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Abstract
In this paper, we consider a two-level system (TLS) coupled to a one-dimen-
sional continuum of bosonic modes in a transmission line (TL). Using the master
equation approach, a method for determining the photon number distribution of
the scattered field is outlined. Specifically, results for the reflected field when
driving the TLS with a coherent pulse are given. While the one-photon prob-
ability is enhanced compared to the incident coherent field, the system is still not
a good deterministic single-photon source. Extending the system to contain two
separate TLs, however, output fields with one-photon probabilities close to unity
can be reached.

Keywords: quantum optics, circuit QED, quantum communication

1. Introduction

In recent years, experimental advances in the field of circuit quantum electrodynamics (cQED)
[1–3] have opened up possibilities for studying light–matter interactions in a wide range of
coupling regimes, including the ultrastrong regime [4, 5]. In cQED, artificial atoms based on
Josephson junctions interact with electromagnetic fields in superconducting circuits, typically in
the microwave regime. The advances in this research area have largely been driven by potential
applications in quantum computing, where the artificial atoms play the role of qubits and the
photons are used for qubit manipulation. While most of the experiments focus on fields
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confined to a cavity, there is now a growing interest in systems where the artificial atom
interacts with a continuum of propagating photonic modes in an open transmission line (TL).
These systems have potential applications in optical quantum information [6], where the roles
of the photons and the artificial atoms are reversed. The information is carried by the photons,
while the atoms are used to engineer environments for manipulating the photons and mediating
effective multi-photon interactions.

Systems with (artificial) atoms coupled to a one-dimensional continuum of photonic
modes have been theoretically analyzed in [7–14] and experimental impementations in cQED
include [15–24]. In order to use propagating photons for quantum information, several tools for
manipulation, like single-photon sources and detectors, are needed. Today, the standard method
for detection and state reconstruction of propagating microwave fields builds on linear
amplifiers [25, 26]. Single-photon detection has been theoretically analyzed in e. g. [27–30].
Moreover, single-photon sources utilizing TL resonators have been experimentally realized
[31–34].

In this paper, we examine the possibilities of constructing a non-cavity based single-
photon source. Resonant scattering of coherent states on a two-level system (TLS) has been
shown theoretically [9, 11, 12, 35] and experimentally [20] to result in a photon number
redistribution, with the single-photon probability being enhanced (suppressed) in the reflected
(transmitted) field. The idea is to exploit this fact to, by choosing an appropriate input pulse, use
the TLS as an on-demand single-photon source. Previous treatments of coherent state scattering
on a TLS have been restricted to low-power input pulses [9] or constant input fields of arbitrary
intensity [11, 12]. For our purposes, we extend the analysis to pulses of arbitrary intensity,
building on the results for continuous coherent driving in reference [12]. While our main
motivation for this work is cQED implementations, the analysis is more general and applies to
any system described by a TLS coupled to a continuum of photonic modes in one dimension. A
different example is the surface plasmon systems [35].

The paper is organized as follows. In section 2, we introduce our system and write down
the master equation for the TLS and expressions for the output field operators. In section 3, we
show how to determine the photon number distribution, given the master equation and the field
operators. In section 4, results for the reflection of coherent square pulses are given. Finally, in
section 5, we extend the setup to include two TLs and determine the photon number distribution
in the same way.

2. System and master equation

We consider a TLS locally coupled to an infinite TL, i.e. a 1D open space supporting a
continuum of left- and right-propagating photonic modes. A schematic sketch of the setup is
shown in figure 1. The coupling γ is assumed to be strong in the sense that the damping of the
TLS is dominated by the relaxation to the TL. One particular example of such a system,
inspiring us to this work, is a transmon qubit in the two-level approximation coupled to
a superconducting coplanar waveguide. This system was theoretically analyzed in [12] and
has been explored in recent experiments with propagating microwave photons [20]. The
configuration we consider can be described in terms of a quantum Langevin equation for the
TLS coupled to a bath of harmonic oscillators, together with input–output equations relating the
incoming and outgoing states at the interaction point [36]. The TLS operators are described in

New J. Phys. 16 (2014) 055018 J Lindkvist and G Johansson

2



terms of Pauli matrices. We normalize all our photon fields V(t) so that the first-order correlation
function,

= − +( ) ( ) ( )G t V t V t , (1)( )1

is equal to the number of photons per relaxation time γ1 . Here + ( )V t and − ( )V t denote the
positive and negative frequency parts, respectively. In a superconducting coplanar waveguide,
V(t) is proportional to the voltage between the center conductor and ground.

We consider the case where we have a coherent driving signal ( )V tin from the left, close to

resonance with the TLS, and vaccum as input from the right. With σ σ σ= ++ −( ) ( ) ( )t t tx

being the TLS operator coupling to the TL, the input–output equations result in the following
expressions for the transmitted (right) and reflected (left) outgoing fields,

σ= +± ± ∓( ) ( ) ( )V t V t t
1

2
, (2)T in

σ=± ∓( ) ( )V t t
1

2
. (3)R

We take our coherent input signal to be of the form

ω=( ) ( )V t A t tsin , (4)in d

where A(t) is the pulse amplitude envelope function, varying on a timescale much slower than
ω1 d.

From the quantum Langevin equation, we can derive a master equation for the reduced
density matrix, ρ ( )t , of the TLS. We assume that the full density matrix initially can be written
as a direct product, that the coupling γ is much smaller than the energy of the TLS and that the
correlation times of the TL variables are short compared to other timescales. Neglecting thermal
excitations, in a frame rotating with the driving frequency ωd and after employing the rotating-
wave approximation, the master equation reads

ρ Δ σ ρ γ σ ρ γ
ω
ω

σ ρ˙ = + −−⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( ) ( )t i t t i A t t
2

,
8

, , (5)z d x

10

where ω10 is the transition frequency of the TLS and Δ ω ω≡ − d10 is the detuning. The

Lindblad operator is defined by ρ ρ ρ ρ= − +† † † ( )( )c c c c c c c1

2
. With a resonant drive

(Δ = 0) and time expressed in units of the relaxation time γ1 , the master equation takes the
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Figure 1. Sketch of the setup considered. A two-level system is coupled to a continuum
of left- and right-propagating bosonic modes with coupling strength γ.



simple form

ρ σ ρ σ ρ˙ = −− ⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( )t t i
N t

t
2

, , (6)in x

where ( )N tin is the number of incoming photons per relaxation time. Symbolically, we can write
the master equation as

ρ ρ˙ =( ) ( ) ( )t L t t , (7)

where L(t) denotes the Liouvillian super-operator.

3. Photon number distribution

In this section, we outline how to fully determine the photon number distribution from the
master equation and the field operator. This procedure applies to any 1D photon field, but will
in section 4 be applied to the field reflected from a TLS driven by a coherent pulse. Our task is
to compute all the probabilities Pn for the field to contain n photons, up to some cutoff k where it
becomes negligible. The average number of photons in the field is given by = ∑N nP

n n1 and the

average number of photon pairs by = ∑ ( )N P
n

n
n2 2
. More generally, the number of photon m-

tiples can be expressed as

∑=
=

⎜ ⎟
⎛
⎝

⎞
⎠N

n

m
P . (8)m

n m

k

n

With knowledge of all m-tiple numbers Nm, equation (8) can be inverted in order to obtain all
the probilities Pn.

To determine Nm we need to compute the mth order time-ordered correlation function,
defined by

= − − + +( ) ( ) ( ) ( ) ( )G t t t V t V t V t V t, ,..., ... ... . (9)( )m
m m m1 2 1 1

With our field normalized as in the previous section, ( )G t t t, ,...,( )m
m1 2 is equal to the m-photon

coincidence rate at times t t,..., m1 . Thus, in a time interval ⎡⎣ ⎤⎦t t,i f , the number of photon m-tiples

is given by

∫ ∫ ∫=
−

( )N t t t G t td d ... d ,..., . (10)( )
m

t

t

t

t

t

t

m
m

m1 2 1
i

f f

m

f

1 1

In order to compute the correlation functions we need the density matrix ρ ( )t and the two-time

propagator super-operator ( )P t t, 0 , defined by ρ ρ= ( ) ( )( )t P t t t, 0 0 . It follows from its
definition and equation (7) that the propagator satisfies the equation

˙ =( ) ( ) ( )P t t L t P t t, , , (11)0 0

with the initial condition =( )P t t, 10 0 .
In terms of the density matrix and the propagator, the mth order correlation function is

given by [36]
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ρ= ˆ ˆ ˆ−
⎡⎣ ⎤⎦( ) ( ) ( ) ( )G t t t nP t t nP t t n t, ,..., tr , ... , , (12)( )m

m m m1 2 1 2 1 1

where n̂ is defined in terms of the field Schrödinger operator V as ρ ρˆ = + −n V V and the
propagator acts on everything to the right. For any Liouvillian L(t) we can solve equation (7)
and (11) for the density matrix and the propagator. Given an expression for the field operator V,

equation (12) can then be used to compute all the correlation functions ( )G t t t, ,...,( )m
m1 2 ,

allowing us to determine the photon number probability distribution via equations (8) and (10).
In particular, we will carry out this procedure for the field reflected from a TLS driven by a
time-dependent coherent signal. In this case, V and L(t) are given by equations (3) and (6).

4. Distribution for the reflected field

As mentioned in the introduction, earlier calculations and experiments have shown that the one-
photon probability is enhanced in the reflected field when driving the TLS with a constant
coherent signal. Since our main motivation for this work is to investigate the possibility of an
on-demand single-photon source, we compute the photon number distribution for the reflected
field when driving the TLS with a coherent pulse.

For a given pulse shape, there are two free parameters in the problem; the temporal width
of the pulse T (in units of the relaxation time) and the total mean number of photons in the pulse
N. In the following we restrict the analysis to square pulses. These are easy to generate in
microwave superconducting circuits and therefore convenient to use as input. Moreover, the
master equation (6) can be solved analytically for square pulses.

Solving the master equation and carrying out the procedure outlined in the previous
section, we end up with analytic, but complicated, expressions for the lowest photon number
probabilities. In figure 2 we plot P0, P1, P2 and P3 as a function of T and N. For a given pulse
width, the one-photon probability periodically reaches a maximal value of ≈P 0.51 . When the
pulse width starts to become comparable to the relaxation time, however, the probability to
scatter more than one photon becomes non-negligible. In order to maximize the one-photon
probability while keeping the higher photon number probabilities low, we should look at short
pulses. Figure 3 shows the probabilities for T = 0.1, a regime where the probability to scatter
more than one photon is negligible. For increased input powers, the probability to scatter a
photon increases until it reaches a maximal value of 0.5. For larger input powers, the Rabi
splitting of the transition leads again to a lower scattering probability. The optimal point
essentially corresponds to exciting the TLS with a π-pulse and letting it relax with probability
0.5 in each direction. For the purposes of an on-demand single-photon source, this is the best
we can do with a TLS coupled to a single TL. In section 5, we consider an extended setup,
where the TLS is coupled to an additional TL.

5. Two TLs

In this section, we consider an extension of the previous setup, where the TLS is coupled to two
semi-infinite TLs (see figure 4). As an example, the circuit analysis in [12] of a transmon
coupled to a coplanar waveguide can be generalized to accomodate this case as well. In the
extended setup, there is an additional free parameter; the ratio of the couplings to the two TLs.
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Figure 2. Photon number probabilities for the field reflected from a TLS as a function of
pulse width T and number of incoming photons N.

Figure 3. The lowest photon number probabilities for the reflection of a coherent square
pulse with width T = 0.1 as a function of the mean number of incoming photons N.



The main idea is to couple the TLS much more strongly to one of the lines. After exciting it
through the weakly coupled line, a photon will be emitted to the other one with high probability.

The configuration can be described in terms of a quantum Langevin equation for a TLS
coupled to two separate baths. With a coherent time-dependent drive in the weakly coupled line
and vacuum as input in the strongly coupled line, the master equation takes the following form

ρ σ ρ σ ρ˙ = + −− [ ]( ) ( ) ( )a i aN t1 , , (13)in
x

where ⩽a 1 is the coupling ratio. Time is expressed in units of the relaxation time into the
strongly coupled line. The positive and negative frequency parts of the output field in this line
are σ=±

∓( ) ( )V t tS . In figure 5 we plot the photon number probabilities for T = 0.1, with two
different coupling ratios. By choosing smaller values of a, we can now reach higher one-photon
probabilities in the output field. Figure 6 shows the maximal values of P1 as a function of a and
T, together with the corresponding values of P0, P2 and P3. For small a and T we see that P1-values
close to unity can be reached. How small these parameters can be in practice depends on the
specific physical realization. In our example of a transmon coupled to a waveguide, the limited
anharmonicity of the transmon sets a limit on the pulse width. The results, however, depend on
T, which is the pulse width in units of relaxation time (inverse coupling). One can thus improve
the results by decreasing the coupling to the output line, but this results in a long output photon,
which may not always be desirable in applications. Essentially, there is a trade-off between how
short we want the output photon to be and how deterministic the single-photon source is. For a
typical anharmonicity of 500MHz we could, as an example, obtain =P 97%1 and =P 0.6%2

using a coupling of 4MHz.
Finally, in the regime where a deterministic single-photon source is realistic, we can also

use a modification of the setup to create a source of single-photon path entangled states.
Replacing the semi-infinite strongly coupled output line with an infinite TL, the photon will
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Figure 4. Sketch of the setup with two semi-infinite transmission lines. The ratio of the
couplings to the two lines is ⩽a 1. The weakly coupled line is used to excite the TLS
and a photon leaks out into the strongly coupled line with high probability.

Figure 5. Photon number probabilities for the output field in the strongly coupled line
for T = 0.1. The coupling ratios are a = 0.01 (left) and a = 0.5 (right).



leak out symetrically in both directions. Denoting the zero- and one-photon states in the left
(right) direction by 0 L and 1 L (0 R and 1 R), this would produce the state

ψ = +( )1

2
0 1 1 0 . (14)L R L R

This is an entangled state that could be used to carry out a Bell test for microwave photons [37].
In principle, the setup with a single TL could also be used to generate the state in equation (14).
However, in this case, one of the output ports would contain also the large transmitted part of
the input pulse. Although separated in time from the entangled state, this limits the usefulness of
the setup.
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Figure 6. Photon number probabilities for the output field in the strongly coupled
transmission line as a function of the pulse width T and the coupling ratio a, for the
value of N where P1 is at its maximum. In the limit →T 0, the probabilities are given by

= +( )P a1 11 , = −P P10 1 and = =P P 02 3 .



6. Summary and conclusions

To summarize, we have analyzed the interaction of a propagating photon field in a one-
dimensional waveguide with a TLS. In particular, we have determined the photon number
distribution for the reflected field when driving the TLS with a coherent pulse. This setup is not
a suitable on-demand single-photon source, since one-photon probabilities higher than 0.5
cannot be obtained. We have also considered a generalized setup with two TLs, allowing us to
achieve one-photon probabilities close to unity in certain cases. Since our treatment allows for
incoming coherent states of arbitrary intensity it is complementary to [9], where the scattering
of low-power coherent states on a TLS is considered using a different formalism. It is also
complementary to [11], where second-order coherence properties are examined in the case of a
coherent input of arbitrary intensity.
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