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Abstract. The problem to be studied in this work is within the context of coefficient identi-
fication problems for the wave equation. More precisely, we consider the problem of reconstruction
of the refractive index (or equivalently, the dielectric constant) of an inhomogeneous medium using
one backscattering boundary measurement. The goal of this paper is to analyze the performance of
the globally convergent algorithm of Beilina and Klibanov on experimental data collected using a
microwave scattering facility at the University of North Carolina at Charlotte. The main challenge in
working with experimental data is the huge misfit between these data and computationally simulated
data. We present data preprocessing steps to make the former somehow look similar to the latter.
Results of both nonblind and blind targets are shown that indicate good reconstructions even for
high contrasts between the targets and the background medium.

Key words. coefficient identification, wave equation, globally convergent algorithm, experimen-
tal data, data preprocessing

AMS subject classifications. 35R30, 35L05, 78A46

DOI. 10.1137/130924962

1. Introduction. Microwave imaging technology is widely used to visualize ob-
jects and materials that are opaque at visible wavelengths, and it is thus important
for inspection, surveillance, and remote sensing from hand-held medical to satellite-
borne defense applications; see, e.g., [19]. In this paper, we consider the problem of
the reconstruction of the refractive indices (equivalently, the dielectric constants) of
unknown targets placed in a homogeneous medium using experimental measurements
of time-domain backscattered electromagnetic waves, generated by a single source, in
the microwave range. Mathematically speaking, this is a coefficient inverse problem
(CIP) for the time-dependent wave-like equation: we reconstruct a spatially vary-
ing coefficient of this equation using measurements on a part of the boundary of the
domain of interest. Potential applications of this problem are in the detection and
characterization of explosives, including improvised explosive devices (IEDs). Note
that IEDs are often located above the ground surface [16], which is somewhat close to
our case of targets located in air. The case when targets are buried under the ground
will be reported in a future publication.

Different migration-type methods have been applied to this type of measurement
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to obtain geometrical information such as the shapes, the sizes, and the locations of
the targets; see, e.g., [20, 22]. However, the refractive indices, which characterize the
targets in terms of their constituent materials, are much more difficult to estimate.
For conventional gradient-based optimization methods, there is a huge literature; see,
e.g., [2, 11, 12] and references therein. It is well known that the convergence of these
methods is guaranteed only if the starting point of the iterations is chosen to be
sufficiently close to the correct solution. This means that they require some a priori
information about the targets being found, which is not always available in many
practical situations. A different method was proposed in [4, 6, 15, 16], and results
were summarized in the book [5]. This method provides a good approximation for the
exact coefficient without a priori knowledge of a small neighborhood of this coefficient.
Its global convergence has been rigorously proved for an approximate mathematical
model; see Theorem 2.9.4 in [5] and Theorem 5.1 in [6]. Due to this model, the method
is referred to as an approximately globally convergent method (globally convergent
method, for short). In [15] the authors demonstrated good reconstruction results
for a transmitted experimental data set using this method, whereas a gradient-based
method with Tikhonov regularization, starting from the homogeneous medium as the
first guess, failed. We also refer to the boundary control method, which was designed
to solve a CIP similar to ours, although multiple locations of sources are used; see,
e.g., [9].

The goal of this paper is to show how the globally convergent method performs
on experimental backscattered data. While previously it was demonstrated how this
method works on experimental transmitted data [5, 4, 15], the case of backscattered
data is different and much more complicated. Indeed, backscattered signals are much
weaker than transmitted ones. In addition, a number of unwanted scattered signals
caused by objects present in the room where experiments take place (e.g., furniture)
occur in the backscattering case. Although in [16] backscattered data were treated,
they were one-dimensional (1-d) data only, while we work here with three-dimensional
(3-d) data. To collect these data, an experimental apparatus was built in the Mi-
crowave Laboratory at the University of North Carolina at Charlotte, using support
from the US Army Research Office.

The main challenge working with our experimental data is a huge misfit between
these data and computationally simulated ones; see also [5, 4, 15, 16] for the same
conclusion. From the functional analysis standpoint this means that the function
expressing experimental data is far away in any reasonable norm from the range of
the operator of our forward problem. Further, this operator should be inverted in
solving the inverse problem. Hence, any inversion algorithm would fail to produce
satisfactory results if being applied to the raw data.

Therefore, the central procedure before applying the globally convergent algorithm
is a heuristic data preprocessing procedure. This procedure makes the experimental
data look somewhat similar to the data provided by computational simulations. In
other words, it moves the data closer to the range of that operator. The preprocessing
procedure of the current paper is substantially different from those of [5, 4, 15, 16]
because the data are different, as mentioned above. Moreover, the transmitted data
used in [5, 4, 15] were near field measurements, while we consider far field data in this
work. Therefore, application of an additional preprocessing step to the data (data
propagation) is necessary before using the globally convergent algorithm. We describe
our data preprocessing procedure in section 3.

The preprocessed data are used as the input for the globally convergent method.
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Our goal is to estimate the refractive indices and the locations of the targets. In
addition, we want to estimate sizes of those targets. We should mention that results
of this method can be used as initial guesses for locally convergent methods in order
to refine images, especially the targets’ shapes; see, e.g., [5, 4, 7].

The experimental data sets of this paper include both nonblind and blind cases.
“Blind” means that the targets were unknown to the computational team (NTT,
LB, MVK) but known to one person (MAF), who was leading the data collection
process. Moreover, the refractive indices of these targets were measured after the
reconstruction results were obtained. Then computational results were compared
with directly measured ones. The nonblind targets were used for the purposes of
calibration and fine-tuning of the reconstruction procedure. The blind targets were
used to ensure that this procedure works in realistic blind data cases. The same
reconstruction procedure, with the same choice of parameters, was used for both
types of targets. Our results indicate that we not only accurately reconstruct the
refractive indices and the locations of the targets, but also can differentiate between
metallic and nonmetallic targets.

2. Problem statement and the globally convergent method. In this sec-
tion we state the forward and inverse problems under consideration, as well as briefly
outline the globally convergent method of [5] for the reader’s convenience.

2.1. Forward and inverse problems. As the forward problem, we consider
the propagation of the electromagnetic wave in R

3 generated by an incident plane
wave. Below, x = (x, y, z) denotes a point in R

3. Since in our experiments only one
component of the electric field E is generated by the source, and since the detector
measures only that component of the scattered electric field, we model the wave
propagation by the following Cauchy problem for the scalar wave equation:

ε(x)utt(x, t) = Δu(x, t) + δ(z − z0)f(t), (x, t) ∈ R
3 × (0,∞),(2.1)

u(x, 0) = 0, ut(x, 0) = 0,(2.2)

where u is the total wave generated by the incident plane wave propagating along
the z-axis and which is incident at the plane {z = z0}. Here f (t) �≡ 0 is the time-
dependent waveform of the incident plane wave. Note that this plane wave model is
new for our globally convergent method, since in our previous works the point source
was considered, including convergence results mentioned in section 1.

To further justify our use of the single equation (2.1) instead of the full Maxwell’s
system, we refer to [3], where it was shown numerically that the component of E
which was initially incident upon the medium dominates two other components, at
least for a rather simple medium such as ours. Besides, a similar scalar equation was
successfully used previously to work with transmitted experimental data [5, 4, 7].

In (2.1), ε(x) represents the spatially distributed dielectric constant. We assume
that ε(x) is unknown inside a bounded domain Ω ⊂ R

3 with ∂Ω being C3-regular. In
addition, we assume that there exist two positive constants εl ≤ 1 and εu ≥ 1 such
that

(2.3) 0 < εl ≤ ε(x) ≤ εu ∀x ∈ R
3, ε(x) ≡ 1 ∀x /∈ Ω.

In other words, the medium is assumed to be homogeneous outside of Ω. We also
assume that the plane where the plane wave is incident is located outside of the
domain Ω̄; i.e., Ω ∩ {z = z0} = ∅.
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For the theoretical analysis, we state the inverse problem for the case when the
data are given at the entire boundary. However, only backscattered data are measured
in our experiments. In section 4, we explain how we work with this type of data.

CIP: Reconstruct the coefficient ε(x) for x ∈ Ω, given the following measured data
for a single incident plane wave generated at the plane {z = z0} outside of Ω:

(2.4) g(x, t) = u(x, t), x ∈ ∂Ω, t ∈ (0,∞).

The assumption of the infinite time interval in (2.4) is not a restrictive one,
because in our method we apply the Laplace transform to g(x,t) with respect to t.
Since the kernel of this transform decays exponentially with respect to t, the Laplace
transform effectively cuts off to zero values of the function g(x,t) for large t.

Concerning the uniqueness of this CIP, global uniqueness theorems for multi-
dimensional CIPs with a single measurement are currently known only under the
assumption that at least one of the initial conditions does not equal zero in the entire
domain Ω. All these theorems were proved by the method originated in [10]; see also
sections 1.10 and 1.11 in [5] about this method. This technique is based on Carleman
estimates. Since both initial conditions (2.2) equal zero in Ω, this method is inappli-
cable to our case. However, since we need to solve our CIP numerically anyway, we
assume that uniqueness holds.

We remark that (2.1) is invalid if metallic objects are present in the domain Ω.
To deal with this type of target, we follow a suggestion of [16]. It was established
numerically in [16] that metals can be modeled as dielectrics with a high dielectric
constant, which is referred to as the “appearing” dielectric constant of metals. It is
suggested in [16] that this dielectric constant can be chosen as

(2.5) ε (metals) ∈ [10, 30] .

2.2. The globally convergent method. The globally convergent method of
[5] works with the Laplace transformed data. However, we do not invert the Laplace
transform. Let

(2.6) ũ(x, s) =

∫ ∞

0

u(x, t)e−stdt,

where s is a positive parameter referred to as the pseudofrequency. We assume that
s ≥ s > 0, where the number s is large enough so that the Laplace transforms of
u and its derivatives Dku, k = 1, 2, converge absolutely. We also denote by f̃(s)
the Laplace transform of f(t). We assume that f̃(s) �= 0 for all s ≥ s. Define
w(x, s) := ũ(x, s)/f̃(s). The function w satisfies the equation

(2.7) Δw(x, s) − s2ε(x)w(x, s) = −δ(z − z0), x ∈ R
3, s ≥ s.

Following the same arguments as in the proof of Theorem 2.7.2 of [5], we can prove that
w(x, s) > 0 and lim|x|→∞ [w (x, s)− w0(x, s)] = 0, where w0 (x, s) := e−s|z−z0|/ (2s)
is such a solution of (2.7) for the case ε (x) ≡ 1, which decays to zero as |z| → ∞.

Next, define the function v by v := (lnw)/s2. Substituting w = evs
2

into (2.7) and
keeping in mind that Ω ∩ {z = z0} = ∅, we obtain

(2.8) Δv + s2|∇v|2 = ε(x), x ∈ Ω.

Equation (2.8) shows that the coefficient ε(x) can be computed directly via the func-
tion v. To compute v, we eliminate the unknown coefficient ε(x) from (2.8) by taking
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the derivative with respect to s on both sides of (2.8). Define q := ∂sv. Then

(2.9) v = −
∫ ∞

s

qdτ = −
∫ s̄

s

qdτ + V,

where s̄ > s, which plays the role of a regularization parameter and is chosen numer-
ically in the computational practice. The function V (x) := v(x, s̄) is called the “tail
function.” Note that

(2.10) V (x) =
lnw(x, s̄)

s̄2
.

From (2.8) we obtain the following differential integral equation involving q and V :

Δq − 2s2∇q ·
∫ s̄

s

∇q(x, τ)dτ + 2s2∇V · ∇q + 2s

∣∣∣∣∫ s̄

s

∇q(x, τ)dτ
∣∣∣∣2

− 4s∇V ·
∫ s̄

s

∇q(x, τ)dτ + 2s |∇V |2 = 0, x ∈ Ω.(2.11)

It follows from (2.4) that q satisfies the following boundary condition:

(2.12) q(x, s) = ψ(x, s),x ∈ ∂Ω,

where ψ(x, s) = ∂
∂s [

ln(ϕ)
s2 ] with ϕ(x, s) =

∫∞
0
g(x, t)e−stdt/f̃(s).

Note that (2.11) has two unknown functions, q and V . In order to approximate
both of them, we treat them differently. In particular, we use an iterative procedure
with respect to the tail function V as described below.

2.3. Discretization and description of the algorithm. Divide the pseudo-
frequency interval [s, s̄] into N uniform subintervals by s̄ = s0 > s1 > · · · > sN =
s, sn − sn+1 = h. We approximate q by q(x, s) ≈ qn(x), s ∈ (sn, sn−1], n = 1, . . . , N.
We also set q0 ≡ 0. Then after some manipulations, a system of elliptic equations for
functions qn (x) is derived from (2.11) using the so-called Carleman weight function
exp [λ (s− sn−1)], s ∈ (sn, sn−1), where λ� 1 is a certain parameter. We take λ = 20
in all our computations. This system is

Δqn + A1,n∇qn · (∇Vn −∇qn−1)

= A2,n|∇qn|2 +A3,n

(|∇qn−1|2 + |∇Vn|2 − 2∇Vn · ∇qn−1

)
,(2.13)

where Ai,n, i = 1, 2, 3, are some coefficients, depending on sn and λ, which are

analytically computed, and ∇qn−1 = h
∑n−1

j=0 ∇qj . Here we indicate the dependence
of the tail function V := Vn on the number n, because we approximate V iteratively.
The discretized version of the boundary condition (2.12) is given by

(2.14) qn(x) = ψn(x) :=
1

h

∫ sn−1

sn

ψ(x, s)ds ≈ 1

2
[ψ(x, sn) + ψ(x, sn−1)], x ∈ ∂Ω.

One can prove that |A2,n| ≤ C/λ for sufficiently large λ, where C > 0 is a certain
constant. Hence, the first term on the right-hand side of (2.13) is dominated by the
other terms. Therefore, in the following we set A2,n|∇qn|2 := 0. The system of elliptic
equations (2.13) with boundary conditions (2.14) can be solved sequentially starting
from n = 1. To solve it, we make use of the iterative process: for a given n and
some approximation qn,i−1 of qn we find the next approximation qn,i of qn by solving
(2.13)–(2.14). Denote by mn the number of these iterations. The full algorithm is
described as follows.
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Globally convergent algorithm.

• Given the first tail V0. Set q0 ≡ 0.
• For n = 1, 2, . . . , N :

1. Set qn,0 = qn−1, Vn,1 = Vn−1.
2. For i = 1, 2, . . . ,mn:

– Find qn,i by solving (2.13)–(2.14) with Vn := Vn,i.
– Compute vn,i = −hqn,i − qn−1 + Vn,i, x ∈ Ω.
– Compute εn,i via (2.8). Then solve the forward problem (2.1)–(2.2)

with the new computed coefficient ε := εn,i, compute w := wn,i, and
update the tail Vn,i+1 by (2.10).

3. Set qn = qn,mn , εn = εn,mn , Vn = Vn,mn+1 and go to the next frequency
interval [sn+1, sn] if n < N. If n = N , then stop.

Stopping criteria of this algorithm with respect to i, n should be addressed com-
putationally; see details in section 4.

2.4. The initial tail function and the global convergence. We remark that
the convergence of this algorithm depends on the choice of the initial tail function V0.
In [5] (see also [6]) the global convergence of this algorithm was proved within the
context of an approximate mathematical model for the case of the point source. Let us
recall some results for this case. For the proof of global convergence, we assume that
ε ∈ C3(R3). It was proved in [5] that under some conditions there exists a function
p(x) belonging to the Hölder space C2+α

(
Ω
)
such that V (x, s) = p(x)/s+O

(
1/s2

)
,

s→ ∞. Due to this asymptotic behavior, we assume that the exact tail is given by

(2.15) V (x, s) =
p (x)

s
=

lnw (x, s)

s2
∀s ≥ s.

Note that we use this assumption only on the initializing iteration to obtain V0 (x).
Under this assumption, it follows from (2.11), (2.12) that p (x) satisfies

Δp(x) = 0, x ∈ Ω, p ∈ C2+α
(
Ω
)
,(2.16)

p|∂Ω = −s2ψ (x, s) .(2.17)

As the first guess for the tail function we take

(2.18) V0 (x) :=
p (x)

s
, x ∈ Ω.

With this choice of the initial tail function, it was proved in [5, 6] that the proposed
algorithm, for the case of the point source, is convergent in the following sense: it
delivers some points in a sufficiently small neighborhood of the exact coefficient ε(x).
The latter is sufficient for computational purposes. The size of this neighborhood
depends on the noise in the data, the discretization step size h, and the domain Ω.
We note that no a priori information about the unknown coefficient is used here.
Therefore, we say that the algorithm is globally convergent within the framework of
the approximation (2.15).

For the case of the incident plane wave, i.e., the model (2.1)–(2.2), we believe that
the global convergence of the proposed algorithm can be proved similarly to the case
of the point source. A complete proof will be investigated in a future work.

2.5. Numerical solution of the forward problem. Since it is impossible
to solve the problem (2.1)–(2.2) in the entire space, in numerical computations we
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approximate it by a problem in a bounded domain G ⊂ R
3 such that Ω ⊂ G. For

simplicity, we choose G as the prism

G := {x ∈ R
3 : Xl ≤ x ≤ Xu, Yl ≤ y ≤ Yu, Zl ≤ z ≤ Zu}.

We define ∂Gl
z := {z = Zl}, ∂Gu

z := {z = Zu}, and ∂Gxy = ∂G \ (∂Gl
z ∪ ∂Gu

z ). Here
we choose Zu = z0; i.e., the incident plane wave is generated at the plane ∂Gu

z and
propagates in the negative z-direction. Moreover, in our analysis, we assume that the
incident wave is excited for a short time period (0, t1). As a result, the total wave
vanishes after a finite time. Therefore, we rewrite the model (2.1)–(2.2) in G as

ε(x)utt(x, t) = Δu(x, t), (x, t) ∈ G× (0, T ),(2.19)

u(x, 0) = 0, ut(x, 0) = 0, x ∈ G.(2.20)

We now complement (2.19), (2.20) with boundary conditions at the boundary of G.
To represent the incident plane wave on ∂Gu

z , we assume that the excitation time
(0, t1) of the incident wave is so small that the incident wave has not yet reached
the domain Ω at t = t1. Consequently, u(x, t) = ui(x, t) for t ≤ t1, where u

i is the
incident wave. Note that ui is a 1-d wave, generated by the source term δ(z−z0)f(t),
propagating along the z-axis. It can be shown that ∂zu

i
∣∣
z=Zu

= f(t)/2. Hence,

(2.21) ∂νu = f(t)/2, (x, t) ∈ ∂Gu
z × (0, t1),

where ν is the outward normal vector of ∂G. The waveform function f is chosen
by f(t) = 2ω cos(ωt), 0 ≤ t ≤ t1 = 2π/ω, where ω is the angular frequency of the
incident plane wave. We also use the following boundary conditions:

∂νu = −ut, (x, t) ∈ ∂Gu
z × (t1, T ),(2.22)

∂νu = −ut, (x, t) ∈ ∂Gl
z × (0, T ),(2.23)

∂νu = 0, (x, t) ∈ ∂Gxy × (0, T ).(2.24)

This means that we use the first order absorbing boundary condition at the plane
∂Gl

z as well as at the plane ∂Gu
z for t > t1; see, e.g., [13]. The Neumann boundary

condition (2.24) at the lateral boundary ∂Gxy allows us to approximately assume that
we have an infinite domain in the lateral directions.

The forward problem (2.19)–(2.24) is solved using the software package WavES
[21] via the hybrid FEM/FDM method described in [8].

3. The experimental setup and data preprocessing.

3.1. Data acquisition. Our experimental configuration is shown in Figure 1.
The setup of our measurements included a horn antenna (transmitter) fixed at a given
position and a detector scanning in a square of a vertical plane, which we refer to as
the measurement plane. Consider the Cartesian coordinate system Oxyz, as shown
in Figure 1(b). The scanning area was 1 m by 1 m with a step size of 0.02 m, starting
at (x, y) = (−0.5,−0.5) and ending at (x, y) = (0.5, 0.5).

Due to some technical difficulties with the mechanical scanning system, the horn
antenna was not placed behind but in front of the measurement plane (between the
measurement plane and the targets). Therefore a small area in the center of the
scanning area on the measurement plane was shaded by the horn, making the data in
that area unreliable. The horn was placed at the distance of about 0.2–0.25 m from
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(a) (b)

Fig. 1. (a) A picture of our experiment setup. (b) Diagram of our setup.

the measurement plane, and the distances from the targets to the measurement plane
are about 0.8 m.

At each position of the detector, a number of electric pulses were emitted by the
horn. The detector received two types of signals: the direct signals from the source and
the backscattered signals from the targets and other surrounding objects. The direct
signals are used for time reference in data preprocessing. To reduce the instability of
the measured signals in terms of their magnitudes, the measurements were repeated
800 times at each detector position, and the average of the recorded time-dependent
signals was taken as the measured data at that detector position. Note that this
averaging was done during the data acquisition, i.e., before the data preprocessing.
By scanning the detector and repeating the measurements, we obtained essentially
the same signals as using one incident signal and multiple detectors at the same time.

Pulses were generated by a Picosecond Pulse Generator 10070A. The scattered
signals were measured by a Tektronix DSA70000 series real-time oscilloscope. The
emitted pulses were of 300 picoseconds duration. The wavelength of the incident pulses
was about 0.04 m. The time step between two consecutive records was Δt = 10 ps.
Each signal was recorded for 10 ns.

Since the source is located far away (at about 15 wavelengths) from the targets,
the use of the incident plane wave in our model (2.1)–(2.2) is well suited.

3.2. Data preprocessing. One of the biggest challenges in working with these
experimental data is to deal with the huge misfit between these data and the data
produced via computational simulations; also see [5, 4, 15, 16] for the same conclusion.
There are several causes of this misfit such as (i) the instability of the amplitude of
the emitted signals (incident waves), which causes instability of the received signals;
(ii) unwanted waves scattered by several existing objects around our devices (see
Figure 2(a)); (iii) the shadow on the measurement plane caused by the transmitting
horn antenna; and (iv) the difference between the experimental and simulated incident
waves. Figure 3 compares the Laplace transform of an experimental scattered wave
and the corresponding simulated one, showing a huge misfit between them. Note that
the Laplace transform of the experimental wave was carried out after removing the
incident wave and unwanted parts, as shown in Figure 2(c).

Therefore, the central procedure required before applying inversion methods is
data preprocessing. This procedure is usually heuristic and cannot be rigorously
justified. Our data preprocessing consists of six steps, described below. We do not
describe Steps 1–3 in detail here, since they are straightforward.
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(a)

(b) (c)

Fig. 2. An experimental data set: (a) a 1-d curve, (b) 2-d data on a horizontal scan, (c) after
Steps 1–4 of the data preprocessing.

(a) (b)

Fig. 3. Experimental vs. simulated scattered waves on the measurement plane after Laplace
transform: (a) measured data, (b) simulated data.

Step 1. Offset correction. The acquired signals are usually shifted from the zero
mean value. This can be corrected by subtracting the mean value from them.

Step 2. Time-zero correction. Time-zero refers to the moment at which the signal
is emitted from the transmitter. The recorded signals may be shifted in time. We use
the direct signals from the transmitter to the detector to correct the time-zero.
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Step 3. Source shift. As mentioned above, the horn antenna in our experiments is
placed between the targets and the measurement plane. However, in data calibration,
we need to simulate the data for the case when the measurement plane is between
the horn and the targets. Therefore, we artificially “shift” the horn in the positive
z-direction such that it is 0.4 m further than the measurement plane from the targets.
This is done by shifting the whole time-dependent data by a number of samples which
corresponds to the shifted distance.

Step 4. Extraction of scattered signals. Apart from the signals backscattered by
the targets, our measured data also contain various types of signals as mentioned
above. What we need, however, is the signals scattered by the targets only. The
extraction of these scattered signals for each target is done as follows. First, we
exclude the direct signals and the unwanted signals, which come earlier than the
signals scattered by the target (see Figure 2(a)–(b)), by calculating the time of arrival.
These unwanted signals are due to the reflection of the direct signals by the metallic
structure behind the measurement plane, so we can estimate their times of arrival,
as we know the distance from the measurement plane to this structure. Then, as
we observed that the signals scattered by the target are the strongest peaks of the
remaining data, we first determine, for each detector position, the strongest negative
peak after removing the aforementioned signals. Then the signals scattered by the
target are taken as seven peaks (four negative peaks and three positive peaks), starting
from the first negative peak prior to the strongest one if its amplitude is less than
80% that of the strongest one (see Figure 2(a)). Otherwise, we start from the second
negative peak prior to the strongest one. The reason for choosing seven peaks for the
scattered signals is the fact that the incident pulses also contain seven strong peaks.
We have observed in our computational simulations that if we choose the negative
peak as the first peak of the target’s signals, we obtain a dielectric constant of the
target larger than that of the background. Conversely, if we choose the positive peak
as the first peak of the target’s signals, the obtained dielectric constant of the target
is less than that of the background. Since our targets were placed in air, they should
have larger dielectric constants than that of the background. Therefore, we chose as
the first peak of the target’s signals the negative one. Moreover, we also chose εl = 1.

Step 5. Data propagation. After getting the scattered signals, the next step of data
preprocessing is to propagate the data closer to the targets, i.e., to approximate the
scattered waves on a plane closer to the targets, compared to the measurement plane.
There are two reasons for doing this. The first is that since the kernel of the Laplace
transform decays exponentially in terms of the time delay, which is proportional to
the distance from the targets to the measurement plane, then the amplitude of the
data after the Laplace transform on the measurement plane is very small and can be
dominated by the computational error. The second reason is that this propagation
procedure helps to reduce the computational cost substantially as the computational
domain Ω is reduced. We have also observed that the data propagation helps to
reduce the noise in the measured data.

Step 6. Data calibration. Finally, since the amplitudes of the experimental in-
cident and scattered waves are usually quite different from those in simulations, we
need to scale the former to better match the latter in amplitude. This is done using
a known target referred to as the calibrating object.

Figure 2 shows an original data set and data after Steps 1–4 for a horizontal scan
of the detector. One can see that Steps 1–4 help to remove the unwanted signals. In
the following, we present our methods for Steps 5 and 6 in more detail.
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3.2.1. Data propagation. Denote by Pm the measurement plane, and by Pp

the propagation plane, which is closer to the targets than Pm. Without loss of gener-
ality we define Pm = {z = a} and Pp = {z = 0}, where the number a > 0. Moreover,
denote by Γ = (−0.5, 0.5) × (−0.5, 0.5)} ⊂ R

2 the scanning area of the detector on
the plane Pm. Let Γm = {(x, y, a) ∈ R

3 : (x, y) ∈ Γ} and Γp = {(x, y, 0) ∈ R
3 :

(x, y) ∈ Γ}. We also denote by us(x, t) the scattered wave. Note that the medium
between Pm and Pp is homogeneous with ε = 1, and the scattered wave us propagates
in the direction from Pp to Pm. The aim of the data propagation is to approximate
us
∣∣
Γp×(0,∞)

from the measured data g̃(x, y, t) := us
∣∣
Γm×(0,∞)

.

To do this, we make use of a time reversal method. Its idea is to reverse the
scattered wave in time via solution of an initial boundary value problem for the time-
reversed wave function. We proceed as follows.

Since short pulses are used as incident waves, it is reasonable to assume that the
scattered wave us in the domain between Pm and Pp vanishes along with its time
derivative ust after some time T . Therefore in the following we consider only the
finite time interval (0, T ). Denote τ := T − t. Then the time-reversed wave function
ur(x, τ) := us(x, t) satisfies the homogeneous wave equation. Moreover, it propagates
in the negative z-direction, i.e., from Pm to Pp. To find ur

∣∣
Γp
, we consider the domain

D := {x ∈ R
3 : (x, y) ∈ Γ, b < z < a} with b < 0. Note that Γp ⊂ D. The reason

for choosing this larger domain is that we need to assign boundary conditions at
∂D. Indeed, we assume that ur satisfies the absorbing boundary condition at Γb :=
{(x, y, b) : (x, y) ∈ Γ}. On Γb, far from our propagation plane, this boundary condition
means, heuristically, that we “send back” the original scattered wave us recorded at
Pm. On the other hand, we impose the zero Neumann boundary condition at the rest
of the boundary of D, except at Γm. Define QT = D×(0, T ) and Γ3 := ∂D\(Γm∪Γb).
We obtain the following problem for the function ur(x, τ):

urττ = Δur, (x, τ) ∈ QT ,(3.1)

ur (x, 0) = urτ (x, 0) = 0, x ∈ D,(3.2)

ur
∣∣
Γm×(0,T )

= g̃(x, y, T − τ),(3.3)

(∂νu
r + ∂τu

r)
∣∣
Γb×(0,T )

= 0,(3.4)

∂νu
r
∣∣
Γ3×(0,T )

= 0.(3.5)

A similar procedure was proposed and numerically implemented for computationally
simulated data in [1]. However, the absorbing boundary condition for the original
scattered wave us was applied in [1]. Since our time-reversed wave function ur prop-
agates from Γm to Γb, we believe that it is more natural to apply the absorbing
boundary condition on Γb to ur. We refer the reader to [14, 18] and the references
therein for the experimental time reversal mirror method, a similar procedure but
using a physical mirror to reverse the received signals in time and send them back to
the targets. Note that we do not locate scatterers in this data propagation procedure
as done by the above references or by the time reversal method for detecting small
scatterers using multistatic measurements.

Theorem 3.1 below shows the stability of the problem (3.1)–(3.5). For brevity
we are not concerned here with minimal smoothness assumptions and leave aside
the question of existence, which we conjecture can be addressed via the technique of
Chapter 4 of [17].

Theorem 3.1. Assume that there exists a solution ur ∈ H2 (QT ) of the problem
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(a) (b)

Fig. 4. Laplace transform of the scattered wave on the propagation plane Pp: (a) measured
data, (b) simulated data.

(3.1)–(3.5). Also, assume that the function g̃ ∈ H2 (Γm × (0, T )) and there exists such
a function F ∈ H2 (QT ) that

F (x, 0) = Fτ (x, 0) = 0, (∂νF + Fτ ) |Γb×(0,T )= 0, ∂νF |Γ3×(0,T )= 0,(3.6)

F |Γm×(0,T )= g̃ (x, t) , ‖F‖H2(QT ) ≤ C ‖g̃‖H2(Γm×(0,T )) ,(3.7)

where C > 0 is a certain number. Then that solution ur is unique, and the following
stability estimate holds with a constant C1 = C1 (C,QT ) > 0 depending only on the
listed parameters:

(3.8) ‖ur‖H1(QT ) ≤ C1 ‖g̃‖H2(Γm×(0,T )) .

The proof of Theorem 3.1 is given in the appendix. We note that this theorem
can be extended to more general domains and to a general hyperbolic equation.

By solving (3.1)–(3.5), we obtain an approximation of ur (x, τ) and then obtain
an approximation of us for x ∈ Γp. In this work, we use the finite difference method
to solve this problem. We note that other methods can also be used to solve this data
propagation problem such as the Fourier transform method or the quasi-reversibility
method. We will discuss these two methods in future works.

3.2.2. Data calibration. Usually the experimental data have quite different
amplitudes than do the simulations; see Figure 4, which shows that the minimum of
the Laplace transform of the propagated measured data is approximately −2× 10−5,
whereas the minimum of the simulated data is about −5×10−9. We choose a number,
which is called calibration factor, to scale the measured data to the same scaling as in
our simulations. To do this, we make use of the measured data of a single calibrating
object whose location, shape, size, and material are known. The word “single” is
important here to ensure that the calibration procedure is unbiased; i.e., it remains
the same for all targets.

First, we computationally simulate the data on Γp for the calibrating object by
solving the problem (2.19)–(2.24). Next, we compute the Laplace transform (2.6) of
this computationally simulated solution. Just as in [5], in studies below we work with
s ∈ [s, s] . Numbers s, s are chosen numerically; see section 4. Denote by wt

sim (x, s),
ws

sim (x, s), and wi
sim (x, s), respectively, the Laplace transforms of the total wave,

the scattered wave, and the incident wave of the simulated solution for the calibrat-
ing object. Clearly, ws

sim (x, s) = wt
sim (x, s) − wi

sim (x, s). It can be proved that
ws

sim (x, s) ≤ 0; see Figure 4(b). Figure 4(b) displays the function ws
sim (x, s) for
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x ∈ Γp, and qualitatively this is a typical behavior for all targets. Let

dsim,s = min
Γp

ws
sim (x, s) .

Next, for x ∈ Γp let ws
exp (x, s) be the Laplace transform of the propagated experi-

mental data for the calibrating object; see Figure 4(a). Define

dexp,s = min
Γp

ws
exp (x, s) .

The number dsim,s/dexp,s is used as the calibration factor for all targets at pseudofre-
quency s. That means that the propagated measured data of all targets are multiplied
by this calibration factor before being used in the inversion algorithm.

For the data sets used in this paper, we have two types of targets: dielectric
and metallic targets. We have observed that two different calibration factors should
be used for these two types of targets, because the signals from them have different
levels of amplitude. First, we differentiated these two types of targets by comparing
the amplitudes of the recorded signals. Indeed, we have consistently observed that
the maximal values of amplitudes of measured signals are at least two times larger
for metallic targets than for dielectric ones on those positions of detectors which are
most sensitive to the presence of targets. Next, we chose in each type a known object
as the calibrating object. In other words, we should use a dielectric calibrating object
for all dielectric targets and another metal calibrating object for all metallic targets.

The value of ε (x) for the dielectric calibrating object was taken as ε (x) = 4.28
inside that target and ε (x) = 1 outside of it. For the metallic calibrating object, as
suggested by (2.5), we took ε (x) = 12 inside and ε (x) = 1 outside of it.

4. Numerical implementation and reconstruction results. Now we de-
scribe some details of the numerical implementation and present reconstruction results
for our experimental data using the globally convergent algorithm. In our computa-
tions, the frequency of the simulated incident wave was chosen as ω = 30.

There were ten data sets tested in this paper. Each data set consisted of only one
target, numbered from 1 to 10. Four of them (targets 1–4) were nonblind, and six of
them (targets 5–10) were blind. In our data preprocessing, we chose target 1 (a piece
of wood) and target 3 (a metallic sphere) as our calibrating objects.

4.1. Dimensionless variables. The spatial dimensions in our experiment were
given in meters. Since the scanning step in our measured data was 0.02 m in both x-
and y-directions, we chose the dimensionless spatial variable x′ to be x′ = x/1(m).
Next, to scale the wave speed to be 1 in the homogeneous medium, as in our sim-
ulations, we chose the dimensionless time t′ by t′ = 0.3t, where t is the time given
in nanoseconds (ns). The factor 0.3 is the speed of light in m/ns in free space. For
simplicity of notation, we use x and t again to denote the dimensionless variables.

4.2. Choosing the domains. Before applying the inversion algorithm, some
information about the targets was in place already from the measured data due to
the data preprocessing. First, we obtained the distance from the targets to the mea-
surement plane. Second, by the data propagation, the targets’ locations in the xy
plane were estimated. Third, we also differentiated between nonmetallic and metallic
targets directly from the measured data based on signal amplitudes.

Given the estimated distances from the targets to the measurement plane, which
were about 0.8 m, we propagated the measured data from the measurement plane
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Pm = {z = 0.8} to the plane Pp = {z = 0.04}. This means that the distance from the
front sides of the targets to the backscattering boundary of our inversion domain was
about 0.04 m. The reason for choosing this distance was due to good reconstruction
results we have obtained for several nonblind targets. The domain Ω was chosen by

(4.1) Ω = {x ∈ (−0.5, 0.5)× (−0.5, 0.5)× (−0.1, 0.04)} .
For solving the forward problem (2.19)–(2.24), using a hybrid of the finite difference
method (FDM) and the finite element method (FEM), we chose the domain G as

G = {x ∈ (−0.56, 0.56)× (−0.56, 0.56)× (−0.16, 0.1)} .
This domain G was decomposed into two subdomains: G = Ω ∪ (G \ Ω). We recall
that ε(x) = 1 in G \Ω. Therefore, it is only necessary to solve the inverse problem in
Ω. In Ω we use an FEM mesh with tetrahedral elements, while in G \ Ω we use an
FDM mesh with the mesh size of 0.02 by 0.02 by 0.02 in Test 1 and 0.01 by 0.01 by
0.01 in Test 2 below. The reason for using the FEM mesh in Ω is that it is possible to
refine the reconstruction using adaptive mesh refinement. However, we do not discuss
this step in this work. We refer to [5, 7] for more details about the adaptivity.

The time interval (0, T ) in the forward problem (2.19)–(2.24) was chosen equal
to (0, 1.2). Since the explicit scheme in time was used in WaveES [21], the time step
size was chosen as Δt = 0.0015, which satisfies the CFL stability condition.

The pseudofrequencies sn were chosen from s = 8 to s = 10 with the step size
h = 0.05. This frequency interval was chosen because it gave good reconstructions of
the nonblind targets.

4.3. Estimation of the xy projection. During our data preprocessing for
nonblind targets, we observed that the xy projection of a target can be roughly
estimated directly from the propagated data. Indeed, we define ΓT as

(4.2) ΓT = {(x, y) : vprop(x, y, s̄) < 0.85minvprop(x, y, s̄)},
where vprop is the function v which is constructed from the propagated measured
data on the propagation plane Γp. Note that the function vprop has a negative peak
corresponding to each target; see Figure 4. The truncation value 0.85 was chosen based
on trial-and-error tests on some nonblind targets with known sizes. We observed that
ΓT provided a good approximation for the xy projection of a target. Note that the
same truncation was applied to blind targets as well. Hence, it is not biased.

Figure 5 shows the estimated xy projections of targets 4 and 10 in our experi-
ments; see Table 1. Although the corners of the targets are not well estimated, we
see that their shapes and sizes are reasonably good. For target 10, since its lower
part was filled with the sand and the upper part was air inside of a wooden cover
(see section 4.7 for details), we can see only the lower part due to its higher refractive
index compared to the upper part.

4.4. Completing backscattered data. We recall that only backscattered sig-
nals were measured in our experiments. This means that after data propagation, the
function ψ(x, s) was known only on the side Γp = {x ∈ ∂Ω : |x| , z = 0.04} of Ω.
As in [6], we replace the missing data on the other parts of ∂Ω by the corresponding
solution of the forward problem in the homogeneous medium. In other words, in our
computations, the function ψ is given by

(4.3) ψ(x, s) =

{
ψprop(x, s), x ∈ Γp, s ∈ (s, s̄),

ψi
sim(x, s), x ∈ ∂Ω \ Γp, s ∈ (s, s̄),
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(a) (b)

Fig. 5. Estimation of target’s xy projection: (a) target 4 (a metallic cylinder), (b) target 10 (a
wooden doll partly filled with sand). Thin lines indicate boundaries of correct xy projections.

Table 1

Computed and measured refractive indices of six dielectric targets. The average error in direct
measurements is 24%. The average error of Test 1 is 8% and Test 2 is 3.4%.

Target ID 1 2 5 8 10
Blind/nonblind (yes/no) No No Yes Yes Yes
Measured value, error 2.11, 19% 1.84, 18% 2.14, 28% 1.89, 30% 2.1, 26%
ncomp Test 1, error 1.92, 10% 1.80, 2% 1.83, 17% 1.86, 2% 1.92, 9%
ncomp Test 2, error 2.03, 4% 1.96, 7% 2.10, 2% 1.85, 2% 2.05, 2%

Table 2

Computed “appearing” dielectric constants εcomp of metallic targets.

Target ID 3 4 6 7 9
Blind/nonblind (yes/no) No No Yes Yes Yes
εcomp Test 1 14.37 16.93 25.0 13.61 13.56
εcomp Test 2 7.59 10.76 19.55 8.12 7.89

where ψprop is computed from the propagated measured data at Γp and ψi
sim is com-

puted from the simulated solution of the problem (2.19)–(2.24) with ε(x) ≡ 1 in the
wave equation (2.19). In the following, we also denote by Vprop(x) := vprop(x, y, s̄),
x ∈ Γp, s ∈ [s, s̄], the tail function (2.10) of the propagated measured data.

We remark that this method of data completion is a heuristic one, and it was
found in [6] that it works well for computationally simulated data with the inclu-
sion/background contrast of either 4 or 25. Furthermore, as shown in the results
below, it also works well for the experimental data considered in the current paper
for contrasts in ε varying between 3.24 and 25 (see Tables 1 and 2). Note that Table
1 represents n =

√
ε. Of course, other data completion methods may also be applied.

Below we present the reconstruction results of two different tests: Test 1 and
Test 2. In Test 1, we made use of the first tail function computed from the boundary
value problem (2.16)–(2.17). As was remarked in section 2.4, global convergence with
this choice of the initial tail function is rigorously guaranteed. In Test 2, we choose
the first tail function from some information about the targets which we obtained
in the data preprocessing. Although the convergence of the resulting algorithm has
not been rigorously proved yet, our numerical results show good reconstructions. As
we mentioned in section 2.3, stopping criteria of the algorithm should be addressed
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(a) (b)

Fig. 6. (a) Behavior of the norms Dn,first (solid curve) and Dn,final (dash curve) of Test 1.
(b) Behavior of Dn,final of Test 2.

numerically. We will discuss this in what follows.

4.5. Test 1. When testing the algorithm for different nonblind targets in this
test, we have developed a reliable stopping criterion which includes two steps.

Stopping criterion for inner iterations with respect to i. The inner iterations are
stopped at i = mn such that either (4.4) or (4.5) is fulfilled,

En,i ≥ En,i−1 or En,i ≤ η,(4.4)

Dn,i ≥ Dn,i−1 or Dn,i ≤ η,(4.5)

where η = 10−6 is a chosen tolerance and Dn,i = ||Vn,i|Γp − Vprop||L2(Γp). In (4.4),
En,i represents the relative error of the coefficient, which is given by

En,i =
||εn,i − εn,i−1||L2(Ω)

||εn,i−1||L2(Ω)
.

Criterion for choosing the final coefficient. In Test 1, the inversion algorithm was
run for all pseudofrequencies in the chosen interval s ∈ [8, 10], and then the final
reconstructed coefficient was chosen as follows. On every pseudofrequency interval
[sn, sn−1) we took the norms Dn,first = Dn,1 and Dn,final := Dn,mn at the first and
the final inner iterations, respectively. We have always observed in all ten sets of our
data that the first norm Dn,first first increases with respect to n, then decreases and
attains a unique minimum with respect to n ∈ [1, N ] = [1, 40] . On the other hand,
the final norm Dn,final has either one or two local minima; see Figure 6(a). Let n1

be the number of the iteration n at which the minimum of the first norms is achieved;
e.g., n1 = 16 in Figure 6(a). As the reconstructed coefficient εrec (x), we first choose
εrec (x) := εn1 (x) . Next, if maxΩ εrec (x) < 5 or maxΩ εrec (x) > 10, then we take the
function εrec (x) as the final reconstruction. Suppose now that 5 ≤ maxΩ εrec (x) ≤ 10.
Then we consider the iteration number n2 at which the smallest local minimum of
the final norm Dn,final is achieved, e.g., n2 = 33 in Figure 6(a). Then we take the
function εrec (x) := εn2 (x) as the final reconstruction.

As shown in Table 1, the reconstructed refractive indices are quite close to the
true values for all dielectric targets. Table 2 shows that reconstructed “appearing”
dielectric constants of metallic targets are always in the required range (2.5). How-
ever, the shapes and sizes of the targets were not well reconstructed, particularly
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(a) Target 4, 3-d view. (b) Target 4, xy view. (c) Target 4, yz view.

(d) Target 10, 3-d view. (e) Target 10, xy view. (f) Target 10, yz view.

Fig. 7. Some reconstruction results of Test 1. xy view means the projection of the target on
the xy plane. yz view means the projection of the target on the yz plane. Thin lines indicate correct
shapes.

the “depth” in the z-direction. To improve this, we use the following postprocessing
procedure. Let Pz0 := {z = z0} be the plane where the function εrec (x) achieves its
maximal value. Then we compute the truncated coefficient function ε̃rec (x) as

(4.6) ε̃rec (x) =

{
εrec (x) if εrec (x, y, z0) > γmax εrec (x, y, z0) ,

1 otherwise,

where γ is a truncation factor chosen such that the area of {ε̃ (x, y, z0) > 1} is the
same as that of ΓT ; see (4.2) for ΓT . Finally, we approximate the depth in the z-
direction by truncating ε̃rec (x) by 90% of its maximal value. This truncation value
is chosen based on the trial-and-error tests with nonblind targets. Figure 7 shows
imaging results for targets 4 and 10.

4.6. Test 2. In this test, we chose the mesh size of 0.01 by 0.01 by 0.01 in
order to represent the targets’ shapes more accurately. We use information about the
targets in our data preprocessing to restrict the estimated coefficient ε in a subdomain
of Ω and to choose the first tail function. More precisely, for each target, let xt,min =
min{x ∈ ΓT }, xt,max = max{x ∈ ΓT }. The numbers yt,min and yt,max are defined
similarly. Then, we define the extended projection by

ΓT,ext = {xt,min − 0.03 ≤ x ≤ xt,max + 0.03, yt,min − 0.03 ≤ y ≤ yt,max + 0.03}.
Moreover, denote by zt,front the estimated location of the front side of the target in
the z-direction. We then define the following domain ΩT,ext:

ΩT,ext := {x ∈ Ω : (x, y) ∈ ΓT,ext, −0.1 ≤ z ≤ zt,front}.
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(a) Target 4, 3-d view. (b) Target 4, xy view. (c) Target 4, yz view.

(d) Target 10, 3-d view. (e) Target 10, xy view. (f) Target 10, yz view.

Fig. 8. Some reconstruction results of Test 2. Thin lines indicate correct shapes.

Clearly, ΩT,ext ⊂ Ω. Moreover, this domain should contain the unknown target we
are looking for. Next, we chose the first tail function V0 as the function (2.10), where
the function w (x, s) is the Laplace transform (2.6) at s = s of the solution of the
forward problem (2.19)–(2.24) with the coefficient ε = ε0, where

ε0(x) = εu for x ∈ ΩT,ext, ε0(x) = 1 for x /∈ ΩT,ext.

Moreover, the coefficient is truncated by

(4.7) εn,i(x) =

⎧⎪⎨⎪⎩
εn,i(x) if x ∈ ΩT,ext and 1 ≤ εn,i(x) ≤ εu,

1 if εn,i(x) < 1,

εu if εn,i(x) > εu.

In this paper, we chose εu to be 10 for nonmetallic targets and 20 for metallic ones.
Stopping criterion. In this test, the inner iterations were stopped using the same

criterion as in Test 1. However, we also set the maximum number of inner iterations
to be 5. That means that the inner iterations were stopped if either (4.4) or (4.5) was
satisfied for i < 5, or if i = 5.

Concerning the outer iterations, we have observed that the error Dn,final de-
creased with respect to n first, and then increased after reaching a minimum; see
Figure 6(b). At that minimum, the estimated coefficient was a good approximation
of the true one for some nonblind targets. Therefore, we stopped the algorithm when
this error function attained the minimum.

We have observed through our tests that the shapes of the targets are quite well
reconstructed. Figure 8 shows the results of targets 4 and 10 using Test 2. For target
10, we again obtained the lower part, which was filled with the sand; see Figure 5(c)
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for its xy projection estimated from the data (recall that air was inside the wooden
cover in the upper part of that target).

4.7. Summary of reconstruction results. To compare our computational
results with true ones, we have directly measured a posteriori refractive indices n =

√
ε

of dielectric targets. In Tables 1 and 2, the computed values of the refractive index
ncomp of dielectrics (respectively, effective dielectric constant εcomp of metals) were
chosen as the square root of the maximal values (respectively, the maximal values) of
the reconstructed coefficient. Table 1 lists both computed ncomp and directly measured
refractive indices n of dielectric targets for both Test 1 and Test 2. This table also
shows the measurement error in direct measurements of n. Table 2 lists computed
“appearing” dielectric constants εcomp of metallic targets. We see from Tables 1 and 2
that (ncomp)

2
< 5 for all dielectric targets, while εcomp > 13.56 for all metallic targets

in Test 1 and εcomp ≥ 7.59 in Test 2. Thus, our algorithm can differentiate quite well
between dielectric and metallic targets.

It can be seen from Table 1 that both tests image refractive indices of both blind
and nonblind dielectric targets with only a few percent of error, which is even smaller
than the error of direct measurements. The average error of computed refractive in-
dices ncomp in Tests 1 and 2 is respectively three and seven times less than the average
error of direct measurements. Test 1 obtains higher effective dielectric constants of
some metallic targets than does Test 2. However, Test 2 provides better shapes.

Unlike targets 1–7, which are homogeneous, targets 8, 9, and 10 are heterogeneous.
Target 8 is a wooden doll with air inside. Target 9 is that doll with a piece of metal
inside; i.e., this is a metal covered by a dielectric. We can see that only the metal
was imaged, because its reflection is much stronger than that of the wood. Target 10
is the same doll partially filled with sand inside (except at the top); i.e., this is one
dielectric covered by another one. One can see that only the part with the sand was
imaged in target number 10, since its dielectric constant is higher than the air inside
the top. Moreover, the reconstructed refractive index is about the average of those of
the wood and the sand.

In conclusion, we can see from our tests that, with the proposed data pre-
processing procedure, the globally convergent algorithm can image quite well both
geometries and materials of the targets in our experimental data even though there is
a huge misfit between these data and simulations. Moreover, it can image large inclu-
sion/background contrasts, the case that is well known to be difficult for conventional
least-squares approaches.

Appendix. Proof of Theorem 3.1. Consider the functionW (x, τ) = ur (x, τ)−
F (x, τ) . Define

(A.1) F (x, τ) =
(
Δ− ∂2τ

)
F.

Then (3.1)–(3.7) imply that

Wττ −ΔW = F (x, τ),(A.2)

W (x, 0) =Wτ (x, 0) = 0,(A.3)

(∂νW +Wτ ) |Γb×(0,T )= 0,(A.4)

W |Γm×(0,T )= 0,(A.5)

∂νW |Γ3×(0,T )= 0.(A.6)
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Multiplying both sides of (A.2) by 2Wτ , we have

2WτWττ − 2WτΔW = ∂τ
(
W 2

τ

)
+ ∂τ (∇W )2 − (2WτWx)x − (2WτWy)y − (2WτWz)z

= 2WτF .

Let τ̃ ∈ (0, T ) be an arbitrary number and Qτ̃ = D × (0, τ̃). Integrating the latter
equality over Qτ̃ and using (A.3), (A.5), and (A.6), we obtain
(A.7)∫∫

D

[
W 2

τ + (∇W )
2
]
(x, τ̃ ) dx− 2

∫∫
Γb×(0,τ̃)

Wτ∂νWdxdydτ = 2

∫∫
Qτ̃

WτFdxdτ.

It follows from (A.4) that −2Wτ∂νW = 2W 2
τ for (x, τ) ∈ Γb × (0, T ) . Hence, (A.7)

implies that
(A.8)∫∫

D

[
W 2

τ + (∇W )2
]
(x, τ̃ ) dx ≤ 2

∫∫
Qτ̃

WτFdxdτ ≤
∫∫

Qτ̃

W 2
τ dxdτ +

∫∫
Qτ̃

F
2
dxdτ.

Define Z (τ) =
∫∫

D[W 2
τ + (∇W )

2
] (x, τ) dx. Then (A.8) implies that

(A.9) Z (τ̃ ) ≤
∫ τ̃

0

Z (τ) dτ +
∥∥F∥∥2

L2(Qτ̃ )
∀τ̃ ∈ (0, T ) .

Now (3.8) follows immediately from (A.9), (A.1), and Gronwall’s inequality.

Acknowledgments. The authors are grateful to Mr. Steven Kitchin for his
excellent work on data collection. We also thank the anonymous referees for their
valuable and stimulating comments and suggestions.

REFERENCES

[1] F. Assous, M. Kray, and F. Nataf, Time-reversed absorbing conditions in the partial aperture
case, Wave Motion, 49 (2012), pp. 617–631.

[2] A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solution of
Inverse Problems, Springer, Dordrecht, The Netherlands, 2004.

[3] L. Beilina, Energy estimates and numerical verification of the stabilized domain decomposition
finite element/finite difference approach for the Maxwell’s system in time domain, Central
European J. Math., 11 (2013), pp. 702–733.

[4] L. Beilina and M. V. Klibanov, Reconstruction of dielectrics from experimental data via a
hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26 (2010), 125009.

[5] L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coef-
ficient Inverse Problems, Springer, New York, 2012.

[6] L. Beilina and M. V. Klibanov, A new approximate mathematical model for global conver-
gence for a coefficient inverse problem with backscattering data, J. Inverse Ill-Posed Probl.,
20 (2012), pp. 513–565.

[7] L. Beilina and M. V. Klibanov, Relaxation property for the adaptivity for ill-posed problems,
Appl. Anal., 93 (2014), pp. 223–253.
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