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Abstract

A three dimensional (3D) mesoscale model of concrete is presented and employed
for computational homogenization in the context of mass diffusion. The mesoscale
constituents of cement paste, aggregates and Interfacial Transition Zone (ITZ) are
contained within a Statistical Volume Element (SVE) on which homogenization is
carried out. The model implementation accounts for ITZ anisotropy thereby the
diffusivity tensor depends on the normal of the aggregate surface. The homogenized
response is compared between 3D and 2D SVEs to study the influence of the third
spatial dimension, and for varying mesoscale compositions to study the influence
of aggregate content on concrete diffusivity. The computational results show that
the effective diffusivity of 3D SVEs is about 40% greater than 2D SVEs when ITZ is
excluded for the SVE, and 17% when ITZ is included. The results are in agreement
with the upper Hashin-Shtrikman bound when ITZ is excluded, and close the Taylor
assumption when ITZ is included.
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1 Introduction

Chloride ions can substantially reduce the bearing capacity of concrete structures, such
as bridges and offshore constructions, if the ions come in contact with the reinforcement
bars and initiate corrosion. The source of chloride ions is often de-icing salts put on
roads in winter times, or dissolved salt in seawater. Corrosion due to chloride ions is,
thus, an important aspect of the durability of concrete structures since it is the the cause
of time and resource consuming maintenance work.
The ingress rate of chloride ions, in turn, is highly dependent on the diffusion

properties of concrete. Hence, if the diffusion properties of concrete can be modelled
and estimated, a better prediction of the time span until corrosion initiation will be
possible. Additionally, if those properties of concrete that affects the diffusivity the most
can be determined, appropriate measures during concrete production can be taken so
that the diffusivity of the material is reduced and thus making concrete structures better
withstand exposure of chloride ions.
Computational homogenization (CH) is an established technique to account for

material heterogeneities at multiple length scales, while keeping computational costs at
a moderate level, see e.g. Yuan and Fish [31], Geers et al. [8] and Miehe et al. [19]. One
benefit of this technique is that it enables bulk properties of a material to be determine
a priori in the case of linear subscale properties. This is beneficial if the macroscopic
behaviour of a material is sought and the subscale features are highly complex. In
case of non-linear material behaviour the subscale response needs to be determined
concurrently during the computations in a nested fashion using a FE2-approach, as
was done in Özdemir et al. [24] for transient heat problems and Larsson et al. [16] for
problems of uncoupled consolidation of porous media using variationally consistent
homogenization.
Concrete has a highly heterogeneous and random material structure at multiple

length scales. Thus, considerable computational work on the effects of its heterogeneity
has been done for this material: Kim and Al-rub [15] studied how the mesoscale phases
of concrete contributes to the damage response of concrete using both 2D and 3D models,
lattice based models were used Wang and Ueda [28] to simulate capillary adsorption in
heterogeneous concrete and by Schlangen and Mier [25] to simulate fracture processes,
which also was done by Carol et al. [6] using zero thickness interface elements as
potential crack patterns. Hain and Wriggers [10, 11] used three dimensional computer
tomography of hardened cement paste to compute effective material properties related
to elasticity and damage.
On the cement paste level where the porosity is of importance, considerable work has

been done with respect to diffusivity properties: Promentilla et al. [23], Bentz et al. [3]
and Karim and Krabbenhoft [14] all used X-ray scanning in conjunction with techniques
of random walk and Brownian motion to determine effective diffusivity properties of
cement paste.
However, most work on numerical homogenization of concrete on the mesoscale

reported in the literature treats mechanical problems. Diffusion processes in concrete
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greatly influence material properties and this field needs further exploration. A natural
evolution in the development of CH is thus to study mass transport and at the same
time account for all three spatial dimensions to obtain numerical results that potentially
better reflect the real material behaviour.
This paper presents a 3D heterogeneous mesoscale model of concrete and compares

numerical homogenization between 3D and 2D models to study how the third spatial
dimension contributes to the homogenized results. This is done in the context of mass
diffusion; thus, the effective diffusivity of concrete is the studied material property.

2 Mesoscale SVE

The concept of a Statistical Volume Element (SVE) is fundamental to CH techniques
as it is the foundation on which all computational work is built. The SVE is expected
to contain all material heterogeneities in a statistical manner and tends to become a
Representative Volume Element (RVE) only when it is sufficiently large, see Ostoja-
Starzewski [22]. The advantages of a numerical SVE, in conjunction with CH, as opposed
to e.g. analytical models are several:

• possible to account for complex sieve curves,
• possible to account for non-linear subscale material properties in a straight forward
manner by use of FE2 methods,

• possible to study local material effects during transient conditions,
• possible to account for statistical spread in results by generating several SVEs of
random topology.

In this work, the mesoscale material constituents are the cement paste matrix,
aggregates and Interfacial Transition Zone (ITZ). The aggregates are modelled as spheres
with random spatial distribution, enfolded by an interface layer of ITZ. The cement
paste matrix is considered homogeneous, i.e. cracks are not accounted for herein.

2.1 Sieve curve

The aggregates in the SVE can be of arbitrary size and quantity. The volume fraction of
each phase is defined as

na =
Va

VSVE
, ncp =

Vcp
VSVE

, nitz =
Vitz

VSVE
, (1)

where V• denotes volume in units of cm3 and sub-indices ’a’ denotes aggregate and ’cp’
denotes cement paste, respectively. Hence,

VSVE
def
= Va +Vcp +Vitz. (2)
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The SVE model implementation allows for any realistic na to be obtained. Any sieve
curve is possible to have as input for SVE realizations and we have the requirement that

na = na
N

∑
i=1

fi,
N

∑
i=1

fi
def
= 1, (3)

where fi denotes the partial fraction of na for an aggregate size with radius ri in units
of cm, and N denotes the total number of particles sizes included in the specified sieve
curve. Both N and fi can be chosen freely given the constraint in Eq. (3).

2.2 Algorithm to generate SVEs

The algorithm to generate SVEs is given below as pseudo-code. Figure 1 shows four
examples of SVE realizations generated by the algorithm.

Algorithm 1 Generating SVE

1: while the volume fraction of aggregates inside SVE < na do

2: Generate aggregate from given sieve curve.
3: Place the new aggregate at a random point in SVE.
4: if new particle overlap already existing particle then

5: Remove the new aggregate.
6: else

7: Add volume of the new aggregate to the accumulated aggregate
8: volume.
9: end if

10: end while

2.3 Constitutive relations for the mesoscale materials

We will use a constitutive relation for the mesoscale constituents on the form

J = −D ·∇φ, (4)

where J is the mass flux [g cm−2 s−1], D is the second order diffusivity tensor [cm2 s−1],
∇ is the spatial gradient operator [cm−1] and φ is mass concentration [g cm−3]. The
diffusivity tensors are given for each material as

Dcp = DcpI, Da = DaI (5)

where I is the unit tensor and Ditz is defined in Section 4.
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(a) L� = 2 cm. (b) L� = 4 cm.

(c) L� = 6 cm. (d) L� = 10 cm.

Figure 1: SVE realizations all having the same sieve curve with na ≈ 0.42. L� refers to the side
length [cm] of the SVE.
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3 FE discretization of SVE

The spatial discretization technique is based on voxelization to create a structured grid
of equally sized voxels (cubes). The concept is to subdivide the continuous SVE into
a discrete set of voxels which are considered solid finite elements. This approach was
used by Bentz et al. [2] and Garboczi [7] in the context of analytical homogenization of
heterogeneous concrete and later adapted by Hain and Wriggers [10, 11] for elasticity
problems and CH. Other discretization approaches for 3D domains have been devised
in the literature: both Caballero et al. [5] and Asahina and Bolander [1] used Voronoi
tessellation where the aggregates were based on a polyhedron representation to generate
3D SVEs.
Material properties of the finite elements are determined by looping over all vox-

els/elements and for each element measure its distance to the center of all aggregates
(spheres). If the distance is greater that the radius of any of the aggregates then the
elements is located in the cement paste matrix and can be assigned its proper material
property. If the distance is smaller than any aggregate radius then the element sits
inside an aggregate.

4 ITZ implementation

Experimental results by Hedenblad [13] show that the effective diffusivity of concrete
slightly increases with increasing aggregate content, alternatively remains unchanged.
This implies that the Interfacial Transition Zone (ITZ) has a non-negligible effect on
concrete diffusivity. The ITZ is a thin layer of cement paste which encapsulates the
aggregates and has a much higher diffusivity than the remaining cement paste due to
its high porosity, see e.g. Ollivier et al. [21] and Yang and Su [30]. The porosity is not
constant within the ITZ but varies with a gradient and is highest closest to the surface of
the aggregate. In effect, the transition from cement paste to ITZ is smooth and gradual.
The porosity gradient is of importance since it constitutes the ITZ and, thus, enhance
the diffusivity. For instance, Lutz et al [17] modelled this porosity gradient, within
an elasticity context, by use of an power-law. However, to account for this gradient is
outside the scope of this work and we will assume the gradient to be zero within the
ITZ, but the porosity to be higher than in the cement paste.
As the SVEs are discretisized into a structured grid, a certain number of voxels end

up at the interface between the cement paste matrix and aggregate, see Figure 2.
Consequently, these interface voxels will contain all three mesoscale materials:

cement paste, aggregate and ITZ. For these voxels, we employ an anisotropic Voigt
assumption on the over-all material diffusivity, expressed as

Ditz =
VaDa +VcpDcp

h3
I +

AitzDitzt
h3

(I − n⊗ n) , (6)
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Figure 2: Interface voxel (left) located at the surface of a spherical aggregate (right). Element
size is denoted h.

where V• are volumes [cm3], n and Aitz is the normal and area [cm2], respectively, of
the ITZ as shown in Figure 2. Generally, we have that Da � Dcp � Ditz. The unknown
parameters in Eq. (6) are t and the diffusivity of ITZ, Ditz. Computationally, it is the
product of these two, Ditz × t [cm3 s−1], that become the model parameter and we
introduce the auxiliary notation

D̂itz
def
= Ditz × t, (7)

D̂cp
def
= Dcp × 1 cm, (8)

to be used in Section 7 for the numerical examples.
To compute Aitz, Va and Vcp, the intersection points between the aggregate surface

and the line segments of the interface voxel need to be determined. The number of
intersection points can range from 3 to 6 per voxel (Figure 2 shows 4) and are determined
from the line-sphere intersection equation

d = −(l · (o− c))±
√
(l · (o− c))2 − (o− c)2 + r2, (9)

where d is the intersection distance [cm] along the line’s origin o, l is the direction of
line (unit vector) and r is the sphere’s radius [cm]. For voxels close to an aggregate
surface, d is in practice computed for all of the voxel’s 12 edge lines. There are three
sets of solutions to d:

d has

⎧⎪⎨
⎪⎩
2 complex solutions → no i.p.1exits,
1 real solution → 1 i.p. exits,
2 real solutions → 2 i.p. exit.

(10)
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Va and Vcp in Figure 2 are convex hulls, see Berg et al. [4], spanned by these
intersection points and the voxel’s corner nodes, and are computed by utilizing this
geometrical property. The interface area Aitz, in turn, is determined by computing the
enclosing areas of Va and Vcp and utilizing the known total area of the voxel (= 6h2). In
this fashion, the smooth aggregates’ surfaces are represented as a discrete set of facets.
An alternative to use Eq. (6) would be to split the interface voxels in two parts

by introducing new degrees of freedom (DOF) at the intersection points between the
aggregate surface and line segments. In this way, Va and Vcp could be subdivided into
separate finite elements and Aitz could be included as a separate 2D surface element.
Such method has been proposed by Sohn et al. [26] in the context of elasticity using
a so-called "carving technique". However, for the current problem of diffusion Eq. (6)
suffices, as the numerical results in Section 7 show.

4.1 Volumetric material description

The aforementioned representation of the ITZ and the subdivision of interface voxels
in terms of Va and Vcp enables for an accurate volumetric representation of the cement
paste and aggregate particles. Figure 3 shows numerically computed volume fraction of
cement paste and aggregate surface area as a function of number of elements (NEL).
These results correspond to an SVE with L� = 2 cm containing one single aggregate
particle with a radius of 0.6 cm, located at the center of the SVE.

101 102 103 104 105
0.88

0.9

0.92

0.94

0.96

Number of elements

[−
]

Volume fraction cement

Numerical
Analytical

101 102 103 104 105

3

4

Number of elements

[ cm
2]

Aggregate surface area

Numerical
Analytical

Figure 3: Convergence of volume fraction cement and aggregate surface area for an SVE.

Figure 3 shows that for a sufficiently dense mesh, the computed volume fraction
of cement and the corresponding surface area of aggregates is in agreement with their
analytical counterparts.

1i.p. = intersection point.
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5 First order homogenization

Similar to Eq. (4), we wish to establish a macroscopic constitutive relation on the form

J̄ = −D̄ · ∇̄φ̄, (11)

where •̄ denotes a macroscopic quantity, J̄ is the macroscale flux, D̄ is the macroscale
diffusivity tensor and ∇̄φ̄ is the macroscale gradient of some macroscale potential φ̄. In
particular, we want to determine D̄’s dependence on aggregate content, diffusivity of
ITZ and the number of spatial dimensions that the SVE comprise.
The homogenization procedure stems from the fully resolved, stationary, boundary

value problem

∇ · J = 0 ∀x ∈ Ω, (12)

for which all material heterogeneities are embedded in Ω ⊂ R3. Here, ∇ is the nabla
operator and J(x) is the flux of some generic physical quantity. The corresponding
weak form reads ∫

Ω
∇δφ · J =

∫
ΓN

δφJ dΓ, (13)

for suitable test function δφ that is sufficiently regular.
Homogenization implies that the integrands of the volume integrals in Eq. (13) are

replaced by space-averages on SVEs, i.e.
∫

Ω
∇δφ · J dΩ −→

∫
Ω
〈∇δφ · J〉� dΩ, (14)

where 〈•〉� denotes the volume average

〈•〉� def
=

1
|Ω�|

∫
Ω�
• dΩ�, (15)

on the SVE that occupies the domain Ω� centered at the macroscale position x̄ ∈ Ω;
hence, 〈x− x̄〉� = 0.
We assume first order homogenization defined by the split of a scalar field φ within

Ω� into the macroscale and fluctuation parts2 as follows:

φ(x; x̄) = φM(x; x̄) + φs(x). (16)

The macroscale part varies linearly as

φM(x; x̄) = φ̄(x̄) + ḡφ(x̄) · [x− x̄] ∀x ∈ Ω�, (17)

with ḡ def
= ∇̄φ̄. Hence, we obtain∇φM(x̄; x̄) = ḡ(x̄) constant within Ω�. We then obtain

for any macroscale point x̄ ∈ Ω the identity

2Superscripts M denotes macroscale, whereas s denotes subscale.
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〈∇δφ · J〉� = δḡ · J̄ with J̄ = 〈J〉�. (18)

In order to compute the homogenized flux quantity J̄, it is necessary to compute

the fluctuation field φs as well as the spatial gradient on the subscale: gs def= ∇φs. This
is done on each SVE with given prolongation conditions. Here, we choose Dirichlet
boundary conditions , i. e. φs = 0 on Γ�, whereby the pertinent SVE problem becomes:
For given values of the macroscale variables φ̄ and ḡ, compute the subscale field φs that
satisfy the system

〈∇(δφs) · J〉� = 0, (19)

for all possible δφs that are sufficiently regular and which vanish on Γ�. We note that
the macroscale prolongations φM are completely defined (varies linearly) on Ω�.

6 Linearized macroscopic problem

In the general situation it is necessary to solve the macroscale problem Eq. (13) and the
corresponding SVE problem in each macroscale quadrature point in a "nested" fashion,
known as an FE2 procedure. The nested problem is conveniently solved via Newton
iterations on the macroscale. It is then necessary to find the macroscale tangent relations
which represent linearizations of the (implicit) functions J̄{φ̄; ḡ}:

d J̄ = −D̄ · dḡ − Ȳ dφ̄, (20)

which requires the solution of the appropriate "sensitivity problem" (or tangent problem)
associated with each SVE.
However, in this paper we shall not consider solution obtained through FE2 compu-

tations but rather make simplifications in order to derive upscaled macroscale constitu-
tive relations. Such relations are obtained upon assuming linearization for vanishing
macroscale spatial gradients, i.e. at the state ḡ = 0. The linearized expressions are then
taken as valid for "small" changes of the macroscale spatial gradients. For this situation
we obtain φ = φM + φs = φ̄ + φs and the constitutive relation in Eq. (4) becomes

J = −D ·∇φs, (21)

with ts variation

dJ = −D ·∇(dφs). (22)

The sensitivity problem corresponding to variations of the macroscale fields φ̄ and ḡ
can be expressed as

〈∇(δφs) · dJ〉� = 0, (23)
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for all possible δφs that is sufficiently regular and which vanish on Γ�. Upon inserting
Eq. (22) into Eq. (23), we obtain the tangent relation

〈∇(δφs) · D ·∇(dφ)〉� = 0. (24)

6.1 Sensitivity fields for SVE problem

To determine the relations in Eq. (20) explicitly, we shall be interested in computing
unit fluctuation fields, i.e. sensitivity fields, corresponding to unit values of dφ̄ and dḡ.
Hence, we need to compute the differentials dφ = dφM + dφs in terms of dφ̄ and dḡφ.
Firstly, we conclude that

dφM(x) = dφ̄ + dḡ · [x− x̄] = dφ̄ +
NDIM

∑
i=1

φ̂M(i)(x)dḡi, (25)

where NDIM is the number of spatial dimensions. The unit fields, φ̂M(i)(x), is given as

φ̂M(i)(x) = ei · [x− x̄] = xi − x̄i ⇒ ∇φ̂M(i)(x) = ei. (26)

Next, we introduce the following ansatz for dφs:

dφs(x) = φ̂sφ̄(x)dφ̄ +
NDIM

∑
i=1

φ̂
s(i)
ḡ (x)dḡi, (27)

and we thus obtain the expressions for the total differential, dφ, in terms of the sensitiv-
ities as

dφ(x) =
[
1+ φ̂sφ̄(x)

]
dφ̄

+
NDIM

∑
i=1

([
φ̂M(i)(x) + φ̂

s(i)
ḡ (x)

]
dḡi

)
.

(28)

We show that the sensitivity φ̂s
φ̄
vanish by consider the case dφ̄ �= 0 while all other

macroscale differentials are zero. Upon inserting the expressions in Eq. (28) into Eq. (24),
we identify the system

〈
∇(δφs) · D ·∇φ̂sφ̄

〉
�
= 0, (29)

Setting δφs = φs
φ̄
in Eq. (29), we obtain
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〈
∇(φ̂sφ̄) · D ·∇φ̂sφ̄

〉
�
= 0 (30)

which only holds for φ̂s
φ̄
= 0 since D �= 0. In summary, we have

dφ(x) = dφ̄ +
NDIM

∑
i=1

[
φ̂M(i)(x) + φ̂s(i)(x)

]
dḡi, (31)

where the simplified notation φ̂s(i)
def
= φ̂

s(i)
ḡ was introduced. The remaining equation

become

〈
∇(δφs) · D ·∇φ̂s(i)

〉
�
= − 〈∇(δφs) · D · ei〉� , (32)

from which φ̂s(i) can be computed.

6.2 Homogenized linearized diffusivity tensors

We can now evaluate the macroscale diffusivity tensors (defined via linearization)
occurring in Eq. (20) by first noting the identity

d J̄i = 〈dJ · ei〉� , (33)

and combining with Eq. (22) and Eq. (31) to obtain (i) Ȳ = 0 and (ii) the non-zero
tangent tensors in terms of their components

(D̄)ij = 〈D〉� +
3

∑
i=1

〈
∇(φ̂s(i)) · D

〉
�
⊗ ei, (34)

and for the numerical examples in the following section, we introduce the auxiliary
definition of the effective macroscopic diffusivity as

Deff
def
= (D̄)11. (35)
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7 Numerical examples

7.1 Preliminaries

Our first objective is to determine the mapping

L� 
→ Deff(L�) (36)

and to study how this mapping differs between 3D and 2D SVEs. This is done by
solving Eq. (19) given a macroscale gradient ḡ = [−1 0 0]T for SVEs of varying L�. The
aggregates were assigned a diffusivity of Da = 0 cm2 s−1. Only linear problems are
treated herein and all numerical results are normalized with respect to Dcp. Hence,
the numerical value of Dcp chosen will bear no influence on the reported results in
this section. For reference, a realistic value of Dcp is in the range of 2× 10−8 cm s−1 to
20× 10−8 cm s−1.
A set of SVEs was generated with an aggregate volume fraction of 42% with a sieve

curve similar to the one used in Wriggers and Moftah [29], as shown in Figure 4. The
SVEs were of different sizes, L� = 2 cm, 4 cm, 6 cm, 8 cm, 10 cm and 12 cm, and 40 SVE
realizations were made for each value of L�. The mesh size was set to h = 0.029 cm,
based on convergence studies as shown in Figure 3.
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Figure 4: Sieve curve for all SVEs used in the numerical examples.

7.2 2D SVEs

The 2D SVEs were generated by cutting a 3D SVE into a number of 2D slices, see
Figure 5. The same boundary conditions were applied to the 3D and 2D SVEs and
the mean values of all slices were then compared to the single result obtained for the
corresponding 3D SVE.
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Figure 5: 3D SVE cut into 2D slices.

7.3 3D/2D comparison and influence of ITZ

The numerical results in Figure 6 show effective diffusivities, Deff, as a function of
L� for 3D and 2D SVEs and varying ITZ diffusivities. D2Deff is lower than D3Deff for all
values of L� and D̂itz, which is expected since the out of plane solution for the 2D SVEs
is locked. Hence, the diffusing substance only has two directions (over or under) to
bypass aggregates in 2D SVEs but for 3D SVEs the third spatial direction (around) is
also enabled which decrease resistance and, thus, increases diffusivity.
It is further noticed in Figure 6 that Deff is more or less invariant to L� for all values

of D̂itz. The only exception is D2Deff for D̂itz = 0 where a converged value is reached
only at L� = 10 cm.
Figure 43 show that D3Deff is about 17% greater than D2Deff when ITZ is included

in the SVEs. The corresponding difference for SVEs without ITZ is almost 40% for
L� = 10 cm.

2 4 6 8 10

0.4

0.6

0.8

1

1.2

L� [cm]

Deff
Dcp

3D 2D

D̂itz = 0

D̂itz = 0.05D̂cp

D̂itz = 0.15D̂cp

Figure 6: Effective diffusivities as functions of SVE size and ITZ diffusivities. Error bars show
mean values, μ, ± one standard deviation, σ.
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μ(D2Deff )

D̂itz = 0
D̂itz = 0.05D̂cp
D̂itz = 0.15D̂cp

Figure 7: Difference in effective diffusivities for 3D and 2D SVEs. Quotient between mean
values, μ, are plotted.

(a) D̂itz = 0 (no ITZ). (b) D̂itz = 0.15D̂cp (with ITZ).

Figure 8: The effect of ITZ in the mesoscale structure by visual comparison. Flux arrows are
larger in magnitude at the aggregate surfaces when ITZ is included the SVEs.

The results in Figure 6 show that it is possible to increase the effective diffusivity
by utilizing the ITZ implementation as a model parameter. The results also show the
robustness of the implementation as the mean values in practice become independent of
the SVE size, L�. It is only the spread in results that varies, which also decreases with
increasing L�, as expected.
The value D̂itz = 0.15D̂cp has been manually calibrated such that Deff gets close to a

value corresponding to the diffusivity of the pure cement paste, Dcp.
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The influence of ITZ on the diffusion flux within the SVE is shown in Figure 8. Two
observations can be made: the flux field is more horizontally oriented, and the flux
arrows are larger in magnitude close to the aggregate surface when ITZ is included.
This implies that the diffusing substance is attracted to the aggregates when ITZ is
included, and repulsed when ITZ is omitted.
The outcome of this numerical example is that the over-all effect of the aggregates

can be controlled and modified. This is achieved by the ITZ implementation. In this way,
the parameter D̂itz becomes a useful tool for calibrating the model with experimental
data. Additionally, the mean value of D3Deff is more or less invariant to the SVE size,
only the scatter in results decrease with increasing L�. This is beneficial since smaller
SVEs can be used, which reduces computational cost dramatically since an SVE’s DOFs
grows by O(n3) with increasing L� and fixed element size h.

7.4 Bounds on effective diffusivity

The numerical results obtained through computational homogenization (CH) are com-
pared to analytical and numerical bounds, which are described in the following. These
are all upper bounds since the corresponding lowers ones, i.e. lower Hashin-Shtrikman
bound (HS−) and Reuss, all become zero due to the choice Da = 0 cm2 s−1.

Voigt bound The sieve curve dependent Voigt bound is expressed as the arithmetic
mean

DVoigt

eff = Dcp − na
N

∑
i=1

(
4 fi
ri

D̂itz − fiDcp

)
, (37)

whose derivation can be found in Appendix A.

Hashin-Shtrikman bound The upper Hashin-Shtrikman bound (HS+) [12] is deter-
mined from

DHS+

eff = Dcp +
na

1
Da − Dcp

+
1− na
3Dcp

, (38)

which for the choice Da = 0 cm2 s−1 and normalization with respect to Dcp simplifies to

DHS+

eff =
2− 2na
2+ na

cm2 s−1, (39)

HS+ is included since it is reported in the literature to be tighter a bound than Voigt
for materials with spherical inclusion, see e.g. Stora et al. [27], Gross and Seeling [9]
and Mehta and Monteiro [18]. However, HS+ is only valid asymptotically for infinitely
large SVEs, see Zohdi and Wriggers [32].
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Taylor with homogenized ITZ surface The scalar field φ is assumed to vary linearly
within the SVE, i.e.

φ(x; x̄) = φM(x; x̄) +����0
φs(x) (40)

= φ̄(x̄) + ḡφ(x̄) · [x− x̄] ∀x ∈ Ω�, (41)

and no SVE problem is solved to determine Deff. The Taylor assumption accounts for
the SVE’s topology, which is not the case for the HS+ and Voigt bounds.

7.5 Influence of aggregate content

A set of SVEs were generated for a fixed size L� = 6 cm, with a varying aggregate
content, na. 20 SVE realizations were made for each value of na.

The choice L� = 6 cm was made based on the results in Figure 6 as the scatter in
results was sufficiently small for this SVE size. The same sieve curve as in Figure 4 was
used to generate the SVEs. The total aggregates’ total surface area for these SVEs scale
linearly with na as can be seen in Figure 9. A snapshot of the stationary solution in
Figure 10 shows how the streamlines in the cement paste curve around the aggregates.

Figure 11 shows Deff(na) for varying values of D̂itz, along with the different types
of bounds. The numerical results for D̂itz = 0 coincide with HS+ and are below the
Voigt bound. The Voigt bound, in turn, coincide the Taylor assumption for D̂itz = 0.
This validates the model for the case of a two-phase mesoscale structure of cement and
aggregates (no ITZ) as the Voigt bound is a true upper bound.

0 0.2 0.4 0.6

0

500

1,000

1,500

na

[ cm
2]

Total Aitz per SVE.

Figure 9: Total aggregate surface area as function of na for the set of SVEs with L� = 6 cm.

C-17



Figure 10: Stationary solution showing diffusion streamlines. Colour gradient represents
stationary solution at the surface of the aggregates.
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2

3

na

D̂itz = 0.15D̂cp
D̂itz = 0.05D̂cp

Figure 12:
Deff

Dcp
normalized with D̂itz = 0.

However, when the ITZ is included in the model the effective diffusivity takes
values above the HS+ and Voigt bounds since the model now constitutes a three-phase
material. Work by Nilsen and Monteiro [20] show that the elastic modulus of concrete,
determined from experiments, lay outside the HS+–HS− bounds. The authors argues
that this observation can be derived from the presence of ITZ and they suggest therefore
concrete to be considered a three-phase material on the mesoscale. Corresponding
experimental work for transport properties is currently not readily available in the
literature but to consider concrete only a two-phase material on the mesoscale is most
probably not adequate for diffusion phenomena either.

C-18



0 0.2 0.4 0.6

0.4

0.6

0.8

1

Deff
Dcp

Computational homogenization (CH)

D̂itz = 0.15D̂cp

D̂itz = 0.05D̂cp

D̂itz = 0

0 0.2 0.4 0.6

0.4

0.6

0.8

1

D̂itz = 0

Voigt
HS+

CH

0 0.2 0.4 0.6

0.6

0.8

1

na

Deff
Dcp

D̂itz = 0.05D̂cp

Voigt
Taylor
CH

0 0.2 0.4 0.6

1

1.5

na

D̂itz = 0.15D̂cp

Voigt
Taylor
CH

Figure 11: Effective diffusivity as a function of aggregate content, na. Error bars show mean
values ± one standard deviation for both Deff and na.
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As stated, D̂itz specifies neither the diffusivity of the ITZDitz, nor its thickness, t,
but only the product of the two. A realistic value of t is in the range of 20 μm to 50 μm,
c.f. Yang and Su [30]. The relation D̂itz = 0.05D̂cp, assuming t = 40 μm, can thus be
re-written as

Ditz × 40× 10−6 m = 0.05Dcp × 0.01m (42)

⇒ Ditz

Dcp
= 12.5, (43)

and the corresponding ratio for D̂itz = 0.15D̂cp is

Ditz

Dcp
= 37.5. (44)

The ratio in Eq. (43) is directly dependent on the chosen sieve curve – since the
total ITZ area in each SVE will vary with varying sieve curves – and the aggregate
contents. By Eq. (43) the diffusivity of the ITZ could be determined by calibrating the
relation between D̂itz and D̂cp with experimental data. Experimentally obtained ratios
of Eq. (43) reported in the literature ranges from 2 to 12, c.f. Yang and Su [30], Ollivier
et al. [21]; hence, the numerical ratio in Eq. (43) is reasonable in magnitude.
Figure 12 shows that Deff increases non-linearly with increasing na even thou the

total aggregate surface area increases linearly with increasing na as see in Figure 9.

Influence of topology As can be observed in Figure 11, the Voigt bound deviates
from CH with increasing na and increasing D̂itz. However, the Taylor assumption is in
rather good agreement with CH for D̂itz > 0. This implies that information on material
topology greatly influences the effective diffusivity since the Voigt bound only considers
volume fractions of each material phase. If the topology is known, then applying the
Taylor assumption yields a good approximation of the effective diffusivity and might
even be sufficient. However, if concrete can be considered a two phase material then
HS+ is sufficient to use over CH.

7.6 Computational time

The computational time per SVE, tSVE [s], to determine Deff is

tSVE ≈ 0.0003×NEL (45)

running Matlab ver. 7.14 (2012a) on AMD CPUs with a clock speed of 3GHz. Matlab’s
implementation of the minimal residual method is used to iteratively solve the system
of equations. The maximum number of elements in this work was 2603 = 17,576,000;
hence, tmaxcpu ≈ 80min. However, the implementation is parallelized, i.e. multiple SVE
problems can be solved concurrently, and the total computational time is therefore
mainly governed by the number of CPU-cores available.
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8 Conclusions and outlook

A 3D model of heterogeneous mesoscale concrete was presented and employed for
computational homogenization (CH) in the context of mass diffusion. The algorithm
on which the model is based generates a random structure of aggregates embedded in
cement paste within a Statistical Volume Element (SVE). Any sieve curve is possible as
input for the algorithm and any (realistic) aggregate content is possible to obtain.
For the numerical examples presented, the effective diffusivity for 3D SVEs is about

17% greater than for 2D SVEs. The corresponding difference when the Interfacial
Transition Zone (ITZ) is omitted from the SVEs is 40%. This significant difference
between 3D and 2D SVE shows the importance of accounting for all three spatial
dimensions when calibrating a diffusion model with experimental data.
Additionally, the numerical results coincide with the upper Hashin-Shtrikman bound

(HS+) in the case of a two-phase mesoscale model of cement paste and aggregates. For
three phase concrete, the Taylor assumption yields good estimate compared with CH of
the effective diffusivity in the case of linear material properties on the mesoscale.
The numerical results further show that the ITZ implementation can be used to

increase the effective diffusivity by an arbitrary scale factor in an easy and efficient way.
This enables the model to be used for calibrating the ITZ’s diffusivity with experimental
data, which is to be done by carrying out transient analyses.
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A Voigt bound

Vitz is given by

Vitz =
4
3

π(r+ t)3 − 4
3

πr3

= {t� r} ≈ 16π

3
r2t,

(46)

where t and r are the thickness of the ITZ and the aggregate radius, respectively, which
yields

Vitz

Va
=
4t
r

⇒ nitz =
4t
r
na = na

N

∑
i=1

4t
ri

fi. (47)

The Voigt bound then takes the form

DVoigteff (na) = naDa + ncpDcp + nitzDitz

= naDa + ncpDcp + na
N

∑
i=1

4 fi
ri

D̂itz

= {na + ncp ≈ 1}

= naDa + (1− na)Dcp + na
N

∑
i=1

4 fi
ri

D̂itz

= naDa + Dcp + na
N

∑
i=1

(
4 fi
ri

D̂itz − fiDcp

)

= {Da = 0 cm2 s−1}

= Dcp + na
N

∑
i=1

(
4 fi
ri

D̂itz − fiDcp

)
.

(48)

This bound is valid for D̂itz = 0 but not for high values of na while D̂itz > 0 since
DVoigteff (na = 1, D̂itz > 0) �= Da.
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