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Imaging of Buried Objects from Experimental Backscattering Time-Dependent
Measurements Using a Globally Convergent Inverse Algorithm∗
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Abstract. We consider the problem of imaging of objects buried under the ground using experimental back-
scattering time-dependent measurements generated by a single point source or one incident plane
wave. In particular, we estimate dielectric constants of these objects using the globally convergent
inverse algorithm of Beilina and Klibanov. Our algorithm is tested on experimental data collected
using a microwave scattering facility at the University of North Carolina at Charlotte. There are two
main challenges in working with this type of experimental data: (i) there is a huge misfit between
these data and computationally simulated data, and (ii) the signals scattered from the targets may
overlap with and be dominated by the reflection from the ground’s surface. To overcome these two
challenges, we propose new data preprocessing steps to make the experimental data look similar to
the simulated data, as well as to remove the reflection from the ground’s surface. Results of a total
of 25 data sets of both nonblind and blind targets indicate good accuracy.
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1. Introduction. In [4] a globally convergent algorithm for a coefficient inverse problem
(CIP) for a hyperbolic equation was proposed. Since then several follow-ups on this method
have been published (see, e.g., [5, 7, 8, 18]), and results have been summarized in the book
[6]. In this paper, we demonstrate the performance of the method in [4] for the case of ex-
perimentally measured time-dependent backscattering data for targets buried in a box filled
with dry sand. This mimics the case when the targets are buried underground. Our primary
application is in the stand-off imaging of explosives such as land mines and improvised explo-
sive devices (IEDs). A systematic study of 25 cases conducted here shows how the method in
[4] works in estimating the dielectric constants (equivalently, refractive indices) and locations
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of the targets. Only one incident wave is used in our method.
The problem of subsurface imaging can be found in a variety of practical applications such

as nondestructive testing, landmine and unexploded ordnance detection, archaeology, remote
sensing, and medical imaging; see, e.g., [23]. For migration-type methods (e.g., the synthetic
aperture focusing technique, Kirchhoff migration, Stolt migration) for estimating geometric
information such as shapes, sizes, and locations of targets, we refer the reader to [13, 21, 27, 32].
Note that these methods work in linear scattering regimes and require data from multiple
transmitters and receivers, whereas we work with only a single source and a nonlinear inversion
procedure, since the solution of our governing partial differential equation (PDE) depends
nonlinearly on the unknown coefficient. Moreover, our main goal in this paper is to estimate
their dielectric constants, which characterize the targets in terms of their materials. This
problem is much more difficult than estimating the geometric properties. Mathematically
speaking, this is a CIP for the time-dependent wave-like equation in three dimensions: we
reconstruct a spatially varying coefficient of that hyperbolic PDE using measurements on the
backscattering part of the boundary of the domain of interest.

The most common method for solving a CIP is the least-squares approach, in which an
objective functional is to be minimized using optimization methods; see, e.g., [1, 12, 14] and
references therein. However, it is well known that these objective functionals are nonconvex
and, as a rule, have multiple local minima and ravines. Therefore, the convergence of these
methods cannot be rigorously guaranteed unless a good first guess of the exact solution of the
CIP is made. This means that they require a priori knowledge of a small neighborhood of the
exact solution, which may not be available in many practical situations. We call these locally
convergent methods. It was shown in section 5.8.4 of [6] and in [18] for transmitted time-
dependent experimental data with a single source that a locally convergent method starting
from the homogeneous background as the first guess failed, whereas the technique of [6] worked
well. A similar conclusion was independently drawn in [22] when working with a different type
of experimental data.

Unlike these methods, it was rigorously established that the method of [6] can provide a
good approximation of the exact coefficient without any a priori knowledge of a small neigh-
borhood of this coefficient. We call a numerical method for a CIP with this property globally
convergent. Since it is extremely hard to develop globally convergent numerical methods for
CIPs, the technique of [6] uses a reasonable approximate mathematical model; see section 2.3.
We emphasize that this model is used only on the first iteration of that method. Due to this
model, we call the method of [6] approximately globally convergent, or globally convergent, in
short.

This publication is a continuation of three recent works of our group, where we have
treated similar experimental data, but for targets placed in air [10, 11, 29]. As we pointed out
in [29], the main challenge in working with our experimental data is a huge misfit between
these data and computationally simulated data. Hence, any inversion algorithm would fail to
produce satisfactory results if applied to the raw data. Therefore, the central procedure before
applying the globally convergent algorithm to the experimental data is a data preprocessing
procedure, which is inevitably a heuristic one. This procedure makes the experimental data
look somewhat similar to the data provided by computational simulations. In our opinion,
the ultimate justification of this procedure is the accuracy of reconstruction results, especially
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those for blind data cases, i.e., for such sets of data for which correct answers were unknown
in advance to the computational team; see section 5.1 for some details.

There are three substantially new main elements of this paper compared to the previous
works of our group:

1. This is the first time that we have applied the globally convergent method to ex-
perimental backscattering data for the case of buried targets. Such scenarios are
quite rarely studied in the literature when targets are placed in a realistic background
medium. Compared with the case when targets are placed in air, there are three
main difficulties in imaging of buried targets: (i) the targets’ signals are much weaker
than those when the targets are in air; (ii) the targets’ signals may overlap with the
reflection from the ground’s surface, which makes it difficult to be distinguished; and
(iii) the reflection from the ground’s surface may dominate the targets’ signals after
the Laplace transform, since the kernel of the Laplace transform decays exponentially
with respect to time. Note that the first step of the globally convergent method of [6]
is the Laplace transform of the time-dependent data.

2. The data preprocessing procedure developed in this paper is substantially different
from that of [29]. In addition, the two most difficult steps of this procedure are
radically new. These are (i) the step of estimating the burial depths of targets, and
(ii) the step of extracting the targets’ signals from the whole signal, i.e., the step
which basically removes the reflection from the sand’s surface (section 4.2). The data
propagation technique is also different from that of [29]. After this preprocessing
procedure, the targets can be treated as being placed in air. The preprocessed data
are used as input for our globally convergent algorithm.

3. A new global convergence theorem (Theorem 3.1) is proved for the case of an incident
plane wave rather than a point source as in the previous publications on this method
[6, 7]; see the beginning of section 3 for some details about new elements of this
convergence analysis. In addition, we indeed work with the plane wave case in our
computations of the forward problem, which are used in our algorithm (section 5.2).

We should mention that, unlike dielectric constants, shapes of targets are more difficult to
accurately reconstruct using the globally convergent method of [6]. Only their cross sections in
the measurement plane can be rather well estimated after the data propagation. To enhance
the reconstruction accuracy of shapes, these results can be used as initial guesses for locally
convergent methods in order to refine the images; see, e.g., [5, 6, 8, 11]. We call the combination
of these two steps a two-stage numerical method. The second step requires an additional effort
and will be reported in a future paper. We also mention that it was demonstrated in [5, 6, 8]
for the transmitted experimental data and in [11] for the experimental backscattering data
that the second step refines images quite well for targets placed in air.

The rest of the paper is organized as follows. In section 2, we state the mathematical
model and briefly describe the globally convergent method. In section 3, we outline the main
steps of the proof of the global convergence of the proposed algorithm. Data acquisition and
data preprocessing are described in section 4. In section 5, we present inversion results of the
proposed globally convergent algorithm for our experimental data. Finally, some conclusions
are drawn in section 6.
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2. Problem statement and the globally convergent method in brief.

2.1. Problem statement. Consider the propagation of the electromagnetic wave in R3

generated by an incident plane wave. Below, x = (x, y, z) denotes a point in R3. Since
in our experiments only one component E2(x, t) of the electric field E = (E1, E2, E3) (x, t)
is generated by the source and the detector measures only that component of the scattered
electric field, we model the wave propagation by the following Cauchy problem for the scalar
wave equation:

ε(x)utt(x, t) = Δu(x, t) + δ(z − z0)f(t), (x, t) ∈ R3 × (0,∞),(2.1)

u(x, 0) = 0, ut(x, 0) = 0,(2.2)

where u := E2 is the wave generated by the incident plane wave propagating along the z-
axis and incident at the plane {z = z0}. Here f (t) �≡ 0 is a piecewise continuous bounded
function representing the time-dependent waveform of the incident plane wave. It was demon-
strated numerically in [3] that the component E2 dominates components E1, E3 and that the
propagation of E2 is governed well by the solution of the Cauchy problem (2.1)–(2.2).

The coefficient ε(x) in (2.1) represents the spatially distributed dielectric constant of the
medium in which the wave propagates. Let Ω ⊂ R3 be a bounded domain and suppose
that the plane where the incident wave is emitted is located outside of the domain Ω, i.e.,
Ω ∩ {z = z0} = ∅. We assume that there exist two positive constants 0 < εl ≤ 1 and εu ≥ 1
such that

(2.3) εl ≤ ε(x) ≤ εu ∀x ∈ R3, ε(x) ≡ 1 ∀x /∈ Ω.

In other words, the medium is assumed to be homogeneous outside of Ω. We note that this
assumption is not true in the case of objects buried underground since the dielectric constant
of soil is different from that of air. Therefore, to use our model in this case, we first preprocess
the experimental data and then treat the buried objects as they are in air.

Below we denote by Ck+α the Hölder spaces, where k ≥ 0 is an integer and α ∈ (0, 1).
Let d > 2εu be a constant. In addition to (2.3), in our theoretical analysis we assume that
the function ε(x) is unknown inside Ω and

(2.4) ε ∈ Cα
(
R3
)
, ‖ε‖Cα(R3) < d.

We consider the following CIP.
Coefficient inverse problem. Reconstruct the coefficient ε(x) for x ∈ Ω, given the following

measured data for a single incident plane wave generated at the plane {z = z0} outside of Ω:

(2.5) g(x, t) = u(x, t), x ∈ ∂Ω, t ∈ (0,∞).

For the theoretical analysis, we state the inverse problem for the case when the data
are given at the entire boundary and the boundary ∂Ω is C3-regular. However, only the
backscattering data are measured in our experiment, and we use a rectangular prism as Ω in
our computations. As in our previous works, we complete the missing data by the solution of
the forward model (2.1)–(2.2) in a homogeneous medium; see section 5.
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The assumption of the infinite time interval in (2.5) is not restrictive, because in our
method we apply the Laplace transform to g(x,t) with respect to the time variable t. Since
the kernel of this transform decays exponentially with respect to t, the Laplace transform
effectively cuts off to zero values of the function g(x,t) for large t. Moreover, since the incident
wave is excited for a finite time interval, our experimental observation has always been that
the total wave almost vanishes after a finite time interval, too.

Although the uniqueness of this CIP is not known (see the discussion in [6]), we assume
that the uniqueness holds, since we still need to solve our CIP numerically.

We remark that (2.1) is invalid if metallic objects are present in the domain Ω. To deal
with this type of target, we follow a suggestion of [19], which showed that metals can be
modeled as dielectrics with a high dielectric constant exceeding 10. This is referred to as the
effective dielectric constant of metals.

2.2. The globally convergent method in brief. The theory of the globally convergent
method of [4] using a single point source was thoroughly discussed in [6, 7]. The globally
convergent method using a plane incident wave was stated in [29]. We briefly summarize the
main ideas of the latter case here and outline in section 3 its convergence analysis, which was
not discussed in [29].

Let

(2.6) ũ(x, s) := (Lu) (x, s) =
∫ ∞

0
u (x, t) e−stdt, s ≥ s = s (d) > 0,

and f̃(s) = (Lf) (s) be the Laplace transform of u(x, t) and f(t), respectively, where s is
referred to as the pseudofrequency. We assume that s ≥ s(d) > 0, where the number s (d) is
large enough so that the Laplace transforms of the function u and its derivatives Dβu, |β| =
1, 2, converge absolutely. The number d is defined in (2.4). We assume that f̃(s) �= 0 for all
s ≥ s(d). Define w(x, s) := ũ(x, s)/f̃ (s). Then, this function satisfies the equation

(2.7) Δw(x, s) − s2ε(x)w(x, s) = −δ(z − z0), x ∈ R3, s ≥ s (d) .

Define w0 (z, s) = exp (−s|z − z0|) /(2s). Note that w0 (z, s) is the unique solution to (2.1) for
the case ε (x) ≡ 1, which tends to zero as |z| → ∞. It is shown in Theorem 3.1 (section 3)
that in the case f (t) = δ (t)

(2.8) lim
|x|→∞

[w (x, s)− w0(z, s)] = 0

and that the function w (x, s) can be represented in the form

(2.9) w (x, s) = w0 (z, s) + ŵ (x, s) , where ŵ (x, s) ∈ C2+α
(
R3
) ∀s ≥ s (d) .

Furthermore, the same theorem claims that w(x, s) > 0. Thus, we assume these properties in
our algorithm even if f (t) �= δ (t). Next, define the function v by v := (lnw)/s2. Substituting
w = evs

2
into (2.7) and keeping in mind that Ω ∩ {z = z0} = ∅, we obtain

(2.10) Δv + s2|∇v|2 = ε(x), x ∈ Ω.
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Equation (2.10) shows that the coefficient ε(x) can be computed directly via the function v.
Define the function q by q := ∂v/∂s. Then

(2.11) v = −
∫ ∞

s
qdτ = −

∫ s̄

s
qdτ + V,

where s̄ > s, which plays the role of a regularization parameter and is chosen numerically in
the computational practice. The function V (x) := v(x, s̄) is called the “tail function.” Note
that

(2.12) V (x) =
lnw(x, s̄)

s̄2
.

Replacing v from (2.11) into (2.10) and taking the derivative with respect to s, we obtain the
following nonlinear integral differential equation involving q and V :

Δq − 2s2∇q ·
∫ s̄

s
∇q(x, τ)dτ + 2s2∇V · ∇q + 2s

∣∣∣∣ ∫ s̄

s
∇q(x, τ)dτ

∣∣∣∣2
− 4s∇V ·

∫ s̄

s
∇q(x, τ)dτ + 2s |∇V |2 = 0, x ∈ Ω.(2.13)

Moreover, it follows from (2.5) that q satisfies the following boundary condition:

(2.14) q(x, s) = ψ(x, s), x ∈ ∂Ω,

where ψ is derived from the boundary measured data by ψ(x, s) = ∂
∂s [

ln(ϕ)
s2

] with ϕ(x, s) =∫∞
0 g(x, t)e−stdt/f̃(s).

Note that (2.13) has two unknown functions q and V . In order to approximate both of
them, we use a predictor-corrector–type approach: starting from an initial guess of the tail
function V , we solve the problem (2.13)–(2.14) for q. After that, we calculate the coefficient ε
via (2.10) and solve the forward problem for u. Next, we update the tail function V via (2.12)
and repeat the iterative procedure again. Thus, V is the “predictor” and q is the “corrector”
here.

To approximate the integrals in (2.13), we make use of a layer-stripping procedure with
respect to s described as follows. Divide the pseudofrequency interval [s, s̄] into N uniform
subintervals by s̄ = s0 > s1 > · · · > sN = s, sn − sn+1 = h. We approximate q by a piecewise
constant function: q(x, s) ≈ qn(x), s ∈ (sn, sn−1], n = 1, . . . , N . We also set q0 ≡ 0. Then
after some manipulations, a system of elliptic equations for functions qn (x) is derived from
(2.13) using the so-called Carleman weight function exp [λ (s− sn−1)] , s ∈ (sn, sn−1), where
λ� 1 is a certain parameter. This system is [29]

Δqn + A1,n∇qn · (∇Vn −∇qn−1)

= A2,n|∇qn|2 +A3,n

(|∇qn−1|2 + |∇Vn|2 − 2∇Vn · ∇qn−1

)
,(2.15)

where Ai,n, i = 1, 2, 3, are some coefficients, depending on sn and λ, which can be analytically
computed, and ∇qn−1 = h

∑n−1
j=0 ∇qj. Here we indicate the dependence of the tail function
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V := Vn on the number n, because we approximate V iteratively. The discretized version of
the boundary condition (2.14) is given by

(2.16) qn(x) = ψn(x) :=
1

h

∫ sn−1

sn

ψ(x, s)ds ≈ 1

2
[ψ(x, sn) + ψ(x, sn−1)], x ∈ ∂Ω.

One can prove that |A2,n| ≤ C/λ for sufficiently large λ, where C > 0 is a certain constant.
Hence, the first term on the right-hand side of (2.15) is dominated by the other terms. There-
fore, in the following we set A2,n|∇qn|2 := 0. The system of elliptic equations (2.15) with
boundary conditions (2.16) can be solved sequentially starting from n = 1. To solve it, we
make use of the iterative process: for a given n and some approximation qn,i−1 of qn, we find
the next approximation qn,i of qn by solving the Dirichlet boundary value problem (2.15)–
(2.16) with qn on the right-hand side replaced by qn,i−1. Denote by mn the number of these
iterations.

Let Ω′ ⊂ Ω be a certain subdomain with ∂Ω′ ∩ ∂Ω = ∅. This subdomain is chosen
computationally. Choose a function χ (x) ∈ C1

(
R3
)
such that⎧⎪⎨⎪⎩

χ(x) = 1, x ∈ Ω′,
χ(x) ∈ [0, 1] , x ∈ Ω�Ω′,
χ(x) = 0, x ∈ R3�Ω.

The steps of the globally convergent algorithm are summarized as follows.
• Given the first tail V1,1 := V0. Set q0 ≡ 0.
• For n = 1, 2, . . . , N

1. Set qn,0 = qn−1, Vn,1 = Vn−1.
2. For i = 1, 2, . . . ,mn

– Find qn,i by solving the problem (2.15), (2.16) with Vn := Vn,i.
– Compute vn,i = −hqn,i − qn−1 + Vn,i, x ∈ Ω.
– Compute εn,i via (2.10). Then set εn,i (x) = (1− χ (x)) +χ (x) εn,i (x). Next,

solve the forward problem (2.1), (2.2) with the new computed coefficient ε :=
εn,i, compute w := wn,i, and update the tail Vn,i+1 via (2.12).

3. Set qn = qn,mn , εn = εn,mn , Vn = Vn,mn+1 and go to the next frequency interval
[sn+1, sn] if n < N . If one of the stopping criteria is satisfied at n := N ∈ [1, N ]
or n = N , then stop.

In computations, the number of inner iterations mn is determined by the stopping criterion
with respect to i. In this paper, we use the stopping criteria with respect to i, n proposed in
[10, 29]; see a brief description in section 5.

2.3. The initial tail function. To ensure the global convergence, the choice of the first
tail function V1,1 should not rely on any a priori knowledge of the exact solution of our
CIP. In our convergence analysis, we assume the existence of the exact solution ε∗ (x) to our
CIP for noiseless data g∗ (x, t) in (2.5) which satisfies (2.3), (2.4). Let V ∗(x, s) and w∗(x, s)
be, respectively, the tail function and the function w which correspond to ε∗ (x). In [24]
the solution of a general hyperbolic equation is constructed for the case when the wave is
generated by a plane wave. Using results of [24], one can prove that, under some conditions,
there exists a function p∗(x) ∈ C2+α

(
Ω
)
such that V ∗(x, s) = p∗(x)/s +O

(
1/s2

)
, s → ∞.
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Due to this asymptotic behavior, we introduce our approximate mathematical model via
the assumption that the exact tail is given by

(2.17) V ∗(x, s) =
p∗ (x)
s

=
lnw∗ (x, s)

s2
∀s ≥ s.

Since q (x, s) = ∂sV (x, s), then (2.17) implies that q∗ (x, s) = −p∗(x)/s2 ∀s ≥ s. Note that
we use this assumption only on the initializing iteration to obtain V1,1 (x). Substituting these
expressions for V ∗, q∗ at s = s in (2.14), (2.13), we obtain that the function p∗ (x) satisfies

Δp∗(x) = 0, x ∈ Ω, p∗ ∈ C2+α
(
Ω
)
,(2.18)

p∗|∂Ω = −s2ψ∗ (x, s) ,(2.19)

where ψ∗ (x, s) is the function in (2.14) for the case of the exact data.
The first tail function V1,1 is then chosen as V1,1 = p(x)/s, where p(x) is the solution to

(2.19) with ψ∗ replaced by ψ.

3. Global convergence. In this section we briefly discuss the question of the approximate
global convergence of the above numerical method. In all previous publications about the
method of [6], convergence analysis was performed for the case of a single point source. Here,
however, we outline this analysis for the case of the single incident plane wave. It is this case
which is used in (2.1)–(2.2) as well as in our numerical implementation (section 5.2). To use
the plane wave instead of the point source, we need to modify the proof of Theorem 2.7.2 of
[6]. Theorem 3.1 below is an analogue of Theorem 2.7.2 of [6] for the case of the plane wave.
We point out that equations (2.8), (2.9), (3.8)–(3.16) are new, which makes the proof for the
case of the plane wave significantly different compared to the case of a point source. To follow
more closely the arguments of [6, 7], we assume in our convergence analysis that the lower
bound εl in (2.3) is chosen by

(3.1) εl = 1.

Theorem 3.1. Let the function ε (x) satisfy conditions (2.3), (2.4), and (3.1) and let f (t) =
δ (t) in (2.1). Then there exists a number s (d) > 0 such that for every s > s (d) the function
w (x, s) = L (u) (x, s) satisfies conditions (2.7)–(2.9), where the operator L is defined in (2.6).
Furthermore,

(3.2) wu (z, s) < w (x, s) ≤ w0 (z, s) ,

where wu (z, s) is such a solution of (2.7) for ε (x) ≡ εu which tends to zero as |z| → ∞, i.e.,

wu (z, s) = exp (−s√εu |z − z0|) / (2s√εu) .

Also, the solution of the problem (2.7)–(2.9) is unique.
Proof. Note that the classical theory of elliptic equations [17] is not directly applicable

here, since it works only with bounded domains, whereas we work here with (2.7) in the entire
space R3. This causes additional difficulties in the proof. In this proof, we consider s > s (d).
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It is well known that in the case f (t) = δ (t) the Cauchy problem (2.1)–(2.2) is equiv-
alent to the Cauchy problem for the homogeneous equation (2.1) with initial conditions
u (x, 0) = 0, ut (x, 0) = δ (z − z0) [30]. Consider the well-known Laplace-like transform, which
transforms the Cauchy problem for the hyperbolic equation into the Cauchy problem for a
similar parabolic equation (see, e.g., formula (1.162) in [6]):

v (x, t) := (L1u) (x, t) :=
1

2
√
πt3/2

∫ ∞

0
u (x, τ) τ exp

(
−τ

2

4t

)
dτ, t > 0.

Then v (x, t) is the solution of the following parabolic Cauchy problem:

ε (x) vt = Δv, (x, t) ∈ R3 × (0,∞) ,(3.3)

v (x, 0) = δ (z − z0) .(3.4)

Also, define another analogue of the Laplace transform,

(3.5) (L2v) (x, s) =

∫ ∞

0
v (x, t) e−s2tdt, s > 0.

By formula (28) in the tables of the Laplace transform found in section 4.5 of [2],∫ ∞

0
e−s2t

[
1

2
√
πt3/2

τ exp

(
−τ

2

4t

)]
dt = e−sτ , s, τ > 0.

Hence, using (2.6) and (3.5), we obtain for sufficiently large s > 0

(3.6) w (x, s) = (Lu) (x, s) = L2 (L1u) (x, s) = (L2v) (x, s) .

Hence, now we study the problem (3.3)–(3.4). Let Z (x, ξ, t, τ) be the fundamental solution
for the parabolic operator ε (x) ∂t −Δ. Then formula (13.1) of Chapter 4 of [20], along with
other detailed estimates of the fundamental solution of the general second-order parabolic
equation given in sections 11–14 of Chapter 4 of [20], implies that for 2r + |γ| ≤ 2, t > τ

(3.7) |Dr
tD

γ
xZ (x, ξ, t, τ)| ≤ exp (Mt)

(t− τ)(3+2r+|γ|)/2 exp

(
−C |x− ξ|2

t− τ

)
.

Here and below M =M (d) > 0 and C = C (d) > 0 denote different numbers depending only
on the number d. By (3.3), (3.4)

(3.8) v (x, t) =

∫
R3

Z (x, ξ, t, 0) δ (ξ3 − z0) dξ =

∫
R2

Z (x,ξ1, ξ2, z0, t, 0) dξ1dξ2.

Hence, (3.7) implies that

(3.9) |Dr
tD

γ
xv (x, t)| ≤

exp (Mt)

t(1+2r+|γ|)/2 exp

(
−C (z − z0)

2

t

)
.
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Hence, one can apply the operator L2 to the functions Dr
tD

γ
xv (x, t) for s ≥ s (d) =

√
M (d).

Hence, (3.3), (3.4), and (3.6) imply that the function w satisfies (2.7).
We now prove that the function w satisfies conditions (2.8), (2.9). Let v0 (z, t) =

exp[−(z − z0)
2/(4t)]/(2

√
πt) be the solution of the problem (3.3)–(3.4) for the case ε (x) ≡ 1.

Denote ṽ (x, t) = v (x, t)− v0 (z, t). Then

(3.10) ε (x) ṽt −Δṽ = [1− ε (x)] v0t, ṽ (x, 0) = 0.

Since ε (x) = 1 for x /∈ Ω and Ω∩ {z = z0} = ∅, the right-hand side of (3.10) does not have a
singularity. Hence, (3.10) implies that

ṽ (x, t) =

∫ t

0
dτ

∫
Ω
Z (x, ξ, t, τ) [1− ε (ξ)] v0τ (ξ3, τ) dξ.

Hence, it follows from (3.7) that

(3.11) |ṽ (x, t)| ≤ exp (Mt)

∫ t

0
dτ

∫
Ω

1

(t− τ)3/2
exp

(
−C |x− ξ|2

t− τ

)
|v0τ (ξ3, τ)| dξ.

Also,

(3.12) |v0τ (ξ3, τ)| ≤ C1

[
(ξ3 − z0)

2

τ5/2
+

1

τ3/2

]
exp

[
−(ξ3 − z0)

2

4τ

]
,

where the number C1 > 0 is independent of ξ3, z0, τ . Using formulas (28) and (29) of section
4.5 of [2], we obtain

L2

[
1

t3/2
exp

(
−C |x− ξ|2

t

)]
=

√
π exp

[
−2

√
Cs |x− ξ|

]
√
C |x− ξ| ,(3.13)

L2

{
1

t3/2
exp

[
−(ξ3 − z0)

2

4t

]}
=

2
√
π

|ξ3 − z0| exp (−s |ξ3 − z0|) ,(3.14)

L2

{
(ξ3 − z0)

2

t5/2
exp

[
−(ξ3 − z0)

2

4t

]}
=

16s3

|ξ3 − z0|K3/2 (s |ξ3 − z0|) ,(3.15)

whereK3/2 is the McDonald function. Since Ω∩{z = z0} = ∅, the right-hand sides of formulas
(3.14) and (3.15) do not have a singularity for ξ ∈ Ω.

By formula (27) of section 4.5 of [2], (L2v0) (z, s) = w0 (z, s). Hence, let ŵ (x, s) =
w (x, s) − w0 (z, s) = (L2ṽ) (x, s). Since |(L2ṽ) (x, s)| ≤ (L2 (|ṽ|)) (x, s), then (3.11)–(3.15)
and the convolution theorem for the Laplace transform imply that

|ŵ (x, s)| ≤ C2s
3

∫
Ω

exp
(
−2

√
Cs |x− ξ|

)
|x− ξ|

[
exp (−s |ξ3 − z0|)

|ξ3 − z0| +
K3/2 (s |ξ3 − z0|)

|ξ3 − z0|
]
dξ

≤ C2 exp
(
−C3

(
s−

√
M (d)

)
|x|
)
, s > s (d) =

√
M (d), |x| → ∞,

(3.16)
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where numbers C2 = C2 (C,Ω, z0) > 0, C3 = C3 (C,Ω, z0) > 0 depend only on the listed
parameters. Therefore, condition (2.8) holds.

Next, the function ŵ (x, s) satisfies the following conditions:

Δŵ − s2ε (x) ŵ = s2 (ε (x)− 1)w0 (z, s) , s > s (d) =
√
M (d),(3.17)

lim
|x|→∞

ŵ (x, s) = 0.(3.18)

Since the right-hand side of (3.17) belongs to Cα
(
R3
)
, then ŵ (x, s) ∈ C2+α

(
G
)
for every

bounded domain G ⊂ R3 [17]. In particular, this implies that

(3.19) w (x, s) = w0 (z, s)− s2
∫
Ω

exp (−s |x− ξ|)
4π |x− ξ| [ε (ξ)− 1]w (ξ, s) dξ.

It is clear from (3.19) that the function ŵ (x, s) ∈ C∞(R3�Ω̃) for any bounded domain Ω̃ such
that Ω ⊂ Ω̃, ∂Ω ∩ ∂Ω̃ = ∅. It is also clear that this function decays exponentially together
with its derivatives as |x| → ∞. Hence, ŵ (x, s) ∈ C2+α

(
R3
)
. Thus, we have established that

the function w satisfies conditions (2.8), (2.9).
We now prove uniqueness of the solution to the problem (2.7)–(2.9). Assume that there

exist two solutions to this problem, w1 and w2. Then both can be represented via (3.19).
Hence, w1 − w0 := ŵ1 ∈ H1

(
R3
)
and w2 − w0 = ŵ2 ∈ H1

(
R3
)
. Furthermore, both functions

ŵ1, ŵ2 decay exponentially together with their derivatives as |x| → ∞. On the other hand,
since both of these functions satisfy conditions (3.17), (3.18), by subtracting (3.17) for ŵ2

from the same equation for ŵ1, multiplying the resulting equation by ŵ1 − ŵ2, integrating
over R3, and using integration by parts, we obtain in a standard manner that ŵ1 − ŵ2 ≡ 0.
Thus, uniqueness is established.

We now prove estimates (3.2). For an arbitrary number R > 0, let BR = {|x| < R}. Since
the function (ε (x)− 1)w0 (z, s) ≥ 0, the maximum principle applied to (3.17) implies that if
maxBR

ŵ (x, s) > 0, then this maximum is achieved at a point x0 (R) ∈ ∂BR. Hence, setting
R→ ∞ and using (3.18), we obtain ŵ (x, s) ≤ 0, which proves the right inequality in (3.2).

We now prove the left inequality in (3.2). Let

vu (z, t) =

√
εu

2
√
πt

exp

[
−εu (z − z0)

2

4t

]

be the solution of the problem (3.3)–(3.4) for ε (x) ≡ εu. Let

(3.20) p (x, t) =

∫ t

0
(v (x, τ)− vu (z, τ)) dτ.

Then ε (x) pt − Δp = (ε (x)− εu) vu and p (x, 0) = 0. Since (ε (x)− εu) vu > 0 for t > 0,
the function p (x, t) is not identical to zero. Hence, the maximum principle of Theorem 1 in
Chapter 2 of [16] implies that p (x, t) > 0 for t > 0. Hence, (L2p) (x, s) > 0. On the other
hand,

(L2p) (x, s) =
1

s2
[(L2v) (x, s)− (L2vu) (z, s)] =

1

s2
[w (x, s)− wu (z, s)] > 0.
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The proof is complete.
The formulation of the global convergence theorem, Theorem 3.2, is similar to the formu-

lation of Theorem 5.1 in [7]. First, the function q∗ (x, s) ∈ C2+α
(
Ω
)
is introduced as well as its

Dirichlet boundary condition ψ∗ (x, s) = q∗ (x, s) |∂Ω, where q∗ (x, s) ∈ C2+α
(
Ω
)
, ψ∗ (x, s) ∈

C2+α (∂Ω) ∀s ∈ [s, s]. These functions correspond to the exact coefficient ε∗ (x). We also
assume that the function ψ (x, s) ∈ C2+α (∂Ω) ∀s ∈ [s, s]. Next, similarly to functions qn (x)
and ψn (x), functions q

∗
n (x) ∈ C2+α

(
Ω
)
and ψ∗

n (x) ∈ C2+α (∂Ω) are obtained from functions
q∗ (x, s) and ψ∗ (x, s), respectively. The functions q∗n are solutions of analogues for equations
(2.15) with Dirichlet boundary conditions ψ∗

n. There exists a constant C∗ = C∗ (εu, d) > 1
such that

‖q∗ (x, s)− q∗n (x)‖C2+α(Ω) + ‖ψ∗ (x, s)− ψ∗
n (x)‖C2+α(∂Ω)(3.21)

≤ C∗h, s ∈ (sn, sn−1], n = 1, . . . , N.

Let σ ∈ (0, 1) be the level of the error in the boundary data ψ (x, s),

(3.22) ‖ψ (x, s)− ψ∗ (x, s)‖C2+α(∂Ω) ≤ C∗σ ∀s ∈ [s, s] .

Introduce the error parameter η = h + σ. Then (2.16), (3.21), and (3.22) imply that it is
natural to assume that

(3.23) ‖ψn − ψ∗
n‖C2+α(∂Ω) ≤ C∗η, s ∈ (sn, sn−1], n = 1, . . . , N.

Theorem 3.2 (global convergence). Assume that in (2.1) f (t) = δ (t), the approximation
(2.17) holds, and the initial tail function V1,1 (x) is calculated as in section 2.3. Suppose that
the maximal number of iterations with respect to i is m ≥ 1 and that the algorithm is stopped
at a certain n = N ∈ [1, N ]. Also, let (3.1), (3.22), and (3.23) hold. In addition, assume that
all functions εn,i satisfy εn,i (x) ≥ 1 and that ‖ε∗‖Cα(R3) ≤ d/2. Also, let s ≥ s (d) and s > 1.
Then there exists a number B = B (Ω, χ, s, α, εu, d) > 1 depending only on listed parameters
such that if the error parameter η is so small that

η ∈ (0, η0) , η0 =
1

B6Nm
,

then for i ∈ [1,m] , n ∈ [1, N]
(3.24) ‖εn,i − ε∗‖Cα(Ω) ≤ B3(i+(n−1)m)η ≤ √

η.

Remark 3.3. As soon as Theorem 3.1 is proved, the proof of Theorem 3.2 is very similar
to the proof of Theorem 2.9.4 in [6] and Theorem 5.1 in [7]. Therefore, we omit this proof for
brevity.

Theorem 3.2 states that if the total number of iterations with respect to both parameters
n, i does not exceed Nm and if the error parameter η is sufficiently small, then all functions
εn,i are located in a sufficiently small neighborhood of the exact solution ε∗. The size of this
neighborhood is defined only by the error parameter, which is natural. This property holds
regardless of any a priori knowledge of that small neighborhood. Therefore we have global
convergence within the framework of the approximate mathematical model of section 2.3.
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(a) (b)

Figure 1. (a) Experimental setup. (b) Schematic diagram of our data acquisition.

From the computational standpoint, even though the error estimate (3.24) is valid at the
first iteration, our numerical observations suggest that the algorithm should be continued after
the first iteration. The reason is that (3.24) is valid only for the approximate mathematical
model (2.17). As to which of functions εn,i one should consider as the final solution of our
inverse problem, it should be decided on the basis of a stopping criterion, which is chosen
computationally. It is important that we use the same stopping criterion for all of our numer-
ical tests described below. We also note that it is a well-known phenomenon in the field of
ill-posed problems that the iteration number is chosen as one of regularization parameters; see,
e.g., pages 156–157 of [14]. The approximate mathematical model (2.17) should be verified
computationally. This was done in the previously cited works of our group as well as in the
current paper.

4. Data acquisition and preprocessing.

4.1. Data acquisition. The collection of the experimental data was carried out using the
same configuration as in [10, 29], where we imaged targets placed in air; see the detailed
description in section 3 of [29]. The only difference is that in the current paper the ob-
jects considered were placed inside a box filled with dry sand with the dielectric constant of
ε (sand) = 4. This was used to model the case of buried objects; see Figure 1.

The sand box was placed in front of the transmitter. Its front and back sides were covered
by Styrofoam, whose dielectric constant is approximately 1; i.e., it does not affect the incident
and scattered signals. The transmitter was fixed at a given position, while a detector was
scanned over a square of a vertical plane behind the transmitter, which we refer to as the
measurement plane. The transmitter is a standard X-band horn antenna with dimensions
W × H × L = 52 × 39 × 130 mm. The receiver is a point probe, i.e., an exposed length of
coaxial cable. At each detector location, the source emitted an electric pulse of 300 picoseconds
(ps) duration, and the time-dependent scattered wave was captured by the detector. Then the
detector was moved to the next location, and the measurement was repeated. Hence, our data
can be considered as generated by a single point source. Consider the Cartesian coordinate
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system 0xyz as shown in Figure 1(b). The detector was scanned in the square of 1×1 m with
the step size of 0.02 m, starting at (x, y) = (−0.5,−0.5) and ending at (x, y) = (0.5, 0.5). The
horn antenna was placed at a distance of about 0.2–0.25 m from the measurement plane, and
the distance from the sand box to the measurement plane was about 0.7–0.8 m.

The dominant frequency in the pulsed illumination was 7.5 GHz; i.e., the wavelength was
about 0.04 m. The time step between two consecutive records was Δt = 10 ps. Each signal
was recorded for 10 nanoseconds (ns).

Since the source was located far away (at about 20 wavelengths) from the targets, the gain
and directivity of the horn antenna effectively give us a plane wave incident at the surface
of the scattering volume, which was floated in the far field. Although surface roughness can
induce speckle, the surface in our experiments was smooth with respect to the wavelength.
Therefore, it was reasonable to approximate the incident wave by a plane wave.

4.2. Data preprocessing. As we have mentioned in the introduction, there is a huge misfit
between our experimental data and the data produced via computational simulations. We have
pointed out in [29] that there are several causes of this misfit, such as (i) the instability of
the amplitude of the emitted signals which causes the instability of the backscatter signals,
(ii) unwanted waves scattered by several existing objects around our device (see Figure 3.2(a)
of [29]), (iii) the shadow on the measurement plane caused by the horn antenna since it was
placed between the sand box and the measurement plane (see Figure 1), and (iv) the difference
between the experimental and simulated incident waves. Due to some limitations, it was
technically very hard to place the horn antenna behind the measurement plane. Therefore,
the central procedure required before applying inversion methods is data preprocessing. This
procedure is inevitably heuristic and cannot be rigorously justified. In [29], we proposed a
data preprocessing procedure for the case of targets located in air. Compared with [29], this
procedure in the current paper is substantially modified due to the additional difficulties in the
case of buried targets, as mentioned in the introduction. Our data preprocessing procedure
consists of the following steps.

1. Off-set correction. The recorded signals may be shifted from the zero mean value. This
can be corrected by subtracting the mean value from them.

2. Time-zero correction. Time-zero refers to the moment at which an incident signal is
emitted from the transmitter. This step shifts the data to the correct time-zero.

3. Data propagation. In this step, the data is propagated to a plane, which we refer to
as the propagated plane. This plane is located closer to the targets than the measurement
plane. This means that we approximate the scattered wave on the propagated plane using
the measured scattered wave on the measurement plane. There are two reasons for doing this
[29]. The first is that since the kernel of the Laplace transform (2.6) decays exponentially with
respect to time, which is proportional to the distance from the targets to the measurement
plane, the amplitude of the data after the Laplace transform on the measurement plane is very
small and can be dominated by the computational error. The second reason is that the data
propagation procedure helps to substantially reduce the computational cost since the size of
the computational domain Ω is reduced. We have also observed that the data propagation
helps to reduce the noise in the measured data. Details of the data propagation are described
in section 4.2.1.
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4. Estimation of the burial depth of a target. This distance is defined as the distance from
the front surface of the target to the sand’s surface; see section 4.2.2 for more details.

5. Extraction of target’s signal. This is the most difficult step of data preprocessing. In
addition to the signals scattered from the targets, our measured data also contain various
types of unwanted signals and noise. The unwanted signals, which come earlier than the
targets’ signals, dominate the latter after the Laplace transform. Thus, this step helps to
remove both these unwanted signals and noise. In addition to unwanted signals and noise as
in the case of targets located in air, in our situation of targets buried in the sand this step
also removes the signal caused by the sand; see section 4.2.3.

6. Source shift. In our simulations, we assume that the incident plane wave is emitted at
the plane {z = z0}. Therefore, the computational cost depends on the distance from this plane
to our targets. To avoid unnecessary computational cost in our forward and inverse solvers,
we artificially shift the source closer to the sand box. This is possible since our incident
wave can be approximated by a plane wave. Indeed, the scattered waves associated with
two incident waves generated at two parallel planes are different only in time shift. In our
numerical simulation, we chose the distance from the source to the sand box to be 0.3 m, i.e.,
of the order of 7.5 wavelengths, while this distance is 0.76 m, i.e., about 19 wavelengths, in our
experimental data. Therefore, the shifted data gs was calculated by gs(x, t) = g(x, t+0.46/0.3),
where g was the measured data. Note that the factor 0.3 is the speed of light in meters per
nanosecond.

7. Data calibration. Finally, since the amplitudes of the experimental signals are usually
quite different from those of the simulated ones, we scale the former to better match the
latter in amplitude by multiplying the former by a certain factor, which we call the calibration
factor. The choice of this factor is based on the data for a known target referred to as the
calibrating object.

Steps 1, 2, 6, and 7 are basically the same as in [29]. We just note that, in this paper,
only one calibration factor was used in step 7 for both nonmetallic and metallic targets, in
contrast to the data used in [10, 29], where two different factors were used for these two types
of targets. However, step 3 here is different from step 3 of the above works. As for steps 4
and 5, they are new and were not parts of our previous publications. Therefore, we present
steps 3, 4, and 5 below.

4.2.1. Data propagation. In [29] we proposed a time-reversal data propagation method.
The idea of that method is to solve a time-domain wave equation with the reversed time
variable. In this paper, we make use of another data propagation method which is based on
the backpropagation technique via the Fourier transform. This technique is known as the
Stolt migration, and it is popular in geophysics; see [28, 32].

However, we should point out that the purpose of our data propagation is to approximate
the time-dependent waveform at a plane parallel to the measurement plane, which will be
used as the input for our inverse algorithm. This is different from conventional backprojection
and backpropagation methods, including the Stolt migration, which focus the energy from the
time-domain waveform to a domain in space. Moreover, the latter methods require multiple
transmitters and receivers, whereas we have only a single transmitter in our experiments.

We assume that the scattered wave propagates in the positive z-direction. Denote by
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Pm = {z = b}, b > 0, the measurement plane and by Pp = {z = a}, with a < b, the propagated
plane, which is closer to the target of interest than Pm. We also denote by us(x, t) the scattered
wave. Our objective here is to determine the function g(x, y, t) := us(x, y, a, t), given the
measured data f (x, y, t) := us(x, y, b, t). We assume that the medium is homogeneous in the
half-space z ≥ a with ε ≡ 1. Therefore, us is the solution of the following problem:

ustt −Δus = 0, x ∈ R3, z ≥ a, t ∈ (0,∞),(4.1)

us(x, 0) = ust (x, 0) = 0.(4.2)

Consider the Fourier transform

(4.3) ûs(kx, ky, z, ω) =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
us(x, y, z, t)e−i(ωt+xkx+yky)dxdydt.

It follows from (4.1) that ûs satisfies the equation

ûszz + (ω2 − k2x − k2y)û
s = 0, z ≥ a,(4.4)

û(kx, ky , z, ω) = ĝ(kx, ky, ω),(4.5)

where ĝ(kx, ky, ω) is the Fourier transform (4.3) of g(x, y, t). We consider two cases.
Case 1: ω2 − k2x − k2y < 0. Keeping in mind that the scattered wave propagates in the

positive z-direction, the problem (4.4)–(4.5) has the following solution:

(4.6) ûs1(kx, ky, z, ω) = ĝ(kx, ky, ω) exp
(
−(z − a)

√
k2x + k2y − ω2

)
, z > a.

Case 2: ω2 − k2x − k2y ≥ 0. Then the solution ûs can be represented as

(4.7) ûs2(kx, ky , z, ω) = ĝ(kx, ky, ω) exp
(
−i(z − a)

√
ω2 − k2x − k2y

)
, z > a.

The negative sign in the exponential term in this formula is due to the fact that the scattered
wave is outgoing in the positive z-direction.

Since the solution (4.6) is exponentially decaying as z → ∞, which represents the evanes-
cent wave, it practically cannot propagate to the measurement plane, which is in the far field
zone. Hence,

f̂(kx, ky , ω) = ûs2(kx, ky , b, ω) = ĝ(kx, ky, ω) exp
(
−i(b− a)

√
ω2 − k2x − k2y

)
.

Using the inverse Fourier transform, we obtain

(4.8) g(x, y, t) =

∫∫∫
ω2−k2x−k2y>0

f̂(kx, ky, ω)e
i(b−a)

√
ω2−k2x−k2yei(ωt+xkx+yky)dkxdkydω.

Given the data f(x, y, t) at the measurement plane, we compute f̂ as well as g(x, y, t) via (4.8)
using the fast Fourier transform.

For each data set, the propagated plane Pp was determined as follows. We first propagated
the data to the sand’s surface. Using this propagated data, we estimated the burial depths
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Figure 2. Result of the data propagation for signals from two targets buried inside the sand box. The signals
of the two targets are well separated from each other as well as from the reflection from the sand’s surface after
the data propagation.

of the targets (section 4.2.2). Next, if the burial depth of the target closest to the sand
surface was larger than 4 cm, we propagated the data again from the measurement plane up
to the plane Pp, whose distance to the front surface of that target was approximately 4 cm.
Otherwise, we used the data propagated up to the sand’s surface for the next step of data
preprocessing. Note that even though we propagated the data beyond the sand’s surface, we
still saw the reflection from the sand’s surface in the propagated data since we did not take
into account the presence of the sand box in the data propagation; i.e., when propagating the
data in the sand, we assumed that ε = 1 in the sand. This reflection from the sand’s surface
was removed when the targets’ signals were extracted; see section 4.2.2. Note that the grid
points at Pp are the same as those at the measurement plane Pm. Thus, below we refer to the
grid points at the propagated plane Pp as “detectors.”

A result of the data propagation is illustrated in Figure 2. The figure shows a horizontal
scan of the sand box containing two buried metallic targets. The horizontal side denotes the
indices of the detector’s locations, and the vertical side denotes time. Time increases from
the top to the bottom. The propagation distance, b − a, is 0.8 m, which means that the
propagated plane Pp almost coincides with the sand’s surface. Figure 2(a) shows the original
data, while Figure 2(b) shows the data after the propagation. As can be seen from these
figures, the targets’ signals in the original data are smeared out. On the other hand, they are
focused after the data propagation, making the two targets more clearly distinguished. This
is well known for migration methods. Moreover, we can also see that the reflection from the
sand’s surface is also more visible after the propagation and is well separated from the targets’
signals.

4.2.2. Estimation of the burial depth. Since the sand’s surface reflects our microwave
pulses and these reflected waves arrive at the detectors before those reflected from the targets
(see Figure 2(b)), the targets’ signals are dominated by that of the sand’s surface after the
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(a) A strong target
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Figure 3. One-dimensional propagated signals at the strongest detectors of two targets: one strong target
and one weak target. The signals consist of the reflection from the sand’s surface followed by the reflections
from the targets.

Laplace transform. In addition, the measurement noise appearing earlier than the targets’
signals also affects the latter after the Laplace transform due to the exponential decay of the
kernel; see Figure 4(a). Therefore, an additional important data preprocessing step is needed
in order to pick up only the reflection from the targets and remove unwanted signals and
noise coming earlier than the targets’ signals. This step is applied to the propagated data as
described below.

We first define some terms which are used in this section. These terms are related only
to the propagated plane Pp. The strongest detector in a data set is defined as the detector
at which the recorded signal has the largest amplitude. A strong target is either a metallic
one or a nonmetallic one whose dielectric constant is larger than that of the sand. If the
dielectric constant of a target is smaller than that of the sand, we call it a weak target. The
strongest negative (positive) peak of a time-dependent signal at a certain detector’s location is
the negative (positive) peak whose amplitude is larger than the amplitudes of other negative
(positive) peaks of the same signal.

We first estimated the burial depth of a target in each data set. For this purpose, we took
the strongest detector. We first determined the strongest negative peak among the first four
peaks, starting from the first negative peak; see Figure 3. This strongest negative peak is
considered as the strongest negative peak of the sand’s signal. After that, we excluded those
first four peaks. The reason for considering those four peaks was due to our observation that
those peaks should belong to the reflection from the sand’s surface. Moreover, the first two
negative (respectively, two positive) peaks of the incident wave were increasing in amplitude.
After that, the negative (respectively, positive) peaks of the incident wave decreased in am-
plitude. Therefore any increase in amplitude of the peaks after those first four peaks should
be due to the reflection from the target. By detecting the next negative (or positive) peak
which was stronger than the previous negative (positive) one, we located the target’s signal.
Then, we determined the strongest negative peak of the target’s signal. Denoting by Δt the
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time delay between the latter peak and the strongest negative peak of the sand’s signal, the
burial depth of the target was approximated by n(sand)Δt, where n(sand) =

√
ε(sand) is the

refractive index of the sand.

4.2.3. Extraction of target’s signal: The most difficult step of data preprocessing.
After estimating the burial depth, we extracted the target’s signal. The extraction of signals
of targets in air is quite simple. However, it is very challenging in the case of buried objects,
especially for weak targets. Indeed, when a weak target is buried at a shallow depth, its signal
is merged with the reflection from the sand’s surface. When it is buried at a deep depth, its
signal is usually too weak to be visible in the data. Our experimental observations have shown
that if a weak target is buried at a depth of more than 5 cm, then we cannot detect it. In
this case, the target is missed.

As in estimating the burial depth, we also worked with the strongest detector first and
excluded the first four peaks. After that, we selected the target’s signal as follows: (i) Suppose
that either the burial depth was larger than 5 cm, or the strongest negative peak of the target’s
signal was larger than that of the sand’s signal in amplitude. Then we chose as the first peak of
the target’s signal the strongest negative peak located after the excluded ones; (ii) otherwise,
the first peak of the target’s signal was determined as the first positive peak which was larger
than the previous positive one, provided that such a peak exists; see Figure 3. Since the
reconstructed dielectric constants of targets of case (i) (respectively, case (ii)) was always
larger (smaller) than that of the sand, we also categorized a target in case (i) (case (ii)) as a
strong (weak) target. For all other detectors, we started from those closest to the strongest
detector and on each of them assigned as the first peak of the target’s signal the one which was
timewise closest to that of the strongest detector. For strong targets this should be a negative
peak, while it was a positive peak for weak targets. Next, we continued similarly on all other
detectors via sequentially choosing those peaks closest to that of the previous detector. The
reason for choosing a negative (positive) peak as the first peak of the target’s signal for strong
(weak) targets was due to our observations in numerical simulations and experimental data
which have indicated the following:

(a) For a strong target, the first peak of the target’s signal should be negative.
(b) For a weak target, the first peak of the target’s signal should be positive.
Moreover, if a strong target is buried at a depth of less than 5 cm, then its signal is

stronger than that of the sand in amplitude. If the burial depth is more than 5 cm, then its
signal might not be stronger than that of the sand. However, since, as we mentioned above,
weak targets are not visible at depths of more than 5 cm, we consider all targets buried at
these depths as strong targets.

In all above cases, the data before the chosen first peak of the target’s signal were set
to zero. Hence, the Laplace transform of the preprocessed data is not affected by values
before the first chosen peak. We note that such a choice of starting peaks artificially immerses
our targets in air, because we exclude the reflection from the sand’s surface. Therefore,
what we reconstruct for each target by the globally convergent method is the ratio between
its dielectric constant (or the effective dielectric constant for metals) and that of the sand,
ε (target) /ε (sand). Next, to obtain the value of the dielectric constant of the target, we
multiply this ratio by ε (sand) = 4.
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(a) Before the extraction of the targets’ signals (b) After the extraction of the targets’ signals

Figure 4. The Laplace transforms of the data on the propagated plane before (a) and after (b) the extraction
of the targets’ signals. Without the extraction, we cannot see the targets. After the extraction, the two targets
show up clearly.

Figure 3 shows one-dimensional propagated signals at the strongest detectors of a strong
target and a weak target. We indicate there the sand’s signal and the peaks of the targets.
These peaks were chosen as the first peaks of signals from the targets. Samples of the Laplace
transform of the data before and after the extraction of the targets’ signals are shown in
Figure 4, which indicates the necessity of this preprocessing step.

Figure 4(b) also shows that the preprocessed data allow us to estimate locations of the
targets in the x- and y-directions as well as their xy-cross sections; see section 4.3 of [29] for
the method we proposed for estimating the cross sections of targets. This type of information
helps to reduce the domain in which we look for the targets. Indeed, in Test 2 below, we took
into account this type of information in choosing the first tail function.

5. Reconstruction results. We now illustrate the performance of the globally convergent
algorithm of section 2.2 for our experimental data sets.

5.1. Description of experimental data sets. To have a rather systematic study of the
performance of the globally convergent algorithm for these data, we have tested this algorithm
for different types of targets at different burial depths varying between 0.02 m and 0.14 m.
Our results in this paper include 25 data sets. Table 1 describes the details of these data sets
including the targets’ materials. Among them, there are 10 nonblind cases and 15 blind cases.
“Blind” means that the targets were unknown to the computational team (NTT, LB, MVK)
but known to MAF, who was leading the data collection process. The nonblind targets are
those that were known to NTT and MVK but were not known to LB, who performed Test 1
below. Note that we were able to directly measure refractive indices n =

√
ε rather than

dielectric constants. The refractive indices of all nonmetallic targets were measured after the
reconstruction results were obtained by the computational team. Next, computational results
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Table 1
Description of the test data sets. Seven of them consist of two targets each (5, 6, 16, 17, 20, 23, 25). Two

targets can be considered as heterogeneous (11, 12).

Object Blind/ Description of target Material
# Nonblind

1 nonblind a metallic cylinder metal

2 nonblind a metallic ball metal

3 nonblind a bottle filled with clear water water

4 nonblind a wet wooden block wet wood

5 nonblind two metallic blocks at 6 cm separation metal/metal

6 nonblind a metallic cylinder and a Teflon bar metal/Teflon

7 nonblind a metallic block metal

8 nonblind an empty bottle air

9 nonblind a bottle filled with Teflon bars Teflon

10 blind a ceramic mug ceramic

11 blind a wooden doll filled with metallic screws wood/metal
(heterogeneous, diffuse scattering)

12 blind a geode (heterogeneous): rock
two spherical layers and air inside

13 blind a piece of rock rock

14 blind a plastic bottle filled with coffee grounds coffee grounds

15 blind a ceramic mug ceramic

16 blind a cylinder and a block at 3 cm separation metal/metal

17 blind an aluminum can and a block metal/metal

18 blind a wooden doll with a metallic block inside wood/metal
(heterogeneous)

19 blind a bottle of water water

20 blind a metallic block and a rock metal/rock

21 blind a steel mug metal

22 blind a wet wooden block wet wood

23 blind a wet wooden block and an empty bottle wet wood/air

24 blind a wet wooden block wet wood

25 nonblind two metallic blocks at 1 cm separation metal/metal

were compared with directly measured ones. Some of the nonblind targets were used for
calibrating and fine-tuning of the reconstruction procedure. The blind targets were used to
ensure that this procedure would work in realistic blind data cases. It is important that the
same reconstruction procedure, with the same choice of parameters, was used for all targets.

The burial depths of the targets varied between 2.5 cm and 14 cm. Note that typically
burial depths of antipersonnel land mines do not exceed 10 cm. Among our targets were
metallic blocks, wooden blocks, metallic cylinders, metallic spheres, and wooden dolls. Seven
data sets (5, 6, 16, 17, 20 23, 25) consisted of two targets each. In particular, there were three
targets (11, 12, 18) which can be considered as heterogeneous; see Table 1. The data of the
sand box alone (without buried objects) was used for the calibration of our data.

5.2. Numerical implementation. Details of the numerical implementation of the globally
convergent algorithm can be found in [6, 29]. For the reader’s convenience, we briefly describe
the main points here.

Choosing the domain and solving the forward problem. In the preprocessed data, the
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distance from the front sides of the targets to the backscattering boundary of our inversion
domain Ω was 0.04 m. The reason for choosing this distance was due to good reconstruction
results we had obtained for several nonblind targets. Hence, the inversion domain Ω was
chosen as

(5.1) Ω = {x ∈ (−0.4, 0.4) × (−0.4, 0.4) × (−0.2, 0.04)} .
Moreover, since it is impossible to solve the problem (2.1)–(2.2) in the entire space, in numer-
ical computation, we approximated its solution by the solution of an initial boundary value
problem in a bounded domain G ⊂ R3 such that Ω ⊂ G; see [6, 29] for details. In this paper,
we choose G as the rectangular parallelepiped

G = {x ∈ (−0.5, 0.5) × (−0.5, 0.5) × (−0.3, 0.3)} .
This domain G was decomposed into two subdomains: G = Ω ∪ (G \ Ω). We recall that
ε(x) = 1 in G \ Ω. Therefore, it is only necessary to solve the inverse problem in Ω. A finite
element mesh with tetrahedral elements is used in Ω, while in G \Ω we use a finite difference
mesh with mesh sizes of 0.02×0.02×0.02. The forward problem was solved using the software
package WavES [31] via a hybrid finite difference/finite element method described in [9].

The time interval on which the problem (2.1)–(2.2) was solved was chosen to be (0, T ) =
(0, 1.2) since no relevant signals appeared after this time interval. Note that the time variable
was scaled so that the dielectric constant of air was equal to 1. Since the explicit scheme in
time was used in WaveES, the time step size was chosen as Δt = 0.0015, which satisfied the
CFL stability condition.

The pseudofrequencies sn were chosen from s = 7 to s = 9 with the step size h = 0.05.
This pseudofrequency interval was chosen because it gave good reconstructions of the nonblind
targets. We have observed that the pseudofrequency interval s ∈ [8, 10] also provided good
reconstruction results.

In our simulations, the waveform function f in (2.1) was chosen as f(t) = 2ω cos(ωt) for
0 ≤ t ≤ t1 = 2π/ω and as f(t) = 0 for t > t1. Here, ω = 30 is the angular frequency of the
incident plane wave.

Completing the backscattering data. We recall that our data are available only on the
backscattering side of the inversion domain, i.e., at Ω ∩ {z = 0.04}. Therefore, the missing
boundary data on the other sides of the rectangular parallelepiped Ω were approximated by
the corresponding simulated data for the homogeneous medium with ε (x) ≡ 1 (we recall that
after extracting the targets’ signals, as explained in section 4.2.3, the targets were treated as
ones placed in air). This approximation has been used in our previous works and found to
provide good reconstruction results; see [7, 10, 29].

5.3. Two tests and stopping criteria. We have analyzed the performance of the proposed
algorithm with two different tests: Test 1 and Test 2. In Test 1, we made use of the first
tail function as described in section 2.3, with which the global convergence is rigorously
guaranteed. In Test 2, the estimated burial depth and the xy-cross section of the target via
the data preprocessing procedure were used to restrict the domain in which the coefficient ε
was reconstructed and to choose the first tail function. More precisely, for each target, let
xt,min = min{x ∈ ΓT }, xt,max = max{x ∈ ΓT }, where ΓT is the estimated xy-cross section of
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the target; see [29] for how this cross section is estimated. The numbers yt,min and yt,max are
defined similarly. Then, we define the extended xy-cross section by

ΓT,ext = {xt,min − 0.03 < x < xt,max + 0.03, yt,min − 0.03 < y < yt,max + 0.03}.

Moreover, denote by zt,front the estimated location of the front side of the target in the
z-direction, given by the burial depth estimation. We then define the following domain ΩT,ext:

ΩT,ext := {x ∈ Ω : (x, y) ∈ ΓT,ext, −0.2 < z < zt,front + 0.02}.

Clearly, ΩT,ext ⊂ Ω. Moreover, this domain should contain the unknown target that we seek.
The last number 0.02 was for compensating for possible error in the estimated burial depth of
the target. Next, we chose the first tail function V0 as the function (2.12), where the function
w (x, s) was computed for the coefficient ε (x) := ε0 (x), where

ε0(x) = εu for x ∈ ΩT,ext, ε0(x) = 1 for x /∈ ΩT,ext.

In this paper, the upper bound εu for the function ε (x) was chosen as εu = 25.
Although the convergence of the resulting algorithm for Test 2 has not been rigorously

proved yet, our numerical results show good reconstructions; see also [29] for results when
targets are in air. Note that we did not use a priori information about the targets. Instead,
the information used in choosing the first tail function was derived from data preprocessing.

Stopping criteria. As mentioned in Remark 3.3, stopping criteria of the algorithm should
be addressed numerically. In this paper, we used the stopping criteria proposed in [10, 29].
We briefly recall these criteria here for the reader’s convenience.

Stopping criterion of Test 1. The inner iteration with respect to i is stopped at i = mn

such that

Dn,i ≥ Dn,i−1 or i < imax,

where Dn,i = ||Vn,i|Γp − Vprop||L2(Γp). Here Γp is the backscattering side of Ω, Vprop is the
tail function computed from the propagated data at Γp, and imax is the maximum number of
inner iterations. In Test 1, we have chosen imax = 8.

The outer iteration with respect to the pseudofrequency is stopped when the error function
Dn,1 attains the first local minimum with respect to n.

Stopping criterion of Test 2. The inner iteration is stopped using the same criterion as in
Test 1 but with imax = 5. The outer iteration is stopped when the error function Dn,mn , i.e.,
the error function at the final inner iteration, attains the first local minimum.

We have observed in our tests that these stopping criteria gave good results for nonblind
targets.

5.4. Summary of reconstruction results and discussion. In Tables 2 and 3 we summarize
reconstruction results of the two tests for the data sets listed in Table 1. Table 2 shows the re-
sults for the nonmetallic targets. For these targets, the refractive index n(target) =

√
ε(target)

(ε(target) was chosen by ε(target) = maxx∈Ω ε(x)) is shown instead of the dielectric constant
ε because n(target) was directly measured after computations were performed. Table 3 shows
the burial depths and the effective dielectric constants of the metallic targets.
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Table 2
Result of the globally convergent algorithm: the refractive indices n =

√
ε and the burial depths of non-

metallic targets. Object 11 is a heterogeneous target with diffuse scattering; see below. Object 12 is heterogeneous
with outer and inner layers; the computed n is compared with the average measured n = 1.28. Object 23 consists
of two targets: wet wood and an empty bottle filled with air. “Comp.” stands for “Computed.” The average
error of strong targets is 8.5% for Test 1 and 14.7% for Test 2. The average error of weak targets is 21.6%
for Test 1 and 13% for Test 2.

Object Material Comp. Exact Comp. n Comp. n Measured n
# depth depth Test 1 Test 2

3 water 3.6 cm 4.0 cm 4.7 4.9 4.88

4 wet wood 5.5 cm 9.8 cm 4.4 4.5 4.02

8 air 2.8 cm 3.0 cm 1.0 0.98 1.0

9 Teflon 2.9 cm 2.5 cm 1.0 1.18 1.0

10 ceramic 4.0 cm 5.0 cm 1.0 1.23 1.39

11 wood with 4.6 cm 4.0 cm 1.0 1.46 1.89 (wood)
metal screws N/A: diffuse scattering

12 geode 2.1 cm 2.5 cm 1.0 1.52 1.31 (outer)
(two layers) 1.25 (inner)

1.28 (average)

13 rock 2.0 cm 2.3 cm 1.0 1.34 1.34

14 coffee grounds 2.0 cm 2.5 cm 1.0 1.46 1.11

15 ceramic 2.6 cm 2.5 cm 1.0 1.51 1.39

19 water 7.5 cm 9.5 cm 4.5 5.2 4.88

22 wet wood 2.9 cm 3.0 cm 4.8 5.3 4.02

23 wet wood 5.7 cm 7.5 cm 4.0 4.1 4.02
empty bottle missed 7.5 cm missed missed 1.0

24 wet wood 5.1 cm 6.8 cm 3.67 3.0 4.02

As described in section 4.2.2, the burial depth was estimated based on the time delay
between the reflection by the sand’s surface and the target’s signal. Note that our incident
signal was not really a short impulse. It is therefore natural to expect some level of error in
our estimates. Since we made use of peaks of the signals in estimating the depth, the error
we expect is about the distance between two consecutive peaks, which is equal to half of a
wavelength (2 cm).

From Tables 2 and 3 we can see that the burial depth was accurately estimated in most
cases, with the errors not exceeding 2 cm. There are two cases (4, 7) in which the errors
were about 4 cm. These targets were buried at rather deep depths of about the limiting depth
(10 cm) for antipersonnel land mines. This made the estimate less accurate because of possible
uncertainty in measuring the refractive index of the sand. Also, there might be an error in
recording the exact burial depths during the data acquisition for deeply buried targets.

The estimates of the refractive indices of nonmetallic targets with refractive indices larger
than that of the sand (water and wet wood) were quite accurate with the average error of
about 9.7% for Test 1 and 15.2% for Test 2. Note that the error in our direct measurement
of the refractive index of the wet wood was 10%. For water, we were unable to directly
measure its refractive index at the used quite high frequency of the signal, which was about
7.5 GHz. Therefore, we have conducted a separate experiment: we have placed that bottle of
water in air, measured the backscattering data, and then reconstructed the refractive index
using the globally convergent method as in [10, 29]. The result of n = 4.88 matches well
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Table 3
Result of the globally convergent algorithm: the estimated effective dielectric constants and the burial depths

of metallic targets. Object 18 is a heterogeneous one: a wooden doll with a metallic block inside. Object 20
consists of two targets: a metallic block and a rock. Measured n (rock) = 1.34. Objects 5, 16, and 17 consist
of two metallic targets. Object 25 consists of two metallic targets with 1 cm distance between their surfaces, a
superresolution case; see Figure 7.

Object Material Computed Exact Computed ε Computed ε
# depth depth Test 1 Test 2

1 metal 2.9 cm 4.0 cm 29.9 46.4

2 metal 2.9 cm 3.0 cm 24.5 31.0

5 metal 3.0 cm 3.0 cm 23.4 32.4
metal 3.6 cm 3.0 cm 30.5 41.2

6 metal 2.8 cm 8.5 cm 27.8 37.5
Teflon missed 8.5 cm

7 metal 9.9 cm 14.0 cm 47.4 65.8

16 metal 2.5 cm 4.5 cm 19.9 24
metal 3.7 cm 4.5 cm 33.7 47.5

17 metal 2.0 cm 3.8 cm 30.0 51.1
metal 2.7 cm 3.8 cm 54.8 93.5

18 wood, metal block inside 7.1 cm 8.5 cm 18.3 19.9

20 metal 6.8 cm 8.5 cm 30.0 48.1
rock missed 8.5 cm

21 metal 5.1 cm 7.5 cm 22.1 28.2

25 metal 3.8 cm 4.0 cm 70.0 99.8
metal 4.0 cm 4.0 cm 40.8 56.5

the experimentally measured refractive index of 4.84 at high frequencies in Table 3.1 of [15].
Moreover, by comparing our computed n for water in Table 2 with this reference value n =
4.88, we can see the consistency of our results.

Targets with smaller refractive indices than that of the sand are of interest since they are
models of plastic landmines and IEDs. We have observed that we can image these targets
only if their burial depths do not exceed 5 cm. The average error shown in Table 2 for these
weak targets was about 21.6% for Test 1 and 13% for Test 2. The average measurement error
of the refractive indices of the weak targets was about 5.4%.

In our experiments, we have missed some weak targets (not shown here), which had more
than 5 cm burial depths. For these weak targets, we have observed that their signals were
blended by the reflection from the sand’s surface. Therefore, we could not detect any target’s
signal. Note that, since our current algorithm uses the Laplace transform, it is applicable
only when we can detect and extract targets’ signals and remove the reflection by the sand’s
surface as well as noise at earlier times. Otherwise, they will dominate the targets’ signals
after the Laplace transform; see Figure 4. Thus, these missed cases were not due to the
inversion algorithm.

The signals of the metallic targets were strong compared to the sand’s signal. Therefore
they were quite easy to detect. The estimated effective dielectric constants of our metallic
test targets were between 20 and 100. In our previous works, we established that the effective
dielectric constant of metals should be larger than 10–15; see [10, 19, 29]. Therefore our results
here are compatible with our previous studies.
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In our tests, there were four cases (5, 16, 17, 25 in Table 3) in which there were two metallic
targets simultaneously. In each case we have accurately imaged both targets. In particular,
in the data set 25, the two metallic blocks were at 1 cm distance; see Figure 7. On the other
hand, the wavelength of our device is 4 cm. Thus, the superresolution of λ/4 was achieved,
where λ is the wavelength of our incident plane wave. This is an unexpected surprise. From
a purely angular spectrum argument, the spread of backscatter angles for a fixed frequency
would suggest a resolution of λ/2. However, there has been previous evidence reported that,
using a nonlinear inverse scattering algorithm for which strong or multiple scattering occurs,
some degree of superresolution (i.e., beyond the ideal diffraction limit of λ/2) can occur; see,
e.g., [26].

There were also three data sets (23 in Table 2 and 6, 20 in Table 3) in which one strong
target and one weak target were buried simultaneously. In all three cases we have accurately
imaged the stronger target. However, we missed the weaker ones. The reason we missed the
weak targets was due to the fact that their burial depths were larger than 5 cm, which is our
limiting depth for weak targets.

Also of interest are three cases of heterogeneous targets (11, 12 in Table 2 and 18 in
Table 3), since explosive devices are sometimes heterogeneous. We successfully estimated the
average refractive index of the geode, which consists of two different layers, in data set 12. For
the wooden doll containing a metallic block in data set 18, the computed dielectric constant
is larger than that of the wood but smaller than those of other metallic targets. It is smaller
because the wood covers the metal. Target 11 was a wooden doll with randomly distributed
metal screws inside. In this case we observed a weak signal, rather than a strong one, from
the metal. In fact, we observed a well-known phenomenon of diffuse scattering, which was
described in [25]. This can be explained since the metal screws were randomly oriented
and represented a very rough conducting surface to the incident microwave pulse. Multiple
scattering combined with the penetration of the microwaves into the gaps between the screws
strongly attenuated the incident wave and little scattered back to contribute to a measurable
signal.

The reconstruction of shapes of the targets is illustrated in Figures 5–7. For a better
visualization, we show in these figures the targets in the box with sizes 0.4× 0.4× 0.24, which
is smaller in the x- and y-directions than our computational domain Ω. To show the shapes
of the targets, we computed a truncated coefficient εt(x, y, z) as follows:

εt(x, y, z) =

{
ε(x, y, z) if (x, y) ∈ ΓT and ε(x) > γεmax,

ε(sand) otherwise

for strong targets, with εmax the maximum of ε(x). For weak targets, εt(x, y, z) is given by

εt(x, y, z) =

{
ε(x, y, z) if (x, y) ∈ ΓT and ε(x) < γεmin,

ε(sand) otherwise,

where εmin is the minimum value of ε(x). Recall that ΓT is the estimated xy-cross section of
the target; see section 5.3. In this paper, the truncation parameter γ was chosen as γ = 0.7
for Test 1 and γ = 0.6 for Test 2.
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(a) Test 1, 3D view (b) Test 2, 3D view

Figure 5. Reconstructed image of target 3 (a bottle of water). The thin lines indicate the true shape.

(a) Test 1, 3D view (b) Test 2, 3D view

Figure 6. Reconstructed image of target 10 (a ceramic mug). The thin lines indicate the true shape.

Figure 5 shows the reconstruction of target 3 (a plastic bottle filled with clean water). In
this case, since the target was quite high (about 18 cm), the incident wave was weak at the
vertical ends of the bottle, which made it difficult to reconstruct the complete shape. However,
we still can see in both tests the stretch in the vertical direction following the shape of the
bottle. Figure 6 illustrates the reconstruction of target 10, a ceramic mug. This is a weak
target. We can see that its shape is less accurately reconstructed than those of strong targets,
since its signal is weak. Finally, Figure 7 shows the reconstruction of the most difficult case
of data set 25: the two targets at 1 cm separation. This seems to be a superresolution case,
as we discussed above.

Comparing Test 1 with Test 2, we can see from Tables 2 and 3 that Test 1 provided more



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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(a) Test 1, 3D view (b) Test 2, 3D view

(c) Test 1, xy view (d) Test 2, xy view

Figure 7. Reconstructed image of target 25 (two metallic blocks at 1 cm separation). In (c) and (d),
the true distance between the two targets, indicated by the thin lines, is 1 cm in the horizontal direction. The
estimated distance between these two targets was about 1.5 cm in the horizontal direction. This is a case of
superresolution, since two targets on the distance of λ/4 were resolved using our far field data.

accurate refractive indices of nonmetallic strong targets, while the results of Test 2 was better
for nonmetallic weak targets. For metallic ones, Test 2 provided larger values of their dielectric
constants than Test 1. We note that both tests provided only rough estimates of the shapes.
To improve the accuracy of reconstruction of shapes of targets, we plan to use the adaptivity
technique in the second stage of our two-stage numerical procedure; see [11] for such results
for targets in air.

6. Summary. We have demonstrated the performance of the globally convergent algo-
rithm of [6] for 25 test objects buried inside a sand box, which models imaging of subsurface
objects. Since the signal from the sand is mixed with the signal from the target, this case is
much harder than our previous results for targets placed in air [10, 29]. Our results have shown
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that it is possible to image refractive indices of nonmetallic and effective dielectric constants
of metallic buried objects using backscattering time-dependent measurements associated with
only one incident wave.

In general, the reconstruction results presented here are quite accurate. In particular, we
have shown that the technique of [6] can image quite high target/background contrasts in
dielectric constants, which is usually hard to achieve by locally convergent algorithms. An
interesting observation was the case of the superresolution, in which we have resolved two
metallic targets on the distance of one-fourth of the wavelength of our signal from the far
field data. There were some cases in which weak targets were missed when they were placed
together with strong targets. This was because they were buried at deep depths exceeding
our limiting depth of 5 cm. We were unable to detect their signals.

Acknowledgments. The authors are grateful to Mr. Steven Kitchin for his excellent work
on data collection. We also thank the anonymous referees for their valuable comments and
suggestions.
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