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Stochastic systems with locally defined dynamics

Anton Muratov

Abstract

We study three different classes of models of stochastic systems with
locally defined dynamics. Our main points of interest are the limiting
properties and convergence in these models.

The first class is the locally interactive sequential adsorption, or LISA,
models. We provide the general LISA framework, show that several
classes of well-understood models fall within the framework, such as Polya
urn schemes and fragmentation processes. We study several particular
new examples of LISA processes having the feature of scalability. We
provide the sufficient conditions for the existence of limiting empirical
measures, and prove a bound for the speed of convergence.

The second class is Bit Flipping models, where we study a behaviour
of a sequence of independent bits, each flipping between several states at
a given rate pk. We define two particular models, Binary Flipping and
Damaged Bits, and find the conditions on the rates {pk} at which the
models switch from the transient to the recurrent behaviour; as well as
provide bounds for moments of the recurrence time under a certain set
of conditions in the recurrent case, and prove the central limit theorem.

The third class is Random Exchange Models where a countable collec-
tion of agents are trading independent random proportion of their masses
with neighbours in a stepwise fashion. We find the stationary regimes for
such models, and prove a limit theorem. As a corollary, we obtain a new
invariance property of a stationary Poisson process on the real line with
respect to a certain neighbour-dependent point shift.

Keywords: point process, sequential adsorption, stopping set, random
measure, Polya urn, convergence of empirical measures, bit flipping, re-
currence, renewal process, Poisson process, Dirichlet distribution, random
matrices
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1 Introduction

This thesis contains three papers, each devoted to a separate class of
new models of stochastic processes. The main points of interest are the
limiting behaviour of the models when time goes to infinity, the existence
of the stationary regime and its properties.

Section 2 is a review of the paper on LISA processes. It starts with an
original R. Darling construction, which gave us an idea to consider the
LISA models. We introduce the general LISA setting, and the particular
examples we consider, along with the brief overview of some other mod-
els falling into the setting. The topics include Polya’s urn models and
their connection to Dirichlet processes, branching random walks, unity-
splitting process and some other fragmentation processes. In the end of
the first section we outline our main results on the models considered.

Section 3 is a review of the second paper of the thesis on Bit Flipping
models. We outline our original motivation, explaining how a Bit Flip-
ping problem naturally arises in the analysis of a certain LISA-related
problem. We indicate a link between bit flipping and the areas of dy-
namic percolation, random walks on an infinite cube, and analysis of the
algorithms. We then proceed with formulating the two models, Binary
Flipping (BF) and Damaged Bits (DB), and our results.

Section 4 contains some background for the third paper. We introduce
motivation for the Random exchange models, make an introduction to
Dirichlet random vectors and their properties. We briefly summarize our
main results for Random exchange models, and their implications to the
neighbour-dependent random shifts of stationary point processes on the
real line.
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2 LISA: Locally Interacting Sequential Ad-
sorption

The main inspiration for studying LISA models was a particular problem
proposed by Richard Darling to my scientific advisor Sergey Zuyev. The
original model is defined as follows.

Let X0 = {x1, x2, . . . , xn0
} ⊂ R2 be the starting configuration, where

all of the points are disjoint. At each time step n = n0 + 1, n0 + 2, . . .
we are adding a new point to a configuration according to the following
algorithm:

• Sample a random index χn, uniformly distributed over the indices
1, 2, . . . , n. The point xχn will generate a new point.

• Find the smallest ball B(xχn , R), containing m,m ≥ 3 points from
Xn \ xχn .

• Assume that m closest neighbours of xχn lying in B(xχn , R) come
from a normal distribution with mean xχn . Estimate the covariance
matrix C of that distribution from those m points.

• Sample a new point xn+1 from a normal distribution N(xχn , C)
with mean xχn and the estimated covariance matrix C.

• Add the new point to the configuration: Xn+1 = Xn ∪ {xn+1}

The resulting model has a few interesting properties.

The dynamics of a system is defined locally: the location of each
new point only depends on the local configuration around its parent.
Therefore, we can, for example, embed the whole process in a continuous
time, letting every particle generate new ones with fixed intensity, and
distributing them around itself according to local rules. That reflects the
possible real-world applications of a model: growth of the cities on the
plane, bacteria growth etc.

As simulations show, see Figure 1,the geometry of a configuration pos-
itively reinforces itself: if we start from a ”round-shaped” configuration,
then the covariance matrices will be isotropic and hence the whole con-
figuration will likely remain round-shaped. But every now and then the
configuration shoots out ”beams” of particles, in such ”beam” areas the
estimated covariance matrices are highly anisotropic, i.e. with high con-
centration along some vector, and that behaviour is also self-reinforced.

One more significant feature of the model is scaling invariance, which
might imply stochastic self-similarity and various fractal properties for
the limiting empirical measure.
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Figure 1: The sequence shows the simulated process after n =
104, 2·104, 3·104, 4·104 steps. Newly added particles are shown
in dark, previously existing – in light grey, initial particles are
contoured void circles.
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2.1 General LISA setting

We believe that the proper tool for handling the local dependence struc-
ture for special point processes is the notion of a stopping set. It ex-
tends the concept of a stopping time for Markov processes in one time-
dimension. The definition is borrowed from [22].

Let W be a locally compact separable topological space, with K
and F being its system of compact and closed sets, respectively. Let
(Ω, {FK},P) be a filtered probability space. Filtration {FK} here is a
collection of σ-algebras FK indexed by compact sets K ∈ K that has the
following properties:

• monotonicity: FK1 ⊆ FK2 for any two compact K1 ⊆ K2;

• continuity from above: FK = ∩∞n=1FKn if Kn ↓ K.

A random closec set S is a measurable mapping S:(Ω, {FK},P) 7→ [F, σf ],
where σf is the σ-algebra generated by the system {F∈F : F ∩K 6= ∅},
K ∈ K.

Definition 2.1. A random closed set S is called a stopping set, if for
any K ∈ K the event {S ⊆ K} is FK-measurable.

More specifically, a random closed set S is a stopping set with respect
to the sigma-algebra generated by a point process X if in order to know
the shape of S one only needs to know the configuration of X inside of
it. A simple example of a stopping set, illustrating this intuition, and
the one we will be using the most, is the minimal closed ball centred in
x ∈W containing at least k points of a point process.

A more involved example comes from Voronoi diagrams. If X ⊂
R2 is a locally finite point process, and x ∈ R2 is an arbitrary point
then the Voronoi cell containing point x is not a stopping set, because
in order to know its shape we need the information from outside the
cell: in particular we need to know the configuration of X inside the
shaded region on Figure 2. The shaded region is called Voronoi flower
corresponding to the cell, and it is a stopping set.

Having the notion of stopping sets at hand, we can now define the
general setting for LISA processes. Start with some initial configuration
Xn0

= {x1, x2, . . . , xn0
} of points in the sample space W . Typically,

W = Rd, but other options are also possible. The core of the process
is the procedure of generation of the new points. We follow the general
scheme:

• At time n, n = n0, n0 + 1, n0 + 2, . . . , pick a parent point x ∈ Xn

uniformly at random among currently existing.

• Find a stopping set Sn = S(x,Xn) defined by the configuration at
time step n and previously picked x.

4



Figure 2: An example of a stopping set: Voronoi flower

• For a parent point x, sample a random variable ζx = ζ(Sn), whose
distribution is defined by the geometry of a stopping set and which
is otherwise not dependent on Xn:

P(ζx∈B|Xn) = P(ζx∈B|Sn)

• Add the new point xn+1 = ζx to the configuration:

Xn+1 = Xn ∪ {xn+1}

The natural idea for the continuous-time alternative, which tracks
back to [1], is to embed the procedure of generation of the new points
into a continuous-time branching process, so that if Xt denotes the con-
figuration at time t > 0, every point x ∈ Xt generates children at the unit
rate. The location at which the child point is placed is then controlled
as before by the geometry of its parent’s stopping set S(x,Xt) at the
moment of generation.

As we see further, the above setting is quite flexible, in particular, we
can obtain any kind of a stepwise growing Markov point process by just
setting the stopping set to be the whole configuration: Sn = Xn, n =
n0, n0 + 1, . . . . Tweaking Sn and ζ(Sn), one could obtain variants of
Polya’s urn models, branching random walks, segmentation processes,
etc.

In our paper we mainly focus our attention on the following particular
examples of LISA models, possessing the properties of scale invariance.
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Example 1 Put W = [0, 1] ⊂ R, n0 = 1, and Xn0
= {0}. Denote by

r(x) the rightmost neighbour of the point x, or 1 if x does not have any
neighbours to the right:

r(x) := min{y ∈ Xn\{x}∪1 : y>x},

and let the stopping set S(x,Xn) be the interval from the point to its
right neighbour: S(x,Xn) = [x, r(x)]. Put ζ(S) ∼ Unif(S), so that the
new point is distributed uniformly on an interval to the right from the
parent point.

Example 1 can be regarded as a stick-breaking process. It is directly
related to the construction of Dubins and Freedman [8]: the distribution
function of the limit of an empirical measure is exactly the random dis-
tribution function in [8]. This example in a slightly broader generality
is thoroughly studied in [20]. One of the particularly interesting features
of this model is the singularity of the resulting limiting measure with
the explicitly given Hausdorff dimension of the support, as found in [20].
We use this example as an illustration of possible properties of LISA
processes.

Example 2 Put W = R, n0 ≥ 2, fix Xn0 ⊂ R consisting of n0 dis-
tinct particles. Define the distance to the closest neighbour d(x,X) =

min
y∈X\{x}

|x−y|, the stopping set S(x,X) = [x−d(x,X), x+d(x,X)], and

the distribution of a new point ζx
D
= x + d(x,X)ε, where ε = ±1 with

probability 1/2, and ψ is a random variable concentrated on (0, 1), so the
newly generated particle stays inside the stopping set.

Example 3 A one-dimensional variation of the model described in the
Introduction. Take W , Xn0

, S(x,X) and d(x,X) as in the previous ex-
ample, and ζx Normally distributed with mean x and standard deviation
ad(x,X) for some constant parameter a > 0.

Example 4 Put W = Rd, n0 ≥ 2, fix Xn0
⊂ Rd. As before, d(x,X) =

min
y∈X\{x}

||x− y|| is the Euclidean distance to the closest neighbour. The

stopping set S(x,X) is defined as a closed ball with the centre in x and
radius d(x,X). It is the minimal closed ball, containing at least one point
of X \ {x}. Define ζ(S(x,X)) to be distributed as x + ψd(x,X), where
ψ is some Rd-valued random variable.

The examples 3 and 4 are simplifications of the original R. Darling
model, where the stopping set only contains one closest neighbour. We
provide our results for these two examples further in the text, after a
brief review of the related topics.

6



Example 5 Let W be a measurable space, µ a probability measure
on W . Define S(x,X) to be the whole X. Random variable ζx is x
with probability 1 − 1/n, where n = cardX, otherwise it is distributed
according to the parameter measure µ. The LISA process defined this way
corresponds to Blackwell-McQueen construction [4], a generalization of
the Pólya urn scheme. The limiting empirical measure of this procedure
is a Dirichlet process with parameter measure µ.

2.2 Polya’s urn schemes

The simplest version of a Polya’s urn model is defined as follows. Let
the urn initially contain k black balls and l white balls. Let n0 = k + l.
At each step, draw a ball from the urn, look at its colour and return it
back to the urn, along with one more ball of the same colour. Then the
proportion of black balls in the urn tends to a random limit, which is
distributed as Beta(k, l). In particular, if k = l = 1, the limit is uniform
on (0, 1) interval.

This version of Polya urn model is a “degenerate” case of LISA setting,
obtained by taking the sample space W to be the set of two colours, the
stopping set S(x,X) = x and ζS(x,X) to be degenerate in x. It is also
a border case of R. Darling model: let us say that instead of placing a
new point at a normally distributed distance scaled with the distance to
the closest neighbour(s), we place each new point at the location of its
parent. Then the points of initial configuration can be regarded as a set
of colours, and the starting configuration as an urn, containing one ball
of each of the n0 colors. The rest of dynamics stays the same.

This simple Polya’s urn model allows for multiple generalization, in-
cluding different amount of colours and various rules for reinforcement.
One possible generalization is having the replacement controlled by a
reinforcement matrix

A =

(
a b
c d

)
That means, when we pull out a black ball from the urn, we return
it back along with a additional black and b white balls, whereas if the
pulled ball’s colour is white, we return it together with c black and d
white balls. Then, depending on the relations between a, b, c, d there are
different cases. For the details one should refer to [13, 6, 10, 15]. For
the limit theorems see [11, 10, 3]. For a survey of the processes with
reinforcement and further links, see [19]

See [1] for the embedding of the Polya’s urns into a continuous-time
multiclass birth and death processes, and the related results on limit
behaviour.

One of the implications of Polya’s urn model is a probabilistic in-
sight on how to construct random measures in general, [4], along with
a straightforward way to simulate the Dirichlet processes, a rich class of
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priors, widely used in statistics due to their analytic tractability. The
construction in [4] involves an infinite amount of colours with the limit-
ing measure being a sample from Dirichlet process with a corresponding
parameter measure on the space of colours.

2.3 Random Splitting

Example 1 above is a variant of a stick-breaking process. This is a sequen-
tial random splitting of [0, 1] interval where at each step the sub-interval
picked among the existing uniformly at random, is split in two intervals in
a random location uniformly distributed inside of the interval. As men-
tioned above, this process in a slightly more general setting is studied in
detail in [20].

The splitting of the unity in [20] is a variation of Kakutani’s splitting
procedure [14], and formally defined as follows. Let {χn}n≥1 be a se-
quence of i.i.d. random variables such that χn is uniform over {0, 1, 2, . . . , n}.
Let {Wn}n≥1 be a sequence of i.i.d. random variables with values in (0, 1).
Define Xn in a following way: X1 = {0, 1} and if ξ0 ≤ . . . ≤ ξn are the
elements of Xn, enumerated in the increasing order, then

Xn+1 = Xn ∪ {ξχn +Wn(ξχn+1 − ξχn)}

The limit of the empiric measures is a random singular measure, al-
most surely supported by a (random) set of Hausdorff dimension D which
is found explicitly in [20]. In the original Kakutani’s procedure [14] the
longest interval is always selected for splitting, when as in [20] the next
interval to split is selected uniformly among those existing at the moment.
The limit in [14] is then a deterministic uniform measure. In continuous
time, the two selection procedures correspond to either giving all of the
intervals equal splitting rates, or giving each interval the rate of splitting
proportional to its length, respectively.

2.4 Main results

The construction proposed by R. Darling fits into LISA setting, but seems
to be mathematically non-tractable, due to a very intricate character of
dependency. Instead, our main points of interest in the paper are the
characteristics of the limiting measure in the Examples 2,3,4. When
does the configuration stay inside a compact region? Does the limiting
measure always exist, and what are its properties? We start with almost
sure boundedness in Example 2.

Theorem 2.1. Denote

mn = min{x : x ∈ Xn},
Mn = max{x : x ∈ Xn}

8



for the LISA model in Example 2. Then almost surely

−∞ < lim
n→∞

mn ≤ lim
n→∞

Mn < +∞

Next, we provide a sufficient condition for boundedness in Examples
3, 4. Let us recall the rule by which new particles are added:

xn+1 = xχn + d(xχn , Xn)ψn, n = n0, n0 + 1, . . .

Denote by ηn = ||ψn||
D
= η the Euclidean norm of ψn, introduce η̂ =

min(η, 1), and a function ϕ(s) = E ηs + E η̂s.

Theorem 2.2. In Examples 3 and 4, whenever ϕ(s) < 1 for some s : 0 <
s ≤ 1, the configuration stays bounded almost surely:

sup
n
||xn|| <∞a.s.

We then move on to the limits of the empirical measure. Let νn =∑
1≤k≤n δxk denote the empirical measure on the nth step, and µn denote

the distribution of xn – a new point added on the nth step. Introduce
Dj,N,∞ – a set of all points generated by point xj after time N .

Theorem 2.3. The condition

max
1≤j≤N

sup
i∈Dj,N,∞

||xi − xj || → 0, N →∞

is sufficient for the almost sure existence of a weak limit measure µ∗ for
the sequence µn corresponding to LISA processes from Examples 2, 3,
and 4. In this case, with probability 1,

µn ⇒ µ∗, νn ⇒ µ∗.

Corollary 2.1. The limiting measure in Example 2 exists.

Corollary 2.2. The condition

ϕ(s) < 1 for some s ∈ (0, 1]

is sufficient for existence of the limiting measure in Examples 3,4.

We also prove a bound on the speed of convergence to the limiting
measure, estimating the maximal spacing d∗n of the configuration. The
maximal spacing d∗n is the maximal distance from some point x ∈ Xn to
its closest neighbour in Xn:

d∗n = max
x∈Xn

d(x,Xn)

Introduce σ = sups>0,ϕ(s)>0
1−ϕ(s)

s .

9



Theorem 2.4. In Examples 2, 3, 4, if ϕ(s) < 1 for some positive s, then

lim sup
n

nσd∗n <∞
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3 Bit Flipping Models

3.1 Model description

The second paper of the thesis addresses the questions of limit behaviour
of Bit Flipping models. This section briefly summarizes the original mo-
tivation and the main results.

We define the Binary Flipping (BF) and Damaged Bits (DB) models
in the discrete time setting, and introduce the natural continuous time
embedding. In both models we are faced with an infinite sequence of
elements, or “bits”, indexed with positive integers, where every bit can
be in several possible states. In both models, we start with a sequence
of bits in an idle state. At each step n, the index χn of the next bit
to change its state is sampled independently of everything from a fixed
distribution P = {p1 > p2 > p3 > . . . } on positive integers. P is the only
parameter in the model.

Binary Flipping (BF) In the first model we let the bits switch be-
tween the idle and active states, denoted by 0 and 1, respectively. For-
mally, let {ζn} be the Markov chain on the state space

X = {x ∈ {0, 1}N : x has finitely many non-zeros}

where ζkn denote the state of kth bit at time n for k = 1, 2, . . . , n =
0, 1, 2, . . . , and ζkn = 0, k = 1, 2, . . . , so all of the bits start in the idle
state. Let P = {p1, p2, . . . } be the probability distribution on positive
integers. At each time step n = 1, 2, . . . sample the index χn from P
independently of everything. The bit with the index χn is flipped, i.e. its
state is changed to the opposite:

idle(0) ↔ active(1)

Formally, for n = 0, 1, . . . and k = 1, 2, . . .

ζkn+1 =

{
1− ζkn, k = χn+1,

ζkn, k 6= χn+1.
(1)

The main object of interest is the stopping time τBF, the time of return
to the ground state where all of the bits are idle:

τBF = min{n ≥ 1 : no bits are active at time n}
= min{n ≥ 1 : ζkn = 0, k = 1, 2, . . . }

Depending on τBF being a.s. finite or infinite with positive probability,
we refer to BF model as recurrent or transient. This corresponds to
recurrence or transience of Markov chain {ζn}.

11



Damaged Bits (DB) In the second model we allow for three possible
states: idle, active and damaged, corresponding to 0, 1 and 2. Now {ζn}
is a Markov chain on the state space

Y = {y ∈ {0, 1, 2}N : y has only a finite number of non-zeros}

Again, let ζnk denote the state of kth bit at time n and ζnk = 0. At time
step n state of the bit with the index ξn ∼ P is changed according to the
dynamics

idle(0) → active(1) → damaged(2)

Formally, for n = 0, 1, . . . and k = 1, 2, . . .

ζkn+1 =

{
min{ζkn + 1, 2}, k = χn+1,

ζkn, k 6= χn+1.

The stopping time τDB we are interested in is the first time n ≥ 1 of
returning to the ground state when none of the bits are active:

τDB = min{n ≥ 1 : none of the bits are active}
= min{n ≥ 1 : ζkn 6= 1, k = 1, 2, . . . }

Again, depending on τDB being a.s. finite, or infinite with positive prob-
ability, we call DB model recurrent or transient. Here it does not corre-
spond to recurrence or transience of Markov chain {ζn}, because the
ground state does not correspond to any one particular state of the
Markov chain, rather it is a countable collection of states.

Continuous time representation As mentioned above, both BF and
DB models admit natural continuous time implementations. With a
slight abuse of notation, we can consider a vector (ζ1

t , ζ
2
t , . . . ) where the

coordinates are independent continuous time Markov jump processes,
each with the state space {idle, active} (BF) or {idle, active, damaged}
(DB). For each k = 1, 2, . . . we let ζkt start in the idle state and change its
state with rate pk, with the respective dynamics. Then if we denote by
{tn}n≥0, the sequence of transition times of the compound Markov jump
process {ζt}t≥0 = {(ζ1

t , ζ
2
t , . . . )}t≥0 with t0 = 0, the embedded Markov

chain {ζtn} is a distributional copy of the original BF or DB model, re-
spectively. Further we use both discrete- and continuous-time setting
to formulate our results, depending on which of the two is more conve-
nient at the moment: it is particularly convenient, because the notions
of recurrence/transience stay the same for both implementations.
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3.2 Motivation: from LISA to flipping bits

The original model considered was born in the discussions with Sergey
Foss while looking for an example of LISA model where the configuration
grows in size indefinitely.

In LISA setting, let W = {0, 1, 2, . . . }, Xn0
= X1 = {0}, let η be

the non-negative integer-valued random variable with distribution P =
{p1, p2, . . . }, let ψS(x,X) be distributed as η, if x is a single point in X and
be degenerate in 0 if x is a multiple point. Here we allow multiple points,
so the same point can present in the configuration in many instances. The
configuration’s support is growing as long as there exist single points,
but as soon as every existing point is multiple, the new ones are only
born in 0. The question of interest is, does every existing point almost
surely becomes multiple at some moment of time, or is it possible for a
sequence of single points to “escape” to infinity with possible probability?
The answer depends on the asymptotic of the decay of distribution P, as
given by the analysis of the Damaged Bits model below.

The term ”Bit Flipping” term is adopted from [2] where it is used in
the context of analysis the behaviour of a random-edge simplex algorithm
on a Klee-Minty cube. There, in a sequence of bits indexed with positive
integers {1, 2, 3, . . . } each bit is flipping its state at unit rate, and when
one bit changes its state, all of the bits to the right from it do so as well.
Note that although there is an infinite amount of events happening during
any finite time interval, any finite consecutive subset of bits starting with
the first is still a properly defined Markov jump process in a continuous
time with a finite state space. Our models differ from the one in [2]:
we do not have dependency structure, instead, we introduce the different
rates of flipping.

Bit Flipping models are related to the dynamical percolation pro-
cesses, see [12]. We can consider the bits in BF model as edges of the Z1

graph flipping between open and closed states at different rates. In this
context, the question of recurrence/transience corresponds to the ques-
tion of existence of an infinite sequence of percolation times on Z1, at
which zero is connected to infinity.

Another possible application is in the reliability theory. Consider the
following problem: assume we have a composite system with a big (or
infinite) number of independent components, indexed with positive in-
tegers, where each of the components is working continuously, until it
breaks; and that for every k ∈ Z, kth component is broken after expo-
nential time with rate pk. When one of the components fails, the whole
system stops working correctly. It seems reasonable to have each com-
ponent checked for failure and replaced with the rate qk proportional to
the rate of failure. In that case, every components’ state changes are
described by an independent copy of the same Markov jump process, but
with the time scale stretched proportionally to 1/pk. Binary Flipping
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model is a special case of this model in a situation where the rates of
failure and replacement are the same, qk = pk.

3.3 Main results

Our main points of interest in the Bit Flipping models are those related
to the probability of the return to the ground state. It is straightforward
that the above probability is greater than zero, but is it always one? If
it is, is the expectation of the recurrence time finite? Can we give some
estimate for the moments of the time of return? How does the number
of active bits grow as time goes to infinity?

The model formulation is very simple, and yet the answers to most
of the above questions turn out to be non-trivial. First, we address the
question of recurrence. It turns out, that both BF and DB models exhibit
recurrent or transient behaviour, depending on the speed of the decay of
pk.

Theorem 3.1. If the distribution P = {p1, p2, . . . } is such that:

(i) lim sup
k→∞

2kpk <∞, then BF model is recurrent, i.e. τBF <∞ a.s.

(ii) lim inf
k→∞

(2 − ε)kpk > 0 for some ε > 0, then BF model is transient,

i.e. P{τ =∞} > 0.

Loosely speaking, Theorem 3.1 means that the critical decay of BF
model is Geometric distribution with parameter p = 0.5. A non-random
version of the model provides an illustration of the possible mechanics
behind this.

Assume we have an infinite sequence of bits in state 0, indexed with
{1, 2, . . . }. Let kth bit flip its state every 2k−1 seconds deterministically.
That means that the frequency of switching is 2−k+1 for the kth bit,
which corresponds to the ”critical” decay in BF model. Let us see what
we have in first few steps of the process:

k = 1 k = 2 k = 3 k = 4 . . .
t = 0 0 0 0 0 . . .
t = 1 1 0 0 0 . . .
t = 2 0 1 0 0 . . .
t = 3 1 1 0 0 . . .
t = 4 0 0 1 0 . . .
t = 5 1 0 1 0 . . .
. . . . . . . . . . . . . . . . . .

The sequence of bits at time t = 0, 1, 2, . . . is exactly the binary repre-
sentation of t. Therefore, no less than one bit is active at all times. The
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same is true for slower decay of frequencies: the next bit always turns
on before the previous turns off. However, if we now increase the decay
speed, make it (2 + ε)−k+1 for some ε > 0, then the first k bits will have
time to go through all possible combinations (including all of the bits
being idle) before the k + 1-st bit becomes active.

Theorem 3.2. When a BF model is recurrent, it is null-recurrent, i.e.
E τBF =∞.

Theorem 3.3. Consider the recurrent BF model in discrete time with
pk ∼ C1p

k for some fixed constant C1 > 0 and p ∈ (0, 1/2). Then

(i) E τ rBF < ∞ for any positive r < 1 − log 2
log(1/p) . Moreover, for any

such r, if the Markov chain (1) is started from an arbitrary ζ0 ∈ X
with the largest active bit M0, then there exists a constant C2 =
C2(C1, p, r) such that

E [τ rBF|M0 = m] ≤ C2

(
1

2p

)m
;

(ii) E τ rBF =∞ for any r > 1− log(2−p)
log(1/p) .

Next we show that the DB models can be recurrent or transient,
depending on the decay of pk’s. Define a tail of distribution P as

Qk =

∞∑
j=k+1

pk.

Theorem 3.4. If the distribution P is such that:

(i) lim sup
k→∞

Qk+1

Qk
= p < 1, then the DB model is recurrent,

(ii) pk ∼ C exp(−αkγ), k → ∞ for some α > 0, γ ∈ (0, 1/2), then the
DB model is transient.

Finally, we prove a central limit theorem for ηt – the number of active
bits in the continuous-time version of BF, DB models.

Theorem 3.5. For both BF and DB models, whenever

E ηt →∞, (2)

then also var ηt →∞ as t→∞ and

ηt −E ηt√
var ηt

D→ N (0, 1) as t→∞.
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In BF model the condition (2) is always fulfilled, and in DB model a
sufficient condition for (2) is:

pk ∼ C exp(−αkγ), k →∞, (3)

for some constants C > 0, α > 0, γ ∈ (0, 1).

The proofs can be found in paper II.

4 Random exchange models

4.1 Motivation: random subsequent triangulation

The original motivation for studying the random exchange models comes
from the triangulation models [21]. In [7], authors consider the barycen-
tric triangulation, where at each step the triangle is divided by its medians
into 6 new triangles, then one of the new triangles is chosen uniformly at
random, and this procedure is iterated. The object of interest is the limit-
ing shape of the triangles. In [7] authors prove that the triangles weakly
converge to the flat shape, which seems to be impractical for applica-
tions. In [21] authors prove similar results for subdivision with bisectors
and subdivision where the middle point is chosen uniformly inside the
triangle at each step.

In this connection, it is interesting to consider the iterations of the
following procedure. Start with a triangle, draw its circumcircle. The
vertices of the triangle split the circle into three arcs. Sample three new
points: one in each arc, uniformly distributed inside of the arc as shown
on Figure 3. Connect the new points and erase the old triangle. We
are now left with a new triangle, obtained from an old one in a random
fashion, similarly to the model in [21]. It is possible to prove that the
weak limit of this new procedure is a non-degenerate random triangle
with an explicitly known distribution of the angles.

The shape of a triangle is defined by the magnitudes of its three angles.
The angles are proportional to the lengths of the opposing arcs of the
circumcircle, so we can limit our analysis to the arc lengths’ proportions.
During the proposed procedure, each of the new arcs is composed of the
two uniformly random chunks of the old ones. If τ1, τ2, τ3 are the lengths
of the old arcs, and τ ′1, τ

′
2, τ
′
3 are the lengths of the new ones, then we can

write it in the matrix form:

(τ ′1, τ
′
2, τ
′
3) = (τ1, τ2, τ3)

 1− U1 U1 0
0 1− U2 U2

U3 0 1− U3

 (4)

where U1, U2, U3 are independent random variables, uniformly distributed
on (0, 1). This procedure of a selection of a new triangle then falls into the
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Figure 3: Vertices of the new triangle (dashed) are uniformly
selected on the arcs between the vertices of the original one
(solid).

framework of random mass exchange models, as described in [17, Section
4]. The results of [17] heavily depend on the properties of the Dirichlet
distributions, which we state below.

4.2 Dirichlet distributions

Definition 4.1. A random variable η has a Gamma distribution with
parameters α, λ > 0 (shape, rate) if its density f(x) is given by

f(x) =

{
λα

Γ(α)x
α−1e−λx, x > 0.

0, otherwise

We will sometimes omit the rate parameter λ, defaulting it to 1.

Definition 4.2. A random vector X = (X1, . . . , Xr) with support on an
r-dimensional, r ≥ 2, simplex

T =

{
(x1, x2, . . . , xr) :

r∑
k=1

xk = 1, xk > 0, k = 1, . . . , r

}

has Dirichlet distribution with positive real parameters (α1, α2, . . . , αr)
if its density is given by

fX(x) =
Γ(
∑r
i=1 αi)∏r

i=1 Γ(αi)

r∏
i=1

xαi−1
i , x ∈ T.

We write X ∼ Dirichlet(α1, α2, . . . , αr).
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In case r = 2, one can directly verify that if a random variable U has
distribution Beta(α1, α2), then the random vector (U, 1 − U) has distri-
bution Dirichlet(α1, α2). In particular, α1 = α2 = 1 yields U uniformly
distributed on (0, 1), and so the rows of the random exchange matrix
in (4) are Dirichlet distributed (with a slight generalization, allowing for
αk = 0, with the corresponding vector components equal to 0 almost
surely).

It is good to have some intuition for Dirichlet random vectors before
formulating the results. The first probabilistic intuition on Dirichlet ran-
dom vectors comes from seeing them as shapes of vectors of independent
Gamma-distributed random variables.

Proposition 4.1 (Probabilistic definition). If independent random vari-
ables η1, η2, . . . , ηr have Γ-distributions with shape parameters α1, α2, . . . , αr
correspondently, and a common rate λ; and V =

∑r
i=1 ηi, then

(η1/V, η2/V, . . . , ηr/V ) ∼ Dirichlet(α1, α2, . . . , αr).

Another interesting perspective on Dirichlet random vectors comes
from treating them as limiting colour proportions in multicolour Polya
urn models. In particular, if an r-coloured Polya urn process with a single
reinforcement starts with αk > 0 balls of kth colour, k = 1, 2, . . . , r,
then the almost sure limit of the proportions of the balls of different
colours is a random vector with distribution Dirichlet(α1, α2, . . . , αr). An
outstanding constructive illustration of this fact and beyond is given in
a paper of Blackwell and McQueen [4], already mentioned in Section 2.

We will need the following two simple properties of Dirichlet distri-
butions that easily follow from the two probabilistic interpretations of
Dirichlet distributions that we already have.

Proposition 4.2 (Properties of Dirichlet distributions).

1. (Agglomeration) If (X1, . . . , Xr) ∼ Dirichlet(α1, . . . , αr), then

(X1, . . . , Xk−1, Xk +Xk+1, Xk+2, . . . , Xr)

∼ Dirichlet(α1, αk−1, αk + αk+1, αk+2, . . . , αr).

2. (Decimation) If

X = (X1, . . . , Xr) ∼ Dirichlet(α1, . . . , αr)

and

Y = (Y1, . . . , Yr) ∼ Dirichlet(δ1, . . . , δs)
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where
∑s
j=1 δj = αk, X and Y independent, then

(X1, . . . , Xk−1, XkY1, XkY2, . . . , XkYs, Xk+1, Xk+2, . . . , Xr)

∼ Dirichlet(α1, . . . , αk−1, αkδ1, αkδ2, . . . , αkδs, αk+1, . . . , αr).

The last and the most important property that we need in our context
of random exchange models, is tying together the Dirichlet and Gamma
distributions. We use the shape versus size independence characterisation
of Gamma random vectors, obtained in [18] as an extension of the main
result of [16].

Proposition 4.3 (Shape versus size independence). Given the positive,
non-degenerate independent random variables Y1, . . . , Yr, if V =

∑r
k=1 Yk

is the size random variable, then the shape vector (Y1/V, . . . , Yr/V ) is in-
dependent of V if and only if for every k, Yk has a Gamma distribution
with parameters αk > 0, λ > 0. In that case, the shape vector has
Dirichlet distribution with parameters (α1, . . . , αr)

A straightforward corollary from this property allows us to build vec-
tors of independent Gamma-distributed random variables from Dirichlet
random vectors.

Proposition 4.4. Assume V ∼ Γ(α, λ) is independent of (X1, . . . , Xr) ∼
Dirichlet(α1, . . . , αr), where

∑r
k=1 αk = α. Then the random variables

Yk = XkV, k = 1, . . . , r, are jointly independent, and Yk ∼ Γ(αk, λ), k =
1, . . . , r.

4.3 Random exchange models

The procedure of selection of a new triangle defined in (4) can be thought
of as a random mass exchange. Let us think of the three vertices of the
triangle as three agents, each holding a certain amount of mass, which in
this case corresponds to the value of the angle near the respective vertex.
At each step, each agent passes a uniform proportion of mass at hand to
their neighbour in the counter-clockwise direction, or to the left, while
at the same time receiving a portion of mass from their neighbour in the
clockwise direction, or to the right. If we denote by Π(n) the random
exchange matrix holding in each row the vector of sharing proportions,
then iterating the procedure amounts to a right multiplication: if τn

denotes the vector of angles after n iterations, we can write

τn = τ0Π(1)Π(2) . . .Π(n) =: τ0Π(1 : n) (5)

It is known (see [5], [17]) that under a certain set of conditions, the
almost sure limit as n → ∞ of the left product Π(n : 1) of random
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matrices with independent Dirichlet rows exists and is a matrix with

a.s. identical Dirichlet rows. Therefore, since Π(1 : n)
D
= Π(n : 1) for

n = 1, 2, . . . , we conclude that the distributional limit of (5) exists and
is the same for all initial triangle shapes, defined by the vector of angles
τ0. The limiting distribution of the angles vector, divided by π, the
sum of angles of the triangle is Dirichlet(2, 2, 2), as it is left invariant
under the dynamics (4), as easily follows from the properties of Dirichlet
distributions stated in Proposition 4.2.

Random exchange in high dimensions. Coming back to the arc-
length interpretation, it is interesting to allow for more than 3 arcs at a
time on the circle. Assume that we start with d equidistant points on the
circle, dividing it into d equal arcs. At each step n, let each point move to
a new location, which is uniformly chosen on the arc to the right from it.
Iterating this procedure, we will then arrive to the limiting distribution
of arcs’ lengths that will be Dirichlet(2, . . . , 2) – following the same logic.

4.4 Main results

We consider the analogue of the above dynamics when the circle is re-
placed by the real line with an infinite amount of points on it. We
define a neighbour-dependent random shift procedure for a stationary
renewal process on the real line. Given a stationary renewal process
T = {. . . < T−1 < T0 < 0 < T1 < T2 < . . . }, with jump distri-
bution F and the correspondent sequence of increments T = {τk}k∈Z,
τk = Tk − Tk−1, k ∈ Z, define a stochastic shift operator ΨG(T) as fol-
lows. Let {bk, k ∈ Z} be i.i.d. random variables with distribution G,
and ΨG(T) = T′ = {. . . < T ′−1 < T ′0 < T ′1 < T ′2 < . . . } be the result of
the random shift operation where each point is moved to a random G-
distributed location inside of the interval to the right from it, as shown
on Figure 4:

T ′k = Tk + bk(Tk+1 − Tk), k ∈ Z

The shift operator ΨG induces a random exchange operator ΦG on the
sequence of interval lengths:

ΦG(T ) = T ′ = {τ ′k}k∈Z, where τ ′k = (1− bk)τk + bk+1τk+1, k ∈ Z. (6)

So kth interval passes a bk proportion of its length to its neighbour to
the left, while at the same time receiving a bk+1 proportion of the length
of its neighbour to the right.

It is clear that if T is a stationary point process, then the result of
the operation ΨG(T) is also a stationary point process. However, the
sequence T is not i.i.d. in general, due to the size bias of the length of
the interval τ1 containing the origin. Besides, the interval (T ′0, T

′
1) does
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Figure 4: Neighbour-dependent shift operator ΨG: every point
of T (solid dots) is moved to a G-distributed random location
inside of the interval to the right from it (crosses).

not necessarily contain the origin, so we cannot think of T as a stationary
renewal process without changing the indices in a suitable manner. In
order to deal with these two issues, it is convenient to think in terms
of Palm distributions of the correspondent point processes. Under Palm
distribution of T there is almost surely a point T0 = 0 of the process
in the origin, and the sequence of increments T = {τk} is i.i.d. with
distribution F . Under Palm distribution of T′ there is also a point in
the origin, and the sequence of increments is equal in distribution to
{τ ′k}k∈Z = T ′ = ΦG(T ) defined as in (6), but with τk now independent,
identically distributed as F . Our first result is the characterisation of the
class of distributional fixed points of the exchange operator ΦG. Denote
by δx the degenerate distribution concentrated in x. Obviously, when
G is δ0 or δ1, the corresponding ΦG preserves the distribution of any
stationary sequence, in particular T , so we exclude these trivial cases
from our consideration.

Theorem 4.1. Let T be an i.i.d. sequence of positive integrable ran-
dom variables with the distribution F corresponding to the sequence of
increments under the Palm distribution of the stationary renewal process
T, and ΦG be the random exchange operator defined as in (6). Then

ΦG(T )
D
= T (and hence ΨG(T)

D
= T) if and only if one of the alternatives

is true:

(i) F = Γ(α, γ) and G = Beta(rα, (1− r)α) for some constants α > 0,
γ > 0 and r ∈ (0, 1),

(ii) F = δs for some s ∈ (0,∞) and G = δb for some b ∈ (0, 1).

Corollary 4.1. Since a homogeneous Poisson process with rate γ has ex-
ponential Γ(1, γ) distributed interpoint distances, the Beta division point
distribution G = B(r, 1−r) for some 0 < r < 1 is the only non-degenerate
distribution for which the random shift ΨG preserves the Poisson process.

Corollary 4.1 seems counter-intuitive: each point is moved to a lo-
cation that heavily depends on its neighbour’s position, so the interval
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lengths of the shifted process T′ seem to be 2-dependent, breaking the
definition of a Poisson process. However, the unique joint properties of
Gamma and Beta distributions imply that the lengths of the parts bkτk
and (1− bk)τk in which the point of a new process T ′k divides the kth in-
terval are independent. Paradoxically, we can cut a Gamma-distributed
interval in Beta-distributed proportions in two independent pieces!

Corollary 4.2. Every second point in a homogeneous Poisson process
form a renewal process with Γ(2, γ)-distributed interpoint distances. Thus
a uniform division distribution which is also G = B(1, 1) preserves it.
This also follows from a known elementary fact that if X,Y are inde-
pendent Exponentially-distributed random variables and U is a uniform
variable independent of them, then U(X + Y ) and (1 − U)(X + Y ) are
independent Exponentially-distributed random variables.

Corollary 4.3. The random adjustment procedure, moving every second
point to a uniform location between its two neighbours, preserves the
Poisson process.

Graphical intuition. The following embedding of the Gamma renewal
process on the positive half of the real line into a Levy process with
Gamma increments provides an illustration of the “if” part of Theo-
rem 4.1. Let positive α, γ and 0 < r < 1 be fixed. Consider a Gamma
process Y (t), t ∈ [0,∞) which is a strictly increasing Lévy process with
Gamma-distributed increments, so that

• Y (0) = 0, and

• for any n, 0 ≤ t0 < t1 < t2 < . . . < tn, the random vari-
ables Y (t1)−Y (t0), . . . , Y (tn)−Y (tn−1) are independent, Gamma-
distributed with a common rate parameter γ, and shape parameters
(t1 − t0)α, . . . , (tn − tn−1)α, respectively.

See [9] for a constructive definition of such Y (t). Then, for k = 0, 1, 2, . . . ,
put Tk = Y (k) and T ′k = Y (k + r) − Y (r), so that the increments are
defined by

τk =Y (k)− Y (k − 1),

τ ′k =Y (k + r)− Y (k − 1 + r),

see Figure 5. By construction, the sequence T = {Y (1) − Y (0), Y (2) −
Y (1), Y (3)− Y (2), . . . } is is a sequence of independent random variables
with distribution Γ(α, γ). So is the sequence T ′ = {Y (1+r)−Y (r), Y (2+
r)− Y (1 + r), Y (3 + r)− Y (2 + r), . . . }. Show that the latter is obtained
from the former as a result of random shift procedure with a suitable
i.i.d. sequence {bk} with Beta(rα, (1− r)α) distribution.
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Figure 5: Gamma process Y (t) and the coupling of T and T ′.

Since

Y (k + r)− Y (k − 1 + r) =Y (k)− Y (k − 1 + r) + Y (k + r)− Y (k)

=
Y (k)− Y (k − 1 + r)

Y (k)− Y (k − 1)
(Y (k)− Y (k − 1))

+
Y (k + r)− Y (k)

Y (k + 1)− Y (k)
(Y (k + 1)− Y (k)),

define

bk =
Y (k − 1 + r)− Y (k − 1)

Y (k)− Y (k − 1)
, k = 1, 2, . . .

Notice that the denominator

Y (k)− Y (k − 1) = (Y (k)− Y (k − 1 + r)) + (Y (k − 1 + r)− Y (k − 1))

is the sum of two independent Gamma-distributed random variables, so
bk’s are independent for different k and Beta(rα, (1 − r)α)-distributed.
Moreover, by the shape vs. size independence property of the Gamma
distribution, the sequence {bk}k≥1 is independent of {τk}k≥1.
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Convergence. The next question of interest is the convergence of it-
erations of ΦG. We now move on to the random mass exchange setting.

Consider a countable collection of agents labelled by integers Z. At
time n = 0, kth agent holds an initial amount τ0

k of mass, where {τ0
i }i∈Z

is a sequence satisfying two conditions:

(A1) The initial masses τ0
i are non-negative i.i.d. random variables for

different i ∈ Z, with finite first moment E τ0
i <∞

(A2) The second moments of initial masses are finite: var τ0
i = σ2 <∞

Define the random exchange process iteratively. At the beginning of
step n = 1, 2, . . . the ith agent has mass τn−1

i . Then ith agent samples
a new vector of proportions (πi,i+j(n))j ∈ Z and distributes all of its
mass between itself and other agents accordingly, so that (i+ j)th agent
receives an amount τni πi,i+j(n), so the new row-vector of masses τn can be
obtained from an old one by right-multiplication by a random exchange
matrix Π(n):

τn = τn−1Π(n) = τ0Π(1 : n),

where Π(n) = (πij(n))i,j∈Z contains the exchange proportions, and Π(1 :
n) = Π(1) . . .Π(n) is a shorthand for right multiplication.

We assume that the random exchange model is time-homogeneous,
and translation-invariant on Z:

(B1) There exists a random probability distribution (πj)j∈Z on Z such
that the vectors (πi,i+j(n))j∈Z for different i ∈ Z, and n = 1, 2, . . . are
i.i.d. copies of (πj)j∈Z

Theorem 4.2. Let the sharing proportion matrices Π(n), n = 1, 2, . . .
satisfy the condition (B1). Then there exists a unique (up to a distri-
butional copy and scaling by a constant factor) fixed point, i.e. a vector
of random variables (not necessarily independent) τ∞ = (τ∞i )i∈Z, such
that:

(i) τ∞Π(n)
D
= τ∞,

(ii) for any vector of initial masses τ0 satisfying (A1-A2), τ0Π(1 : n)⇒
τ∞, n→∞.

Our last result characterises the random exchange processes for which
the limit configurations have independent coordinates, as it is in the case
of a random exchange process corresponding to neighbor-dependent shift
ΨG of a renewal process defined in the beginning; in a special case where
the proportion vector π is exchangeable.
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Theorem 4.3. Assume τ = (τj)j∈Z, Π are independent of each other,
satisfying (A1-A2), (B2). Assume additionally, that only finite amount
of vector π’s coordinates in (B2) are non-zero:

|{i ∈ Z : P(πi > 0) > 0}| <∞,

and that the distribution of those coordinates is exchangeable. Put τ ′ =
τΠ. Then

τ ′
D
= τ

if and only if the components of τ are Gamma-distributed: τj ∼ Γ(a, γ),
and the rows of Π are Dirichlet-distributed: (πi)i∈K ∼ Dirichlet((ar)i∈K),
where r = 1/|K| and a, γ > 0.
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