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The influence of track stiffness on rail crack occurrence 

Projet de Fin d’Études en Génie Mécanique 

MALLORIE SEGOND, QUENTIN WIBAUX 

Department of Applied Mechanics 

Division of Dynamics 

Chalmers University of Technology 

 

ABSTRACT 

To predict crack growth in railway rails, measurements of track characteristics have 

been post-processed. Potential correlation between track parameters (e.g. longitudinal 

level, deflection and track stiffness), and defect positions as detected by ultrasonic 

testing of rails has been investigated. Although no straightforward correlation was 

found there were indications of stiffness variations in connection to detected cracks.  

A deeper investigation was realized regarding measured track stiffness and deflections 

around detected defects. Deviations of these parameters at detected defect locations 

were found. However not all defects could be linked to significant deviations (and 

vice versa). 

A further study was carried out on the influence of hanging sleepers. These will cause 

track stiffness variations, which will increase the bending moment in the rail and may 

promote growth of rail cracks. Results of the studies carried out specify a distance 

over which the bending moment is increased. This affected length surrounding 

hanging sleepers should be investigated during maintenance operations to detect 

potential rail cracks and thereby avoid subsequent rail breaks. 

Finally, the report outlines a procedure for how measured track stiffness can be 

included in an analysis of resulting rail bending moments. Thereby track sections with 

an increased risk of rail crack growth may be detected and mitigated. 



 

 

II 

Spårstyvhetens inverkan på sprickbildning i räler  

Avslutande projekt inom Génie Mécanique 

MALLORIE SEGOND, QUENTIN WIBAUX 

Institutionen för tillämpad mekanik 

Avdelningen för Dynamik 

CHARMEC 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Spårstyvhetsmätningar har analyserats för att undersöka eventuell korrelation med 

detekterade rälsprickor. Trots att variationer i spårstyvhet ofta kunde identifieras i 

närheten av detekterade sprickor kunde ingen tydlig korrelation fastställas.  

En mer detaljerad undersökning gjordes med avseende på uppmätt spårstyvhet och 

nedböjning vid detekterade sprickor Studien identifierade variationer i dessa 

parametrar vid detekterade sprickor. Dock kunde inte alla defekter kopplas till 

signifikanta variationer (och vice versa). 

En ytterligare studie genomfördes av inverkan av hängande sliprar. Dessa orsakar 

spårstyvhetsvariationer vilka ökar det böjande momentet i rälen, vilket i sin tur kan 

leda till snabbar spricktillväxt. Analysen identifierade ett avstånd över vilket 

böjmomentet ökade. Detta intervall runt slipern bör identifieras vid underhåll för att 

detektera eventuella sprickor och därmed undvika framtida rälbrott. 

Slutligen demonstrerar rapporten hur uppmätta spårstyvheter kan inkluderas i en 

analys för att fastställa böjmomentsfördelning längs rälen. Därigenom kan sektioner 

med förhöjd risk för rälsprickor identifieras och åtgärdas. 

Nyckelord: Järnvägsmekanik, spårstyvhet, rälsprickor, rälsbrott 
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1 Introduction 

Rail cracks can lead to rail breaks and therefore potentially to operational delays and 

accidents. To avoid this, track measurements are carried out in order to predict 

required maintenance operations. However, it is currently difficult to detect from 

measurements which defects are critical from a maintenance point of view. The 

current study is mainly focused on track stiffness and hanging sleepers, as the latter 

can be seen as an extreme case of track stiffness variations.  

Problems which have been identified are the following: 

- How, to anticipate the apparition of cracks and the maintenance operations to 

fix them from track stiffness/deflection measurements?  

- What is the influence of hanging sleepers – as an extreme case of track 

stiffness variations – on the bending moment in the rail? 

The first part of the project is to investigate whether a correlation exists between track 

parameter variations (track stiffness, deflection, longitudinal level) extracted from 

new measurement method developed by EBER Dynamics (see part 2), and cracks 

identified by ultrasonic testing of rails. This correlation analysis is performed using 

MATLAB. 

Hanging sleepers lead to a local decrease of stiffness, and thereby to an increase of the 

bending moment in the rail that promotes rail crack growth. Consequently, studying 

the location of hanging sleepers, or track stiffness variations, should indicate critical 

zones regarding rail defects. However, track stiffness deviation is not the only driving 

force that leads to rail cracks. Indeed, wheel/rail friction, contact stresses or rail 

material resistance which may vary along the rail can also promote crack formation 

and growth. Hence, it is not expected that all detected cracks occur in the vicinity of a 

hanging sleeper, but it is expected that the occurrence of hanging sleepers locally 

increases the risk of rail cracks.  

Secondly, the influence of an increased bending moment, due to the larger deflection 

at hanging sleepers will be studied. Results from these studies will aid in the 

prediction of maintenance needs and the prevention of rail breaks. The objective of 

the second part is to quantify the influence of a larger bending moment due to hanging 

sleepers. Here finite elements simulations featuring ANSYS are employed. The point 

is to identify the affected area surrounding a hanging sleeper where bending moments 

are increased. This would identify the limits of the influence of the hanging sleeper 

and thereby the extent of the region that would require more in-depth inspections for 

potential cracks. 



CHALMERS, Applied Mechanics, Projet de Fin d’Études 2 

2 About EBER Dynamics 

Created in 2010, EBER Dynamics is a company specialized in the field of railway 

track measurements. In partnership with many companies and universities, such as 

Chalmers University of Technology and CHARMEC (Chalmers Railway Mechanics), 

it offers different services like: 

- Track stiffness and deflection measurements, thanks to two new innovative 

patented measurement systems, 

- A new continuous method to monitor stress free temperature in order to 

prevent track buckling (still in progress), 

- Measurement services, to help monitoring different aspects of railway 

(production measurements, measurement system development and software 

development), 

- Consultancy for analyzing measurement data. 

Therefore the main goal of EBER Dynamics is to realize and study a range of 

measurements on railway tracks to prevent dangerous defects and predict maintenance 

operations. These defects can lead to rail or wheel cracks but also to breaks and 

unacceptable accidents. To prevent this, EBER Dynamics has already collected and 

studied a large amount of data (obtained with its new measurement method) to link 

track stiffness/deflection to the longitudinal level, with the aim of giving indication of 

a fast degrading track. These studies indicated a link between large deflections and 

track degradation, but did not permit to find a simple connection between 

stiffness/deflection and the evolution of the longitudinal level.  

In addition, ranges of measurements realized with ultrasonic’s technology has been 

collected and enable to detect and classify defects according to different criteria such 

as the priority of the defect. 

More information about EBER Dynamics can be found on the webpage 

http://www.eberdynamics.se. 

 

 

http://www.eberdynamics.se/
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3 Theoretical background 

3.1 Measurement methods and database 

One part of the current project is to determine if there exists a correlation between the 

position of detected rail cracks and track mechanical parameters such as track 

stiffness, track deflection or longitudinal level. To do so, two different measurement 

databases are used: 

- Measurements obtained with EBER Dynamics’ new method which provide 

track mechanical parameters, 

- Measurements obtained by ultrasonic testing of rails, giving the position and 

categorization of identified defects. 

The method developed by EBER Dynamics, called EBER Vertical Stiffness (EVS) 

enables to calculate track stiffness and deflection based on measured longitudinal 

level. Track longitudinal level is measured by two different techniques of 

measurements: inertial measurements and chord based systems. By comparing these, 

deflection is obtained as well as the stiffness when the wheel contact force is 

estimated with a simulation program (see [1]). The principle is based on the fact that 

the longitudinal level sL measured under a loaded axle is composed of an unloaded 

longitudinal level sU  (due to track irregularities) and a load contribution w that can be 

assessed from deflection in x due to a load in x1: 

sL(x) = sU(x) + w(x, x1) 

The goal of the method is then to derive w. The detailed method used to calculate the 

deflection is described in [1]. EVS is an innovative method as it gives the possibility 

to monitor the longitudinal level and track stiffness under a loaded axle at the same 

time using a track recording car. EVS also differs from the old principle, the Rolling 

Stiffness Measurement Vehicle (RSMV), by being closer to the normal traffic 

condition since the EVS gives a response similar to a passing train. 

The self-propelled track recording car used for the current measurements is the 

IMV100 (Infranord Measurement Vehicle 100 km/h), operated by Infranord in 

Sweden. The Iron-ore line links Luleå to Riksgränsen in northern Sweden, and 

connects to Narvik on Ofotenbanen with a distance of 473 km, and is mainly operated 

by heavy freight trains with a maximum axle load of 30 tonnes. The line is divided in 

three major track sections, 111, 113 and 118, and four additional track sections, 112, 

116, 114 and 119. The project focuses on the section 118 (Boden–Gällivare) of the 

Iron-ore line. 

The longitudinal level is usually recorded at least four times per year on the Iron-ore 

line. For the EVS project a special order of measurements was done. Measurements 

were performed in February, April and August of 2012 and in November 2013 (to 

assess the influence of the seasonal temperature). In the provided database, the 

samples were performed on the following dates:  

- Sample 1: 25
th

 of April 2012, 
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- Sample 2: 29
th

 of April 2012, 

- Sample 3: 15
th

 of February 2012, 

- Sample 4: 14
th

 of August 2012, 

- Sample 5: 6
th

 of November 2013. 

The database used in this project is thereby composed of five samples all 

corresponding to the section 118 and containing: 

- The position in km (distance from a reference position), 

- Coordinates following the SWEREF99 system, 

- The longitudinal level of the left and right rail in mm, 

- The curvature in m
-1

, 

- The speed of the track recording car in km/h, 

- The mean track deflection of the left and right sides in mm, 

- The mean track stiffness of the left and right sides in kN/m, 

- The track deflection of left and right rail, filtered at short wavelength. 

In addition, it is possible to filter the longitudinal level at any frequency band.  

 

The second database is provided by Trafikverket and includes defects detected by 

ultrasonic testing from 2010 to 2013. Here the defect ID, the inspection date, the track 

section, the defect position, the UIC code of the defect and the defect classification 

are reported. 

The UIC Code, following [2], identifies the type of rail defects.  

The classification indicates the priority/severity of the defect and can be stated as 1a, 

1v, 1m, 2 or 3, with the following meaning: 

- 1 means it should be fixed within the time defined by the letter a (immediate), 

v (week) or m (month), 

- 2 or 3 means the defect is registered but left in track as there is no safety 

problem. 

 

3.2 Track stiffness/defection and track degradation 

EBER Dynamics has made a study (see [1]) on a potential correlation between track 

stiffness / deflection and track degradation, focusing on the iron-ore line and 

especially the section 118.  

Firstly it has been shown that the seasonal temperature variations do not have a strong 

influence on the track displacement and longitudinal level. Whereas the mean value of 

the static displacement slightly differs between seasons, the mean for longitudinal 

level does not vary.  

A second part studied the evolution in time of longitudinal level and deflection. This 

analysis shows that both parameters can indicate a degrading track, with a local 

increase of their amplitude or top-to-top values over the years. When trying to link 
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track deflection with longitudinal level a linear correlation exists for wavelengths 3–9 

meters and 1–25 meters although scatter can be found. For wavelengths in the interval 

1–4 meters, the correlation is not that clear and a larger scatter is observed. The aim of 

establishing the correlation is to give early indications of fast degrading tracks. This 

could be done by setting a limit value for deflection with respect to longitudinal level. 

However, such a limit cannot be applied for now as the link between deflection and 

longitudinal level cannot be sufficiently clearly defined at this stage.  

 

3.3 Track stiffness and hanging sleepers 

Track stiffness is an important parameter regarding the wheel/rail contact and 

therefore track quality. Although a too high or too low stiffness is not good for the 

track, it is to an even higher extent that stiffness variations must be taken into 

consideration. As explained in [3] track stiffness stands for the stiffness of the entire 

system of rail, sleepers, ballast and sub-layers (see Figure 1). Hanging sleepers, which 

are sleepers not supported or partially supported by the ballast, can be seen as short 

wavelength stiffness variations. However a short wavelength stiffness variation does 

not automatically imply a hanging sleeper, it may also be, for instance, an insulating 

joint.  

Different kinds of simulations have been developed and reported in [4] calculating the 

bending moment of the rail when considering a hanging sleeper. Each sleeper is here 

modeled by a spring and is thus introduced as a reduced stiffness. It has been shown 

that for a pure hanging sleeper (no stiffness at all) the bending moment is increased by 

60% of the value without a hanging sleeper.  

 

Figure 1 - Section of a rail supported by sleepers and ballast 
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4 Method 

4.1 Track stiffness and rail defects correlation 

The measurements provided by EBER Dynamics and the database of ultrasonic 

testing of the rails are used for the correlation study. The way these two databases 

have been obtained is detailed in the section 3.1. 

To study if a correlation exists, different steps have been undertaken with MATLAB:  

- Pre-processing of stiffness measurement data, 

- Analysis of track stiffness characteristics at detected defects, 

- Analysis of correlation between detected cracks and local track stiffness 

deviations.  

 

4.1.1 Pre-processing of stiffness measurement data 

It has been noticed that, when plotting the longitudinal level, deflection or stiffness 

with respect to the position along the track (see section 4.1.2 below) that unexpected 

peaks can appear, usually rather far from the location of any defect. These large 

amplitude peaks are not related to the real longitudinal level, deflection or track 

stiffness, but can be explained by a too low velocity of the track recording car. As the 

track recording car velocity tends to zero (i.e. if the vehicle travels at low speed or 

stops), the monitored longitudinal level (and therefore the deflection) will be 

subjected to numerical errors, due to the double integration of acceleration involved in 

the evaluation.  

To avoid this kind of peak values and disturbances, one solution is to change the 

values of the studied parameter (longitudinal level, deflection or stiffness) when the 

recording car velocity decreases below a chosen limit. This velocity limit is in the 

current study taken as 10 km/h but can easily be modified. Values of the studied 

parameters at these low speeds are set to an average value calculated over the whole 

sample of the studied track section (see 3.1). 

A significant drawback is the case where a defect is located on a part of the rail where 

the track recording car has a low velocity. As the recorded parameters are disturbed 

and thus set to an average value these defects cannot be related to any deviations in 

track stiffness, longitudinal level or deflection. 

An example of graphs obtained with the consideration of the low velocity is given in 

Figure 2.  
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Figure 2 - Top left: Deflection with short wavelength content showing peaks far from a detected 

defect ; Top right: Deflection with short wavelength content after removing the non-physical 

peaks ; Bottom: Rescaled deflection with short wavelength content after removing the peaks 

 

4.1.2 Analysis of track characteristics at detected defects 

As stated in 3.2 referring to [1], a previous study to find a correlation between 

longitudinal level and deflection with the aim of predicting fast degrading tracks has 

been carried out. This previous study did not find any clear-cut correlation. To expand 

the analysis, further parameters can be investigated:  

- Longitudinal level and filtered longitudinal level, 

- Track deflection (i.e. static displacement) and filtered deflection,  

- Track stiffness. 

These parameters will in the current study be connected to the ultrasonic testing of 

rails and resulting indications of rail cracks. The connection between the two sets of 

data is the position, which is given as a kilometer distance. However an uncertainty of 

20 meters regarding the position must currently be considered due to the lack of 

precision in the positioning system. The process of evaluating any correlation is the 

following:  

- A detected defect is selected in the database containing results from ultrasonic 

testing and its location is employed as an input parameter in the MATLAB 

command file, 

- The sample to be analyzed is selected, i.e. the recording date (February 2012, 

April 2012, August 2012 or November 2013), 



CHALMERS, Applied Mechanics, Projet de Fin d’Études 8 

- The parameter to be studied is chosen (longitudinal level, deflection, stiffness), 

- Plot magnitude(s) of studied parameter(s) as a function of position along the 

rail in the vicinity of the defect. 

The MATLAB code is available in Appendix 9.1. 

 

4.1.3 Analysis of correlation between detected cracks and local 

track stiffness deviations 

As mentioned in section 3.3, hanging sleepers promote a locally low stiffness (and 

stiffness variations), whereas the opposite is not always true (a low stiffness is not 

automatically due to the presence of hanging sleepers). The subsequent part of the 

analysis aims at computing the ratio of minimum stiffness kmin over nominal stiffness 

knom.  

The following steps have been applied:  

- Stiffness magnitudes from the measurement database are pre-processed to 

remove peaks caused by low velocity of the recording car, 

- For one defect, the minimum stiffness around this defect (± lmin) is stored as 

kmin, 

- For the same defect, the mean stiffness is calculated at a distance (± lnom) 

around the defect and stored as knom, 

- The ratio kmin /knom is calculated. 

lmin is a short distance that accounts for the uncertainty of the measured position in the 

ultrasonic database and the measured position in the stiffness/deflection database. For 

the current analysis lmin is set to 20 meters. lnom is taken large enough to represent the 

nominal characteristics of the track section around the defect. In the current study lnom 

is taken as 100 meters. 

A ratio close to 1 indicates that there is no stiffness variation at the location of the 

detected defect.  In contrast, a ratio much lower than 1, corresponds to a stiffness 

variation caused e.g. by soil variations. 

The MATLAB code is available in Appendix 9.2. 

 

4.2 Finite elements simulations of bending moments in the 

vicinity of hanging sleepers 

Finite elements simulations have been carried out with ANSYS Mechanical APDL 

14.5. One can refer to the command file for the details, see Appendix 9.3. 

The model includes one 20-meter long rail, modeled as a beam following the 

Timoshenko beam theory. The beam is supported by sleepers directly linked to the 

ground, and represented by springs (one spring per sleeper) with a nominal stiffness, 

k. Hanging sleeper(s) have a reduced stiffness, k’ (or no stiffness at all), as shown in 
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Figure 3. The expressed stiffness corresponds in fact to the ballast stiffness (we 

consider sleepers as rigid bodies). The stiffness for the hanging sleeper(s) is expressed 

as a percentage of the nominal stiffness. The rail is loaded with four vertical loads, 

corresponding to four wheels. The axle load is divided by two as only one rail is 

considered. 

 

Figure 3 - Mechanical equivalent scheme of the rail supported by sleepers represented by springs 

of stiffness k and k’ for the hanging sleeper, and a passing wheel of load P 

The parameters for the initial model are:  

- Nominal stiffness: 50 MN/m 

- Axial load: 25 tonnes 

- Stiffness for the hanging sleeper(s): 0%, 25%, 50% or 75% of the nominal 

stiffness 

These parameters are fixed for the initial model but their variation will be considered. 

Geometrical values: 

- Span between two sleepers: 65 cm 

- Span between the first and the second wheels: 1.80 m 

- Span between the second and third wheels: 3.20 m 

- Span between the third and fourth wheels: 1.80 m 

- Cross-sectional area: 76.7 cm
2
 (norm EN13674-1) 

- Area moment of inertia around the y-axis: 512.3 cm
4
 (norm EN13674-1) 

- Area moment of inertia around the z-axis: 3038.3 cm
4
 (norm EN13674-1) 

- Torsional constant: 3.048.10
-5

 m
4
 

- Thickness along y: 172 mm (norm EN13674-1) 

- Thickness along z: 150 mm (norm EN13674-1) 

The span between sleepers is chosen in accordance with the standard length. The span 

between the wheels is representative for a freight train of axial load 25 tonnes. 

Material properties: 

- Young modulus of the material: 210 GPa 

- Poisson coefficient: 0.3 

- Density: 7862 kg/m
3
 (norm EN13674-1) 

The element types chosen for the model are BEAM188 (linear – 2 nodes) for the rail 

and COMBIN14 (spring–damper combination) for the sleepers.  

Boundary conditions are:  

- Fixed support (ux = uy = uz = 0) on the left end of the beam 
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- Movable support (uy = uz = 0) on the right end of the beam 

- Clamping (all degrees of freedom equal zero) of the bottom end of the springs 

- 4 loads of 12.5 tonnes (for 25 divided by two) – the influence of the load will 

be considered 

Different configurations of hanging sleepers are studied: 

- 1 hanging sleeper at position 9.75 m 

- 2 consecutive hanging sleepers at positions 9.75 and  10.4 m 

- 2 hanging sleepers separated by a normal sleeper, at positions 9.1 and 10.4 m 

- 3 consecutive hanging sleepers at positions 9.1 , 9.75 and 10.4 m 

Recall that the rail length is 20 meters, which means that the studied hanging 

sleeper(s) are roughly located in the middle. 

 

Figure 4 - Boundary conditions and deformed rail (blue) 

As we need to simulate the four wheels passing on the rail, the program sets out from 

an initial position of the wheels. The position is then incremented forward along the 

rail so that the wheels pass each node. At each step (corresponding to a given position 

of the wheels), a quasi-static analysis is carried out and bending moments and 

deflections of the rail are evaluated. 
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5 Results 

5.1 Correlation between measured track stiffness and 

detected rail defects 

The model is described in the section 4.1. 

 

5.1.1 Analysis of track characteristics at detected defects 

As explained previously, the aim of this part of the study is to link the two databases 

containing locations of detected defects and measured track stiffness. For a given 

defect, rail characteristics (stiffness, track deflection, longitudinal level, ...) in the 

vicinity of the defect are plotted for the left and right rail (blue and red lines, 

respectively in the following graphs). In this manner an overview of the variations of 

these characteristics is obtained. Both left and right rails are considered since it is not 

mentioned in which rail defects are detected. 

More than 700 000 measured values have been recorded per measurement sample (5 

samples in total – see 3.1 for the description of the samples). Consequently there is a 

massive amount of results that can be analysed.  To facilitate data processing, only the 

first sample (April 2012) will be analysed in detailed here. A further study that was 

performed on the other samples led to the same conclusions. 

In Figure 5 track deflections at positions corresponding to selected defects are plotted. 

Positions of defects given by the ultrasonic testing database are represented by a 

dashed vertical line. Recall that there may be a difference of maximum 20 meters 

between positions given by the ultrasonic testing of rails and track stiffness/deflection 

measurements. 
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Figure 5 - Track deflection around detected defects located at 1175.258 km (top left), 1185.825 

km (top right), 1230.889 km (bottom left), 1252.775 km (bottom right) 

Figure 5 shows that for some defects (defects at 1175.258 km, 1185.825 km and 

1230.889 km) there is a noticeable variation of the mean deflection at a location close 

to the defect position. In contrast, for the defect located at 1252.775 km, no significant 

variation of the mean deflection around the defect can be visualized.  

The longitudinal levels in the vicinity of the recorded defects are plotted in Figure 6. 
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Figure 6 - Longitudinal levels around defects located at 1182.912 km (top left), 1194.363 km (top 

right), 1215.200 km (bottom left), 1252.775 km (bottom right) 

As for the mean track deflection (Figure 5), some plots show a sudden variation of the 

longitudinal level (defect located at 1215.200 km whereas other defects do not 

correlate to any clear patterns of variation in longitudinal stiffness.  

As illustrated, track deflections and longitudinal levels in the vicinity of a detected 

defect in some cases show interesting variations. These variations might be linked to 

the defects though they are not sufficient to identify defects: As shown defects can 

exist where there is no significant variation of the deflection or longitudinal level (or 

these may exist but are not sufficiently pronounced to be distinguished from the 

surrounding variations).  

It may be more convenient to look at the deflection or longitudinal level filtered at 

different wavebands such as 1–25 meters, 3–9 meters or 1–4 meters, in order to 

compensate for large local variations.  
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Figure 7 - Track deflection with short wavelength content included plotted around defects 

located at 1166.777 km (top left), 1194.398 km (top right), 1203.476 km (bottom left), 1215.200 

km (bottom right) 

 

Figure 8 - Longitudinal levels around defects located at 1182.912 km (left) and 1194.363 km 

(right) filtered at 1–4 m 

What is observed in Figure 7 is that the deflection with short wavelength content can 

be relevant (see defects located at 1194.398 km and 1203.476 km) to identify a defect 

where there is a noticeable variation at the defect position (or near). This is however 

not the case for all the defects as shown on the same figure for the two other detected 

defects.  

Longitudinal levels filtered in the waveband 1–4 meters show very sudden peaks 

(Figure 8). The two cases plotted in Figure 8 correspond to the cases indicated in 
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Figure 6 for longitudinal level (top left and top right graphs). Whereas in Figure 6 the 

two corresponding graphs could not indicate clearly the presence of rail cracks, the 

short wavelength filtered longitudinal level is clearer in indicating the potential 

existence of a defect. It should however be noted that some peaks are observed 

although no defect has been detected at the identified position.    

Finally, track stiffness in the vicinity of a defect is plotted in Figure 9. 

 

 

Figure 9 - Track stiffness around defects located at 1181.222 km (top left), 1182.912 km (top 

right), 1194.363 km (bottom left), 1247.881 km (bottom right) 

A study of track stiffness variations around defects leads to the same conclusion as for 

the other parameters. There are indications that it can be useful as a mean to identify a 

potential defect (for example the defect at 1194.363 km), but there are not clear 

patterns in stiffness variations at all locations corresponding to detected defects. 

So far different defects have been considered when plotting the deflection, 

longitudinal level or track stiffness. In Appendix 9.4 all the different parameters for 

four given defects are presented, in order to investigate if one of those parameters is 

more relevant regarding the indication of defects. The investigated parameters are: 

longitudinal level, track deflection, track stiffness, deflection with short wavelength, 

longitudinal level filtered at 1-25 meters, longitudinal level filtered at 3-9 meters and 

longitudinal level filtered at 1-4 meters. The four defects have been numbered from 

(1) to (4). The table in Figure 10 lists parameters showing large magnitudes in the 

surrounding area of the defect (maximum 20 meters).  
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Defect number (1) (2) (3) (4) 

Parameters 

with notable 

variations 

- Track 

deflection 

- Track 

stiffness 

- Track 

deflection 

- Track 

stiffness 

- Longitudinal 

level 1-4 m 

- Longitudinal 

level 

- Longitudinal 

level 3-9 m 

- Longitudinal 

level 1-4 m 

- Track 

deflection 

 -Track 

stiffness 

Figure 10 - Parameters with large magnitudes in the vicinity of four defects 

It is shown in Figure 10 that none of the studied parameters is implied for all four 

defects. As a consequence, the investigation of the variations of a given parameter, 

with the aim of indicating cracks is not straightforward. 

Plotting track parameters around defects detected by ultrasonic testing of rails has 

permitted to investigate if there is a characteristic variation of the studied parameter 

around defects. After this preliminary study, it seems that it is difficult to draw a 

general conclusion regarding the correlation between the existence of defects and the 

evolution of longitudinal level, deflection or track stiffness. Actually, this conclusion 

could be expected because, even if the presence of hanging sleepers can lead to a local 

decrease of stiffness, stiffness variations are not the only possible cause of crack 

formation and growth. Indeed, cracks can also be the consequence of high wheel/rail 

contact stresses, local stress raisers, locally reduced material resistance etc. However, 

it should be noted that significant variations of stiffness, deflection or longitudinal 

level related to the defects are observed in several cases. 

There are also many additional aspects that make it difficult to establish a clear link 

between track parameters and defects: 

- Uncertainty of the position of the defect on the order of 20 meters, 

- Proximity of several defects: influence of one defect cannot be clearly seen,  

- Difference of magnitude of a given parameter, with respect to defects, 

- Important variations of track parameters can be more or less spread out around 

a defect, 

- Important variations of track parameters can be mistaken with natural 

variations. 

 

5.1.2 Analysis of correlation between detected cracks and local 

track stiffness deviations 

In part 5.1.1, the correlation between recorded defects and variations in mechanical 

characteristics around these defects has been investigated. Defects were chosen 

arbitrarily among the 145 defects detected on section 118. By following this approach 

it is difficult to make a general conclusion as the study considers one specific defect at 

a time (studying all defects of section 118 would lead to 5 samples * 7 characteristics 

* 145 defects = 5075 graphs), and also due to the different complications listed above. 
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To improve the analysis of part 5.1.1, this part focuses on the study of stiffness 

characteristic for all defects recorded on section 118. For simplification only results 

for sample 1 are presented in this report. Comments on the other samples are provided 

if necessary. 

To study track stiffness deviations at locations of detected cracks, the ratio of 

minimum stiffness over nominal stiffness, kmin/knom, has been calculated for all 

defects, following the method described in 4.1.3. Figure 11 presents this ratio for all 

defects.  

 

Figure 11 - Track minimum stiffness over nominal stiffness with respect to defect positions for 

left rail and right rail of sample 1 

This figure shows a rather significant scattering of the ratio. In most cases the ratio is 

included between 0.8 and 1, which means that the minimum stiffness is close to the 

nominal stiffness and thus there is no large deviation in track stiffness. For a few 

defects the ratio is below 0.6, meaning that there is a quite significant track stiffness 

variation in the vicinity of the defect. The table below indicates the number of defects 

for which the ratio kmin/knom falls in the given ranges of magnitudes. 

 Left rail Right rail 

 Quantity % Quantity % 

X > 1 5 3.5 4 2.8 

0.8 < X < 1 96 67.5 82 56.5 

0.6 < X < 0.8 27 18.6 51 35.1 

X < 0.6 15 10.4 8 5.6 

Figure 12 - Number of defects with different values of X=kmin/knom, for the 145 detected defects 

studied 

Figure 11 and Figure 12 show that approximately 90% of defects have a ratio kmin/knom 

included between 0.6 and 1.   
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Examples of stiffness variation around defects, which have a ratio lower than 0.6 are 

presented in Figure 13.  

 

 

Figure 13 - Track stiffness plotted around defects located at 1299.292 km (top left), 1230.889 km 

(top right), 1264.768 km (bottom left), 1215.200 km (bottom right) 

Figure 13 shows track stiffness variations for four defects with a ratio below 0.6. 

However all defects in this range have been considered and support these 

observations. In all cases, a sudden variation of track stiffness is noticeable. Although 

the studied defects have been selected because of a low value of kmin/knom, there is 

always a positive peak, i.e. a maximum value of stiffness, adjacent to the minimum 

stiffness location. Peak-to-peak stiffness values are consequently large around these 

selected defects which could be the cause of the defects. The findings encourage a 

study of the ratio of the maximum stiffness over the nominal stiffness, kmax/knom, 

which is presented in Figure 14. 
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Figure 14 - Track maximum stiffness over nominal stiffness with respect to defect positions for 

left rail and right rail of sample 1 

Figure 15 - Number of defects with different values of X=kmin/knom, for the 145 detected defects 

studied 

Figure 14 and Figure 15 show that only recorded defects on the right rail have a ratio 

larger than 2. This is in line with observations made in Figure 13 where the right rail 

has larger increases of track stiffness than the left rail.  

For the highest ratios presented in Figure 14, values of maximum stiffness seem to be 

very high: above 100 kN/mm. To get a better view of less extreme variations, Figure 

16 shows kmax/knom when not taking into account values above 2. 

 Left rail Right rail 

 Quantity % Quantity % 

X > 2 0 0 10 6.9 

1.4 < X < 2 17 11.7 5 3.5 

1.2 < X < 1.4 31 21.4 39 26.9 

1 < X < 1.2 88 60.7 83 57.2 

X < 1 9 6.2 8 5.5 
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Figure 16 - Maximum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 1 

In Figure 16, dispersion is similar to Figure 11 for kmin/knom. Some defects with a high 

value of kmax/knom (between 1.4 and 1.8) also have a low kmin/knom (below 0.6). In 

addition, defects that have kmin/knom close to 1, but a high ratio kmax/knom can be noted. 

In this way, the additional study of kmax/knom provides a complete investigation of 

significant stiffness deviations around defects. 

Scatters of kmin/knom and kmax/knom for the four other samples are presented in 

Appendix 9.5. It has been noticed that for sample 5 the scattering of kmin/knom and 

kmax/knom is much closer to 1. Values are not below 0.6 for kmin/knom and do not exceed 

1.4 for kmax/knom. From the given information, it does not seem to be due to climatic 

conditions (temperatures). A possible explanation might be a difference in calibration 

(as samples 1 to 4 have been recorded in 2012 and sample 5 in November 2013). 

To get to a final conclusion on the possible link between track stiffness and the 

occurrence of cracks, the derived ratios of kmin/knom and kmax/knom should be contrasted 

to ratios at sections where no defects have been detected.  

It should be noted that the track stiffness measurements studied here have been 

filtered at 12 meters, according to EBER Dynamics’ method, detailed in [1]. This 

filtering process does not allow identifying isolated hanging sleepers as the 

wavelength is too large. In section 5.1.3 (below), deflection with short wavelength 

content included has been studied in order to focus on hanging sleepers. 

 

5.1.3 Analysis of filtered deflection deviations around detected 

defects 

In the same way as section 5.1.2, deviations of deflection with high frequency content 

included are evaluated near detected defects. Deflection from database (see 3.1) has 

been employed and wavelengths out of the range 1-8 meters have been filtered out. As 

measurements have a base level of zero, the nominal value (average) is zero and thus 

the ratio u/unom has no meaning. Therefore, a swept standard deviation, over a moving 

distance of 150 meters, has been analyzed. The maximum value of this swept standard 
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deviation, ustd_max, is calculated around each defect, as well as the average (over a 

distance of 200 meters around the defect) of the swept standard deviation, ustd_nom (in 

the same way as for the stiffness, with the method described in section 4.1.3). The 

ratio ustd_max/ustd_nom is then estimated for each rail defect. Figure 17 shows the results 

for sample 1, Appendix 9.6 presents the obtained results for samples 2 to 5. 

 

Figure 17 - Maximum swept standard deviation over nominal swept standard deviation of 

filtered deflection for left rail and right rail with respect to defect positions for sample 1 

Values close to 1 indicate a small deflection at the studied position. The majority of 

the values are included between 0.8 and 1.2, but some locations show important 

deviations (e.g. near positions 1265 km and 1302 km). However a final conclusion on 

relevant correlation between deflection deviations and rail defects is not possible as 

long as ustd_max/ustd_nom has not been evaluated at positions where there are no defect. 

To do this in a statistically stringent manner is not straightforward and has not been 

done in the current report. 

 

5.2 Finite elements simulations of bending moments in the 

vicinity of hanging sleepers 

The numerical model is described in detail in the section 4.2. 

 

5.2.1 General comments on results 

For given positions of the four wheels, the finite element code ANSYS has been used 

to derive the deflection (or y-displacement) and the bending moment along the rail. As 

an example, for the case of one hanging sleeper (no stiffness at all for the spring 

which links the rail to the ground) and the second wheel located precisely above this 

sleeper, the deflection and the corresponding bending moment are depicted on the 

following figures (Figure 18 and Figure 19). All remaining parameters are specified 

for the reference case in section 4.2. 
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Figure 18 - Track deflection (m) corresponding to a four-wheel vehicle with one wheel positioned 

directly above the hanging sleeper 

 

Figure 19 - Bending moment (Nm) for the same configuration as in Figure 18 

A positive value for the bending moment corresponds to tension in the rail foot, 

whereas a negative value indicates a tensile stress in the head of the rail. 

When comparing the values of deflection and bending moment obtained here with 

results given in [4], they are of the same order of magnitude. Simulations with the 

same input parameters have been run and give results very similar to [4], which 

supports the validity of the employed model. 

What can be observed from these preliminary results is that the positive bending 

moment is locally increased due to the hanging sleeper at the exact position where the 

hanging sleeper is. However, also negative bending moments are influenced by the 

presence of a hanging sleeper, but this occurs in the area surrounding the hanging 

sleeper. One point of this study is to focus on the length of this affected zone. 

 

5.2.2 One hanging sleeper 

In the simulations one hanging sleeper is located at 9.75 m along the 20-meter rail. 

The stiffness of the hanging sleeper is indicated as percentage of the nominal ballast 

stiffness (50 MN/m). For example a reduction factor of 75% (k=75% on the graphs) 

means that the stiffness of the hanging sleeper is 37.5 kN (kh.s. = 0.75 * knom). The rail 

bending moment and vertical displacement (deflection) are computed at each step 

when the four wheels travel along the rail (one wheel is represented by a 125 kN 

load). Maxima and minima (regarding all evaluated wheel positions) of these two 

parameters are evaluated. The results are presented in graphs where the distance along 

the track (from 5 to 15 to avoid boundary effects) is presented on the horizontal axis.  



CHALMERS, Applied Mechanics, Projet de Fin d’Études  23 

 

Figure 20 - Maximum bending moment, considering a hanging sleeper of stiffness 100%, 75%, 

50%, 25% and 0% of the nominal track stiffness 

 

Figure 21 - Minimum displacement, considering a hanging sleeper of stiffness 100%, 75%, 50%, 

25% and 0% of the nominal track stiffness 

 

Figure 22 - Minimum bending moment, considering a hanging sleeper of stiffness 100%, 75%, 

50%, 25% and 0% of the nominal track stiffness 
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Figure 23 - Maximum displacement, considering a hanging sleeper of stiffness 100%, 75%, 50%, 

25% and 0% of the nominal stiffness 

First we can observe in Figure 20 and Figure 21 the rise of bending moment and 

deflection due to a partially or totally hanging sleeper (as defined by the stiffness 

reduction factor). It is possible to investigate the percentage of increase of bending 

moment or deflection for the different reduced stiffness as compared to the case 

without hanging sleeper. This has already been studied in [4]. 

The positive bending moment is locally increased, approximately over a length of 1 

meter surrounding the hanging sleeper (50 cm on each side of the hanging sleeper), 

whereas the corresponding deflection is increased over a longer length of some 3.5 

meters. 

The minimum bending moment and the corresponding maximum displacement, as 

showed in Figure 22 and Figure 23, have a more complex distribution. It is seen that 

the length affected by the presence of a hanging sleeper is much more widespread 

than the affected length for the maximum bending moment. To determine this affected 

length it is more convenient to plot the difference in minimum bending moment for a 

hanging sleeper and without hanging sleeper (see Figure 24). 

 

Figure 24 - Minimum bending moment difference between the case of a hanging sleeper (k=0% 

or k=50%) and the case without a hanging sleeper (k=100%) 

A negative value of the difference means a decreased bending moment in the rail. 

However, as we are considering the minimum bending moment (Figure 22), the sign 

of the bending moment is negative and thus a decrease of its value stands for an 
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increase in absolute values, and a corresponding increase in the maximum stress in the 

cross-section.  

The affected length is basically the same regardless of the stiffness reduction factor. 

We can estimate this length to some 5.1 meters (from 7.2 to 12.3 m). This can be 

interpreted as the following: the presence of a hanging sleeper increases the bending 

moment over a distance of some 5 meters in the studied cases. Thereby rail cracks are 

more likely to occur in a five-meter region surrounding a hanging sleeper.   

Variation of the bending moment, i.e. top-to-top values, may also be considered. As 

the train moves along the track, bending moment in the rail passes from its maximum 

to minimum value at each location. As a consequence, the head and foot of the rail are 

subjected to alternating tensile and compressing stresses. This cycle promotes fatigue 

of the rail.  

 

Figure 25 - Maximum variation of the bending moment (top-to-top amplitude), with a hanging 

sleeper (k=0%) compared to no hanging sleeper (k=100%) 

In Figure 25, the length affected by the hanging sleeper is measured to some 4.7 

meters (from 7.4 to 12.1 m), which is similar to the previously estimated value. 

 

5.2.3 Several hanging sleepers 

Having stated that the existence of a hanging sleeper affects the bending moment over 

a fixed portion of the rail, the next investigation relates whether this portion 

surrounding the sleeper is modified when there is more than one hanging sleeper. 

Three configurations have been considered: 

- 2 consecutive hanging sleepers at positions 9.75 and 10.4 m (1) 

- 2 hanging sleepers separated by a normal sleeper, at positions 9.1 and 10.4 m 

(2) 

- 3 consecutive hanging sleepers at positions 9.1, 9.75 and 10.4 m (3) 

Maximum and minimum bending moments in the rail for each configuration 

compared to “normal” configuration (no hanging sleeper) are represented in Appendix 

9.7. In Figure 26 and Figure 27 are plotted the differences between maximum or 
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minimum bending moments in the configuration (1), (2) and (3) (Mzmax_hs or Mzmin_hs) 

and maximum or minimum bending moments without hanging sleeper (Mzmax_no_hs or 

Mzmin_no_hs): Mzmax_hs – Mzmax_no_hs or Mzmin_hs – Mzmin_no_hs 

 

Figure 26 - Maximum bending moment difference between a configuration without a hanging 

sleeper and (1) two consecutive hanging sleepers ; (2) two hanging sleepers separated by a normal 

sleeper ; (3) three consecutive hanging sleepers 

 

Figure 27 - Minimum bending moment difference between a configuration without hanging 

sleeper. (1) two consecutive hanging sleepers ; (2) two hanging sleepers separated by a normal 

sleeper ; (3) three consecutive hanging sleepers 

Figure 28 and Figure 29 compares the distance affected by the presence of hanging 

sleepers, in different configurations, regarding maximum (Figure 26) or minimum 

(Figure 27) bending moment.  

 (1) (2) (3) 

Start – end of affected distance (m) 9.25 – 10.9 8.6 – 10.9 8.7 – 10.8 

Total affected length (m) 1.65 2.3 2.1 

Length to/from the first/last h.s. (m) 0.5 0.5 0.4 

Figure 28 - Details on affected track length due to hanging sleepers, regarding maximum bending 

moment 
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 (1) (2) (3) 

Start – end of affected distance (m) 7.25 – 12.9 6.6 – 12.9 6.6 – 12.9 

Total affected length (m) 5.65 6.3 6.3 

Length to/from the first/last h.s. (m) 2.5 2.5 2.5 

Figure 29 - Details on affected track length due to hanging sleepers, regarding minimum bending 

moment 

For the maximum bending moment (Figure 26), negative values are not accounted for 

when the distance is estimated (Figure 28) since it means that bending moment has 

been reduced.  

The last row of the tables gives the affected length to the left of the first hanging 

sleeper, or to the right of the last hanging sleeper (these distances are the same since 

the model is symmetric). This distance is basically constant regardless of the chosen 

configuration and roughly the same as the case of one hanging sleeper. This implies 

that the bending moment in the rail will be increased (or decreased for negative 

values) at a fixed distance outside a hanging sleeper regardless of the number of 

hanging sleepers. 

 

5.2.4 Variation of the input parameters 

The study cases that have been presented previously have the same input. In this 

section input data are varied to investigate if they have an influence on the results. 

The investigated input parameters are the applied wheel load and the nominal track 

stiffness.  

The load was initially set to 125 kN (corresponding to a quasi-static loading at an axle 

load of 25 tonnes). Here a load of 175 kN (for an axle load of 35 tonnes, which is 

higher than the highest regulated static axle load of 30 tonnes) and a load of 75 kN 

(corresponding to a static axle load of 15 tonnes) are considered. Regarding the track 

stiffness, it was initially fixed to 50 MN/m. In these simulations values of 30 MN/m 

and 70 MN/m are tested.  

The maximum and minimum bending moments are computed for a model with one 

hanging sleeper (stiffness of 0% the nominal stiffness) and compared to a model 

without hanging sleeper (stiffness of 100% the nominal stiffness). Resulted graphs are 

presented in Appendix 9.8.  

The following plots (Figure 30 and Figure 31) show the difference in minimum 

bending moment between a model featuring a hanging sleeper and a nominal track, 

for varying load and varying stiffness, respectively. We do not present the difference 

in maximum bending moment, as the affected length is very short, centered at the 

hanging sleeper.  
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Figure 30 - Minimum bending moment differences between cases with and without a hanging 

sleeper, for different stiffness magnitudes 

 

Figure 31 - Minimum bending moment differences between cases with and without a hanging 

sleeper, for different stiffness magnitudes 

Negative values indicate an increase of the bending moment in terms of absolute 

values, when there is a hanging sleeper. Concerning the load parameter, Figure 30 

shows clearly that the load has no influence on the length affected by the hanging 

sleeper. This distance is estimated to some 5.1 meters and is identical to the one 

estimated for a load of 125 kN presented on Figure 24. The same conclusion cannot 

be made regarding the nominal track stiffness. For a nominal stiffness of 70 MN/m 

the affected length is some 4.5 meters (from 7.5 to 12 m) whereas for a stiffness of 30 

MN/m it extends to some 6.5 meters (from 6.5 to 13 m). 

Nominal ballast stiffness Total affected length Affected length on one side 

30 MN/m 6,5 m 3,25 m 

50 MN/m 5,1 m 2,55 m 

70 MN/m 4,5 m 2,25 m 

Figure 32 - Length affected by a hanging sleeper for different track stiffness magnitudes 
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5.2.5 Application with real stiffness values (from measurement 

database) 

In the previous simulations stiffness was entered as an input parameter so that the 

studied cases were “ideal”, in the way that only “perfect” sleepers with a constant 

nominal stiffness and hanging sleepers with a reduced stiffness were considered. In 

reality, when looking at track stiffness measurements, variations are observed, with 

alternatively increases and decreases of the stiffness.  

With the current numerical model, it is possible to input real track stiffness values, 

taken from the database. However, measured track stiffness is not directly equal to the 

modeled stiffness. Considering the following notations: 

ki: local ballast stiffness, springs’ stiffness in the numerical model (see Figure 33), 

Ki: measured track stiffness averaged over 65 cm around a sleeper, 

X: ballast nominal stiffness, assuming X = 50 MN/m, 

Y: measured nominal track stiffness, i.e. average over the entire section, 

It reads: ki / Ki = X / Y  or  ki = X / Y * Ki  

 

Figure 33 - Mechanical scheme of the rail, considering stiffness values from database 

The defect located at 1265.433 km (ultrasonic testing database) has been chosen to 

illustrate this simulation. Track stiffness of the right rail in the vicinity of this defect is 

represented in Figure 34, on a portion of 20 meters as the modeled rail is a beam of 

this length.  

This defect has been chosen for having a short wavelength stiffness variation 

compared to other defects. However it can be seen on Figure 34 that this wavelength 

is still large, approximately 25 meters, whereas sleepers are spaced out of 65 cm. It 

points out the fact that stiffness variations are roughly spread over 40 sleepers (at 

least) and therefore the measurements do not allow identifying one isolated hanging 

sleeper for instance. 

 

Figure 34 - Track stiffness and averaged track stiffness over 65 cm of the right rail in the vicinity 

of a defect located at 1265.433 km ; position x is given as 1265 (km) + x (m) 
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Resulting maximum bending moments are given in Figure 35. Nominal track stiffness 

is taken as 30 MN/m. 

 

Figure 35 - Maximum bending moment around defect located at 1265.433 km, compared to a 

standard case with constant track stiffness (equal to nominal track stiffness of 30 MN/m) 

What is observed on Figure 35 is that the bending moment is increased is the section 

where the track stiffness is below its nominal value.  

Finally resulting bending moments here should not be taken as an example of an 

operational analysis as only a length of 20 meters is considered, and stiffness 

variations are of wavelengths larger than 25 meters (see Figure 34). Instead the 

example should be taken as a proof of concept on that it is possible to obtain bending 

moment in the rail with real stiffness values taken from measurement database. 

Simulations of bending moment based on measured track stiffness on longer sections 

could lead to interesting results. 
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6 Conclusion 

In the first part, the correlation between track characteristics measurement and defect 

positions has been investigated. It seems that there is no straightforward correlation. 

Indeed, for a given defect, some of the relevant parameters (longitudinal level, 

deflection, track stiffness...) can present notable deviations while others do not. It is 

also applicable for a given parameter: some defects are positioned at sections where 

there are significant variations while others do not. 

An in-depth investigation has been realized for track stiffness and deflection around 

recorded defects. Measures such as ratios between minimal track stiffness over 

nominal track stiffness, or maximal swept standard deviation of deflection with short 

wavelength content over its nominal value have been analysed. The analysis of 

deviations at locations of detected defects shows correlations for some, but not all 

defects. This conclusion was expected as track stiffness variations are not the only 

reason of crack formation and crack growth. However, locally decreased track 

stiffness should increase the risk of crack formation. If there is such an increase that is 

statistically significant was not possible to establish within the current study. 

In the second part of the work, the influence of hanging sleepers, which can be seen as 

short wavelength stiffness variations, on the bending moment along the rail has been 

studied. It has been shown that a specific distance where bending moment is increased 

in the surrounding of hanging sleepers can be defined. This distance is representative 

of the length for potentially increased risk of rail crack growth. These results should 

also be considered in light of the fact that in most cases, it is the unlucky combination 

of hanging sleepers in regions with proneness to crack formation (e.g. shallow curves 

where headcheck cracks may form) that promotes fast crack growth and subsequent 

failure. Inspections should thus investigate for head cracks in an interval spanning of 

some 4 sleepers in both directions from a detected hanging sleeper. 
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7 Recommendations 

The purpose of this work is to be able to predict defect occurrence from measurement 

of track characteristics. At this stage, the realized work can be improved with the 

following actions: 

- Improve accuracy of position in crack detection: there is an uncertainty of 20 

meters of the position between the two databases. Deviation ratios such as 

kmin/knom or umin/ustd (see 5.1.2 and 5.1.3) could be refined and then become 

more relevant if this distance was decreased.  

- Check cause(s) of high stiffness. In part 5.1.2, stiffness variations plotted 

around defects with a notable low ratio kmin/knom in several cases revealed large 

stiffness peaks. Going deeper in the study of these extreme values would 

enable to determine if they are significant for defect formation or not. 

- Compute nominal values of ratios evaluated in sections 5.1.2 and 5.1.3 by 

establishing average values of these ratios at positions where there are no 

defects. This would enable a comparison of ratios derived in this report and 

the establishment of limit values. However, as stated above, to establish such 

"base values" in a statistically stringent manner is not straightforward. Since 

the values vary significantly along the track the definition of a "nominal" 

value is not obvious. 

- Evaluate from database measurements the rail in which defects have been 

detected, in order to clarify results of 5.1.2 and 5.1.3. 

- Determine a method to get raw stiffness amplitudes (not filtered at large 

wavelengths) to input them in finite elements simulations, in order to obtain 

the rail bending moment. 
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9 Appendices 

9.1 MATLAB code for analysis of track characteristics at 

detected defects 

 

close all; clc; clear all; 

  
%% Input parameter %% 
defect_position=1194.238;    % Position of the defect studied (km) 
sample=3;                    % Studied sample (1 for D(1), 2 for                         

              % D(2), ...5 for D(5)) 
data1=9;                     % Analyzed parameter 
                             % Longitudinal level left side = 3    
                             % Mean track deflection left side = 7 
                             % Mean track stiffness left side = 9 
                             % Track deflection short wavelength left                     

     % side = 11 
data2=data1+1;               % Same than data1 for the right rail 
speed_limit=10;              % Speed limit of track recording (km/h) 
L_around=0.2;                % Length around the defect for plotting     

     %(km) 
delta=0.0005;                % Tolerance of the interval (km) 

 
%% Loading data file for the choosen defect %% 
if (defect_position>=1150 & defect_position<1170 ) 
    load('deflection_data_118_1160.mat'); 
elseif (defect_position>=1170 & defect_position<1190 ) 
    load('deflection_data_118_1180.mat'); 
elseif (defect_position>=1190 & defect_position<1210 ) 
    load('deflection_data_118_1200.mat'); 
elseif (defect_position>=1210 & defect_position<1230 ) 
    load('deflection_data_118_1220.mat'); 
elseif (defect_position>=1230 & defect_position<1250 ) 
    load('deflection_data_118_1240.mat'); 
elseif (defect_position>=1250 & defect_position<1270 ) 
    load('deflection_data_118_1260.mat'); 
elseif (defect_position>=1270 & defect_position<1290 ) 
    load('deflection_data_118_1280.mat'); 
elseif (defect_position>=1290 & defect_position<1310 ) 
    load('deflection_data_118_1300.mat'); 
end; 

 
%% Initialization of indixes %% 
num=0; 
num_inf=0; 
num_sup=0; 
i=0; 
L=length(D(sample).m_temp);    % Size of matrix  of positions along  

        % the track for choosen sample 
 

%% Determination of the indexes used to plot analyzed parameter       

around the choosen defect %% 

  
for i=1:1:L 
% Smaller index of the area where the studied parameter will         

% plotted 
    if D(sample).m_temp(i,1)>(defect_position-L_around-delta)& ...  
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            D(sample).m_temp(i,1)<(defect_position-L_around+delta) 
        num_inf=i;  
    end 

     
% Index of the position of the defect  
    if D(sample).m_temp(i,1)>(defect_position-delta)& ... 
            D(sample).m_temp(i,1)<(defect_position+delta) 
        num=i; 
    end 

     
% Bigger index of the area where the studied parameter will be       

% plotted 
    if D(sample).m_temp(i,1)>(defect_position+L_around-delta)& ... 
            D(sample).m_temp(i,1)<(defect_position+L_around+delta) 
        num_sup=i; 
    end 
end; 
 

%% Low velocity preprocessing %% 
% Calculation of average of studied parameter that will be used to  
% replace value where velocity is lower than "speed_limit" 

  
moyenne_1=mean((D(sample).data(num_inf:num_sup,data1))); 
moyenne_2=mean((D(sample).data(num_inf:num_sup,data2))); 

  
% For the choosen values around the defects, if recording velocity is 

% too low, value of parameter is changing with the avergae value of   

% the studied parameter 

  
for i=num_inf:1:num_sup 
    if D(sample).data(i,6)<speed_limit 
         A(i,1)=moyenne_1; 
         B(i,1)=moyenne_2; 
    else A(i,1)=(D(sample).data(i,data1)); 
         B(i,1)=(D(sample).data(i,data2));        
    end 
end;         

 
%% Plot %% 
% Plotting studied parameter for both rails according to the position 

% along the track 
fig1=figure; 
plot(D(sample).m_temp(num_inf:num_sup,1),A(num_inf:num_sup,1)); 
hold on 
plot(D(sample).m_temp(num_inf:num_sup,1),B(num_inf:num_sup,1),'red'); 
%% Legends %% 
% Legend of the figure 
legend('left','right');                            
xlabel('position [km]'); 

  
% Label according to the studied parameter 
if data1==3 | data1==4 
    ylabel('longitudinal level [mm]'); 
elseif data1==7 | data1==8 
    ylabel('mean track deflection [mm]'); 
elseif data1==9 | data1==10 
    ylabel('mean track stiffness [kN/mm]'); 
elseif data1==11 | data1==12 
    ylabel('track deflection with short wavelength [mm]'); 
elseif data1==13 | data1==14 
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    ylabel('longitudinal level with waveband 1-25m  [mm]'); 
elseif data1==15 | data1==16 
    ylabel('longitudinal level with waveband 3-9m [mm]'); 
elseif data1==17 | data1==18 
    ylabel('longitudinal level with waveband 1-4m [mm]');     
end ; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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9.2 MATLAB code for local track stiffness deviations 

close all; clc; clear all; 

  
%% Input parameter %% 
sample=1;           % 1 for D(1), 2 for D(2), ... 
L_around=0.020;     % Length around the defect for calculating           

  % minimal stiffness(km) 
L_average=0.100;    % Length around the defect where the nominal                     

  % stiffness is calculated (km)  
delta=0.0005;       % Tolerance of the interval (km) 
  

%% Loading Measurement of ultrasonic testing for section 118 %% 
[num, txt, tab] = xlsread('Ultrasonic measurments_118.xlsx'); %  

 
%% Loading data file for the choosen defect %% 
nb_defect=length(num(:,1)); % Number of defects 

  
for defect=1:1:nb_defect       
 

% Storing defect position for all defects 
        position_defect(defect,1)=num(defect,13); 
% loading file     
    if (position_defect(defect)>=1150 & position_defect(defect)<1170) 
        load('deflection_data_118_1160.mat'); 
        file_loaded(defect,1)=1160; 
    elseif (position_defect(defect)>=1170 & 

position_defect(defect)<1190) 
        load('deflection_data_118_1180.mat'); 
        file_loaded(defect,1)=1180; 
    elseif (position_defect(defect)>=1190 & 

position_defect(defect)<1210) 
        load('deflection_data_118_1200.mat'); 
        file_loaded(defect,1)=1200; 
    elseif (position_defect(defect)>=1210 & 

position_defect(defect)<1230) 
        load('deflection_data_118_1220.mat'); 
        file_loaded(defect,1)=1220; 
    elseif (position_defect(defect)>=1230 & 

position_defect(defect)<1250) 
        load('deflection_data_118_1240.mat'); 
        file_loaded(defect,1)=1240; 
    elseif (position_defect(defect)>=1250 & 

position_defect(defect)<1270) 
        load('deflection_data_118_1260.mat'); 
        file_loaded(defect,1)=1260; 
    elseif (position_defect(defect)>=1270 & 

position_defect(defect)<1290) 
        load('deflection_data_118_1280.mat'); 
        file_loaded(defect,1)=1280; 
    elseif (position_defect(defect)>=1290 & 

position_defect(defect)<1310) 
        load('deflection_data_118_1300.mat'); 
        file_loaded(defect,1)=1300; 
    end 

     
%% Initialization of indixes %% 
    inf_average=0; 
    sup_average=0; 
    inf_around=0; 
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    sup_around=0; 
    L=length(D(sample).m_temp);    % Size of matrix  of positions      

     % along the track for choosen      

     % sample 

     
%% Determination of the indexes used to calculate minimum and nominal 

stiffness on L_around and L_average %% 

  
    for i=1:1:L 
        if D(sample).m_temp(i,1)>(position_defect(defect)-L_average-

delta)& D(sample).m_temp(i,1)<(position_defect(defect)-

L_average+delta) 
            inf_average=i; 
        elseif 

D(sample).m_temp(i,1)>(position_defect(defect)+L_average-delta)& 

D(sample).m_temp(i,1)<(position_defect(defect)+L_average+delta) 
            sup_average=i; 
        elseif D(sample).m_temp(i,1)>(position_defect(defect)-

L_around-delta)& D(sample).m_temp(i,1)<(position_defect(defect)-

L_around+delta) 
            inf_around=i; 
        elseif 

D(sample).m_temp(i,1)>(position_defect(defect)+L_around-delta)& 

D(sample).m_temp(i,1)<(position_defect(defect)+L_around+delta) 
            sup_around=i; 
        end 
    end 

     
%% Storing minimum stiffness and its position for both rails %% 
[k_min_left(defect,1) 

ind_kmin_left]=min(D(sample).data(inf_around:sup_around,9)); 

[k_min_right(defect,1) 

ind_kmin_right]=min(D(sample).data(inf_around:sup_around,10));  

 

position_kmin_left(defect,1)=D(sample).m_temp(ind_kmin_left+inf_aroun

d,1); 
position_kmin_right(defect,1)=D(sample).m_temp(ind_kmin_right+inf_aro

und,1); 

     
%% Storing maximum stiffness and its position for both rails %% 
[k_max_left(defect,1) 

ind_kmax_left]=max(D(sample).data(inf_around:sup_around,9)); 
[k_max_right(defect,1) 

ind_kmax_right]=max(D(sample).data(inf_around:sup_around,10)); 
 

position_kmax_left(defect,1)=D(sample).m_temp(ind_kmax_left+inf_aroun

d,1); 
position_kmax_right(defect,1)=D(sample).m_temp(ind_kmax_right+inf_aro

und,1);     

     
%% Storing nominal stiffness for both rails %% 
k_nom_left(defect,1)=mean(D(sample).data(inf_average:sup_average,9));    

k_nom_right(defect,1)=mean(D(sample).data(inf_average:sup_average,10)

); 

     
%% Computing ratio k_min / k_nom for both rails %% 
ratio_kmin_left(defect,1)=k_min_left(defect,1)./k_nom_left(defect,1); 
ratio_kmin_right(defect,1)=k_min_right(defect,1)./k_nom_right(defect,

1);  
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%% Computing ratio k_max / k_nom for both rails %% 
ratio_kmax_left(defect,1)=k_max_left(defect,1)./k_nom_left(defect,1); 
ratio_kmax_right(defect,1)=k_max_right(defect,1)./k_nom_right(defect,

1);  

     
end; 

  
%% Writing the results in Excel file %% 

  
filename = 'Results_k_min_kmax_knom.xlsx';            
Column_title={  'k_min left' ... 
                'k_max left' ... 
                'k_nom left' ... 
                'k_min/k_nom left' ... 
                'k_max/k_nom left' ... 
                'k_min right' ... 
                'k_max right' ... 
                'k_nom right' ... 
                'k_min/k_nom right' ...  
                'k_max/k_nom right' ...  
                'defect position' ... 
                'position k_min left' ... 
                'position k_max left' ... 
                'position k_min right'... 
                'position k_max right'};        
xlswrite(filename, Column_title)                   
xlswrite(filename,k_min_left(:,1),1,'A2');   
xlswrite(filename,k_max_left(:,1),1,'B2');   
xlswrite(filename,k_nom_left(:,1),1,'C2');         
xlswrite(filename,ratio_kmin_left(:,1),1,'D2');  
xlswrite(filename,ratio_kmax_left(:,1),1,'E2');  
xlswrite(filename,k_min_right(:,1),1,'F2');   
xlswrite(filename,k_max_right(:,1),1,'G2');      
xlswrite(filename,k_nom_right(:,1),1,'H2');       
xlswrite(filename,ratio_kmin_right(:,1),1,'I2');    
xlswrite(filename,ratio_kmax_right(:,1),1,'J2');     
xlswrite(filename,position_defect(:,1),1,'K2');           
xlswrite(filename,position_kmin_left(:,1),1,'L2');  
xlswrite(filename,position_kmax_left(:,1),1,'M2');  
xlswrite(filename,position_kmin_right(:,1),1,'N2');  
xlswrite(filename,position_kmax_right(:,1),1,'O2');  
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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9.3 ANSYS command file for estimating bending 

moments in a rail with hanging sleepers 
/BATCH               
WPSTYLE,,,,,,,,0 
 
/PREP7    ! Open the Preprocessor module 
 
 
!!!!!!!!!!!!!!!!! Variables !!!!!!!!!!!!!!!!! 
 
reduc=0   ! Reducing factor of stiffness for the hanging sleeper (%) 
k_norm=30E6  ! Stiffness for "normal" sleepers (N/m) 
load=250000/2  ! Load per wheel=axial load/2 (N) 
 
 
!!!!!!!!!!!!!!!!! Element types !!!!!!!!!!!!!!!!! 
 
ET,1,BEAM188   ! Element type 1 = Beam188 
ET,2,COMBIN14   ! Element type 2 = Combin14 (spring-damper) 
ET,3,COMBIN14  ! Element type 3 = Combin14 (spring-damper) 
 
 
!!!!!!!!!!!!!!!!! Real constants !!!!!!!!!!!!!!!!! 
 
K_hang=reduc*k_norm/100 ! Stiffness for the hanging sleeper 
R,2,k_norm, , , , , ,  ! Stiffness for element 2 -> Normal sleepers 
R,3,k_hang, , , , , ,   ! Stiffness for element 3 -> Hanging sleeper 
 
 
!!!!!!!!!!!!!!!!! Material properties !!!!!!!!!!!!!!!!! 
 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,210E9   ! Young modulus 
MPDATA,PRXY,1,,0.3   ! Poisson coefficient 
MPDATA,DENS,1,,7862  ! Density 
 
 
!!!!!!!!!!!!!!!!! Beam section !!!!!!!!!!!!!!!!! 
 
SECTYPE, 1, BEAM, ASEC, , 0    
SECOFFSET, CENT  
SECDATA,76.70E-4,512.3E-8,0,3038.3E-8,0,3.05E-5,0,0,0,0,150E-3,172E-3 
 
 
!!!!!!!!!!!!!!!!! Nodes !!!!!!!!!!!!!!!!! 
 
xpos1=0   ! xpos initialization 
*DO,I,1,401      ! For I = 1 to 401 (there will be 401 nodes) 
N,I,xpos1,0,0  ! Create a node I, at location dxpos,0,0 
xpos1=xpos1+0.05 ! xpos is the incremented x position 
*ENDDO 
 
xpos2=0.65  ! Nodes for the bottom end of springs 
*DO,I,1001,1030     
N,I,xpos2,-1,0  
xpos2=xpos2+0.65 
*ENDDO 
 
 
!!!!!!!!!!!!!!!!! Elements !!!!!!!!!!!!!!!!! 
 
TYPE, 1     ! Meshing with element type 1 (beam) 
MAT, 1 
REAL, ,    
ESYS, 0    
SECNUM, 1  
TSHAP,LINE   
 
E,1,2 
*REPEAT,400,1,1 
 
TYPE, 2     ! Meshing with element type 2 (spring) 
MAT, 1 
REAL, 2    
ESYS, 0    
SECNUM, ,    
TSHAP,LINE 
 
E,14,1001  ! Meshing the springs for "normal" sleepers 
*REPEAT,14,13,1 
E,209,1016 
*REPEAT,15,13,1     
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TYPE, 3     ! Meshing with element type 3 (spring) 
MAT, 1 
REAL, 3    
ESYS, 0    
SECNUM, ,    
TSHAP,LINE   
 
E,196,1015  ! Meshing the spring for the hanging sleeper 
 
 
!!!!!!!!!!!!!!!!! Bondary conditions !!!!!!!!!!!!!!!!! 
 
D, 1, UX, 0  ! BC for the first node of the rail 
D, 1, UY, 0 
D, 1, UZ, 0 
D, 1, ROTX, 0 
D, 1, ROTY, 0 
 
D, 401, UY, 0  ! BC for the last node of the rail 
D, 401, UZ, 0 
 
D, 1001, ALL, 0 ! BC for springs'base 
*REPEAT,30,1,0,0 
 
FINISH   ! Close the Preprocessor module 
 
 
!!!!!!!!!!!!!!!!! Loop to vary the load positions !!!!!!!!!!!!!!!!! 
 
Imin=170  ! First position of the 1st wheel 
Imax=358  ! Last position of the 1st wheel 
 
*DIM,deflect,ARRAY,401,Imax-Imin+1 ! Array for saving UY results 
*DIM,bend_mom,ARRAY,401,Imax-Imin+1 ! Array for saving MZ results  
 
*DO,I,Imin,Imax    
 
 
!!!!!!!!!!!!!!!!! Loads !!!!!!!!!!!!!!!!! 
 
/PREP7    ! Open the Preprocessor module 
 
FDELE,2,FY, 400, 1 ! Delete forces FY for all nodes 
 
F,I,FY,-load  ! Force for wheel 1 
F,I-36,FY,-load ! Force for wheel 2 
F,I-100,FY,-load ! Force for wheel 3 
F,I-136,FY,-load ! Force for wheel 4 
 
FINISH   ! Close the Preprocessor module 
 
 
!!!!!!!!!!!!!!!!! Soving !!!!!!!!!!!!!!!!! 
 
/SOLU   ! Open the Solution module 
SOLVE 
FINISH   ! Close the Solution module 
 
 
!!!!!!!!!!!!!!!!! Post processing !!!!!!!!!!!!!!!!! 
 
/POST1   ! Open Postprocessor module 
 
*VGET,deflect(1,I-Imin+1),NODE,ALL,U,Y ! Get the deflection at each node 
 
ETABLE, MZ, SMISC, 3 ! Create table for bending moment 
 
*DO,J,1,400  ! Loop for getting the bending moment at each node 
*GET,bend_mom(J,I-Imin+1),ETAB,1,ELEM,J  
*ENDDO 
*GET,bend_mom(401,I-Imin+1),ETAB,1,ELEM,400 ! Bending moment for the last element 
 
FINISH   ! Close Postprocessor module 
 
*ENDDO   ! End of the loop varying the load positions 
 
 
!!!!!!!!!!!!!!!!! Writing the results !!!!!!!!!!!!!!!!! 
 
*CFOPEN,'Resu_UY','xls',' ' 
*DO,I,0,170,10 
*VWRITE,deflect(1,I+1),deflect(1,I+2),deflect(1,I+3),deflect(1,I+4),deflect(1,I+5),def
lect(1,I+6),deflect(1,I+7),deflect(1,I+8),deflect(1,I+9),deflect(1,I+10) 
(E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6) 
*VWRITE,' ' 
(A10) 
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*ENDDO 
*VWRITE,deflect(1,181),deflect(1,182),deflect(1,183),deflect(1,184),deflect(1,185),def
lect(1,186),deflect(1,187),deflect(1,188),deflect(1,189) 
(E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6) 
*CFCLOS 
 
*CFOPEN,'Resu_MZ','xls',' ' 
*DO,I,0,170,10 
*VWRITE,bend_mom(1,I+1),bend_mom(1,I+2),bend_mom(1,I+3),bend_mom(1,I+4),bend_mom(1,I+5
),bend_mom(1,I+6),bend_mom(1,I+7),bend_mom(1,I+8),bend_mom(1,I+9),bend_mom(1,I+10) 
(E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6) 
*VWRITE,' ' 
(A10) 
*ENDDO 
*VWRITE,bend_mom(1,181),bend_mom(1,182),bend_mom(1,183),bend_mom(1,184),bend_mom(1,185
),bend_mom(1,186),bend_mom(1,187),bend_mom(1,188),bend_mom(1,189) 
(E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6,E30.6) 
*CFCLOS 

 

! If considering real stiffness values, first part of the code is changed with the 
following: 
 
/PREP7    ! Open the Preprocessor module 
 
!!!!!!!!!!!!!!!!! Variables !!!!!!!!!!!!!!!!! 
 
load=250000/2  ! Load per wheel=axial load/2 (N) 
 
k_tra_n=30E6  ! Nominal track stiffness - average on the section (N/m) 
k_bal_n=50E6  ! Nominal ballast stiffness (N/m) 
 
*DIM,k_track,ARRAY,30 ! Creation of an array for track stiffness averaged around each 
sleeper 
k_track(1,1)=29.2E6 ! Measured track stiffness averaged around the sleeper 1 to 30 
(N/m) 
k_track(2,1)=32.6E6  
k_track(3,1)=35.9E6 
k_track(4,1)=39.0E6 
k_track(5,1)=42.4E6 
k_track(6,1)=46.0E6 
k_track(7,1)=50.0E6 
k_track(8,1)=55.2E6 
k_track(9,1)=59.9E6 
k_track(10,1)=65.2E6 
k_track(11,1)=70.8E6 
k_track(12,1)=76.8E6 
k_track(13,1)=84.2E6 
k_track(14,1)=90.2E6 
k_track(15,1)=95.8E6 
k_track(16,1)=100.5E6 
k_track(17,1)=103.9E6 
k_track(18,1)=105.7E6 
k_track(19,1)=105.3E6 
k_track(20,1)=102.8E6 
k_track(21,1)=98.8E6 
k_track(22,1)=93.4E6 
k_track(23,1)=85.9E6 
k_track(24,1)=79.3E6 
k_track(25,1)=72.8E6 
k_track(26,1)=66.7E6 
k_track(27,1)=61.2E6 
k_track(28,1)=55.5E6 
k_track(29,1)=51.5E6 
k_track(30,1)=47.8E6 
 
*DIM,k_local,ARRAY,30 ! Creation of an array for local ballast stiffness at each 
sleeper 
*DO,I,1,30      
k_local(I,1)=k_bal_n*k_track(I,1)/k_tra_n ! Calculate local ballast stiffness at 
each sleeper 
*ENDDO 
 
 
!!!!!!!!!!!!!!!!! Element types !!!!!!!!!!!!!!!!! 
 
ET,1,BEAM188   ! Element type 1 = Beam188 
ET,2,COMBIN14    ! Element type 2 to 31 = Combin14 (spring-damper) 
*REPEAT,30,1  
 
 
!!!!!!!!!!!!!!!!! Real constants !!!!!!!!!!!!!!!!! 
 
*DO,I,2,31 
R,I,k_local(I-1,1), , , , , , ! Stiffness for element I 
*ENDDO 
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!!!!!!!!!!!!!!!!! Material properties !!!!!!!!!!!!!!!!! 
 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,210E9   ! Young modulus 
MPDATA,PRXY,1,,0.3   ! Poisson coefficient 
MPDATA,DENS,1,,7862  ! Density 
 
 
!!!!!!!!!!!!!!!!! Beam section !!!!!!!!!!!!!!!!! 
 
SECTYPE, 1, BEAM, ASEC, , 0    
SECOFFSET, CENT  
SECDATA,76.70E-4,512.3E-8,0,3038.3E-8,0,3.05E-5,0,0,0,0,150E-3,172E-3 
 
 
!!!!!!!!!!!!!!!!! Nodes !!!!!!!!!!!!!!!!! 
 
xpos1=0   ! xpos initialization 
*DO,I,1,401      ! For I = 1 to 401 (there will be 401 nodes) 
N,I,xpos1,0,0  ! Create a node I, at location dxpos,0,0 
xpos1=xpos1+0.05 ! xpos is the incremented x position 
*ENDDO 
xpos2=0.65 
*DO,I,1001,1030     
N,I,xpos2,-1,0  
xpos2=xpos2+0.65 
*ENDDO 
 
 
!!!!!!!!!!!!!!!!! Elements !!!!!!!!!!!!!!!!! 
 
TYPE, 1     ! Meshing with element type 1 (beam) 
MAT, 1 
REAL, ,    
ESYS, 0    
SECNUM, 1  
TSHAP,LINE   
E,1,2 
*REPEAT,400,1,1 
 
!TYPE, 2     ! Meshing with element type 2 (spring) 
!MAT, 1 
!REAL, 2    
!ESYS, 0    
!SECNUM, ,    
!TSHAP,LINE 
!E,14,1001  ! Meshing the springs for "normal" sleepers 
!*REPEAT,14,13,1 
!E,209,1016 
!*REPEAT,15,13,1     
 
!TYPE, 3     ! Meshing with element type 3 (spring) 
!MAT, 1 
!REAL, 3    
!ESYS, 0    
!SECNUM, ,    
!TSHAP,LINE   
!E,196,1015  ! Meshing the spring for the hanging sleeper 
 
 
*DO,I,2,31  ! Meshing with element type I (spring) 
TYPE, I   
MAT, 1 
REAL, I    
ESYS, 0    
SECNUM, ,    
TSHAP,LINE 
E,1+13*(I-1),1000+(I-1) 
*ENDDO 
 
 
!!!!!!!!!!!!!!!!! Boundary conditions !!!!!!!!!!!!!!!!! 
 
D, 1, UX, 0  ! BC for the first node of the rail 
D, 1, UY, 0 
D, 1, UZ, 0 
D, 1, ROTX, 0 
D, 1, ROTY, 0 
D, 401, UY, 0  ! BC for the last node of the rail 
D, 401, UZ, 0 
D, 1001, ALL, 0 ! BC for springs‘base 
*REPEAT,30,1,0,0 
 
FINISH   ! Close the Preprocessor module 
 
! Continue with the previous code 
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9.4 Track characateristics extracted from sample 1 for 

four detected defects 

(1): Defect located at 1165.512 km 

 
Longitudinal level 

 
Track deflection 

 
Track stiffness 

 
Track deflection with short wavelength 

 
Longitudinal level filtered at 1-25 m 

 
Longitudinal level filtered at 3-9 m 

 
Longitudinal level filtered at 1-4 m 
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(2): Defect located at 1230.889 km 

 

 
Longitudinal level 

 
Track deflection 

 
Track stiffness 

 
Track deflection with short wavelength 

 
Longitudinal level filtered at 1-25 m  

Longitudinal level filtered at 3-9 m 

 
Longitudinal level filtered at 1-4 m 
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(3): Defect located at 1244.559 km 

 

 
Longitudinal level 

 
Track deflection 

 
Track stiffness 

 
Track deflection with short wavelength 

 
Longitudinal level filtered at 1-25 m 

 
Longitudinal level filtered at 3-9 m 

 
Longitudinal level filtered at 1-4 m 
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(4): Defect located at 1264.768 

 

 
Longitudinal level 

 
Track deflection 

 
Track stiffness 

 
Track deflection with short wavelength 

 
Longitudinal level filtered at 1-25 m  

Longitudinal level filtered at 3-9 m 

 
Longitudinal level filtered at 1-4 m 
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9.5 Track stiffness deviations of samples 2 to 5 

 

Figure 36: Minimum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 2 

 

 

Figure 37 :Minimum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 3 

 

 

Figure 38: Minimum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 4 
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Figure 39 : Minimum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 5 

 

 

Figure 40: Maximum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 2 

 

 

Figure 41: Maximum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 3 
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Figure 42: Maximum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 4 

 

 

Figure 43: Maximum track stiffness over nominal stiffness for left rail and right rail with respect 

to defect positions for sample 5 
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9.6 Deviations of deflection with short wavelength content 

of samples 2 to 5 

 

Figure 44 – Maximum swept standard deviation over nominal swept standard deviation of 

filtered deflection for left rail and right rail with respect to defect positions for sample 2 

 

 

Figure 45 - Maximum swept standard deviation over nominal swept standard deviation of 

filtered deflection for left rail and right rail with respect to defect positions for sample 3 

 

 

Figure 46 - Maximum swept standard deviation over nominal swept standard deviation of 

filtered deflection for left rail and right rail with respect to defect positions for sample 4 
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Figure 47 - Maximum swept standard deviation over nominal swept standard deviation of 

filtered deflection for left rail and right rail with respect to defect positions for sample 5 
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9.7 Maximum and minimum bending moments along the 

rail considering several hanging sleepers 

 

Figure 48 - Maximum bending moment considering two consecutive hanging sleepers, compared 

to a case without hanging sleepers 

 

Figure 49 - Minimum bending moment considering two consecutive hanging sleepers, compared 

to a case without hanging sleepers 

 

Figure 50 – Maximum bending moment considering two hanging sleepers separated by a normal 

sleeper, compared to a case without hanging sleepers 
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Figure 51 - Minimum bending moment considering two hanging sleepers separated by a normal 

sleeper, compared to a case without hanging sleepers 

 

Figure 52 - Maximum bending moment considering three hanging sleepers, compared to a case 

without hanging sleepers 

 

Figure 53 - Minimum bending moment considering three hanging sleepers, compared to a case 

without hanging sleepers 
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9.8 Maximum and minimum bending moments along the 

rail whith different loads and nominal stiffness 

 

Figure 54 - Maximum bending moment for cases with and without a hanging sleeper (k=0% and 

k=100%, respectively), for different loads 

 

 

Figure 55 - Minimum bending moment for cases with and without a hanging sleeper (k=0% and 

k=100%, respectively), for different loads 
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Figure 56 - Maximum bending moment for cases with and without a hanging sleeper (k=0% and 

k=100%, respectively), for different nominal stiffness magnitudes 

 

 

Figure 57 - Minimum bending moment for cases with and without a hanging sleeper (k=0% and 

k=100%, respectively), for different stiffness magnitudes 

 

 

 

 


