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Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom
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In traditional quantum optics, where the interaction between atoms and light at optical frequencies is studied,
the atoms can be approximated as pointlike when compared to the wavelength of light. So far, this relation
has also been true for artificial atoms made out of superconducting circuits or quantum dots, interacting with
microwave radiation. However, recent and ongoing experiments using surface acoustic waves show that a single
artificial atom can be coupled to a bosonic field at several points wavelengths apart. Here, we theoretically study
this type of system. We find that the multiple coupling points give rise to a frequency dependence in the coupling
strength between the atom and its environment and also in the Lamb shift of the atom. The frequency dependence
is given by the discrete Fourier transform of the coupling-point coordinates and can therefore be designed. We
discuss a number of possible applications for this phenomenon, including tunable coupling, single-atom lasing,
and other effects that can be achieved by designing the relative coupling strengths of different transitions in a
multilevel atom.
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I. INTRODUCTION

Atoms found in nature are so small (r ≈ 10−10 m) that
they, in most cases, can be approximated as pointlike. This
is certainly the case in traditional quantum optics, which is
concerned with the interaction between such atoms and elec-
tromagnetic light at optical wavelengths (λ ≈ 10−6–10−7 m)
[1,2]. Atoms excited to high Rydberg states can reach
comparable sizes (r ≈ 10−8–10−7 m), but in experiments they
interact with microwave radiation (λ ≈ 10−3–10−1 m) [3,4].

In recent years, many research groups have started building
“artificial atoms” using, e.g., superconducting circuits [5] or
quantum dots [6]. These artificial atoms can be designed to
have various desirable properties such as (tunable) strong
coupling strengths [7,8] and specific (tunable) level structures,
which can be an advantage compared to working with
real atoms with fixed properties set by nature. Since the
artificial atoms can be made to interact with microwave
radiation [7,9,10], they realize “quantum optics on a chip,”
also referred to as circuit quantum electrodynamics (cQED).
The advantages of cQED has been demonstrated by tests
of quantum optics theories in new regimes not previously
accessible [11,12].

Even though the circuits making up the artificial atoms can
be quite large (l ≈ 10−4 m), they are still effectively pointlike
when compared to the wavelength of the microwave fields
they interact with. However, a few very recent experiments
show that this need not always be the case. For example,
there is ongoing work [13,14] on coupling a certain type of
artificial atom, a superconducting circuit called transmon [15],
to surface acoustic waves (SAWs) [16,17]. Due to the low
SAW velocity, the transmon is several phonon wavelengths
(λ ≈ 10−6 m) long in this experiment, making it a giant
artificial atom. Also, a recent update of the transmon design
[18] opens up the possibility of coupling it at several points,
wavelengths apart, to a meandering microwave transmission
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line. Furthermore, 3D transmons are approaching wavelength
sizes [19].

While there have been experiments [12,20–24] and theo-
retical studies [25,26] with an atom coupled at a single point
to a one-dimensional (1D) field and also with several atoms
coupled to the field at different points [27–37], to the best
of our knowledge, the situation outlined above has not been
studied previously. In this paper, we therefore investigate the
physics of an atom coupled to a massless 1D bosonic field at
several connection points, which may be spaced wavelengths
apart.

When the atom couples to the field at a single point, it
interacts with vacuum fluctuations, leading to relaxation at
its transition frequencies and to a renormalization of those
frequencies known as the Lamb shift [38–41], which has also
been studied for superconducting qubits [42,43]. Introducing
more connection points opens up the possibility of interference
playing a role in these processes. The result is that we can
calculate the frequency dependence of the atom coupling
strength and Lamb shift for a given structure or, conversely,
design a certain frequency dependence by choosing the spacing
between the connection points. Essentially, this is done by
performing a discrete Fourier transform of the interpoint
distances [44], as the wave vector is related to the frequency
via the boson velocity.

Classically, these interference effects are well known for
SAW systems in commercial use [16,17]. Bringing them to
the quantum world would be an interesting generalization
of the spin-boson model [45,46]. While there have been
papers investigating the effect of a few particular frequency-
dependent couplings between atom and field [47–50], there
has, as far as we know, not been any previous study showing
how couplings with arbitrary frequency dependencies can be
realized in quantum optics. We note, however, that a precursor
of these interference effects can be seen in studies of an atom
placed in front of a mirror [51–56], which lets the atom interact
twice with the field.

Frequency-dependent couplings could be useful in a num-
ber of ways. Essentially, the applications are all based on
changing the ratio between coupling strengths for transitions at
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different frequencies. For example, by changing the transition
frequency of a qubit we could tune it from interacting strongly
with the field to a frequency where the interaction is zero,
thus protecting it from the environment. One can also imagine
placing two transitions at very different coupling strengths
to facilitate a population inversion needed for lasing [57] or
amplifying multiphoton processes by tuning the frequencies
of lower-order processes to interaction minima.

This article is organized as follows. In Sec. II, we describe
the system. We sketch a derivation of the effective master
equation for the atom, considering both the situation of an
open transmission line and that of the atom being placed close
to a mirror. Then, in Sec. III, we investigate the frequency
dependence of the coupling strength between the atom and
the environment and of the Lamb shift of the atom. We show
that by controlling the coupling strength at each connection
point and the distance between connection points, a wide
variety of frequency dependencies can be designed for the
total coupling. Some possible applications of such designed
frequency-dependent couplings are then discussed in Sec. IV.
The applications include tunable coupling, single-atom lasing
and various two-tone experiments. In Sec. V, we discuss
possible experimental realizations of our system. In Sec. VI,
finally, we conclude and give an outlook for future work.

The calculations referred to in Sec. II are presented in detail
in the appendices. In Appendix A, we do the standard master-
equation derivation by tracing out the environment. Then,
in Appendix B, we use the equivalent (S,L,H ) formalism
for cascaded quantum systems to redo the calculations in a
different way and also to handle the case of the giant artificial
atom placed in front of a mirror. With the (S,L,H ) expressions
in place, more complex setups involving giant artificial atoms
can be considered in the future.

II. GIANT ATOM

A. Hamiltonian

The system we consider is sketched in Fig. 1. A multilevel
atom is connected at N points to right- and left-moving modes
of a bosonic field obeying the massless Klein-Gordon equation.
The Hamiltonian of the system is given by

H = HA + HF + HI , (1)

where we have defined the atom Hamiltonian

HA =
∑
m

ωm |m〉〈m| , (2)

the field Hamiltonian

HF =
∑

j

ωj (a†
RjaRj + a

†
LjaLj ), (3)

and the interaction Hamiltonian

HI =
∑
j,k,m

gjkm (|m〉〈m + 1| + |m + 1〉〈m|)

× (aRj e
−iωj xk/v + aLj e

iωj xk/v

+ a
†
Rj e

iωj xk/v + a
†
Lj e

−iωj xk/v), (4)

all in units where � = 1. The atom levels are labeled by the
index m = 0,1,2, . . . and have energies ωm. The indices R

and L denote right- and left-moving bosons, respectively, and
the boson modes are furthermore distinguished by the index j .
The coordinate of connection point k is denoted xk , and v is the
boson velocity, which we assume to be frequency independent.
We assume that the time it takes for a boson to travel between
two connection points is negligible compared to the relevant
time scales of the problem (the relaxation rate of the atom),
leaving the phase shift eiωj xk/v as the only effect. In addition,
we assume that the coupling strengths gjkm are small compared
to the relevant ωm and ωj and that they can be factorized as
gjkm = gjgkgm, which is the case for the transmon [15]. In
general, the mode coupling strength gj can be considered
constant over a wide frequency range. The factors gk are
dimensionless and only describe the relative coupling strengths
of the different connection points. Finally, for the transmon
[15] and other atoms close to harmonic oscillators, we have
gm = √

m + 1.

B. Master equation

In Appendix A, we derive the master equation for the
atom using standard techniques [38,39]. We do not perform
the rotating-wave approximation (RWA) on the interaction
Hamiltonian in Eq. (4) but do it on the master equation.
This gives the correct expression for the Lamb shift [58–60].
Introducing the notation

σm
− = |m〉〈m + 1| , (5)

σm
+ = |m + 1〉〈m| , (6)

ωr,s = ωr − ωs, (7)

A(ωj ) = gj

∑
k

gke
iωj xk/v, (8)

we arrive at the result

ρ̇(t) = −i

[∑
m

(ωm + �m) |m〉〈m| ,ρ(t)

]

+
∑
m

�m+1,m{[1 + n̄(ωm+1,m)]D[σm
− ]

+ n̄(ωm+1,m)D[σm
+ ]}, (9)

where ρ is the density matrix for the giant atom and we
use the notation D [X] ρ = XρX† − 1

2X†Xρ − 1
2ρX†X for

the Lindblad superoperators [61].
Here, the relaxation rates �m+1,m for the transitions

|m + 1〉 → |m〉 are given by

�m+1,m = 4πg2
mJ (ωm+1,m)|A(ωm+1,m)|2, (10)

where J (ω) is the density of states for the bosonic modes and
n̄(ω,T ) is the mean number of bosonic excitations at frequency
ω and temperature T ,

n̄(ω,T ) = e−�ω/kBT

1 − e−�ω/kBT
. (11)
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FIG. 1. (Color online) A sketch of the system under consideration. A multilevel atom with energy levels |0〉,|1〉,|2〉, . . . couples at the
points x1, . . . ,xN to a bosonic field with right- and left-traveling modes. The distance between the coupling points can, for example, be on the
order of wavelengths λ = 2πv/ω1,0, where ω1,0 is the first transition frequency of the atom and v is the velocity of the bosonic modes.

Furthermore, the energy shift �m of level m is

�m = 2P
∫ ∞

0
dωJ (ω) |A(ω)|2

×
(

g2
mn̄(ω,T )

ω − ωm+1,m

− g2
m(1 + n̄(ω,T ))
ω + ωm+1,m

+ g2
m−1n̄(ω,T )

ω + ωm,m−1
− g2

m−1(1 + n̄(ω,T ))

ω − ωm,m−1

)
, (12)

where P denotes principal value (see Appendix A). The terms
without n̄(ω,T ) are the Lamb shift arising from interaction
with the vacuum fluctuations of the bosonic field. The terms
with n̄(ω,T ) are the Stark shift, which is due to interaction
with thermal excitations of the field.

The difference compared to the case of a small atom is
the frequency-dependent factor |A(ω)|2, which enters both in
the expressions for the relaxation rate and for the Lamb shift.
The expressions for a small atom would be recovered with
N = 1 and |A(ω)|2 = g2

j . In Sec. III, we explore the form of

the frequency dependence that |A(ω)|2 gives rise to.
For a 1D transmission line, we have the “Ohmic” density of

states J (ω) ∝ ω. Limiting ourselves to the case of negligible
temperature (kBT /�ω 	 1), we see that the expression for the
Lamb shift would be diverging linearly for the case of a small
atom. Renormalizing in the spirit of Bethe’s calculation for the
original Lamb shift [41], we instead have (see Appendix A)

�m = 2P
∫ ∞

0
dω

J (ω)

ω
|A(ω)|2

×
(

g2
mωm+1,m

ω + ωm+1,m

− g2
m−1ωm,m−1

ω − ωm,m−1

)
, (13)

which still diverges for a small atom in a 1D transmission line,
but only logarithmically. We can introduce a cutoff frequency
ωc to get a finite value. For a transmon with ω1,0 ≈ 5 GHz a
reasonable choice for ωc is the superconducting gap �SC ≈
100 GHz, i.e., ωc/ω1,0 ≈ 20. For the case of a small two-level
atom, this would give a shift of the transition frequency by
[58–60]

�1,0 = �1 − �0 = −�1,0

2π
ln

(
ω2

c

ω2
1,0

− 1

)
≈ −0.95�1,0.

(14)

For a small multilevel atom with weak anharmonicity, the shift
of the transition frequencies is negligible. However, as we shall
see in Sec. III, the result can be different for a giant atom with
both two levels and more levels.

C. (S,L,H) formalism and mirror

An alternative way to derive the frequency dependence of
the relaxation rates and the Lamb shifts is to use the (S,L,H )
formalism for cascaded quantum systems [62,63]. A benefit
of doing the calculations in this formalism is that it becomes
relatively easy to treat more complicated cases where the giant
atom is coupled to other systems or is subject to some feedback
scheme. The calculations need not be done by hand and can
be performed by a computer program [64]. The underlying
assumptions of the formalism are mostly the same as the ones
we used above, i.e., weak coupling and negligible travel time,
but also include a constant density of states J (ω). We assume
negligible temperature (n̄ = 0) for simplicity.

The detailed (S,L,H ) calculations are shown in
Appendix B. The result for a two-level atom is a relaxation
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rate

�1,0 =
∣∣∣∣∣∣

N∑
k=1

√
γk exp

⎛
⎝i

k−1∑
j=1

φj

⎞
⎠

∣∣∣∣∣∣
2

(15)

and a Lamb shift

�1 =
N−1∑
i=1

N−i∑
k=1

√
γkγk+i sin

⎛
⎝k+i−1∑

j=k

φj

⎞
⎠ , (16)

where the relaxation rate for a single connection point is γk

and the phase shift from one connection point to the next is
written φk = ω1,0(xk+1 − xk)/v. The result for the relaxation
rate is the same as Eq. (10) with n̄(ω) = 0 and J (ω) = J (ω1,0)
inserted since we can identify

γk = 4πg2
j g

2
kg

2
m=1J (ω1,0). (17)

Similarly, the Lamb shift term in Eq. (16) is the result obtained
for low temperature and a constant density of states in Eq. (13),
considering only the dominating second term and extending
the lower limit to −∞, i.e.,

�1 = −2P
∫ ∞

−∞
dω

J (ω1,0) |A(ω)|2
ω − ω1,0

. (18)

This captures the contribution to the Lamb shift from the
interaction at frequencies close to ω1,0.

A very simple feedback situation, which is easily treated in
the (S,L,H ) formalism, is the case of a giant atom placed in
front of a mirror. The result, derived in Appendix B, for the
mirror to the right of the atom, is a modified relaxation rate

�mirror
1,0 = |AL({γj ,φj }) + ei(φ�+φM )AR({γj ,φj })|2 (19)

and an addition of Im(A2
ReiφM ) to the Lamb shift. Here, φM

is the phase shift acquired during the travel to the mirror and
back. We have assumed the corresponding travel time to be
negligible just like the travel time across the giant atom. We
have also used the notation

φ� =
N∑

j=1

φj , (20)

AL({γk,φk}) =
N∑

k=1

√
γk/2 exp

⎛
⎝i

k−1∑
j=1

φj

⎞
⎠ , (21)

AR({γk,φk}) =
N∑

k=1

√
γk/2 exp

⎛
⎝i

N−1∑
j=k

φj

⎞
⎠ , (22)

where AL and AR contain the phase factors for left- and right-
moving bosons, respectively. We note that |AL({γk,φk})|2 =
|AR({γk,φk})|2 and

|AL({γk,φk})|2 + |AR({γk,φk})|2 = �1,0. (23)

III. FREQUENCY-DEPENDENT COUPLING
STRENGTH AND LAMB SHIFT

With the general expressions for the frequency-dependent
relaxation rates and Lamb shifts given in Eqs. (10), (13), (15),

and (16), we now turn our attention to the actual form of the
frequency dependence.

A. Maximally symmetric case

We first consider the maximally symmetric case, where
the coupling strength is the same at each connection point
and the distance between neighboring connection points is
constant. This case is relevant for a recent experiment coupling
a transmon to surface acoustics waves [13]. The symmetry
implies that we can set gk = 1 in Eq. (8) or, correspondingly,
γk = γ in Eqs. (15) and (16) and φk = φ = ω1,0(x2 − x1)/v in
Eqs. (15) and (16). The result from the (S,L,H ) expressions
is a relaxation rate,

�1,0(ω1,0) = γ
sin2

(
N
2 φ

)
sin2

(
1
2φ

) = γ
1 − cos(Nφ)

1 − cos(φ)
, (24)

and a contribution to the Lamb shift,

�1 = γ

N∑
k=1

(N − k) sin(kφ) = γ
N sin(φ) − sin(Nφ)

2 (1 − cos(φ))
. (25)

The ground state is not shifted, so �1 = �1,0. Note that the
result for a small atom with a single connection point would
be �1,0 = γ and �0 = �1 = 0. For a small atom, the main
part of the Lamb shift is due to a sum of contributions from
a wide range of frequencies. With an increasing number of
connection points in the giant atom, the dominant contribution
to the Lamb shift is instead due to interaction at frequencies
close to ω1,0, and this is captured by Eq. (25).

We plot these results for the cases N = 3 and N = 10
in Fig. 2. For the relaxation rate, there is a clear maximum
when the distance between neighboring connection points
corresponds to an integer number n of wavelengths for the
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ω1,0(x2 − x1)/2πv

Γ
/
Γ

m
a
x
,Δ

/
Γ

m
a
x

Γ, N=3
Δ, N=3
Γ, N=10
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FIG. 2. (Color online) The frequency dependence of the relax-
ation rate � and the main contribution to the Lamb shift � for N = 3
[blue (dark gray) lines; solid for �, dashed for �] and N = 10 [red
(light gray) lines; dash-dotted for �, dotted for �] in the symmetric
case. Note that ω1,0(x2 − x1)/2πv corresponds to φ/2π . Everything
has been normalized to the maximum coupling strength for each N.
We have set J (ω) constant for simplicity. It is usually a function
varying slowly with ω; in the Ohmic case J (ω) ∝ ω.
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transition frequency, i.e., ω1,0 = 2nπ (x2 − x1)/v. There are
also a number of lower, local maxima, but more interestingly,
we have a number of points where the relaxation rate goes to
zero. This occurs when the distance between connection points
is such that we get destructive interference in the coupling. The
distance between maxima for the relaxation rate scales with
1/N ; more connection points give narrower resonances. The
height of the global maximum scales with N2.

For the contribution to the Lamb shift, we see that it can
be both positive and negative. It is zero when the relaxation
is maximum, and it reaches its highest magnitude halfway
between the relaxation maximum and the first relaxation
minima. The Lamb shift is half the Hilbert transform of the
relaxation rate, as shown in Eq. (18).

If we include the mirror close to the atom, we get in the
symmetric case, with φm = φ, a relaxation rate

�mirror
1,0 (ω1,0) = 1

2
|1 + eiNφ |2�1,0 = γ

sin2(Nφ)

2 sin2
(

φ

2

) (26)

and a Lamb shift

�mirror
1 = �1 + 1

2
sin(Nφ)�1,0 = γ

2N sin(φ) − sin(2Nφ)

4 (1 − cos(φ))
.

(27)

Effectively, the mirror lets the atom interact twice with the
field, and the result is that the frequency dependence of the
relaxation rate and the Lamb shift has twice the magnitude
and twice as narrow resonances compared to the case without
the mirror.

B. Designing the frequency dependence

Moving on from the maximally symmetric case, we now
ask ourselves what frequency dependencies we can create
for the relaxation rates and the Lamb shifts given complete
control over the coupling strength at each point and the spacing
between connection points. The frequency dependence is
determined by |A(ω)|2, with A(ω) defined in Eq. (8). We see
that this is a discrete Fourier transform [44] of the coupling
strengths at the individual connection points. Thus, given
enough connection points and sufficient parameter control,
in principle any frequency dependence of the relaxation rates
can be designed.

To show just a few examples, in Fig. 3 we plot relaxation
rates that have been tailored to have two maxima of equal
magnitude (solid black line), a wide maximum (dotted blue
line), and wide, shallow minima (dashed red line). This was
done using only four connection points and just tuning a few
parameters away from the maximally symmetric case.

IV. APPLICATIONS

In this section, we will discuss a number of possible
applications for frequency-dependent relaxation rates and
Lamb shifts. While there are several applications for the
relaxation rates, it is harder to find a good use for the small
Lamb shifts.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

Γ
1,

0/
Γ

m
a
x

1,
0

ω1,0(x2 − x1)/2πv

FIG. 3. (Color online) Designed relaxation rate frequency depen-
dencies. The solid black line shows two maxima of equal magnitude
(parameters: gk = {1,1,1,1}, xk = {0,1,1.5,3}x2), the dotted blue
line has a wide, flat maximum (parameters: gk = {1,3,3,1}, xk =
{0,1,2,3.5}x2), and the dashed red line has two wide, shallow minima
(parameters: gk = {1,4,4,1}, xk = {0,1,2,3}x2).

A. Tunable coupling

The ability to tune the coupling of an artificial atom
to its surroundings is a desirable feature in many quantum
information applications and has been realized for a transmon
[8]. Tunable coupling can limit interaction with the atom to
only when it is needed for readout or control, leaving the
atom protected from decoherence the rest of the time. Here,
we see that a giant artificial atom can switch from strong
coupling to the environment (a maximum in Fig. 2) to very
weak coupling (a minimum in Fig. 2) by only changing the
transition frequency slightly. For an artificial atom such as
a transmon, it is easy to change the transition frequencies
by controlling the magnetic flux through a superconducting
quantum interference device (SQUID) loop. In fact, tunable
coupling in this manner was demonstrated recently with a
small artificial atom in front of a mirror (close to the case
of N = 2 for a giant artificial atom) in [56]. Ideally, it would
perhaps be preferable to change the connection-point distances
in situ rather than the transition frequency, but this seems hard
to implement.

B. Population inversion

Another application of the frequency-dependent relaxation
rates involves higher levels of the atom. For the maximally
symmetric case, we can have the situation depicted in Fig. 4.
There we plot the relaxation rates �1,0 and �2,1 for an
anharmonicity chosen in relation to N such that �2,1 has its
global maximum when �1,0 is at a minimum (and vice versa).
This case opens up the possibility of lasing, as illustrated in
the inset of Fig. 4. If we can drive the |0〉 → |2〉 transition with
sufficient strength �d , we can achieve a population inversion.
The giant atom will decay rapidly form |2〉 to |1〉, but the decay
from |1〉 to |0〉 will be slow.

Since the two decay rates can be very different, very strong
population inversion should be obtainable. Placing the whole
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FIG. 4. (Color online) A scheme for population inversion. The
relaxation rates �1,0 (solid blue line) and �2,1 (dashed red line) for the
first two atom transitions, plotted as a function of the first transition
frequency ω1,0 for N = 10 in the maximally symmetric case. By
choosing the anharmonicity to be −0.1×2πv/(x2 − x1), we can make
the global maximum of �2,1 coincide with a minimum for �1,0. Inset:
Energy-level diagram showing the relevant driving and relaxation
rates for population inversion.

structure in a cavity should then allow us to build a single-atom
laser.

C. Further possible applications

There have been a few studies investigating specifically
shaped environment structures J (ω) [47,48]. Here, we can tai-
lor |A(ω)|2 to achieve the same effect. Viewing the connection
points as part of the atom, we can say that the atom provides
its own cavity, screening it from interacting with some modes.
Building on this, a possible extension of the idea in Sec. IV B
would be to enhance multiphoton transition rates. One can
easily imagine constructing a frequency-dependent relaxation
rate with minima at single-photon transition frequencies and
a maximum at some multiphoton transition frequency. To
be explicit, consider, for example, the situation in Fig. 5,
which can be arranged for an anharmonicity of −0.2×2πv/

(x2 − x1). The relaxation rates for the |1〉 → |0〉 and |2〉 → |1〉
transitions are both at minima when ω1,0 = 1.1×2πv/

(x2 − x1), while the two-photon relaxation at frequency
ω2,0/2 = (ω1,0 + ω2,1)/2 is at its maximum.

Another interesting subject to study both experimentally
and theoretically would be the structure of the Autler-Townes
doublet [47,65], the splitting of the |0〉 → |1〉 transition into
two due to a drive on the |1〉 → |2〉 transition, or the Mollow
triplet [66], the splitting of the |0〉 → |1〉 transition into three
due to a drive on the |0〉 → |1〉 transition, in a setting with
frequency-dependent coupling.

Finally, it should also be possible to engineer a varying
anharmonicity. Remember from Fig. 2 that the Lamb shift
changes sign on resonance in the maximally symmetric case.
Positioning the |0〉 → |1〉 and |1〉 → |2〉 transition frequencies
on either side of the resonance would thus change the

FIG. 5. (Color online) Enhancing multiphoton relaxation rates.
We plot the relaxation rate as a function of frequency for the
maximally symmetric case with N = 10 and an anharmonicity
−0.2×2πv/(x2 − x1). The |1〉 → |0〉 and |2〉 → |1〉 transitions can
then be placed at relaxation rate minima, while the two-photon
process at ω2,0/2 = (ω1,0 + ω2,1)/2 is at a maximum. Inset: Energy-
level diagram showing the transition frequencies.

anharmonicity. This is illustrated in Fig. 6. Note that we
have assumed the anharmonicity to be much larger than the
relaxation rate when deriving the master equation in Sec. II.
This means that the variation in the anharmonicity cannot be
large compared to the total anharmonicity.

V. POSSIBLE EXPERIMENTAL IMPLEMENTATIONS

Giant atoms with a number of discrete connection points
are not readily available in nature, but there seem to be at
least two straightforward ways to implement our system using
artificial atoms made out of superconducting circuits.

0.7 0.8 0.9 1 1.1 1.2 1.3
−1

−0.8

−0.6

−0.4
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0
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0.4
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Δ
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FIG. 6. (Color online) Varying the anharmonicity. The Lamb
shifts of the first (blue dotted line) and second (red dashed line)
transitions of the giant atom plotted together with their difference
(black solid line), the resulting change in anharmonicity, for the
maximally symmetric case with N = 10 and an anharmonicity of
−0.1×2πv/(x2 − x1).
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FIG. 7. (Color online) An example of an experimental imple-
mentation of our system, using a transmon coupled to SAWs. Adapted
from [13], with thanks to M. V. Gustafsson, T. Aref, and M. K.
Ekström for providing the images. (a) The lower blue part in the
center of the image is the two transmon islands. SAWs propagate
from left to right in the gap between the grounded yellow areas at the
edges of the image. The upper blue part is an electrical gate, enabling
rf excitation of the transmon. (b) Close-up of the transmon islands.
The green part in the center of the image is the SQUID connecting
the islands. (c) Close-up of the individual fingers of the transmon
capacitance. The distance between neighboring fingers (connection
points) is on the order of the SAW wavelength. The double-finger
structure used here reduces mechanical reflections.

A. Transmon coupled to SAW

The first implementation, which motivated this work, was
suggested in [14] and realized in [13]. Here, the giant artificial
atom is a transmon [15]. It is not coupled to propagating
microwave photons, as is the usual case, but it interacts instead
with phonons in the form of SAWs [16,17] propagating on a
piezoelectric substrate. The setup is illustrated in Fig. 7.

The interdigitated capacitance between the two islands
of the transmon forms a transducer which couples to the
SAWs. Due to the low SAW velocity, the distance between
neighboring fingers is on the order of wavelengths (λ ≈
10−6 m), realizing the necessary conditions for the physics
described in this paper. A large number of connection points
can easily be implemented.

From classical SAW theory [16,17] we know that there
are a number of transducer configurations possible, which
could implement particular frequency dependencies for the
relaxation rates of the transmon. Although the transition
frequency of the transmon is a few gigahertz, which is higher
than most industrial applications for SAWs, it should still be
possible to achieve the lithographic precision needed to fine-
tune distances between coupling points. To tune the coupling
strength for a connection point, one could add a thin layer of

FIG. 8. (Color online) A sketch of a possible implementation
using an xmon coupled to a meandering transmission line. The
distance between coupling points can be set with great precision
by choosing the transmission line length, and the capacitive coupling
at each connection point can be tuned by designing the tips of the
fingers of the xmon island.

nonpiezoelectric material between the piezoelectric substrate
and the electrode finger of the transmon. The thickness of
this layer could be varied between fingers to achieve varying
coupling strengths.

Finally, we note that it is not clear for which finger widths
the approximation of pointlike connection points remains
valid.

B. Transmon coupled to meandering transmission line

The second possible implementation of a giant artificial
atom we foresee also uses a transmon. To be specific, it is
a variation of the transmon known as the xmon [18], and
it couples to an ordinary microwave transmission line. The
intended setup is sketched in Fig. 8.

The capacitive coupling between the transmission line and a
finger of the xmon island can be designed with good accuracy,
making possible large variations in relative coupling strengths
between connection points. Furthermore, the distance from
one connection point to the next can be made to be on the
order of wavelengths by meandering the transmission line to
fit it on a chip. This should give great precision in the control
of the phase shifts between connection points. The drawback
compared to the implementation with SAW is the size of the
system. It will likely be hard to fit hundreds of wavelengths
worth of transmission line on a single chip to investigate very
large values of N or connection-point distances.
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VI. CONCLUSION AND OUTLOOK

We have studied the physics of an atom coupled to a 1D
bosonic field at several connection points. The connection
points can be spaced far apart, making the atom large compared
to the wavelength of the field, an unusual situation which only
recently has been realized in an experiment [13]. We find that
both the strength of the coupling and the size of the Lamb
shift of the atom become frequency dependent and that the
dependence is determined by the discrete Fourier transform of
the connection-point coordinates.

We have discussed two possible experimental implementa-
tions of the system studied here. One is to couple a transmon
to SAWs; another is to couple it to a meandering microwave
transmission line. In both cases, we can choose the coordinates
of the connection points with great precision, thus enabling
the design of a desired frequency dependence of the coupling
strength. Since we can design the couplings this way, we can
tune the ratio between the coupling strengths for transitions
at different frequencies. We show here that this can be
used to achieve tunable coupling, single-atom lasing, and
amplification of multiphoton processes. Other applications can
probably be found by comparison with classical SAW theory,
which has been widely used for different kinds of filters for
several decades [16,17].

In this work, we assumed that the relaxation time of the
atom was much longer than all other relevant time scales,
including the time it takes to travel from the first connection
point to the last. An interesting direction for future work is to
relax this assumption and investigate what happens when the
travel time is not negligible. This is reminiscent of an atom
placed far from a mirror, which has been studied before [54]
and should also connect to recent work on two atoms placed
far apart [37]. In particular, one could investigate the physics
of the atom interacting with a pulse which is shorter than the
travel time across the atom. In light of the recent interest in and
progress on the topic of ultrastrong coupling [67–73], it would
also be interesting to see what happens when the coupling at a
single connection point or the total coupling becomes non-
negligible compared to the atom frequency. Other possibilities
for future work include placing the giant atom in a cavity
and relaxing the assumption that signals travel instantaneously
from the connection point to the atom.
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APPENDIX A: DETAILED DERIVATION
OF THE MASTER EQUATION

In this appendix, we perform the full derivation of the
master equation given in Sec. II B. We follow the stan-
dard procedure for tracing out the environment as given in
Refs. [38,39].

The Hamiltonian is given in Eqs. (1)–(4). Moving to the
interaction picture by transforming all operators according to

X̃(t) = ei(HA+HF )tXe−i(HA+HF )t , (A1)

we have the equation

˙̃ρtot(t) = −i[H̃I (t),ρ̃tot(t)] (A2)

for the time evolution of ρtot, the total density matrix for the
field, and the atom. Integrating this equation once, reinserting
the result, and then tracing over the field degrees of freedom
give

˙̃ρ(t) = TrF

{
− i[H̃I (t),ρ̃tot(0)]

−
∫ t

0
dτ [H̃I (t),[H̃I (τ ),ρ̃tot(τ )]]

}
. (A3)

We now make the Born approximation, assuming the coupling
between the field and the atom to be weak enough and the
“bath” provided by a field large enough that the field remains
in a thermal equilibrium state: ρF (t) = ρF . Furthermore, we
make the Markov approximation that bath correlations decay
rapidly compared to the time scale of the atom evolution, so
ρ̇(t) can only be a function of ρ(t). Finally, also assuming the
field and the atom to be uncorrelated at time t = 0, Eq. (A3)
reduces to

˙̃ρ(t) = −
∫ t

0
dτTrF {[H̃I (t),[H̃I (τ ),ρ̃(t)ρF ]]}. (A4)

For brevity, the interaction Hamiltonian is written in terms of
atom operators s and bath operators b,

HI = sb + sb† + s†b + s†b†. (A5)

In the interaction picture, we identify

s̃(t) =
∑
m

gmσm
− e−iωm+1,mt , (A6)

b̃(t) =
∑

j

[aRjA
†(ωj ) + aLjA(ωj )]e−iωj t , (A7)

where we have used the definitions from Eqs. (5)–(8). Inserting
this into Eq. (A4), we apply the RWA to eliminate all rapidly
rotating terms with ss and s†s†. Using the notation 〈AB〉F =
TrF (ABρF ) and noting that 〈bb〉F = 〈b†b†〉F = 0, we arrive
at

˙̃ρ(t) = −
∫ t

0
dτ {[〈b̃(t)b̃†(τ )〉F + 〈b̃†(t)b̃(τ )〉F ][s̃(t)s̃†(τ )ρ̃

+ s̃†(t)s̃(τ )ρ̃ − s̃(τ )ρ̃s̃†(t) − s̃†(τ )ρ̃s̃(t)]

+ [〈b̃(τ )b̃†(t)〉F +〈b̃†(τ )b̃(t)〉F ][ρ̃s̃(τ )s̃†(t)+ρ̃s̃†(τ )s̃(t)

− s̃(t)ρ̃s̃†(τ ) − s̃†(t)ρ̃s̃(τ )]}. (A8)
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From Eq. (A7) we calculate

〈b̃(t)b̃†(τ )〉F = 2
∑

j

|A(ωj )|2[1 + n̄(ωj ,T )]e−iωj (t−τ ),

(A9)

〈b̃(τ )b̃†(t)〉F = 2
∑

j

|A(ωj )|2[1 + n̄(ωj ,T )]eiωj (t−τ ),

(A10)

〈b̃†(t)b̃(τ )〉F = 2
∑

j

|A(ωj )|2n̄(ωj ,T )eiωj (t−τ ), (A11)

〈b̃†(τ )b̃(t)〉F = 2
∑

j

|A(ωj )|2n̄(ωj ,T )e−iωj (t−τ ), (A12)

where n̄(ωj ,T ) is the number of excitations in mode j at
temperature T as defined in Eq. (11). Inserting these results
into Eq. (A8), using the full expressions for s and b gives

˙̃ρ(t) = −2
∑
j,m

g2
m|A(ωj )|2

∫ t

0
dτ [{[1 + n̄(ωj ,T )]e−iωj (t−τ ) + n̄(ωj ,T )eiωj (t−τ )}

× (σm
− σm

+ ρ̃e−iωm+1,m(t−τ ) + σm
+ σm

− ρ̃eiωm+1,m(t−τ ) − σm
− ρ̃σm

+ eiωm+1,m(t−τ ) − σm
+ ρ̃σm

− ρ̃e−iωm+1,m(t−τ ))

+ {[1 + n̄(ωj ,T )]eiωj (t−τ ) + n̄(ωj ,T )e−iωj (t−τ )}
× (ρ̃σm

− σm
+ eiωm+1,m(t−τ ) + ρ̃σm

+ σm
− e−iωm+1,m(t−τ ) − σm

− ρ̃σm
+ e−iωm+1,m(t−τ ) − σm

+ ρ̃σm
− eiωm+1,m(t−τ ))]. (A13)

Here, we have assumed the anharmonicity of the atom to be large compared to the inverse time scale of the atom relaxation,
allowing us to use the RWA to eliminate terms containing σm

− and σm′
+ with m �= m′. We now make the change of variables

t ′ = t − τ . Since we are interested in time scales t � 1/ωm+1,m, we can extend the upper integration limit in the t ′ integral to
infinity. We also replace the sum over j with an integral over ω, including the density of states J (ω), giving

˙̃ρ(t) = 2
∑
m

g2
m

∫ ∞

0
dωJ (ω)|A(ω)|2

∫ ∞

0
dt ′(e−i(−ω+ωm+1,m)t ′ {n̄(ω,T )(−σm

− σm
+ ρ̃+σm

+ ρ̃σm
− ) + [1+n̄(ω,T )](−ρ̃σm

+ σm
− + σm

− ρ̃σm
+ )}

+ e−i(−ω−ωm+1,m)t ′ {n̄(ω,T )(−σm
+ σm

− ρ̃ + σm
− ρ̃σm

+ ) + [1 + n̄(ω,T )](−ρ̃σm
− σm

+ + σm
+ ρ̃σm

− )}
+ e−i(ω−ωm+1,m)t ′ {[1 + n̄(ω,T )](−σm

+ σm
− ρ̃ + σm

− ρ̃σm
+ ) + n̄(ω,T )(−ρ̃σm

− σm
+ + σm

+ ρ̃σm
− )}

+ e−i(ω+ωm+1,m)t ′ {[1 + n̄(ω,T )](−σm
− σm

+ ρ̃ + σm
+ ρ̃σm

− ) + n̄(ω,T )(−ρ̃σm
+ σm

− + σm
− ρ̃σm

+ )}). (A14)

Then, making use of the identity ∫ ∞

0
dte−iωt = πδ(ω) − iP

(
1

ω

)
, (A15)

where P denotes principal value, we get after some work

˙̃ρ(t) = 2
∑
m

g2
m

{
πJ (ωm+1,m)|A(ωm+1,m)|2[(−ρ̃σm

+ σm
− + σm

− ρ̃σm
+ − σm

+ σm
− ρ̃ + σm

− ρ̃σm
+ )

+ n̄(ωm+1,m,T )(−σm
− σm

+ ρ̃ + σm
+ ρ̃σm

− − ρ̃σm
+ σm

− + σm
− ρ̃σm

+ − σm
+ σm

− ρ̃ + σm
− ρ̃σm

+ − ρ̃σm
− σm

+ + σm
+ ρ̃σm

− )]

+ iP
∫ ∞

0
dω

J (ω) |A(ω)|2
ω − ωm+1,m

[(−ρ̃σm
+ σm

− + σm
− ρ̃σm

+ + σm
+ σm

− ρ̃ − σm
− ρ̃σm

+ )

+ n̄(ω,T )(−σm
− σm

+ ρ̃ + σm
+ ρ̃σm

− − ρ̃σm
+ σm

− + σm
− ρ̃σm

+ + σm
+ σm

− ρ̃ − σm
− ρ̃σm

+ + ρ̃σm
− σm

+ − σm
+ ρ̃σm

− )]

+ iP
∫ ∞

0
dω

J (ω) |A(ω)|2
ω + ωm+1,m

[(−ρ̃σm
− σm

+ + σm
+ ρ̃σm

− + σm
− σm

+ ρ̃ − σm
+ ρ̃σm

− )

+ n̄(ω,T )(−σm
+ σm

− ρ̃ + σm
− ρ̃σm

+ − ρ̃σm
− σm

+ + σm
+ ρ̃σm

− + σm
− σm

+ ρ̃ − σm
+ ρ̃σm

− + ρ̃σm
+ σm

− − σm
− ρ̃σm

+ )]

}

= 2
∑
m

g2
m

(
2πJ (ωm+1,m)|A(ωm+1,m)|2{[1 + n̄(ωm+1,m,T )]D[σm

− ]ρ̃ + n̄(ωm+1,m,T )D[σm
+ ]ρ̃}

+ iP
∫ ∞

0
dω

J (ω)|A(ω)|2
ω − ωm+1,m

{[1 + n̄(ω,T )] [|m + 1〉〈m + 1| ,ρ̃] − n̄(ω,T ) [|m〉〈m| ,ρ̃]}

+ iP
∫ ∞

0
dω

J (ω) |A(ω)|2
ω + ωm+1,m

{[1 + n̄(ω,T )] [|m〉〈m| ,ρ̃] − n̄(ω,T ) [|m + 1〉〈m + 1| ,ρ̃]}
)

, (A16)
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where we have introduced the notation D [X] ρ = XρX† −
1
2X†Xρ − 1

2ρX†X. Transforming back from the interaction
picture and collecting terms yields the result given in Eqs. (9)–
(12).

As noted in the main text, the Lamb shift in Eq. (12) diverges
linearly for a small atom when J (ω) is Ohmic. Bethe showed
in the original calculation of the Lamb shift [41] how this can
be remedied. Introducing the notation q = ∑

m gm(σm
− + σm

+ ),
which in the case of a transmon is related to the charge on the
island, note that Eq. (12) in the limit of negligible temperature
can be written

�m = −2P
∫ ∞

0
dωJ (ω) |A(ω)|2

∑
n

|〈m|q|n〉|2
ω + ωn,m

= −2P
∫ ∞

0
dωJ (ω)|A(ω)|2

×
(

g2
m

ω + ωm+1,m

+ g2
m−1

ω − ωm,m−1

)
. (A17)

However, the renormalized electrostatic energy contribution
from the atom, given by q2, should already be incorporated in
ωm. Thus we need to subtract

�′
m = −2P

∫ ∞

0
dωJ (ω)|A(ω)|2 〈m|q2|m〉

ω

= −2P
∫ ∞

0
dωJ (ω) |A(ω)|2 g2

m + g2
m−1

ω
(A18)

from �m. The result is the renormalized Lamb shift given in
Eq. (13).

APPENDIX B: DETAILS OF THE (S,L,H) CALCULATIONS

1. Overview of (S,L,H)

In this appendix, we do calculations in the (S,L,H )
formalism for cascaded quantum systems [62,63]. We first
give a brief overview of the rules used in this formalism,
following the Supplemental Material in [74]. Each (S,L,H )
triplet represents a quantum system with a scattering matrix
S, coupling operators forming a vector L, and a Hamiltonian
H . There is a concatenation product � (stacking channels)
and a series product � (feeding output from one system into
another):

G2�G1 =
(

S2S1,S2L1 + L2,H1 + H2

+ 1

2i
(L†

2S2L1 − L
†
1S

†
2L2)

)
, (B1)

G2 � G1 =
((

S2 0
0 S1

)
,

(
L2

L1

)
,H2 + H1

)
. (B2)

There is also a rule for the feedback operation [(S,L,H )]k→l =
(S̃,L̃,H̃ ), which represents feeding the kth output of a system

into the lth input of the same system. The result is

S̃ = S[k/,l] +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1,l

...
Sk−1,l

Sk+1,l

...
Sn,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1 − Sk,l)
−1

× (Sk,1 · · · Sk,l−1 Sk,l+1 · · · Sk,n), (B3)

L̃ = L[k/ ] +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1,l

...
Sk−1,l

Sk+1,l

...
Sn,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1 − Sk,l)
−1Lk, (B4)

H̃ = H + 1

2i

⎡
⎣

⎛
⎝ n∑

j=1

L
†
j Sj,l

⎞
⎠ (

1 − Sk,l

)−1
Lk − H.c.

⎤
⎦ ,

(B5)

where S[k/,l] and L[k/] are the original scattering matrix and
coupling vector with row k and column l removed.

Once we have the (S,L,H ) triplet for our total system,

G =

⎛
⎜⎝S,

⎛
⎜⎝

L1
...

Ln

⎞
⎟⎠,H

⎞
⎟⎠, (B6)

we can extract the master equation for the total system as

ρ̇ = −i [H,ρ] +
n∑

i=1

D [Li] ρ. (B7)

The output from port i of the system is simply given by 〈Li〉.

2. Giant atom

We begin by assigning a triplet for each connection point
and each propagation direction. The coupling strength at
connection point k is denoted γk , and the phase shift between
connection points k and k + 1 is φk = ω1,0(xk+1 − xk)/v. We
only consider the case of a two-level atom to begin with. The
phase shifts are accounted for by feeding the output from
one connection point through a triplet Gφ = (eiφk ,0,0) before
using it as the input at the next connection point.

We will first look at the right- and left-traveling waves
separately and then combine the results. The triplet for the
right-traveling wave at connection point k is

GRk = (1,
√

γk/2σ−,0), (B8)

except for k = 1, where we also add the Hamiltonian �
2 σz.

We are working in a rotating frame where � = ω1,0 − ωp

is the detuning of the atom from some probe frequency ωp

we are interested in. Now, for N = 2 the total triplet for the
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right-traveling waves can be written

GR,tot,2 = [(Gφ1�GR1) � GR2]1→2

=
((

eiφ1 0
0 1

)
,

(
eiφ1

√
γ1/2σ−√

γ2/2σ−

)
,
�

2
σz

)
1→2

=
(

eiφ1 ,(
√

γ2/2 + eiφ1
√

γ1/2)σ−,

1

2
σz

(
� + 1

2
√

γ1γ2 sin(φ1)

))
. (B9)

Iterating this process gives the triplet for N = 3,

GR,tot,3 = [(
Gφ2�GR,tot,2

)
� GR3

]
1→2

= (
ei(φ1+φ2),

(√
γ3/2+eiφ2

√
γ2/2+ei(φ1+φ2)

√
γ1/2

)
σ−,

1
2σz

{
� + 1

2 [
√

γ2γ1 sin(φ1) + √
γ3γ2 sin(φ2)

+√
γ3γ1 sin(φ2 + φ1)]

})
, (B10)

and by induction we arrive at the triplet for general N ,

GR,tot,N =
(

eiφ� ,AR({γk,φk})σ−,
� + 1

2B({γj ,φj })
2

σz

)
,

(B11)

where we have defined

φ� =
N−1∑
k=1

φk, (B12)

AR({γk,φk}) =
√

γN/2 + eiφN−1
√

γN−1/2

+ ei(φN−1+φN−2)
√

γN−2/2 + · · ·
+ ei(φN−1+···+φ1)

√
γ1/2

=
N∑

j=1

√
γj/2 exp

⎛
⎝i

N−1∑
k=j

φj

⎞
⎠ , (B13)

B({γk,φk}) =
N−1∑
j=1

√
γjγj+1 sin(φj )

+
N−2∑
j=1

√
γjγj+2 sin(φj + φj+1) + · · ·

+
2∑

j=1

√
γjγj+N−1 sin

⎛
⎝j+N−2∑

k=j

φk

⎞
⎠

=
N−1∑
i=1

N−i∑
j=1

√
γjγj+i sin

⎛
⎝j+i−1∑

k=j

φk

⎞
⎠ . (B14)

We now turn to the left-traveling waves. The triplet for the
left-traveling wave at connection point k is

GLk = (1,
√

γk/2σ−,0). (B15)

Now, for N = 2 the total triplet for the left-traveling waves
can be written

GL,tot,2 = [(Gφ1�GL2) � GL1]1→2

=
((

eiφ1 0
0 1

)
,

(
eiφ1

√
γ2/2σ−√

γ1/2σ−

)
,0

)
1→2

=
(

eiφ1 ,(
√

γ1/2 + eiφ1
√

γ2/2)σ−,

1

2
σz

(
1

2
√

γ1γ2 sin(φ1)

))
. (B16)

Carrying through the same procedure as for the right-traveling
waves, we arrive at

GL,tot,N =
(

eiφ� ,AL({γk,φk})σ−,
� + 1

2B({γj ,φj })
2

σz

)
,

(B17)

where

AL({γk,φk}) =
√

γ1/2 + eiφ1
√

γ2/2 + ei(φ1+φ2)
√

γ3/2

+ · · · + ei(φ1+···+φN−1)
√

γN/2

=
N∑

j=1

√
γj/2 exp

(
i

j−1∑
k=1

φk

)
. (B18)

Adding the left- and right-traveling waves, we thus have for
general N the total triplet

Gtot,N = GR,tot,N � GL,tot,N

=
((

eiφ� 0

0 eiφ�

)
,

(
AR({γj ,φj })σ−
AL({γj ,φj })σ−

)
,

� + B({γj ,φj })
2

σz

)
. (B19)

We note that

AL = (ARe−iφ� )∗, (B20)

AR = (ALe−iφ� )∗, (B21)

which entails |AL|2 = |AR|2, and thus the relaxation rate,
given in Eq. (15), has the same frequency dependence as we
saw from the derivation in Appendix A. We also note that, here,
we got a more explicit formula for the Lamb shift, B({γj ,φj }),
but it is equivalent to the result in Appendix A with the added
assumptions of negligible temperature, constant density of
states J (ω) = J (ω1,0), RWA on the level of the Hamiltonian,
and extension of the lower integration limit in the ω integral
to −∞.

To extend the calculations to a multilevel giant atom, we
need to add new channels for the higher transitions. However,
since we assume large enough anharmonicity to avoid cross
talk between transitions, we can basically just reuse the result
we just derived, taking into account the fact that the coupling
increases with a factor gm for higher transitions. The result is
still in agreement with that of Appendix A.
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3. Giant atom in front of a mirror

An interesting setup which is easily handled in the
(S,L,H ) formalism is that of a giant atom placed in front
of a mirror. Assuming that the mirror is close enough to
the atom for travel times to be negligible, we can use

the triplet from Eq. (B19) and modify it to our current
situation by feeding the output from port 1 through a phase
shift φM (representing the phase accumulated traveling to
the mirror and back) and then feeding it back through
port 2:

Gmirror = [(GφM
� I1)�G]1→2 =

((
ei(φ�+φM ) 0

0 eiφ�

)
,

(
eiφM AR({γj ,φj })σ−

AL({γj ,φj })σ−

)
,
� + B({γj ,φj })

2
σz

)
1→2

=
(

ei(2φ�+φM ),[AL({γj ,φj }) + ei(φ�+φM )AR({γj ,φj })]σ−,
1

2
σz

[
� + B({γj ,φj }) + Im

(
A2

ReiφM
)])

. (B22)

We thus have a modified relaxation rate

�1,0 = |AL({γj ,φj }) + ei(φ�+φM )AR({γj ,φj })|2 (B23)

and an addition of Im(A2
ReiφM ) to the Lamb shift, both depending on the relation between the distance to the mirror and the

transition frequency (giving the phase shift φM ).
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