be read by
the software.
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2.1.4 Predicting and Constraining the Total Amount of Protein

The amount of proteins N required for each flux F normalized by kg dry
weight was calculated (Equation 3) using kcat and a factor c, 0 < c <

1 relating the speed of the enzyme to the theoretical maximum. In this
project the value 0.5 was used for all reactions, it will be refereed to as the
c parameter (Section 2.4).

N = F

c× kcat
(3)

The amount of amino acids, w, required for a given flux, was calculated from
the size of the protein, A, and N (Equation 4).

w = A

c× kcat
× F (4)

Since backward fluxes are commonly represented by negative values in FBA,
they would result in a negative protein abundance. The lower bound for all
fluxes was therefore set to zero and all reversible reactions were copied and
one of them reversed by multiplication with -1.

To prevent that both forward and backward reactions take place at the same
time each flux was associated with an small ε = 10−6 drain on ATP, making
lower fluxes more favorable, but with a negligible effect on the system as a
whole.

Although central carbon metabolism was the only modeled cellular function,
it does not involve all of the cells’ proteins. The total weight of protein
in CCM, proteinCCM has to be some fraction of the total protein weight
proteintotal (Equation 5). This fraction was taken as 0.20 and referred to as
the CCMp parameter (Section 2.5).

0 ≤ CCMp = proteinCCM
proteintotal

≤ 1 (5)

2.1.5 Isozymes, Multifunctional Enzymes and Complexes

Standard FBA deals with fluxes over reactions rather than over proteins.
Isozymes are different proteins that catalyze the same reaction. For simplic-
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ity a single enzyme representing all isozymes was chosen. When comparing
the predicted abundance with literature values all isozymes were included.

In some cases the same protein can catalyze several reactions. If the reac-
tions share the same catalytic site, the abundance can be added, this was
the case for the proteins TKL1 and TKL2 in the model. If the reactions
take place on different sites, adding the abundance might lead to an overes-
timation of protein. This was the case for the protein GAL10 in the model.
This was solved by not predicting protein abundance for the fastest of the
reactions.

The enzymes that form the biochemical reactions are in most cases in the
form of complexes. In most cases these complexes are of a simple dimeric
type. It is not in general necessary to take this into account since these com-
plexes tend to have a number of active sites that scale with the oligomer num-
ber i.e. dimers have two active sites, tetramers have 4 active sites[53]. This
means that normalization on the number of active sites yields monomeric
structures.

Some of the complexes have a large number of subunits per active site. For
these the stoichiometry was taken as input and the weight per active site
was calculated (Appendix D).

2.1.6 Matrix formulation

The constraint matrix was implemented as in standard FBA with an addi-
tional row of constraints relating fluxes to amounts of enzymes (Figure 9).
For each reaction with a kcat value an element was added to the extra row
relating the flux to the required amount of amino acids (equation 4). If the
reaction did not have a kcat value it was set to 0. The row was constrained
by setting the upper bound to CMCp × total amount of amino acid, the
lower bond was set to 0.
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Figure 9: Conceptual layout of the linear problem. A flux vector fulfilling
the constraints given by the matrix is sought. The vector gives the fluxes
over the reactions. The enzyme concentrations are proportional to the fluxes
with a factor (c×kcat)−1. The amount of amino acids for each protein is given
by the size A and the concentration. The sum of these values is bounded by
the protein constraint that is calculated from the CMCp parameter. The
green boxes indicate extensions from standard FBA.

2.2 Growth Dependent Experimental Data as Input

The total amount of amino acid for CCM was in general estimated from the
CCMp parameter and protein concentration at high growth rates. To better
predict the observed data at lower growth rates the amino acid amount
was recalculated from experimentally measured protein concentrations at
the given growth rate (Section 2.5). In addition the growth equation was
updated to reflect the experimentally measured values. For the intermediate
growth rates the values from the two closest measurements was interpolated.
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2.3 Sensitivity Analysis

The model relies on experimental data and the improbable assumption that
the c parameter is the same for all reactions. It is therefore important to
investigate the stability of the results. Assuming that the kcat and c param-
eter are correct on average it is of interest to investigate how perturbations
around these values affects the system. Since c always is multiplied with kcat
it suffices to test the effect of different kcat. The stability of the predicted
maximum growth rate and the composition of the excreted metabolites was
investigated as follows:

1. Each value of kcat was perturbed by multiplying it with a random
value, r. The values were drawn from a uniform distribution placed
symmetrically around 1 with the size a, [1 − a, 1 + a], eg [0.5 1.5].

2. Simulations were run for growth maximization and the maximum
growth rate was recorded together with the ethanol, acetate and glyc-
erol production.

3. Steps 1 and 2 were repeated 1000 times.
4. Steps 1-3 were repeated different values of a, 0.1, 0.2 and 0.5.
5. Histograms of the growth rate were plotted and the amount of exper-

iments where each product was produced was counted.

The sensitivity of the individual parameters was tested by changing the pa-
rameter whilst keeping the others unchanged. The values were perpetuated
by multiplying the kcat value with a factor between 0.1 and 10.

2.4 Estimation of the c-Parameter from Experimental Data

It is common to assume that metabolite concentrations are near saturation
levels [8, 51] and that enzymes therefore will operate at near maximum
speed. However experiments [11] show that metabolite concentrations are
close to km for CCM 4. At these concentrations the true reaction speed,
kcattrue, will be proportional to the maximum speed, kcatmax (Equation 6)
with a coefficient c = 0.5. It is very likely that the c value is different for
each enzyme. Estimating the c value for each enzyme is however beyond the
scope of this thesis and an average c of 0.5 will be used.

4 In these experiments the total concentration of the metabolome was measured to 300
mM which appears to be high. Extracellular glucose concentrations is around 0,104
-1,133 mM [13]. Which can be compared with the first step of glycolysis that has a km
of 0.04mM which is well below external levels [60].
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c = kcat true
kcatmax

(6)

Several factors count into the c parameter. Cells might not be fully active
through the entire cell cycle. The optimal pH and temperature might not
be present. There might exist molecules interfering with the process. The
enzyme might have almost the same concentration as the substrate [? ].
A study [73] tests the effect of cell like conditions on the maximum perfor-
mance of enzymes. The average decrease in performance for the 12 measured
enzymes was on average 20% but varied a lot (Appendix B.1).

The value of c can be estimated from experimental data [73]. This can be
done by measuring the maximum enzymatic activity in cell free extracts, i.e.
a solute extracted from cells that has the same internal ratio of proteins as in
the cell (Appendix B.1). The maximum enzymatic activity in this extract
corresponds to the flux that would be carried if c = 1. By comparing
measured fluxes to the maximum a value of c can be estimated (Equation
7).

Fmessured
Fmax

= kcat true ×N

kcatmax ×N
= kcat true
kcatmax

= c (7)

2.5 Estimating the CCMp-Parameter from Proteomics Data

The cellular composition was determined (Appendix E) using protein abun-
dance data [79], this data was a weighted mean of several different exper-
iments. Each abundance was multiplied by the size of the protein giving
a distribution of the the amino acids. The proteins belonging to the CCM
model were compared with the total abundance giving the CCMp parame-
ter.

2.6 Modeling of Other Constraints

The amount of proteins in CCM is limited in the model by the experimen-
tally determined CCMp parameter (Section 2.5). This limit could however
be caused by some other bottleneck that makes increased protein concen-
trations unnecessary. To determine if CCM could have a larger share of
the cellular protein several biological phenomena were investigated (Figure
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10). The studied phenomena were ribosomes increase with growth (Section
2.6.1), increasing cell sizes effect on uptake (Section 2.6.3), and increasing
cell sizes effect on cell wall and free protein (Section 2.6.4).

Growth Rate  

Cell Size Free protein 

Uptake rate

StorageSurvival

CCM

Ribosomes

Figure 10: Conceptual layout of the models interaction with other cell re-
lated phenomena. The objective of the cell is survival and growth. The
higher the flux through CCM the higher growth is possible. A high growth
rate requires high amounts of ribosomes. This however decreases the free
protein available for CCM and other purposes. By increasing the cell size
the free protein levels can increase, but this affects uptake rate negativity
putting a constraint on CCM. If growth rates are low and the free protein
is not limiting CCM the cell can store carbohydrates improving its fitness
in case of starvation.

2.6.1 Growth and Ribosomes

The amount of ribosomes increases with growth rate [54]. The structure
of yeasts ribosome is known [10] with regards to both RNA and protein
content. The amount of protein directly in ribosomes can be estimated
from the RNA amount. The abundance of amino acids dedicated to protein
Synthesis was calculated form RNA abundance.

1. The ratio of ribosomal RNA (rRNA) out of the total RNA (rRNA/RNA)
was estimated to 0.815 based on E. coli data 5, this is in line with an
old study on yeast [78].

2. The amount of rRNA was calculated from this ratio and experimental
RNA levels.

5 table 2.1 in Physical Biology of the cell [53]
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3. The amount of ribosomes was calculated based on rRNA and the num-
ber of nucleotides per ribosome (Table 2).

4. The total amount of amino acid was calculated based on the number
of ribosomes above and the amount of amino acids for each ribosome
(Table 2).

5. The total amount of amino acid in protein synthesis was calculated
based on the ratio of ribosomal amino acids and total protein synthesis
amino acids, 2.54 (Figure 11).

Table 2: The composition of nucleotides and amino acids in the ribosomes
of E. coli and S. cerevisiae.

Nucleotides Amino acids Reference
E. coli 4567 7459 [54] (Bio numbers ID 101175 -76)
S. cerevisiae 5500 13000 [10]

Additionally an attempt to calculate the amount of ribosomes directly from
the growth rate from the translation rate. It was however found that the
literature values for ribosomal translation speed were more than 30% lower
than what is actually required to maintain growth. Correcting for this, gives
an under prediction of the ribosomal amount at low growth rates, possibly
indicating a lower translation speed or that the ribosomes are occupied with
protein degradation (Appendix F).

Ribosome

Other

Figure 11: The amino acid abundance of ribosomal protein and other pro-
tein for protein synthesis. The data shows that amino acid abundance for
protein synthesis is in total 2.54 times higher than the ribosomal abundance
(Appendix E).
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2.6.2 The Relation Between Size and Growth

Two important quantities are expected to follow from cell size. Maximum
glucose uptake per kg dry weight. Which is limited by the surface volume
ratio. And the mass percentage in the cell wall.

The mean volume of yeast cells is thought to increase with growth rate [40].
The volume as a function of growth rate from a glucose and nitrogen limited
chemostat experiment was investigated [13] (Appendix F.2).

For nitrogen limited cells there exist a good linear fit for the volume, v, with
respect to the growth rate µ (Figure 12), which gives an empirical formula
(Equation 8). The relationship holds in the range µ=0.1 to µ = 0.3 where
the volume increases from 22.9 to 37.3 µm3. The volume does not appear
to fall below this value at lower growth rates.

v = 76.1µ+ 15.8 (8)

For glucose limited cells the volume shows no simple dependency on growth
rate, the mean size is 26,4 µm3, and the volume is in general lower than for
nitrogen limitation.
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Figure 12: The volume as a function of growth rate from glucose and ammo-
nium limited experiments [13]. The linear fit is for ammonium limitation.
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2.6.3 The Effects of Cell Size on Uptake

The maximum possible glucose uptake per kg dry weight decreases with
cell size as a consequence of decreasing surface/volume ratio. According to
proteomics data [79] there are approximately 2.2 × 10−5mol glucose trans-
porter per kg dry weight at high growth rates. The highest literature value
for transporter activity is 237s−1 ([54] bio numbers id 101738) which gives
a maximum uptake of 18.77mol h−1. The literature activity value is how-
ever estimated from measured glucose uptake rates in living cells, so higher
theoretical maximum values might be expected.

The amount of transporters per kg dry weight is expected to scale with the
surface volume ratio [2]. From this the predicted maximum uptake rate can
be estimated from the volume of the cell. This is based on the reference size
of approximately 56 µm3 [2] and the reference surface volume ratio 1.27.
The maximum uptake is calculated assuming that the uptake scales with
the surface volume ratio.

Using the empirical volume and growth function (Equation 8) the growth
rate was estimated for each volume. The predicted consumption was calcu-
lated for an anaerobic growing strain with a biomass yield of 0.11 [49] and
a fermenting strain with a biomass yield of 0.2 [35].

2.6.4 The Effects of Cell Size on the Cell Wall

The mass of cell wall associated carbohydrates is expected to decrease with
the cell size since the surface volume ratio decreases. The ratio of carbohy-
drates in the cell wall was estimated using the relative surface volume ratio
estimated from the empirical relation between cell size and growth (Equa-
tion 8) and the measurements of the content at µ = 0.4 as a starting point
(Appendix F.3).

2.7 Data Visualization

A simple tool for visualizing the metabolic network with color coded data
was developed using MATLABs biograph toolkit. The graph was created
from the stochiometric matrix as follows:

1. Reactions without interest for the graph were removed, e.g. the biomass
equation.

2. Ubiquitous metabolites, e.g. ATP and NADH, were removed.
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3. An adjacency matrix was created for the reactions by setting all reac-
tions sharing a metabolite as adjacent.

4. The data to present was logarithmized, shifted to 0 and normalized to
max 1.

5. A graph was drawn with the biograph toolkit and nodes were color
coded by the data.

The data of main interest was kcat, weight and the kcat/weight ratio, i.e. the
specific activity.

2.8 Notes on Modeling

Models have great possibilities to aid researchers in their decision making
and understanding [68]. For this to work optimally it requires relatively
simple, well documented, interesting models with defined scopes. There is
often a trade-of between simplicity and accuracy, as well as between gen-
erality and accuracy. Models that are too complicated might never be of
practical use e.g. a model that requires a lot of parameters to be known and
configured. Although models with kinetic constraints by nature will require
more parameters than without. It has been an explicit goal to keep the
number of parameters low and the number of free parameters very limited,
sacrificing accuracy for simplicity and generality. Ir-reproducibility might
also arise from models relying too heavily on random sampling with insuffi-
cient statistical analysis. In this thesis random sampling will only be used
to test the stability of the results.

From a theoretical perspective the act of building models might be of inter-
est even if the models are not expected to generate predictions with practical
applications. The model has potential to become a scaffold onto which the
knowledge of a field is combined. The model building might even encour-
age future knowledge generation by accentuating where the blank spaces of
knowledge reside, e.g. the periodic table. The storage of information in the
form of a model is a compact and persistent format of knowledge allowing
work to be built on earlier work, e.g. using a stochiometric model without
knowing all the details in its construction.

The act of modeling will commonly bring clarity as the modeler is forced
to articulate the idea in a formal way exposing strengths and weaknesses.
Modeling typically involves integration of data from many sources, contra-
dictions in the underlying data can thereby be exposed. Resolving these
problems with the aid of models can improve the quality of the data in a



36 2 METHODS

circle of knowledge [27]. An important consequence of modeling is the set of
unresolved questions that might result in biologically relevant hypotheses.

Using models however has its limitations [68]. The most obvious practical
disadvantage is that they can be misleading. A faulty model might misguide
a researcher, this might especially be the case if it gives good predictions
within a limited range of conditions. Because of the time persistent nature
of models, these mistakes can live on for a considerable amount of time. A
similar problem might be over-parametrized models that can be fitted to
predict any outcome.
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3 Materials

The thesis combines data from a large set of sources. The leading resources
for each data type is used when possible. Turnover values, kcat, were mainly
collected from the Brenda database and peer reviewed literature (Section
3.1). Data on which pathway proteins belong to was collected from the
KEGG database (Section 3.2). Protein weights and the structure of com-
plexes were taken from the UniProt database (Section 3.3). Protein abun-
dance data was taken from the PaxDb database (Section 3.5). Cellular
composition was taken from two studies (Section 2.5). And the dependency
of cell size on growth rate was taken from a high throughput study (Section
3.6).

3.1 Kcat Values

Brenda [60] is the main database for kcat values (Figure 13). Data availabil-
ity, consistency and quality was not always the best. Data was not always
available for the organism of choice. In those cases data from the genet-
ically closest organism was used, the organism was identified in each case
using blast [38]. The temperature was not the same in all experiments which
is known to affect the values by as much as a factor 26. Data was, when
possible, taken at 30oC.

In some cases results were found in other sources, e.g. an article collecting
reported kcat values [4] or directly from individual experiments [66, 28].

In other cases the kcat was calculated from specific activity. This value is
normally given in µmol converted substance, a, per mg purified protein and
minute. From this kcat can be calculated (Equation 9) using the weight of
protein, w, in mg per mol.

kcat = a× w

60 (9)

In 4 cases (8%) data was estimated with other methods. In one case the
value of a functionally similar protein was used. In one case the kcat value
was set to the highest value from another specie without homology. And in

6 http://antoine.frostburg.edu/chem/senese/101/kinetics/faq/temperature-and-reaction-
rate.shtml
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two cases the median of all data was used (Appendix B.2). In general data
availability was lowest for the TCA cycle (Appendix B).

Brenda Kcat

Brenda Specific Ac!vity

KR Albe 1990

Literature

Other

Figure 13: The 48 kcat values were drawn from several sources, mainly
Brenda [60] 50% + 17% and an article collecting kcat values from different
sources [4] 17%.

The databases often contained several suggested kcat values. Many of these
values were from mutation experiments where the kcat was decreased. It is
likely that some of the reported experiments might be missing important
co-factors which will be available in the cell [73]. In other cases the value of
kcat was calculated from the weight of dimers, since the experiments were
preformed before the actual protein weight was known (Appendix B.2.7).
In these cases the kcat value was recalculated using the specific activity.

The highest reported value for yeast in Brenda was normally used, as sug-
gested by literature [38]. If the values were very different from other reported
values the source was checked. The use of the maximum value makes the
data sensitive to experimental measurement errors. It has therefore also
been suggested to use the median value [1]. This however would make the
results dependent on several experiments and the amount of sources to verify
would increase dramatically. Using the median makes the results sensitive
to double reporting, since there in many cases are experiments reporting
several similar values.

Since the system uses inverse kcat values, a few proteins with low kcat values
dominate the protein approximation (Figure 14). This is expected since
the logarithm of protein abundance is approximately normally distributed
(Section 15). Specific care was therefore taken when handling enzymes with
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Figure 14: The values of kcat in CCM are logarithmically distributed, the
log distribution is however not necessary normal pval ≈ 0.43 for a χ2 test.
There are relatively few low kcat values 16% are below 50. Most, 66%, are
in the range 50-1000.

low kcat and some kcat values based on incorrect protein weights were found
in the database (Appendix B.2).

3.2 Pathway Annotation Data

The Kyoto Encyclopedia of Genes and Genomes (KEGG) [52] database
contains pathway annotation for many genes. This allows a simple mapping
of protein abundance data to cellular function. A script for retrieving KEGG
data and mapping the genes was developed.

3.3 Protein Weights and Complexes Data

The Universal Protein Resource (UniProt) [71] is a database of protein data.
The weights and the complex stoichiometry was in general gathered from
there (Section D). A simple script for retrieving all the weight data from a
UniProt xml was developed.

For the purpose of future extension, the weight of the protein was taken
in terms of number of amino acid residues, AA, rather than dalton. A
conversion factor of 110 corresponding to the average weight of an amino
acid (Appendix A.5) can in general be used AA× 110 = dalton.
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UniProt was also the main resource for the stoichiometry of protein com-
plexes (Appendix D).

3.4 Chemostat Experiment Data

Data from chemostat experiments was retrieved from literature [35, 55] (Ap-
pendix C.1). The experiment measures the in fluxes of O2, glucose and the
out fluxes of CO2, ethanol, acetate and glycogen. One of the studies [55]
focuses on the execration of acetate and showed that this occurs at lower
growth rates than ethanol execration.

The cellular composition of cells was taken from two studies [63, 49] (Ap-
pendix C). These experiments were preformed for nitrogen limited aerobic
cells [63] and carbon limited anaerobic cells [49], which are different con-
ditions from the carbon limited areobic cells that are investigated in this
project. The data was therefore used with some caution.

3.5 Protein Abundance Data

Data on protein abundance was taken from PaxDb [79]. The values where
composed of a weighted average of several experiments. The data was in
general sampled in the exponential phase of batch cultures grown on rich
medium. Representing the cellular composition at high growth rates. The
logarithm of the data was normally distributed (Figure 15).
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Figure 15: The abundance of protein has a log normal distribution, pval ≈
10−44 for a χ2 test. The more than 500 proteins with zero expression were
excluded.
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3.6 Data on Cell Size

Volume as a function of growth rate from glucose and nitrogen limited
chemostat experiments was taken from literature [13] (Appendix F.2).
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4 Results

The model is able to identify experimentally observed shifts in metabolic
strategy and predict a maximum growth rate consistent with experimental
values for two different substrates (Section 4.2). The results are insensitive
to perturbations (Section 4.2.7).

Other constrains such as maximum uptake rate and the space taken by
ribosomes are shown to become important at high growth rates (Section
4.3).

The chosen modeling parameters are in reasonable agreement with experi-
mental observation (Section 4.1).

4.1 Estimation of Model Parameters

Central carbon metabolism composed 25% of the proteome by weight. The
proteins used in the model corresponded to 20%. The protein share of the
dry weight in the exponential phase of batch conditions was taken as 57%
based on literature [62], which fits well with extrapolation from chemostat
data (Appendix C.2). This gave a constraint of 1.04 mol amino acids in
central carbon metabolism per kg dry weight.

The value of c was calculated for 12 different enzymes using experimental
data. The value of c was 0.43 ± 0.08 for batch conditions. For low growth
rates, 0.1, in chemostat conditions the value was 0.08 ± 0.01. approximately
20% of the value in batch conditions. The estimate shows that chosen c

value is consistent with experimental data at high growth rates.

4.2 Results from the Model

The model predicts a maximum growth rate in agreement with literature
values (Section 4.2.1). It predicts 4 qualitatively different metabolic strate-
gies including the Crabtree effect, at different growth rates (Section 4.2.2).
The model predicts a lower maximum growth rate on galactose in agreement
with literature values (Section 4.2.4). The model is consistent with the ob-
servation that protein content is high in a Crabtree negative yeast (Section
4.2.5). The predicted abundance of the individual enzymes is not in good
agreement with experimental values (Section 4.2.6), the model is however
insensitive to perturbations (Section 4.2.7)
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4.2.1 Glucose Uptake Saturation

The model predicts a maximal substrate uptake level. The predicted growth
rate increases when the substrate uptake limit is increased. At a certain
level. 15 mol per kg dry weight and hour. further increase does not improve
growth rate. and the model does not predict higher glucose uptake. At this
point the protein kinetics is limiting and there is no change in configuration
that can make use of additional substrate.

As one could expect the maximum uptake and growth rate is proportionate
to the CCMp parameter. Since the CCMp is also proportionate to the c
parameter the results can be interpreted as a change in the c parameter. The
predicted growth and uptake rates are in good agreement with experimental
values for chemostat at high growth rates (Appendix C.1).

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[S] 15.02

μ 0.44

[S] 21.67

μ 0.63

[S] 7.22

μ 0.21

Glucose uptake limit mol h-1 kgdw-1 [S]

G
ro

w
th

 r
a

te
 h

-1
 μ

 

 

Normal FBA

Experimental

CCMp 1.04

CCMp 1.5

CCMp 0.5

Figure 16: The uptake rate saturates at a level that depends on the CCMp
parameter. Experimental data from literature [75].

4.2.2 The Switch Between 4 Different Metabolic Strategies

The model predicts 4 qualitatively different metabolic strategies (Figure 17)
in the stages lending up to saturation:

1. A fully aerobic growth (aerobic), that is predicted by standard FBA.
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2. An acetate excreting growth (acetate), that has been discussed in
literature [55].

3. The respiro fermenting growth (crabtree) with negative correlation
between glucose uptake and respiration [34].

4. A non acetate producing growth (fermenting).
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Figure 17: The model predicts 4 different metabolic strategies. Fully aerobic
growth (up to 0.35), acetate excreting growth (up to 0.36), growth excreting
ethanol and acetate (up till 0.43) and growth excreting only alcohol. For
growth rates above 0.44 their is no strategy since this is the highest predicted
growth rate.

At a certain growth rate the efficient aerobic metabolic strategy becomes
to space demanding and the cell shifts to less efficient fermenting strate-
gies changing many phenotypes of the system. A shift from the high yield
strategy of 16.5 ATP per glucose to a mixture with the low yield strategy
of 2 ATP per glucose. The shift follows from the the weight of proteins re-
quired for growth being lower for the fermenting strategy compared with
the arobic strategy (Table 3). At high growth rates the arobic strategy
would require more protein than is available and other strategies that are
less optimal with regards to glucose utilization emerge.
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Table 3: The predicted demand of enzymatic protein to uphold fluxes cor-
responding to growth by 0.1 h−1 for the arobic and the fermentative
metabolic strategies. And the corresponding uptake of glucose.

Strategy Amino acids Glucose
mol mol

Arobic 0.291 1.04
Fermenting 0.237 3.41

The internal fluxes change as the strategy shifts (Figure 4). As one would
expect the ATP synthase (ATP1) activity steadily decreases as the strategy
shifts from Aerobic to Fermenting, mirroring the ethanol production.
That the model still predicts some activity from ATP in fermenting growth
strategy might follow from the definition of the protein production in the
biomass equation. This reaction produces NADP in this model, it might
be that ATP production is the best strategy to balance this. In a model
including protein synthesis this will maybe be resolved in another way.

The fluxes through the pentos phosphate are lower during the acetate and
crabtree growth, the NADPH required for growth is instead generated
through acetate production. At the fermenting stage the the mitochondrial
NADPH is produced by MAE, possibly reflecting that there is no shunt for
NADPH from the cytosol to the mitocondria in the model.

Table 4: Normalized fluxes for key reactions. The values are first normalized
by the growth rate and then divided by the maximum value for all growth
rates.

Aerobic Acetate Crabtree Fermenting
Growth 0.3 0.36 0.4 0.439
PYC 0.8175 0.8175 0.8175 1
CIT 1 0.9382 0.4355 0.0804
MAE1 0 0 0 1
ZWF 1 0.6778 0.3435 1
ENO 0.2199 0.2406 0.6309 1
HXK 0.305 0.3193 0.6628 1
ethOUT 0 0 0.4734 1
acOUT 0 0.4907 1 0
ATP1 1.0000 0.9845 0.6032 0.2343
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The model predicts a transition to fermentation at a higher growth rate
than is given in most experiments. Running the model with experimentally
determined biomass composition introduces the crabtree effect earlier (Fig-
ure 18). The model fits the data relatively well for the interval 0.2 to 0.35.
Beyond this the model runs in to the protein bond and does not give pre-
dictions since the experimentally determined protein level is to low for the
model to run.
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Figure 18: Experimental data compared with predicted data for some of the
phenotypes of the Crabtree effect. For this comparison the model was run
using experimentally determined composition data for the biomass equa-
tion and experimentally determined protein concentration with the CCMp
parameter (Appendix C).

4.2.3 The Sum of Fluxes and Specific Activity Explain the Crab-
tree Effect

The higher protein requirement for the aerobic strategy is to one part
an effect of the sum of fluxes (Table 5). Although the aerobic strategy
produces 8.25 times more ATP per substrate, the sum of fluxes per ATP is
only 0.7 times higher for the fermenting strategy. The specific activity of
the glycolytic and fermentation enzymes therefore only need to be slightly
higher in these pathways for them to be the lightest per ATP.
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Table 5: Sum of fluxes for the main metabolic strategies, the galactose
strategy will be discussed below (Section 4.2.4).

Strategy
∑
Flux ATP Flux per ATP
mol flux

mol substrate
mol ATP

mol substrate
mol flux
molATP

Glycolysis 15
Fermentation 4
TCA + Oxidative
Posphorylation

78.5

Galactose 5
Glycolysis + Fermentation 19 2 9.5
Glycolysis + TCA +
Oxidative Posphorylation

93.5 16.5 5.67

Galactose + Glycolysis +
Fermentation

24 2 12

The metabolic network was visualized with normalized specific activity color
coded (Figure 19). The distribution of slow enzymes appears to be relatively
evenly distributed over the network. It is mainly ATP1, KGD and RIP1 that
make oxidative phosphorylation slow. The enzymes for acetate production
are slower than ethanol producing possibly contributing to making it the
favored excretion pathway.
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Figure 19: Visualization of the the enzymes specific activity in the network.
Darker green indicates lower specific activity.

4.2.4 Lower Predicted Growth Rate for Galactose

The model predicts a significantly lower maximum growth rate for galactose
than for glucose (Figure 20). The additional steps that are added on to
glycolysis from the galactose conversion (Table 5) makes it more bulky, 0.31
mol amino acid are required to grow 0.1. It is mainly the proteins GAL1 and
GAL10 that are responsible for this (Figure 19). The growth rate predicted
by the model with experimental composition is in line with literature values
[14].
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Figure 20: The predicted substrate uptake for glucose and galactose with
standard model and the experimental composition model. The maximum
growth rate for galactose is significantly lower than for glucose in both cases.
The model predicts that a short transition to fermentation would be optimal.
This realm is however very thin.

4.2.5 High Predicted Protein Content in the Crabtree negative
Kluyveromyces marxianus

The model predicts the existence of a Crabtree effect in the Crabtree neg-
ative Kluyveromyces marxianus, assuming that its metabolic network and
the specific activity of the enzymes is the same as for S. cerevisiae. However,
the high protein content observed in Kluyveromyces marxianus, 72%, makes
the transition take place at growth rates that are similar to the observed
maximum growth rate. The model predicts that the acetate producing strat-
egy is dominant at this growth rate which is consistent with experimental
observations [26].

4.2.6 Prediction of Protein Abundance

The prediction of protein abundance in different pathways is better for the
constrained model compared with unconstrained FBA (Figure 21), which
is expected since the unconstrained model does not predict the shift in
metabolic strategy.
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Figure 21: The relative abundance of proteins by pathway, experimental
(outer), model predictions at high growth rate (middle) and predictions
from standard FBA (inner).

The prediction of the abundance of individual proteins is not very good. A
few proteins with low kcat values tend to dominated the prediction (Figure
22).
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Figure 22: The relative abundance of enzymes in glycolysis, experimental
(outer) and model prediction (inner).

4.2.7 Stability

The predictions of the model are relatively insensitive to perturbations of
the kcat values. The fermenting or crabtree strategy is predicted in all
realizations for random perturbations of the kcat values up to 20% (Figure
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23). For perturbations up to 50% these strategies are predicted in 90%
of the realizations. The predicted growth rates of the perturbations are
distributed around the predicted value and the spread scales with the level
of perturbation.
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Figure 23: Histograms of the stability of the predictions of the system with
increasing degrees of perturbation. Each kcat is perturbed by a random
value within the perturbation threshold, the distribution is the result of
1000 simulations with such perturbations.

The system is relatively insensitive to perturbations of the individual kcat
values (Figure 24). Only 11 kcat values, 16%, have a significant effect on
predicted growth rate and metabolic strategy when perpetuated up to 10
times their estimated value. The phenotype is strongly affected in 5 cases,
and arises from changes in ATP syntheases (ATP1), Phosphofructokinase
(PFK), Fructose-1,6-bisphosphatase (FBP), Triosephosphate dehydrogenase
(GLD) and Pyruvate decarboxylase (PDC).

The 3 glycolytic enzymes PFK, FBP and GLD affect the system when their
kcat value is lowered, by increasing the bulkiness of glycolysis and making the
fermenting strategy impossible. This results in a lower predicted growth
rate. The change in PDC increases the bulkiness of the anaerobic pathway
and acts in a similar way. Increased kcat for ATP1 affects the system by
making the aerobic strategy less bulky than the fermenting, resulting in
higher predicted growth rates. The switch in strategy occurs already at 3
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times higher kcat values.
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Figure 24: The results of perturbing an individual kcat value by multiplica-
tion with 1/10, 1/5, 1/3, 1/2, 1, 2, 3, 5, 10. Only reactions with a difference
between maximum an minimum growth rate of at least 10% or a change in
the phenotype are shown. The phenotypes of the metabolic strategies are
fermentative (red), crabtree (pink), acetate (blue) and aerobic (black).

4.3 Model of other Constraints

Limitations from non-modeled phenomena is expected to affect the cells.
The increasing amount of proteins involved in protein synthesis at high
growth rate limits the space for CCM (Section 4.3.1). The maximum uptake
rate as a function of cell size shows that the uptake is far from saturated
at low growth rates. As cells become larger with higher growth rate, the
uptake might impose a limit (Section 4.3.2). The decreasing amount of
carbohydrates in the cell wall as a consequence of increased size is shown to
only have a small effect on the biomass composition (Section 4.3.3)

4.3.1 The Ribosomes Constrain the Space for CCM

The amount of protein required for protein synthesis increases with increas-
ing growth rate (Figure 25). The total amount of protein increases faster
up to a growth rate of 0.3, increasing the free space. After this the total
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protein increases slower than the protein required for protein synthesis and
the free space decreases.
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Figure 25: The amount of protein not involved in protein synthesis (Free
space) increases up until a growth rate of 0.3. The proteins involved in pro-
tein synthesis is assumed to be proportional to RNA. Data from regression
of composition data [63] (Appendix C.2).

If the space for CCM is proportional to the free space, then the space for
CCM starts to decrease around the growth rate of 0.3, which is when the
acetate and crabtree strategies are observed to begin. The model also
predicts that the space reserved for CCM reaches 100% utilization at a
growth rates of 0.3, using experimental protein amounts. The utilization of
the free space increases more or less linearly from 43% at the growth rate
0.1.

Under the assumption that a certain amount of protein is fixed, e.g. DNA
binding, and does not increase with increasing cell size, the free space can
become at best constant (Figure 26). Assuming a larger fixed cost would
lead to negative free space at low growth rates. Even when assuming a large
amount of fixed protein the free space would eventually decrease at higher
growth rates, reflecting the ever growing demand for space by the ribosomes.
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Figure 26: Even by assuming that a large fraction of the proteins are inde-
pendent of the cell size, the space available for CCM only stabilizes. Data
from regression of composition data [63] (Appendix C.2).

4.3.2 Uptake Rate as a Function of Size

Increasing growth rate is assumed to result in increasing cell size. The
surface volume ratio decreases at high growth rates decreasing the maximum
uptake rate. This rate might be limiting at high growth rates (Figure 27). At
low growth rates it might still be influential as the true uptake is likely to be
a function of the maximum, but it will not be limiting. The volume for the
predicted requirement curves is estimated from the growth rate vs volume
equation (Equation 8). The predicted growth rate for the reference value is
approximately 10% higher than predicted indicating that the extrapolation
of the equation does not give very accurate results.
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Figure 27: The predicted maximum uptake rate depends on the volume of
the cell. The reference value [2] is marked with a yellow circle. At this size
the cell volume is approximately 56 µm3 [2] and the surface volume ratio
1.27. The blue line scales the predicted uptake at this size to other volumes
with the relative surface volume ratio. The predicted consumption for a
respiro fermenting (yield 0.2) and a fermenting cell (yield 0.11) are shown
with dashed lines. The predicted growth rate is shown at the intersection.
Cell volumes from nitrogen and glucose limited experiments are marked on
the line with circles.

4.3.3 Cell Wall as a Function of Size

Assuming a constant thickness of the cell wall its share of the biomass is
expected to decrease with the surface volume ratio. The model shows a
reasonably good fit in the range µ = 0.2 to µ = 0.4. For µ = 0.1 the
fit is not so good. probably reflecting that the measurement of “Other
carbohydrates” includes storage molecules. The decrease is relatively small.
Even at volumes that would be associated with a growth of 0.7 h−1 the share
barely goes below 0.2, indicating that decreasing the cell wall only gives a
small contribution to the observed increase of protein with growth.
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Figure 28: An estimate of the ratio of biomass in the cell wall based on
the empirical formula for cell volume (Equation 8) and composition data at
different growth rates (Appendix C.2). The Mannan together with “Other
carbohydrates” is assumed to make up the cell wall.
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5 Discussion

The purpose of the thesis was to investigate if constrains on the fluxes by
the amount of involved enzymes can affect predictions. It has been shown
that these constrains become important at high growth rates, and that they
affects what is the most optimal metabolic strategy. Both the Crabtree
effect (Section 5.4) and the lower maximum growth rate on galactose can be
explained by the model.

The prediction of the individual enzyme concentrations is not so good, this
might have several reasons (Section 5.1). The sensitivity analysis indicates
that this probably is not a problem for the qualitative results.

At low growth rates the model under-predicts the total amount of enzymes in
central carbon metabolism, as the CCMp constraint is not enforced (Section
5.2). This might be caused by defacto lower space for CCM at these rates
or by lower enzymatic efficiency.

It has been observed that cells tend towards larger sizes at higher growth
rates. This is probably a method to increase active protein concentrations.
As size increases the maximum uptake rate decreases, possibly putting a
limit on the increase of size and thereby growth (Section 5.3).

Gene deletion phenotype prediction, e.g. gene essentiality, is a common
technique for testing FBA models. Such experiments have not been pre-
formed in this project but the model is expected to preform well for such
tests (Section 5.5).

Some considerations for future models (Section 5.6) and some consequences
for bio engineering (Section 5.7) are also discussed.

5.1 Possible Reasons for the Inaccurate Prediction of En-
zyme Concentrations

The predictions of the individual enzyme concentrations does not fit very
well with experimental data. This is likely an effect of the c parameter being
different for each enzyme. For reversible reactions the relation in concentra-
tion between substrate and product is important. Several such reactions in a
row would result in lower concentrations at the final metabolite. A method
to predict the enzyme concentrations directly from these considerations has
been suggested in literature [69]. However implementing and evaluating this
method was beyond the scope of this project.
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The level of backwards flux might have a huge impact on the predicted
amount since the model only takes net fluxes in to account. This might
be the reason that the model under-predicts the amount of the ethanol
producing ADH1. This enzyme plays an important role in ethanol uptake
and its therefore likely that it is very sensitive to substrate and product
concentrations.

Metabolite dilution was not taken in to account in the model. Enzymes with
large product pools will therefore appear to be slower than enzymes with
small pools. The pool sizes are however relatively small compared with the
total flux so the effect should be very limited.

Apart from differences in the c parameter the metabolites might differ due
to slight differences in metabolic strategy. From abundance data it appears
as if the model over-predicts oxidative phosphorylation activity. This might
be a response to the NADH formed by the protein synthesis pseudo-reaction
(Section A.4).

5.2 The Low Enzyme Utilization at Low Growth Rate

The model predicts that CCM only takes up 40% of the available space at
low growth rates. Since the proteins still exists this must be inaccurate.
In part be explained by the CCMp parameter over predicting the available
space. A consequence of lower levels of non ribosomal protein and the exis-
tence of fixed costs (Section 4.3.1). It can also be interpreted as the efficiency
of the proteins being 40%, then the enzymes have a lower c at low growth
rates, and they therefore take more space per flux. This is commonly as-
sumed in literature [73]. A reason for this might be lower average metabolite
concentrations.

There exists some experimental evidence that the average metabolite con-
centration is lower at low growth rates (Section C.3, Figure 31) [13]. This
could possibly be linked to the observed lower extracellular glucose concen-
tration at lower growth rates.

It could be expected that metabolite concentrations are higher under nitro-
gen limited growth, since CCM can be saturated and only protein formation
will be underutilized. This could explain why the protein concentrations
from the nitrogen composition experiments where too low for the model at
high growth rates.
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5.3 Effects of Cell Size

The results suggest that cells might become larger to increase their protein
concentration. The demand for higher protein levels is a consequence of in-
creased demand for both CCM and protein synthesis. For high growth rates
(above 0.3) the increase in protein corresponds to the increase in protein
synthesis making little further space for CCM. The results also suggest that
the increase in cell size might be bounded by the maximum uptake rate.

It is likely that the surface volume ratio puts a pressure on cells to become as
small as possible, since the maximum uptake capacity increases and thereby
the uptake even at sub maximal sizes. The increases in size and subsequent
decrease in uptake efficiency is likely the reason for the high residual glucose
concentrations observed at higher dilution rates.

Although it is true that growth maximization for a certain glucose level
and glucose minimization for a certain growth level is equivalent, it is not
strictly necessary for the organisms to minimize glucose consumption. The
fact that this gives good predictions might be a consequence of competition
for glucose that decreases the total glucose levels and favors a low glucose
strategy.

If large size is indeed disfavored, it could explain why S. cerevisiae has a
budding replication system. This would allow the mother as well as the
daughter cell to be smaller.

The cells appear to never become smaller than a certain size. This might
reflect a disposition towards carbohydrate storage rather than increased up-
take at low growth rates. It could also reflect that the fixed costs for DNA
replication etc have to be maintained by a certain amount of energy pro-
ducing units.

The surface volume ratio analysis assumes that the density is constant. By
using vacuoles the cell could increase the surface without increasing the ac-
tive volume to the same extent and thereby achieve a higher surface/(active
volume) ratio. This has not been taken in to account in the analysis.

5.4 The Crabtree Effect

The Crabtree metabolic strategy is the most enzyme efficient. It can however
be avoided by increasing the enzyme concentration, which is the case for
Kluyveromyces marxianus. One reason for this strategy to be disfavored
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might be that nitrogen is scarce in nature. Since the ethanol can later be
digested the long term benefits of high substrate utilization might be limited.

A further motivation is that these protein levels can not be reached with-
out decreasing the thickness of the cell wall (Section 4.3.3). This might
compromise the stability of the organism.

That the Crabtree effect is predicted to occur also in the Crabtree nega-
tive Kluyveromyces marxianus might be explained by some other limitation
being dominant. This limitation could occur at lower growth rates than
where the Crabtree effect is expected to take place. These limitation could
arise from large cell sizes and therefore substrate uptake limitation. The
low biomass concentration (1.31 g DW l−1) and the high residual glucose
concentration (7.25 g l−1) obtained in experiments [26], might indicate that
there is an uptake limitation caused by size, or that the intracellular con-
centrations of metabolites needs to be very high.

The Crabtree effect can be induced at lower growth rates by stress [55].
This could be a consequence of increased metabolism for stress related ATP
consumption and thereby an increasing load on CCM. It could also be the
effect of increase in stress related proteins decreasing the space for CCM.

A major cause of the Crabtree effect is the comparatively low ATP yield
from oxidative phosphorylation. The low yield is a consequence of the lack
of a proton pumping Complex 1 (Section 1.2.1). It is however possible that
this makes the protein lighter and faster, which decreases the miss fitting.
Since humans have a proton pumping Complex 1 it is possible that the the
Warburg effect has a different origin than the Crabtree. One possibility
could be limited oxygen availability. A recent study however suggests that
molecular crowding also could be the cause of the Warburg effect [76]. As-
suming that the Warburg effect is required for fast growth, pharmaceuticals
decreasing the speed of the glycolytic or fermenting enzymes could be a
potential therapy for cancer, this has also been suggested in literature [18].

It is important to stress that the model does not take regulation in to ac-
count. This implies that the results are in no conflict with results showing
that the Crabtree effect is a consequence of regulation. It is in fact expected
that the cell needs to regulate it self to undergo the necessary metabolic
strategy shift. Since the Crabtree effect be avoided by increasing the pro-
tein levels, the results may also be consistent with the suggestion that the
Crabtree effect is an act of chemical warfare.

The Crabtree metabolic strategy requires less mitocondrial enzymes, it is
therefore likely that the mitochondria contributes less to the total dry weight
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at high growth rates.

5.5 Probable Effects of Gene Deletion

The deletion of non essential genes has been shown to increase growth under
some conditions [42]. This can be explained by the model, as this would give
more space for growth improving proteins. The fact that yeast normally
expresses these growth limiting genes might be that they increase robustness,
fitness for other conditions. It can not be expected that yeast has been fully
optimized for life in scientific or industrial conditions [42].

Gene deletions results in rerouting of the metabolic pathways. It has not
been tested, but it is probable that a models taking enzyme kinetics in to
account will give better estimates on the growth effects of gene deletions,
since rerouting of the fluxes around the deleted pathways will increase the
protein load, predicting lower growth rates.

5.6 Practical Considerations With Regards to Modeling

This thesis generally assumes that there is 1 active site per protein. This
should in general be fine since kcat experiments normally will calculate the
activity per participating protein.

The setup requires that the modeler notices when a protein is a part of a
complex. It also requires that the stoichiometry of the complex is known. A
further complication that has not been taken in to account is the additional
structural requirements for some proteins e.g. proteins required for assembly,
the lipids of mitochondria or other compartments etc. Since the proteins
participation in complexes have a large effect on the specific activity it is
advisable to include them. The lack of systematic information on complexes
is a hinder for effective modeling. Reliable complex databases would simplify
the process.

Because of the sensitivity to low kcat a few enzymes tend to take up most of
the space. The data for slow enzymes needs to be analyzed carefully since
many database values predate genome sequencing and might rely on incor-
rect protein weights. This could be circumvented by using specific activity
directly. The sensitivity analysis shows that although careful selection is
preferred, the same qualitative results can be achieved with modest data
quality. The specific activity can however not be set to the same value for
all enzymes as seen by the flux calculations (Table 5).
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Since large fluxes result in high predicted protein content, lower fluxes will
automatically be predicted at high growth rates. This improves the likely
hood of finding a unique solution to the optimization problem [67] and re-
solves loops [7].

5.7 Consequences for Bio Engineering

Assuming that protein is limited, experimentalists should consider gene dele-
tion as their main strategy for archiving their objectives. Viable strains with
several knockouts could be the bases for new high productive strains. When
including new proteins the specific activity of the new genes should be con-
sidered.

Since kcat is known to increase with temperature, creating temperature tol-
erant strains should make higher growth rates possible. It has also been
shown in an ANOVA study that higher temperature improves growth [5].
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6 Outlook

The model has only been implemented for CCM, several other pathways
such as the amino acid and protein synthesis pathways might be included
with good results (Section 6.3).

6.1 Extending the Model to the Whole Metabolic Network

Since cost is a systems phenomena, neglecting parts of the system might
affect predictions. Integrating FBA into a framework that takes uptake
processes, metabolite concentrations and translation speed might give even
better predictions. Such models might be able to take cell size as a con-
straint, which might be useful since it is experimentally relatively simple to
determine.

6.2 A Tool for Synthetic Biologists

Since the model relies on kcat values that can be determined in vitro and
protein weights that are available in UniProt. It should be relatively simple
to extend existing FBA models with these constraints. Such models might
become of use to metabolic engineers in predicting if a potential pathway
might decrease cell fitness. And if their pathway is predicted to be a favored
metabolic strategy.

6.3 Predicting Izosymes

Izosymes have different amino acid compositions, weight and kinetic param-
eters. It is possible that there is a tradeoff between expensive amino acids
from nutrient perspective, and expensive amino acids from the weight of
the protein synthesis machinery and production of NADH. The choice of
isozymes might therefore reflect a trade of between these properties. The
choice of amino acid as the weight definition in the model is a preparation
for a model that predicts the amino acid composition of the cell from the
enzymes being used.

Another possible trade of with regards to weight is between high specific
activity but low affinity. This has to some extent been shown for glucose
transporters [32].
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6.4 Improving the Enzyme Concentration Predictions

Allowing a prediction of the individual c parameters would drive the model
close to becoming a kinetic model. But using the Gibbs free energy formal-
ism ∆Gmight give a rough suggestion to what the metabolite concentrations
might be and thereby if the enzymes will be operating at full speed.

If the prediction of protein abundance can be improved it would be possi-
ble to run the simulation backwards using protein abundance data. This
could in general be useful when running experiments predicting the true c
parameters.

6.5 Maintenance Cost and Protein Degradation

The maintenance cost in the biomass equation is likely to change with growth
rate (Section A.4). This has not been taken in to consideration, but might
have a quantitative impact on the results. It is largely known which phe-
nomena causing the maintenance cost to occur. So modeling it should be
possible.

The attempts at modeling the protein degradation as a part of the mainte-
nance cost was hindered by inconsistent data on protein half life. Literature
suggest that the median half life is 40 min[9] or 10 h [33]. It was further
hindered by nonphysically low literature estimates on ribosomal translation
speed (Section F.1).

Cell size is also likely to affect maintenance cost since intracellular pH is
defended at a smaller relative surface when the cells are large (Section A.4).
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7 Conclusion

Models with kinetic constraints show superior prediction power compared
with unconstrained FBA. They are able to predict a maximum growth rate.
They predict a lower maximum growth rate for substrates with expensive
additional pathways. The also can predict shifts between several different
metabolic strategies, aerobic, acetate producing, respiro fermenting (Crab-
tree) and fermenting.

The model shows that the Crabtree effect can be the favored metabolic strat-
egy when there is a limited protein amount. The effect is a network property
that arises as a result of a lower protein weight per produced ATP for the
fermentation pathways. This effect is probably specific for organisms that
have a low ATP yield for oxidative phosphorylation. And that have a dis-
position towards low protein concentrations. The cell wall in Saccharomyces
cerevisiae create such a disposition.

The results of the model demonstrate that growth maximization can be a
viable concept in predicting the preferred metabolic strategies of an organism
given that all relevant constraints are in place.

Simple calculations indicate that increase in cell size with increased growth
may be caused by the increased demand for CCM and ribosomal protein.
The decreasing uptake rate with increasing cell size may put an upper bound
to the increase in cell size.

Kinetically constrained models may become a simple supplement to FBA,
that will allow modelers as well as experimentalists to get more accurate
predictions when planing pathway additions and substitutions to organisms.
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A Model Reconstruction

The stoichiometric model that was used in this project was based on the
model “smallYeast, (Central carbon metabolism for yeast)” from the RAVEN
toolbox [3]. The smallYeast model is a scaled down version of the iFF708
model developed for use in the RAVEN workshop. The model includes Gly-
colysis, the Pentose phosphate pathway, the citric acid cycle and a simplified
version of oxidative phosphorylation which amounts to 54 reactions (Table
6).

For the purpose of this project some changes were made to the model. The
Oxidative phosphorylation was extended (Section A.1), exchange of phos-
phor was permitted, the biomass equation was separated in to modules
(Section A.4) and the amino acid composition for biomass formation was
altered (Section A.5).

Table 6: The number of reactions for each pathway included in the Smal-
lYeast and the CCM model. The category other mainly includes reactions
for Acetyl-CoA formation.

Pathway SmallYeast CCM model
Galactose Pathway 0 6
Exchange Reactions 8 10
Compartment transport 3 6
Oxidative phosphorylation 2 6
TCA 10 10
Ethanol and Acetate formation 5 5
Pentos phosphate pathway 8 8
Glycolytic Reactions 11 11
Growth 2 12
Other 5 5
Total 54 79

A.1 Inclusion of the Reactions of Oxidative Phosphorylation

In order to give an accurate representation of the speed and size of the
oxidative phosphorylation the model was extended to involve the major



80 A MODEL RECONSTRUCTION

reactions in the electron transport chain. The reactions were taken from
the iFF708 model and normalized on the limiting substrate, i.e. the one
that kcat is given for. To be able to embed the pathway some transport
reactions were included and some reactions and metabolites were moved to
the mitochondria in agreement with the iFF708 model. This resulted in a
model which aggregated with the iFF708 in terms of ATP production (Table
7).

Table 7: Mol ATP generated from 1 mol glucose for the different models.
For the purpose of the test a conversion reaction of mitochondrial NADPH
to NADH was added to the smallModel to overcome the lack of NADPH
sink when only producing ATP.

Model Anaerobic Aerobic
ATP/glu ATP/glu

smallModel 2 18.4
Reconstructed smallModel 2 16.5
iFF708 2 16.5

The NADPH reducing enzyme NCP1 which is present in the IFF708 model
was not included since it is claimed to be non-mitochondrial [71]. Although it
is significantly expressed under normal conditions (46600 copies per cell [71])
its absence will not affect the models performance under normal conditions
since a decision can be made between NADH and NADPH production in
the mitochondria. This was included in the model by splitting the NADPH
forming reaction IDP1 in to the NADH forming IDH and NADPH forming
IDPH in agreement with the iFF708 model.

The Succinyl forming LSC1LSC2 reaction was bundled with the FADH2
forming SDH reaction since these reactions take place in one complex and
the intermediates are not used by any other reactions in the model.

A.2 Inclusion of the Galactose Pathway

The galctose pathway involves 4 reactions that converts galactose to alpha-
D-glucose 6-phosphate. The product enters glycolysis below hexokinase.
There exists a cycle involving UDP-glucose 4-epimerase which has to carry
flux for the Galactose-1-phosphate uridylyltransferase to operate. The re-
actions were taken from uniprot and KEGG as the iFF708 model allows
UDP-glucose 4-epimerase to be bypassed.



A.3 Extracting Substrate Requirements for Biomass Formation from a Larger Model81

A.3 Extracting Substrate Requirements for Biomass Forma-
tion from a Larger Model

The biomass equation in the smallYeast model does not appear to include
growth related maintenance and therefore the model overestimates biomass
formation (Table 8). A new biomass equation was therefore generated based
on the iFF708 model using the metabolites in smallYeast as input. To
prevent “unnatural” fluxes to arise as a result of the broad availability
of metabolites, the stoichiometric matrix was truncated before simulation.
This was done as follows:

1. A simulation was run in the iFF708 model with 1 mol glucose as input,
maximizing growth, giving a flux distribution f .

2. The stoichiometric matrix was truncated by removing all reactions
with 0 flux and setting all reactions irreversibly in the direction of the
flux.

3. All exchange reactions were removed.
4. For each metabolite in the smallYeast model a reaction was added that

produced or consumed the metabolite. The metabolites that were con-
sumed were set to the ones consumed in the original smallYeast model.
These correspond mainly to metabolites that come in pairs that carry
energy (eg. ATP/ADP), reduction power (eg. NADH/NAD) or car-
bon (AC-COA/COA) and can not by themselves be synthesized by
the smallYeast model7.

5. Additionally reactions producing ammonia and sulfate were added
since these are required for biomass formation but are not formed
by central carbon metabolism and therefore are not present in the
smallYeast model.

6. The amount of ATP consumed was coupled to the amount of ADP
produced. This was done to ensure that RNA and DNA formation did
not utilize ATP or ADP as a substrate.

7. A simulation was run using this modified matrix with the biomass for-
mation constrained to 1 and the objective set to minimize all fluxes.
The objective guaranties that only metabolites that exit central car-
bon metabolism are depleted. This since formation of any interior

7

(a) Interestingly biomass formation consumes reduced NADPH whilst producing even
more of the reduced NADH, it is however established that this is what yeast does
[15].
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metabolites would require additional reactions and thus not minimize
the fluxes.

8. The fluxes over the added exchange reactions were taken as the growth
requirements for biomass formation.

This generated a model (“CCM model”) that was similar to the iFF708
model with respect to biomass growth (Table 8) and flux profile (Figure
29). All fluxes were within ±5% between the models apart from 4 fluxes,
ACS, CIT, ACO and MDH that were up to 20% lower in the central carbon
model.

Table 8: The biomass growth for 1 mol glucose predicted by the re-
constructed smallModel and the reconstructed smallModel with modified
biomass equation, CCM model.

Model Biomass growth
Growth per mol glu

Reconstructed smallModel 0.1209
CCM model 0.0913
iFF708 0.0912
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Figure 29: Log log plot of the fluxes over the reactions in the CCM model
and the corresponding reactions in iFF708.

A.4 A Modular Biomass Equation

The flux distribution predicted by FBA depends on the composition of bio-
logical component (e.g. ratio of proteins, lipids, carbohydrates), since each
composition gives its own biomass equation.

A modular version of the biomass equation was generated where each bio-
logical component was given its own reaction. This was done by dividing the
IFF708 models biomass equation in to components and running a simulation
maximizing each in turn (as in section A.3). The total biomass equation was
recreated as the superposition of these components. This is not completely
accurate since there normally exist synergy effects in formation of the dif-
ferent components e.g. RNA formation creates amino acids as a byproduct
that are utilized by the protein formation. The reactions for forming the
components are however relatively independent and the resulting fluxes and
predicted biomass growth were almost identical (data not shown).

This modular biomass equation allows a systematic evaluation of the out-
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come of different biomass compositions. These effects of such changes have
been assumed to be small [27]. The effects of the changing biomass composi-
tion are however relatively large. If the fixed maintenance costs are ignored
there is a 33% higher maintenance cost for the composition associated with
low growth rates than the high (Table 9). Including a fixed maintenance
cost of 1 ATP per hour and kg dw decreases the difference to at most 12%.

Table 9: Predicted maintenance drain of ATP to ensure a biomass yield of
0.51. Biomass composition taken from literature [63]. Only the main contri-
butions protein and carbohydrates are shown. The fixed ATP consumption
is calculated based on the consumption of 1 mol ATP per hour and kg dw
[27].

Growth Rate Protein Carbohydrates Total Fixed Growth
h−1 Weight % Mol ATP per kg dw
0.1 38 45 40.37 10 30.37
0.2 50 31 34.09 5 29.09
0.3 53 27 35.04 3.33 31.66
0.4 57 23 30.08 2.5 28.3

A.5 Amino Acid Composition

Protein synthesis is an important part of the biomass equation and each
amino acid gives a different contribution. Measurements of the amino acid
composition i.e. the relative abundance of each amino acid are therefore
included in the biomass equation. Through proteomics data the amino acid
composition of the cell can be calculated. The composition was calculated
using abundance for each protein [79] and protein the protein composition
for each protein [71] these were multiplied and the sums of each amino
acid was normalized with the sum of all amino acids. This approach does
not take in to account systematic differences in the composition between
the synthesized proteins and the mature proteins through cleavage, this
effect could be expected to be accentuated for methionine since it also is the
starting codon and therefore present in the sequence for all proteins.
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Figure 30: Comparison of the amino acid composition between calculations
from proteomics data and data used in the models iFF708 and iNN800. The
iFF708 diverges stronger than iNN800 from the calculated data. There is
a big difference between the models and the calculated data for the amino
acid Glutamine.

The composition used in the iIN800 and iFF708 models was compared with
the calculated composition. There were big differences between the models
and the calculated data. Most notable this was for the iFF708 model (Figure
30). All models showed a 100% larger estimate for glutamine, a fact that
might be of interest for future studies. As expected the calculated ratio of
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Methionine was higher (approximately 25%) than in the models.

The effects of the different compositions on mean amino acid weight and
predicted biomass growth were relatively small for the tests (Table 10), the
estimated mean weight differed by 2% and the weight adjusted yield differed
by 0.9%.

Table 10: The effect on weight and biomass yield of different biomass
compositions. The average amino acid weight is given for the condensed
state i.e. the weight of 1 H2O is removed from the weights of the amino
acids. The yield was calculated by inserting the amino acid composition
in the iFF708 model and running a simulation with 1 mol glucose per kg
dry weight and hour. The weight adjusted simulation sets the total protein
content to 450 g per kg dry weight thereby adjusting the total amount of
mol amino acid synthesized by the average weight.

Amino acid composition Weight Yield Weight adjusted
g/mol

Nitrogen limited iIN800 108.81 0.0971 0.0925
Carbon limited iIN800 108.54 0.0971 0.0924
iFF708 108.60 0.0967 0.0920
Pax Db Consensus 110.88 0.0953 0.0928
Difference (max/min) 2.1 % 1.9 % 0.9%
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B Kcat and the c-Parameter

The c parameter was estimated from experimental data (Section B.1). The
values of kcat where taken from databases and literature (Section B.2).

B.1 The c-Parameter

A study[73] tests the effect of cell like conditions on the maximum perfor-
mance of enzymes. The average decrease in performance for the 12 measured
enzymes was 20% (Table 11).

Table 11: The reduction of catalytic activity from optimized values given by
an in vivo like assay compared with an optimized assay for 2 stains and 2
conditions. For two enzymes (marked with *) the in vivo like assay is more
optimal this is discussed in the study [73].

Name In vivo like assay Std
HXK 0.52 0.21
PGI 0.37 0.05
PFK 0.49 0.05
ALD 0.73 0.27
GAPDH 0.44 0.12
PGK 1.23* 0.40
GPM 0.82 0.26
ENO 0.68 0.13
PYK 0.86 0.23
PDC 1.98* 0.81
ADH 0.94 0.62
TPI 0.13 0.05
Total 0.78 0.57

A study[16] uses cell free extracts. and measures the maximum turnover of
substrate per g protein in the extract. This is equivalent to measuring what
the maximum flux Fmax could be (Equation 10).

kcat ×N × f = Fmax (10)
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Where N is the amount of the given protein in a g and f is a factor reflecting
that cell free extracts will give an over representation of cytosolic enzymes. It
is taken to be 1.43 for batch cultures and 2 for chemostat cultures reflecting
a larger amount of membrane and cell wall bound enzymes in this condition.

The real flux Fr can be estimated using FBA with experimentally measured
uptake rates for each condition. Division of these two expressions of F gives
an expression for c (Equation 11).

c = Fmax
f × Fr

(11)

The value of c was calculated for 12 different enzymes (Table 12). The value
of c was 0.43±0.08 for batch conditions. For chemostat conditions the value
was 0.08 ± 0.01. approximately 20% of the value in batch conditions.

Table 12: The measured maximum possible flux compared with the match-
ing FBA estimated flux. The data comes from two strains and two different
laboratories [16]. For one value (marked with *) the estimated flux is higher
than the measured maximum this is discussed in the study [73].

Name Batch Std Chemostat Std
HXK 0.64 0.21 0.08 0.02
PGI 0.17 0.03 0.03 0.01
PFK NA - 0.23 0.04
ALD 0.38 0.15 0.09 0.05
GAPDH 0.22 0.08 0.03 0.01
PGK 0.14 0.03 0.03 0.01
GPM 0.15 0.04 0.03 0.01
ENO 0.76 0.14 0.16 0.04
PYK 0.16 0.04 0.05 0.02
PDC 1.53* 0.36 0.22 0.06
ADH 0.61 0.38 0.03 0.01
TPI 0.01 0.01 0.00 -
Total 0.43 0.08 0.08 0.01



B.2 Kcat Values Used in the Study 89

B.2 Kcat Values Used in the Study

Brenda [60] is the main database for kcat values.

B.2.1 Glycolysis

The kcat values of Glycolysis (Table 13). There is a good order of magni-
tude agreement between the used values and the human and max values.
The value for FBA could not be found in the database or literature. It was
therefore estimated from the value of E coli a closes homologue, 49% iden-
tical and 19% similar [19]. The E coli value was divided by 1.4 to reflect
the decrease in temperature 8. The value for PFK was taken from literature
[66], as the value in a secondary source was [4] 4 times higher than max
reflecting that the activity of the complex was measured.

8 http://antoine.frostburg.edu/chem/senese/101/kinetics/faq/temperature-and-reaction-
rate.shtml
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Table 13: The kcat valus for glycolysis used (Used) in this study. together
with the highest reported kcat from all species and conditions (Max) and
the kcat for human (Human). The value for FBA (marked with a *) was
estimated from E.coli. Sources are abbreviated as follows
B =Brenda [60]
B(s) = Brenda specific activity [60]. calculated from specific activity and
weight in uniprot.
KRA = kcat from a survey of literature kcat [4].

Name EC Used Max Human Source
s−1 s−1 s−1

HXK 2.7.1.1 276 483.3 101 B(s)
PGI 5.3.1.9 1338.3 2765 3330 KRA
PFK 2.7.1.11 210 185 357 [66]
FBP 3.1.3.11 24 175 23.5 B(s)
FBA 4.1.2.13 14.2* 64.5 59.7 B
TPI 5.3.1.1 16700 68330 B
GLD 1.2.1.12 16.7 70 B
PGK 2.7.2.3 354 2633 2633 B
GPM 5.4.2.11 530 3200 B
ENO 4.2.1.11 230 230 81.68 B
CDC 2.7.1.40 232 3204 1182 B

B.2.2 Pentose Phosphate Pathway

The kcat values of the pentose phosphate pathway (Table 14). There is a
good order of magnitude agreement between the used values and max values
when such exist. A value for PGL could only be found in a non per reviewed
paper [46].
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Table 14: The kcat valus for pentos phosphate pathway, see Table 13 for
descriptions and abbreviations. The value for PGL (marked with a *) comes
from a non per reviewed paper.

Name EC Used Max Human Source
s−1 s−1 s−1

ZWF 1.1.1.49 1443.3 3500 571 KRA
PGL 3.1.1.31 10* [46]
GND 1.1.1.44 70 98 0.217 KRA
RPI 5.3.1.6 200 97 KRA
RPE 5.1.3.1 1300 7100 B
TKIa 2.2.1.1 56.7 6.3 B
TAL1 2.2.1.2 69.2 13 8.9 KRA
TKIb 2.2.1.1 69 6.3 B

B.2.3 Fermentation Pathways

The kcat values of the Fermentation pathways (Table 15). There is a good
order of magnitude agreement between the used values and max values when
such exist.

Table 15: The kcat valus for germentation pathways, see Table 13 for de-
scriptions and abbreviations. For one value ADH1 the kcat was only given
for the backwards reaction, an external source was therefore used.

Name EC Used Max Human Source
s−1 s−1 s−1

DAR 1.1.1.8 134,2 390 KRA
GPP 3.1.3.21 833 833 B
PDC 4.1.1.1 73,1 486 B
ADH1 1.1.1.1 340 3500 34,8 [29]
ALD6 1.2.1.3 31 19,7 67,5 B(s)

B.2.4 TCA Cycle

The kcat values for the TCA cycle (Table 16). There was limited information
available for these enzymes. For two enzymes ACO and FRDS2 the median
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value of all data was used, the FRDS2 reaction is however not used in
the simulations run in this project. The value of IDH was taken as the
value IDPH because of the similarity between the reactions, this value also
happens to be the median value. For the reaction MDH1 the kcat values
from other organisms appeared to be so high that it would have little effect
on the simulation, the value was therefore taken as the maximum value.

Table 16: The kcat valus for TCA cycle, see Table 13 for descriptions and
abbreviations. For ACO and FRDS2 the median was used (marked with a
*). For IDPH the value of IDH was used (marked with **). For MDH1 the
highest value in Brenda was used (marked with ***).

Name EC Used Max Human Source
s−1 s−1 s−1

PYC 6.4.1.1 60 60 B
CIT 2.3.3.1 188 174 B(s)
ACO 4.2.1.3 180* 3,3 Median
IDH 1.1.1.41 178 73 36,8 KRA
IDPH 1.1.1.42 178** 255 Similarity
KGD1KGD2 1.2.4.2 27,9 B(s)
SDH12 1.3.5.1 60 260 B
FRDS2 1.3.1.6 180* 658 Median
FUM1 4.2.1.2 1020 658 B(s)
MDH1 1.1.1.37 4729*** 4729 BrendaMax

B.2.5 Oxidative Phosphorylation

The kcat values for the TCA cycle (Table 17). There is a good order of
magnitude agreement between the used values and the max values. For the
values of ATP synthase a recent study [28] was used. The values in this study
are a factor 2 higher than previous studies. This might in part be an effect of
the high PH gradient, ∆3.2 units or 133 mV. Which can be compared with
approximately ∆1 or 43 mV normally found in cellular systems (BIONID
107274[54]). The reported rates of ATP synthase is however only about 15-
20% of ATP hydrolysis [58]. This means that the speed of ATP syntheses is
40 s−1 compared with the maximum measured 270 s−1 for prokaryote ATP
synthase.
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Table 17: The kcat valus for Oxidative Phosforylation , see Table 13 for
descriptions and abbreviations. For ATP1 a recent study was used

Name EC Used Max Human Source
s−1 s−1 s−1

NDI1 1.6.5.3 (1.6.5.9) 500 550 B
NDE2 1.6.5.3 (1.6.5.9) 500 550 B
SDH34 1.3.5.1 60 260 B
RIP1 1.10.2.2 220 459,5 B
COX1 1.9.3.1 1500 2000 80 B
ATP1 3.6.3.14 120 55 [28]

B.2.6 Other

The kcat values for the other pathways (Table 18). For ACS the database
value for Saccharomyces appeared to be suspiciously low, 1% of max value
and the closest homolog was used Salmonella enterica, 47% identical 18%
similar.

Table 18: The kcat valus for the other pathways, see Table 13 for descriptions
and abbreviations. For MAE1 there was no value and the E coli value was
used (marked with *). This reaction is however not used in the simulations
run in the project, neither is PCK. ACS is from homolog (marked with **).

Name EC Used Max Human Source
s−1 s−1 s−1

MAE1 1.1.1.38 134,4* 134,4 B
PDH 1.2.4.1 3866 486 69,9 KRA
ACS 6.2.1.1 95.1** 144,9 B
PCK 4.1.1.49 65 65 B

B.2.7 Galactose

The kcat values of galactose (Table 19). There is a good order of magni-
tude agreement for human for GAL1 and GAL10 . The max values are an
order of magnitude larger for GAL1 and GAL10. These values are not the
largest values in the database since these are calculated using an incorrect
protein weight, probably reflecting a dimer form. The GAL1 value is the
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second largest and taken from a recent study [64]. The kcat for Gal10 was
recalculated using uniprot protein weight.

Table 19: The kcat valus for the Galactose pathway, see Table 13 for descrip-
tions and abbreviations.

Name EC Used Max Human Source
s−1 s−1 s−1

GAL1 2.7.1.6 22,3 146 8,7 [64]
GAL10 5.1.3.2 40,8 760 36 B(s)
PGM1_2 5.4.2.2 214 398 B(s)
GAL7 2.7.7.12 987 987 98 B

B.3 Cross Verification of Kcat

The kcat values was calculated for 12 different enzymes (Table 20) using
maximum flux data [16] and equation 10. The parameter N was calculated
from protein abundance studies [79] and cellular composition data [63]. And
f was taken as 1.43 (Section B). The calculated kcat was compared with the
tabulated kcat values. The average ratio of database and estimated kcat was
1.1 indicating a slight average overestimation of kcat values. According to
these calculations FBA and GLD have the most underestimated kcat values
and ENO the most overestimated.
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Table 20: The measured maximum possible flux compared with the match-
ing FBA estimated flux. The data comes from two strains and two different
laboratories [16]. For one value (marked with *) the estimated flux is higher
than the measured maximum this is discussed in the study [73].

Name EC Database Mean Estimate Std Ratio
HXK 2.7.1.1 276 296.7 68.6 0.93
PGI 5.3.1.9 1338.3 878.5 425.6 1.52
PFK 2.7.1.11 210 183.6 1.14
FBA 4.1.2.13 14.2 89.8 71.9 0.16
GLD 1.2.1.12 16.7 173.4 73.4 0.10
PGK 2.7.2.3 354 626.3 119.8 0.57
GPM 5.4.2.11 530 1414.6 316.7 0.37
ENO 4.2.1.11 230 53.0 12.1 4.34
CDC 2.7.1.40 232 661.2 86.5 0.35
PDC 73.1 64.2 26.5 1.14
ADH 340 259.8 87.4 1.31
TPI 5.3.1.1 16700 12814.8 14979.7 1.30
Average 1.10
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C Experimental Data

C.1 Chemostat Data

Data from chemostat experiments of the cells in and out fluxes was retrieved
from literature. (Table 21)

Table 21: Measured [35] input and out fluxes from chemostat experiments
as a function of growth rate. D. The fluxes are given in µmol · g−1 = q.
The yield refers to the ratio weight of substrate uptake per weight biomass
produced. The recovery refers to the measured influx of carbon molecules
compared with the measured carbon molecules in the out flux.

D Yield O2 CO2 Glucose Ethanol Acetate Gglycerol Recovery
h−1 g · g−1 q q q q q q cmol · cmol
0.1 0.48 2.5 2.7 1.1 0 0 0 0.96
0.15 0.49 3.9 4.2 1.7 0 0 0 1.024
0.2 0.48 5.3 5.7 2.3 0 0 0 1.009
0.25 0.48 7 7.5 2.8 0 0 0 1.026
0.28 0.46 7.4 8 3.4 0.11 0.08 0 0.97
0.3 0.37 6.1 8.8 4.5 2.3 0.41 0 0.991
0.35 0.23 5.1 14.9 8.6 9.5 0.62 0.05 0.994
0.4 0.2 3.7 18.9 11.1 13.9 0.6 0.15 0.979

Table 22: Measured [55] input and out fluxes from chemostat experiments as
a function of growth rate. D. The values for ethanol and acetate are given
with their concentration in the chemostat. Acetate production proceeds
ethanol production.

D Yield O2 CO2 Ethanol Acetate
h−1 g · g−1 q q mM mM

0.25 0.43 9.4 9.0 0 0.15
0.30 0.36 12.3 12.2 0 0.48
0.32 0.25 10.2 15.3 40 1.50
0.33 0.23 9.7 16.9 60 1.80
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C.2 Composition Data

Measurements of cellular composition data from 3 conditions and two or-
ganisms (Table 23, 24, 25).

Table 23: Measured [63] biomass composition of Saccharomyces Cerevisiae
for increasing growth rates. The values are g per 100g dry weight.

Growth rate 0.1 0.2 0.3 0.4
Protein 37.30 48.40 52.20 55.50
Free Amino 1.10 1.90 1.10 1.60
DNA 0.50 0.40 0.50 0.60
RNA 4.90 7.20 7.10 9.00
Lipid 2.60 2.80 2.60 2.50
Glycogen 10.80 4.50 2.20 0.50
Trehalose 2.90 1.80 1.60 1.00
Mannan 16.10 13.60 11.10 9.00
Other carbohydrates 15.60 11.30 11.90 13.30
Ash 5.00 5.00 5.00 5.00

Table 24: Measured [49] biomass composition of Saccharomyces Cerevisiae.
for increasing growth rates The values are g per 100g dry weight.

Growth rate 0.1 0.2 0.3 0.4
Protein 45.0 50.0 55.5 60.1
Free amino acids 1.1 1.3 1.1 2.0
DNA 0.4 0.4 0.5 0.6
RNA 6.2 8.2 10.1 12.1
Lipid 2.9 3.0 3.8 3.4
Glycogen 8.4 4.2 0.6 0.0
Trehalose 0.8 0.2 0.0 0.0
Mannan 13.1 12.9 12.0 13.3
Other carbohydrates 18.4 15.4 12.6 3.7
Ash 5.0 5.0 5.0 5.0
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Table 25: Measured [26] biomass composition of Kluyveromyces marxianus
for increasing growth rates. The values are g per 100g dry weight.

Growth rate 0.1 0.25 0.5
Protein 37.0 ± 1.5 52.9 ± 1.0 71.9 ± 2.7
DNA 0.2 ± 0.1 0.5 ± 0 0.6 ± 0.1
RNA 4.9 ± 0.3 7.8 ± 0.3 10.6 ± 0.1
Lipid 5.1 ± 0 5.1 ± 0 5.1 ± 0
Carbohydrate 49.5 ± 1.1 31.3 ± 0.9 9.6 ± 0.8
Ash 2.6 ± 0.1 2.3 ± 0.2 2.6 ± 0.1

C.3 Internal Metabolite Concentration

Internal metabolites (Figure 31).
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Figure 31: Some experiments [13] show that the internal metabolite concen-
tration increases with growth rate. [13].
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D The Number of Subunits in the Complexes

The number of subunits and amino acid residues in the protein complexes
(Table 26).

Table 26: Table of the number of subunits and the estimated weight in
amino acids, AA, of the complex.

Reaction name RXNID SubunitsAA Reference
Alpha-ketoglutarate dehydrogenase KGD1 3 1976 [71]
Pyruvate dehydrogenase complex PDA1 4 1572 [71]
Phosphofructokinase PFK 2 1946 [71]
NADH-coenzyme Q oxidoreductase
(Complex I)

NDI1 1 513 [71]

Succinate-Q oxidoreductase
(Complex II)

SDH12,
SDH34

4 906,
379

[71]

Q-cytochrome c oxidoreductase
(Complex III)

RIP1 20 4490 [37]

Cytochrome c oxidase (Complex VI) COX1 12 1995 [71]
ATP synthase (Complex V) ATP1 26 5854 [21]
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E Functional Annotation of the Proteins

The cellular composition was determined using protein abundance data [79],
this data is a weighted mean of several different experiments. A set of
relevant categories were chosen and the data was categorized as follows:

1. The 6624 proteins were ordered by abundance and the 5% with the low-
est abundance were categorized as low abundant. This corresponded to
more than 4600 proteins, out of which more than 500 had no recorded
abundance at all. After this coarse filtering less than 2000 proteins
remained.

2. The remaining proteins were mapped to the pathway they belong to in
the Kyoto Encyclopedia of Genes and Genomes (KEGG)[52]. There
normally existed several pathways that covered the chosen categories
(Appendix E.2), the pathways were therefore lumped to match the
categories. Many proteins were categorized as belonging to several
pathways. To avoid double counting, categories were ranked and the
gene was taken to belong to the category of highest rank. This ranking
created a bias in favor of metabolism and against signaling and DNA
replication. The mapping by KEGG pathway corresponded to 950
proteins and covered 75% of the total protein abundance.

3. For the remaining 1000 proteins, text search was performed in the pro-
tein description using search terms associated with cellular functions.
This led to a further categorization of 400 proteins corresponding to
10% of the total abundance.

4. The remaining 600 proteins were categorized as other and corresponded
to 10% of the total abundance.

5. The 2000 high abundant proteins were sorted by name and each cat-
egory was manually scanned for misannotations. Some 50 proteins
were adjusted e.g “37S ribosomal protein MRP1, mitochondrial” was
re categorized from “lipid synthesis” to “Protein synthesis”.

6. The abundance of each protein was multiplied by its sequence length
giving an abundance weighted by amino acid content.

E.1 From Protein Abundance

The total amino acid abundance for each category was calculated using
abundance data and protein sequence length. A comparison of these abun-
dances gave a measure of how large fraction of the total protein biomass
that is dedicated to each function. Up to 30% of the proteins were fount
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to be involved in making more proteins. Additionally 8% of the proteins
were dedicated to making the building blocks of proteins, amino acids. For
most growth conditions this is probably an underestimate since the cells
used in the abundance study were grown on a media (YPD) that already
contains amino acids. According to this categorization 26% of the proteins
were involved in central carbon metabolism.

The high abundance in the protein and energy production pathways are not
merely a consequence of the functions consisting of many different proteins
(Table 27). The median amino acid abundance of the proteins are more than
twice as high for theses functions compared with the median of all functions.

Table 27: The median amino acid abundance for the proteins in each cat-
egory compared with the median abundance of the proteins in all the data
(excluding the low abundant data).

Category Count Average Median Max
E+05 E+06

Protein synthesis 523 2,2 171 7.3
Amino acid synthesis 98 3,1 284 2.7
Central carbon metabolism 139 6,9 198 11
Non central Metabolism 62 0.6 76 0.3
Nucleotide synthesis 27 3,6 199 4,5
Cell Wall 19 0.7 95 0.5
Fatty acid synthesis 28 2,7 164 2.4
DNA interacting, transcription
and replication

133 0.8 76 1.2

Signaling and RNA interaction 179 1,4 92 5.7
Transport 103 1,1 94 1.5
Other 597 0.7 76 1.4
UnCategorized 59 0.4 32 0.3

E.2 Choice of Function Categories

The cellular function of highest interest to this project was central car-
bon metabolism. This since it will be the constraint used for the proteins
involved. However the remaining functions might also be of interest since
they give a picture of what the alternative cost of central carbon metabolism
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might be i.e. why the cell does not dedicate 1%unit more to central carbon
metabolism and 1%unit less to some other function.

Protein synthesis is one of these irreplaceable functions. A decrease in pro-
tein production would affect growth negatively, the same holds for amino
acid synthesis. Other functions that can not be decreased without affecting
growth are the ones involved in biomass formation e.g. nucleotide and fatty
acid synthesis and the cell wall. This might also apply to some extent to
non central Metabolism.

Signaling and RNA interaction was of particular interest since its effects
are explicitly neglected in this project. DNA interacting, and Replication
is interesting since it is expected to represent a fixed cost, and transport is
expected to scale with the surface. The motivation for adding a uncharacter-
ized category rather than adding these to the other category is to illustrate
that there still exists .

E.2.1 Lumping of Kegg Categories

The KEGG pathways were were lumped by cellular function.
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1 Centra l carbon metabolism sce00010 sce00620
sce00020 sce00190 sce00052 sce00051 sce00500
sce00030 sce00040

2 Amino ac id s yn th e s i s sce00250 sce00260 sce00270
sce00280 sce00290 sce00300 sce00310 sce00330
sce00340 sce00350 sce00360 sce00380 sce00400
sce00410

3 Prote in s yn th e s i s sce03050 sce04141 sce03010
sce03008 sce00970 sce00520 sce00562 sce00563
sce00564 sce00590 sce00591 sce00592 sce00670
sce00760 sce00770 sce00860 sce04120 sce00130

4 Fatty ac id s yn th e s i s sce00061 sce00062 sce00071
sce01040 sce00561 sce00565 sce00600 sce04146

5 Transport sce02010 sce03060 sce04130 sce04144
sce04145

6 Nuc leot ide s yn th e s i s sce00230 sce00240
7 DNA in t e r a c t i n g , t r a n s c r i p t i o n and Rep l i c a t i on

sce04113 sce04111 sce03440 sce03030 sce03450
sce03430 sce03410 sce03420

8 S i gna l i ng / Transc r ip t i on sce03022 sce03013 sce03015
sce03018 sce03020 sce04140 sce04011 sce04070
sce04122 sce03040

9 Non c en t r a l Metabolism sce00072 sce00100 sce00430
sce00450 sce00460 sce00480 sce00680 sce00730
sce00740 sce00750 sce00510 sce00511 sce00513
sce00514 sce00630 sce00640 sce00650 sce00910
sce00920 sce00780 sce00785 sce00790 sce00909
sce00900

Figure 32: The cellular functions and the corresponding KEGG pathways ids
they were mapped to. In the case of protein belonging to several pathways
the protein was assigned to function where it first was encountered in order
from top to bottom.

E.2.2 Text Search Terms Used for Categorization

Search terms were used to map Uniprot protein names to cellular category
(Table 28).
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Table 28: The search terms used for mapping Uniprot names to cellular
functions.

Category Search terms
Protein synthesis “Chaperone”, “Ribosome”,

“tRNA”, “Translation”
Cell Wall “Wall”
DNA interacting, transcription
and Replication

“Transcription”, “Bud”,
“Chromatin”, “DNA”, “Histone”

Signaling and RNA interaction “Receptor”
Transport “Transport”, “Vesicle”
Uncharacterized “Uncharacterized”
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F Limits on Growth From Size and Protein Syn-
thesis

The limits imposed by CCM could be caused by some other bottleneck that
makes increased protein concentrations unnecessary.

F.1 Ribosome Amount Predicted from Growth Rate

There exists a correlation between the amount of RNA and the amount of
ribosomes. The amount ribosomes can therefore be estimated from cellular
composition data (Tabel 29). From this the percentage of the protein mass
that is ribosomal can be calculated to between 8.5-13%, which gives a total
protein synthesis mass of 21-33%, which fits well with abundance data (30%).
For prokaryotes ribosomes concentration grows linearly with growth rate
[54].
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Table 29: Estimates of ribosome content from measurements of cellular
RNA content at different growth rates for nitrogen limited (a) and carbon
limited (b) S. cerevisiae.

a)
S. cerevisiae, nitrogen limited Growth Rate

0.1 0.2 0.3 0.4
RNA [kg] 0.049 0.072 0.071 0.090
Protein [kg] 0.373 0.484 0.522 0.555
Estimated amount of
ribosomes [10−5mol]

2.24 3.29 3.25 4.12

Percent of total protein in
Ribosomes [%]

8.44 9.55 8.73 10.41

Estimated percent of protein
in protein synthesis [%]

21.47 24.32 22.23 26.51

b)
S. cerevisiae, carbon limited Growth Rate

0.1 0.2 0.3 0.4
RNA [kg] 0.063 0.082 0.101 0.121
Protein [kg] 0.45 0.5 0.555 0.601
Estimated amount of
ribosomes [10−5mol]

2.88 3.75 4.62 5.53

Percent of total protein in
Ribosomes [%]

8.99 10.53 11.69 12.93

Estimated percent of protein
in protein synthesis [%]

22.89 26.81 29.75 32.91

There exists a correlation between the amount of ribosomes and the growth
rate (Eq 12).

µ×A = R× vrib (12)

Where µ is the specific growth rate, A is the total amount of amino acids in
a kg, R is the amount of ribosomes and vrib is the ribosomal speed at that
growth rate. Or simply as growth rate increases more ribosomes are needed.
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The maximal translation speed of a ribosome is suggested to be 10 amino
acids per second and ribosome for S. cerevisiae [77]. For E. coli it is assumed
to be 20 amino acids a second [54, 77]. It can however be shown that the
ribosomal translation speed given in literature is too low to sustain growth
at high growth rates (Figure 33). Adjusting the translation speed for growth
to be sustainable corresponds to a 38% increase in E. coli and between 24-
54% increase in S. cerevisiae. These figures are calculated assuming that no
protein degradation takes place, which is probable to be incorrect.
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Figure 33: Theoretical maximal protein production divided by the produc-
tion required to sustain growth for E. coli a) Nitrogen limited S. cerevisiae
and carbon limited S. cerevisiae. b). The theoretical maximum was calcu-
lated using parameters for ribosome speed from literature and with a value
fitted to allow growth (Table 29). The literature values where 20 AA/s for
E. coli and 10 AA/s for S. cerevisiae. The fitted values where 27.66 AA/ for
E. coli, 15.41 AA/s for nitrogen limited and 12.41 AA/s for carbon limited
S. cerevisiae.

From the equation for ribosome amount (Eq 12) the minimum amount of
ribosomes required can be calculated if the growth rate µ, the maximum
translation speed vrib and the total mass of amino acids and RNA T is
known (Eq 13).

A = T × vrib
µwr + vribwa

(13)

R = T × µ

µwr + vribwa

This makes use of the conservation of mass (Eq 14).



112F LIMITS ON GROWTH FROM SIZE AND PROTEIN SYNTHESIS

R× wr = T −A× wA (14)

Where wAis the mol weight of amino acids, 0.108 kgmol−1. And wr is the
RNA weight for a mol of ribosomes 2.19 × 103 kgmol−1. The wr involves
the rRNA/RNA ratio Rratio the number of nucleotides per ribosome Rn and
the mol weight of nucleotides wn (Eq 15).

wr = Rn × wn
Rratio

= 5500 × 0.324
0.815 = 2.19 × 103 kgmol−1 (15)

This allows predictions of RNA content at different growth rates (Figure
34).
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Figure 34: Estimated ribosome amount based on RNA content and predicted
ribosome amount based on RNA+Protein content and eq 15. There is an
underestimate of the amount of ribosomes for low growth rates.

F.2 Tables Of Cell Sizes Dependency on Growth Rate

Volume as a function of growth rate from glucose and nitrogen limited
chemostat experiments (Tabel 30, 31).
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Table 30: Volume as a function of growth rate from a glucose limited chemo-
stat experiment [13]. Radius. area and surface/volume ratio are calculated
assuming yeast is a sphere.

Growth
rate

Volume Stdev Surface /
volume

h−1 µm3 µm3 µm2

µm3

0.108 27.0 0.03 1.61
0.161 24.4 0.06 1.67
0.238 25.3 0.05 1.65
0.311 29.2 0.07 1.57

Table 31: Volume as a function of growth rate from a nitrogen limited
chemostat experiment [13]. Radius. area and surface/volume ratio are cal-
culated assuming yeast is a sphere.

Growth rate Volume Stdev Surface / volume
h−1 µm3 µm3 µm2

µm3

0.100 22.9 0.3 1.70
0.172 28.3 0.3 1.59
0.208 33.6 0.3 1.50
0.295 37.3 1.3 1.45

F.3 Literature Data on Cell Wall for Biomass Estimation

The mass of cell wall associated carbohydrates is expected to decrease with
the cell size since the surface volume ratio decreases. A simple model de-
scribing this was created based on literature values (Table 32) of cell wall
thickness, water content and the density of carbohydrates.

The carbohydrate content was calculated as follows:

1. The volume of the cell at a given growth rate was estimated (equation
8).

2. The dry weight of the cell was calculated from the total volume.
3. The total volume of the cell wall was calculated from the wall thickness

and assuming sphere or cube shape of the cell.
4. The weight of carbohydrates in the cell wall was calculated from the

volume and divided by the dry weight.
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Table 32: Cell wall data.

Parameter Value Source
Density carbohydrate g

cm3 ≈ 1.45 (1.35-1.55) [59]
Water content wt/wt 68% [59]
cm3 wall / g carbohydrate 1

1.45 + 0.68
0.32 = 1

0,36

Cell wall thickness µm 0.11 [40]
Carbohydrate content (dry weight) 94.5% [40]
Density cell g

cm3 1.11 [40]
Dry weight of wet weight 34% [40]
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The project description as of 2014-01-21.

MASTER T HESIS PROJECT DESCRIPTION 

TITLE 

Including the cost of enzyme produc!on in a flux balance analysis of Saccharomyces 

cerevisiae. 

BACKGROUND 

Flux balance analysis (FBA)
1
 is a way to model a metabolic network. The model describes the 

concentra!on of the metabolites using the stoichiometry of the reac!ons. Solu!ons are 

found assuming steady state with regards to metabolite concentra!on. The solu!on that 

op!mizes some biologically relevant objec!ve func!on (e.g. biomass produc!on) is assumed 

to be a good descrip!on of the system. Recently FBA has been extended with the so called 

ME models
2
. Among other things a ME model includes the concentra!on of the enzymes 

responsible for the biochemical reac!ons. This has highlighted that tradi!onal FBAs do not 

account for the cost of using a reac!on and therefor have a tendency to u!lize many 

reac!ons. 

PURPOSE 

The purpose is to test to which extent neglec!ng the cost of enzymes has affected the 

predic!ve powers of FBA and if predic!ons can be improved if the cost is included. 

GOAL 

The goal is to develop a modified version of FBA that incorporates cost of enzyme 

produc!on and that allows comparison with normal FBA. The goal is also to inves!gate the 

predic!ve powers of this model. 

LIMITATIONS 

The metabolic network inves!gated will be limited to the central carbon metabolism of 

Saccharomyces cerevisiae. 

                                                        

1
 h%p://en.wikipedia.org/wiki/Flux_balance_analysis 

2
 h%p://www.nature.com/ncomms/journal/v3/n7/full/ncomms1928.html 
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