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Abstract

In a world where the human makes large toxic footprints the anthropogenic pollution
of the aquatic environment is evident. It is therefore of great importance to understand
what and how pollution adversely affect organisms in the environmental ecosystems. The
aim of this study is to understand microarray gene expression patterns in the fish eelpout
and how they change in connection to pollution. The analysed dataset is unique due to
its extensive set-up with 158 wild fish from 16 sites located in four large geographical
regions in the Baltic Sea.

The expression profiles were found to be highly varying. Clustering analysis showed
that fish from the same region and site had a high tendency to group together. Compar-
ison between fish from reference and polluted sites showed significant differences in gene
expression but the effects were in general small. This is likely an indication that there
are few shared effects between the polluted sites. Similarly, there were small effects on
the gene expression between fish with a high and low reproduction success. Large and
significant effects were however seen when comparing fish with low and high values of
the known biomarker EROD. We also observed strong correlations between measured
gene expression for the CYP1A gene and EROD. The strength of the correlation varied
between regions and the highest correlation was found at the Swedish west coast. Fi-
nally, we assessed the independence between sampled fish and found that several genes
had a high within-site correlation (median correlation over all genes were 0.18).

Our results suggest that there are small effects on gene expression connected to
pollution and reproduction success. We could, however, identify large effects connected
to region and site which may indicate that ecological factors and population parameters
had a substantial impact on the observed gene expression profiles.
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1
Introduction

In a world where the human makes large toxic footprints it is of great importance to
understand the impact this has on the environment. The pollution is today widespread
and many of the emissions are accumulated in the coastal environment. The anthro-
pogenic pollution of the aquatic environment is evident and it is therefore a main issue
to investigate what and how the pollution adversely affects organisms in the aquatic
ecosystems. To do this, fishmonitoring is being developed as a tool for investigation
of adverse effects caused by pollution and the traditional strategies in biomonitoring by
using histopathology can today be complemented by microarrays. This makes it possible
to investigate the relation between pollution and the aquatic organisms’ gene expressions
which as a next step might be used as early warning signs.

Within the project called Balcofish gene expression profiles of the fish eelpout (Zoarces
viviparus) have been analysed using microarrays. The species eelpout has shown to over-
all be a valuable bio-indicator. One major advantage compared to other fish species is
that it gives birth to live young, or rather the eggs develops into fry within the female.
Thus it is possible to directly examine the reproduction for each female (Hedman et al.,
2011). The Balcofish project is a large EU-BONUS financed project with the aim to
investigate chemical pollution by developing fish monitoring and by providing solid in-
formation to the management of the Baltic Sea. To achieve this, fish have been sampled
from 16 sites located in four large geographical regions in the Baltic Sea. The Balcofish
project is a joint research project involving scientists from Denmark, Germany and Swe-
den. This thesis is performed in collaboration with the scientists at the University of
Gothenburg, Department of Biological & Environmental Sciences and Department of
Infectious Diseses, and is part of the Balcofish project.

The DNA microarrays, developed in the 1990s, revolutionised the field of gene ex-
pression analysis since it gave the possibility to investigate a very large number of genes
simultaneously. The gene expression microarrays that have been used to retrieve the
data for this study consist of a solid surface with microscopic DNA spots, each of them
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CHAPTER 1. INTRODUCTION

containing many copies of a unique DNA sequence called probe. The probe can be a part
of a known gene or an unidentified sequence. mRNA from each individual fish is isolated
and reverse transcribed into cDNA (a more stable molecule) and fluorescently labeled.
The cDNA from a sample is then hybridized to the microarray. cDNA that have not
attached to any probe is washed away. The amount of cDNA sequences that attaches to
each probe tells how much of that specific sequence that was found in the sample and by
that how much this gene was expressed. This amount of attached sequences is usually
examined by detection of fluorescent using a laser scanner (Alberts, 2002).

Since microarrays is used to investigate a large number of genes simultaneously the
retrieved data will be high dimensional. The raw intensities are often noisy and this
together with the high dimensionality urges the need for statistical tools. Common pre-
processing of the intensities to aid the succeeding analysis is quantile normalization and
log transformation. The log transformed gene expression data is often close to normal
and therefore linear models can be used. The linear model gives a flexible frame work
and there is a variety of statistical tests that can be used for inference. Among these we
find simpler methods such as the classical t-test but alternatively more robust estimators
can be applied for example the estimators found in the limma-package for the software
R (Smyth, 2004).

Many of previous studies of gene expression differences in fish have investigated the
short term impacts in controlled studies . The step from this into field implementation is
not done without complications. Sellin Jeffries et al. (2012) looked at taking microarrays
to the field by deploying fatheaded minnows (Pimephales promelas) to be caged for 7
days at four sites with different anthropogenic impact. It was shown that microarrays
can be utilized to discriminate between sites with different contamination loads. The
gene expression profiles were found to be site specific and that fish from low- and high-
impact sites aggregated into distinct groups. In Williams et al. (2014) long term impact
of contamination exposure was investigated when European flounder (Platichthys flesus),
all sampled from the same site, were kept for 7 months in mesocosms with sediment from
sites with different contamination loads. Small but statistically significant alterations
in transcriptomic and metabolomic responses in liver tissue were detected between fish
exposed to different sediments. Neither of these studies concerned fish from different
populations. To be able to study gene expression for chronically exposed wild fish the
fish need to be sampled at site and for large-scale studies the population effect cannot be
avoided. For the final step in taking microarrays into field implementation the long term
impact of exposure, ecological parameters and population effects will all be needed to be
taken into account. In Falciani et al. (2008) European flounder sampled from six widely
spread sites were compared and a wide range of genes seemed to be differently expressed
between the sites. It was demonstrated that gene expression signatures in livers can
predict the geographical sampling site but that the accuracy is limited to specific sites.
The question is if discrimination between field sites with different levels of contaminations
still is apparent when the study concerns wild sampled fish from different populations.
And furthermore, if gene expression signatures can predict geographical sampling site
and origin even when the number of sites is increased.
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1.1. AIM CHAPTER 1. INTRODUCTION

1.1 Aim

In this master’s thesis project gene expression patterns in wild sampled fish will be in-
vestigated and questions concerning how to handle data from large-scale sampling will
be adressed such as impact of site and region. The aim of this study is to analyse
gene expression patterns in eelpout liver and find possible relation between gene expres-
sion differences and exposure of pollution as well as relation between gene expression
differences and biomarkers.

The specific objectives are:

1. Identify tendencies of groupings of the fish. Investigate the general appearance of
the gene expression profiles and discrimination between samples based on sampling
site, region and exposure of pollution.

2. Find differentially expressed genes connected to pollution. Identify consistent dif-
ferences between the gene expression profiles of the fish in relation to the contam-
ination load at the sites.

3. Find differentially expressed genes connected to biomarkers such as reproduction
success. This by defining a measure of reproduction success and then identify
consistent differences in gene expression profiles between groupings of the fish based
on reproduction success.
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2
Theory

The analysis of the gene expression data will rely on statistical methods and the following
chapter will introduce the methods used for the data analysis. The structure of the
linear model used for inference and the basics for handling the arising problem of high
dimensionality will be explained. Moreover, an introduction to the unsupervised analysis
methods hierarchical clustering and principal component analysis is given.

2.1 Linear models with empirical Bayes

2.1.1 Formulation of linear model using design and contrast matrix

Let yg denote the log transformed gene expression for probe g and denote the coefficient
vector as αg holding the coefficients representing the exploratory variables. These two
vectors will be

yg =


yg,1

yg,2

:

yg,n

, αg =


αg,1

αg,2

:

αg,p


where n is the number of samples, for this study n = 158, and p is the number of covari-
ates included in the model. The so-called design matrix, denoted as X, is constructed
as follows and has dimension n× p,

X =


x1,1 x1,2 . x1,p

x2,1 x2,2 . x2,p

: : . :

xn,1 xn,2 . xn,p

 .
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2.1. LINEAR MODELS WITH EMPIRICAL BAYES CHAPTER 2. THEORY

The design matrix is such that each column holds data for one of the included covariates.
Each row represents a sample since the i:th row is the covariate profile for the i:th
sample and will not change with the probes. This profile holds information for this
specific sample about the properties included in the model which can be both individual
properties and properties of its environment. The linear model can now be formulated

Yg ∼ Nn(Xαg,σ
2
gIn)

where all samples are assumed to be independent.
For each covariate that is included in the design matrix we get an estimation of its

coefficient and by that the possibility to remove its impact in the model or to examine
its influence. This choice of which coefficients to examine can be made using a contrast
matrix C. It holds information about which coefficients that are to be compared and
how these should be weighted. For the following setting each column should sum to zero.
The number of rows in the contrast matrix is the same as the length of the coefficient
vector αg. In the same way as for the design matrix, the contrast matrix will be the
same for all probes. The contrast of interest is given by βg = CTαg where for this study
the contrast matrix is always one dimensional

C =


c1

c2

:

cp

 .

Let the null hypothesis H0 be no difference in gene expression and let the alternative
hypothesis HA be that there is difference in gene expression according to

H0 :βg = 0

HA :βg 6= 0.

The covariates that are included in the design matrix but have entries zero in the contrast
matrix are covariates which effects the model tries to compensate for. Covariates that
have non-zero values in the contrast matrix are the ones which effects are being examined.
The magnitude and sign of the elements in the contrast matrix tell how the features are
weighted together. For example, if site effects are being examined the weights can be by
the number of samples in the sites (Smyth, 2004).

2.1.2 Empirical Bayes and modified t-test

The variances for each probe are not assumed to be equal. But if estimating each
probe’s variance using a frequentist approach we will run into problems due to the high
dimensionality. When having a very large number of tests, such as the microarrays will
give, the risk is almost certain that some of the estimated variances will be too small due
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2.1. LINEAR MODELS WITH EMPIRICAL BAYES CHAPTER 2. THEORY

to randomness. The result of this might be that even if the absolute difference in gene
expression is too small to be of biological interest the result will still seem significant due
to the by randomness grossly underestimated variance. Due to this the ordinary t-test
might give a bad rating of the biological effects. To avoid this problem an empirical Bayes
method can be used which borrows information across the probes to fit hyperparameters
ξ and η. Consider the following for testing the contrast βg. The variance σ2 is a random
variable thought to be independent between the probes. Yg is the log transformed gene
expression for probe g.

Yg|σ2g ∼ Nn(Xαg,σ
2
gIn)

σ2g ∼ Γ−1(ξ,η)

The inverse gamma distribution has not only been empirically shown to fit microarray
data well but has good statistical properties since it is the conjugate prior to the normal
distribution. The hyperparameters ξ and η are point estimated using all the given data
across the probes. Since the number of probes is large the parameters are well estimated
and considered as known. They decide how the variance behaves by setting the shape
and rate of the inverse gamma distribution.

Let us consider the null hypothesis H0 : βg = 0 and the alternative hypothesis
HA : βg 6= 0. Without further explanation and only giving an intuitive feeling for the
result of empirical Bayes we can say that we have now moved from the ordinary t-test
to the moderated t-test

Tg =

√
n− p+ 2ξ

CT (XTX)−C

Yg√
S2
g + 2η

.

where Yg is the projection of Yg on the subspace spanned by H0, Yg = C(XTX)−Yg,
and S2

g is the variance according to S2
g = YT

g (I − X(XTX)−1X)Yg. The distribution
of Tg follows a t-distribution with n − p + 2ξ degrees of freedom (Smyth et al., 2003;
Kristiansson et al., 2005). One way to interpret this is that a large variance will lead to a
large η and the variance S2

g is less trusted in the empirical Bayes setting. This approach
makes the model more robust against underestimated variances.

2.1.3 Multiple testing correction

The above described model and computation of test-statistic will be done for each probe
separately. The large number of probes tested in the microarray analysis gives a multiple
testing situation where each comparison gives roughly 135 000 test-statistics. Therefore
we expect that many test-statistics will have large magnitudes and thus small p-values
by chance. This problem is referred to as the multiple testing problem. To correct for
this the p-values can be adjusted by making them stricter, in other words less significant.
There are different ways of adjusting the p-values which differ in what type of error that
is being controlled and how strictly.
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2.2. HIERARCHICAL CLUSTERING CHAPTER 2. THEORY

One simple and strict correction is the Bonferroni correction which controls the
family-wise error rate (FWER). The FWER is the probability of at least one false rejec-
tion of the null hypothesis in favour of the alternative hypothesis for a chosen threshold
α according to

FWER = P (V ≥ 1) ≤ α

where V is the number of falsely rejected null hypotheses. The Bonferroni corrected
p-value is the non-adjusted p-value multiplied by the number of tests and this should be
smaller than α for the change to be called significant. If the number of tests is large, as for
microarray experiments, the Bonferroni correction along with other methods for FWER
correction are too conservative which will result in too few genes called significantly
changed.

Another method is Benjamini-Hochberg which instead controls the false discovery
rate (FDR). The FDR is the number of tests incorrectly called significant according to

FDR = E[V/R] ≤ α

where V again is the number of falsely rejected null hypotheses in favour of the alter-
native hypotheses and R is the total number of rejected null hypotheses (Hastie, 2009).
This means that the Benjamini-Hochberg adjusted p-values are such that for a chosen
threshold, α, all probes with a FDR adjusted p-value lower than α are called differentially
expressed. Among these the expected proportion of false discoveries, i.e. probes that are
falsely called differentially expressed, are less than the threshold value α (Smyth, 2005).

2.2 Hierarchical clustering

Hierarchical clustering is used to visualise groupings in the data using a binary tree struc-
ture. Each level of the tree describes a hierarchy and represents a particular grouping of
the observations into disjoint clusters. At the lowest level each cluster contains a single
observation and at the highest level there is one cluster which contains all of the observa-
tions. The clustering is often visualised in a binary tree called dendrogram, see figure 2.1
for an example. A dendrogram is a tree where the nodes at the first level is at height zero
and the consecutive levels of the dendrogram have branch lengths proportional to the
dissimilarity between the joined clusters. Long branch lengths between clusters indicate
dissimilar clusters while short branch lengths imply more similar clusters. The mono-
tonicity property possessed by dendrograms means that dissimilarity between joined
clusters is monotone increasing with the height at which the clusters are joined. By
cutting the tree at different levels we get different groupings of the observations and if
long branches are cut it is more likely that these groupings are representations of natural
clusters.

A distance metric is defined for the pairwise distances between the observations which
for example can be Euclidean distance or correlation distance. Left to determine is the
meaning of two clusters being dissimilar and the answer to this question will change de-
pending on the analysis. Three measures often used are single linkage, complete linkage
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Figure 2.1: Example of a dendrogram from hierarchical clustering where 5 samples are
being clustered based on correlation distance metric and using complete linkage. The clusters
are recursively joined and the height at which clusters are joined describes the proportional
dissimilarities between them.

and average linkage which all compare the pairwise dissimilarities between clusters and
joins the two clusters with smallest between cluster dissimilarity. Single linkage defines
the between cluster dissimilarity to be the smallest distance between two observation
belonging to different clusters. In contrast, complete linkage defines the between cluster
dissimilarity to be the distance of the most dissimilar pair of observations belonging to
different clusters. Complete linkage will result in compact clusters since the algorithm
favours clusters where all observations are as similar as possible. The trade-off for this is
that some observations might be assigned to a cluster while being closer to some obser-
vations from another cluster. The average linkage can be seen as a compromise between
the above described linkage choices since it defines the between cluster dissimilarity to
be the average over all pairwise distances between the observations of different clusters.
It creates clusters that are relatively compact where all observations are relatively close.
The drawback is that the result is dependent on the numerical scale of the dissimilarity
measure of the observations. Applying a monotone strictly increasing transformation to
the dissimilarities can change the result while single and complete linkage only depend
on the ordering of the dissimilarities. The average linkage has however statistical con-
sistency property in contrast to single and complete linkage. For single and complete
linkage it is unclear what aspects of the population distribution that are being estimated
by the clustering algorithm.

There are two different clustering strategies. One of them is the agglomerative, a

8
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bottom-up method which starts with each observation as a single cluster. Then the two
least dissimilar clusters are recursively merged and the method ends with one cluster
containing all observations. The other strategy, namely divisive method, is a top-down
method which starts with all observations in one cluster and then recursively split the
clusters until each observation is a cluster. Using divisive methods it is not guaranteed
to get the monotonicity property required for the result to be shown as a dendrogram
(Hastie, 2009).

2.3 Principal component analysis

Principal component analysis is a projection of the data onto a subspace spanned by un-
correlated variables. It is used for shrinking dimensions by an orthogonal transformation
to components which sequentially captures the most variance. The principal components
are in short the linear combinations of the original variables that give uncorrelated com-
ponents with maximum variance among all sequential linear combinations of the original
components.

Let X be an p-dimensional random vector holding the observed data having a positive
semidefinite covariance matrix Σ. Let further, Γ be an orthogonal matrix such that
Σ = Γ∆ΓT where

∆ =


δ1 0

. . .

0 δp


and δi are the ordered roots of |Σ − δI| = 0 i.e. δ1 ≥ δ2 ≥ ..δp ≥ 0. Define U to be
[U1,...,Up]

T and U = ΓTX. Then U is called a vector of principal components of X and
Ui is called the ith principal component of X. The covariance matrix of U is ∆ = ΓTΣΓ
and therefore the components Ui are uncorrelated with variance δi i.e. the variance of
the ith component is equal to the ith eigenvalue of Σ. Since Γ is orthogonal, observing
U is equivalent to observing X.

The covariance matrix Σ is rarely known and the principal components needs to be
found by estimations (Arnold, 1981). Keeping the above in mind and omitting the details
when having unknown Σ, let us consider x to be the vector of observed components.
Denote the rotation matrix by R which by having the principal components as columns
and each variable as a row works as a matrix of basis vectors. By Z = xR we get Z the
matrix holding new coordinates for each sample in the subspace spanned by the principal
components.

PCA is often used for variable reduction. By only using the first k components of Z
for further analysis of the data the number of variables are reduced to the k variables that
captures as much of the variance as possible. The choice of how many variables to use
for analysis can be based on the amount of explained variance or by exterior restriction
of the maximum number of dimensions. Interpretation of the principal components is
not always obvious since they are linear combinations of the observed variables. It might
be the case that the feature of interest is not captured by the first principal components
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but by the ith and jth components instead. Therefore, principal components are often
analysed by plotting the data using pairwise combinations of the principal components
and the components giving rise to groupings in the data will be further investigated. The
components of x are often standardized unless the numerical scale is on its own thought
to be valuable information. The reason is that the same data but using different units
will give completely different principal components (Johnson and Wichern, 1998).
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3
Materials / Method

3.1 Sampling set-up and data

3.1.1 Experimental design

The fish, later called samples, are of the species European eelpout (Zoarces viviparus)
which has shown to overall be a valuable bio-indicator. Its stationary behaviour makes
it possible to investigate long term ecological and anthropogenic impact in contrast to
other fish species. One major advantage compared to other fish species is that the
reproduction for each female can be directly examined since it gives birth to live young,
or rather the eggs develops into fry within the female (Hedman et al., 2011).

The fish were sampled at 16 coastal sites in four regions. The sites are located
such that four sites are on the Swedish west coast (Fjällbacka, Stenungsund, Göteborg,
Vendelsö), four sites on Swedish east coast (Kvädöfjärden, Marsö, G̊asö, Slakmöre), five
sites in Denmark (Agersø, Karrebæk Fjord, Isefjord, Frederiksværk, Roskilde Fjord) and
three sites in Germany (Wismar, Eggers Wiek, Slazhaff), see table 3.1. The sites have
been classified based on pollution level, some as polluted, some as medium polluted
and some as reference sites (Albertsson et al., 2011). From each site, 8 to 11 female
samples have been hybridized to microarrays. It is thought to be different populations
of eelpout in the different regions but also that Denmark might be divided into two
different populations. The samples taken from the same site are assumed to be from the
same population even if there is a possibility that occasional exchanges of individuals
between populations have occurred (Hedman et al., 2011).

Workshops have been held to get the sampling procedure as undiversified as possi-
ble but there are some aspects of the sampling procedure with large differences. One
example is that the samples from German sites were moved by car before testing was
performed. Considerable effort has been put into keeping the number of affecting fac-
tors at a minimum and as an example all microarray and enzyme analyses have been
performed by the same laboratory.
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3.2. EXPLORATORY ANALYSIS CHAPTER 3. MATERIALS / METHOD

Table 3.1: Sampling sites included in the study divided into four geographical regions and
classified by the prior belief of their pollution levels.

Region Site Classification

Sweden - West coast

Fjällbacka Reference

Stenungsund Polluted

Göteborg Polluted

Vendelsö Reference

Sweden - East coast

Kvädöfjärden Reference

Marsö Reference

G̊asö Polluted

Slakmöre Medium polluted

Denmark

Agersø Reference

Karrebæk Fjord Polluted

Isefjord Medium Polluted

Frederiksværk Polluted

Roskilde Fjord Polluted

Germany

Wismar Polluted

Eggers Wiek Medium polluted

Slazhaff Medium polluted

3.1.2 Data included in the study

The gene expression data is one-channel microarray intensities and has been preprocessed
by log transforming and normalizing each sample. Roughly 135 000 data points for each
sample were analysed from the DNA microarrays as 2-4 probes had been designed from
approximately 50 000 eelpout liver sequences (contigs).

Data for ethoxyresorufin-o-deethylase (EROD) activity and reproduction success for
each fish is also included in the study. The reproduction data is in the form of number
of dead and abnormal fry together with the total brood size.

3.2 Exploratory analysis

First unsupervised analysis was performed on all gene expression profiles using hierarchi-
cal clustering and principal component analysis. This was done to identify and visualise
patterns in the general appearance.
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3.2. EXPLORATORY ANALYSIS CHAPTER 3. MATERIALS / METHOD

3.2.1 Hierarchical clustering

Hierarchical clustering is an easy way to visualise groupings in data. An agglomerative
(bottom-up) clustering procedure was used and implemented using hclust in R. The
samples were clustered and each sample’s gene expression profile was compared with the
other samples’ profiles. Since the absolute levels were not of interest but the patterns
of the gene expressions, correlation distance was chosen instead of Euclidean distance.
The distance metric used was (1 − P)/2 where P denotes the correlation matrix with
Pij defined as the Pearson correlation between the ith and jth samples’ gene expression
profiles.

When using average linkage a monotone strictly increasing transformation applied to
the dissimilarities can change the result while single and complete linkage only depend
on the ordering of the dissimilarities. The chaining effect that single linkage might have
is not a desirable effect in this case. Instead it is more appealing to have compact clusters
for the trade-off of risking that a few observations might be assigned to the wrong cluster.
Hence complete linkage was chosen to overall have compactness such that all observations
in a cluster were alike and still not having to depend on any transformation.

The samples were clustered using different gene expression profiles. These gene ex-
pression profiles were created by filtering based on how much each probe varied. For
example, a high variance profile was created using the top 10% most varying probes
and a low variance profile based on the 10% least varying probes. The clustering was
performed using no information about site belonging or pollution level. This information
was however used when visualising the results in dendrograms.

3.2.2 Principal component analysis

The scales of the variables in PCA have a huge impact on the result. If there is no
information in scale or the variables have been measured using different unit systems the
general recommendation is to scale the variables. In this case however, all the variables
included were of the same type and by scaling we would risk getting an increase of noise
by giving low variance probes to much impact. Therefore the variables were not scaled
or centred since we rather risk losing some informative low expressed probes in favour
for not bringing up to much noise.

First principal component analysis was performed by prcomp in R using all samples.
Principal components were pairwise plotted against each other and the samples marked
by region or pollution. This was then repeated for each region such that now only samples
belonging to the same region were used in each of the regional principal component
analyses. The samples were marked either by pollution level or site belonging.
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3.3 Gene rank analysis

3.3.1 The linear model and empirical Bayes

The main outline for the following analysis was to fit a linear model to the log transformed
expression data for each probe and then use empirical Bayes method to fit hyperparam-
eters. Inference was done using moderated t-test and p-values were adjusted by FDR
(Benjamini Hochberg) for cut-off 0.01.

The statistical model used in microarray analysis needs to be able to handle the
hierarchical structure of the data and the inference should take the high dimensionality
and the multiple testing situation into account. The linear model has shown to work
well for microarray data and Sjögren et al. (2007) showed that it has a higher power to
detect differentially expressed genes compared to standard methods. Log transformed
gene expression data is often, as well as in this case, close to normal which makes the
linear model favourable and we have robust estimators in the limma-package (Smyth,
2004). Based on which comparison that was made different aspects were taken into
account and these features included in the design matrix. The samples were divided into
different groups and compared using the contrast matrix. This allowance for general
experiments to be analysed using the same framework by only changing the design and
contrast matrix gives a very flexible and appealing model (Smyth, 2005).

The linear model was fitted using least squares approach and then empirical Bayes
was used. Empirical Bayes can be seen as borrowing information across all probes and
through this we did not have to assume equal variance across the probes. Instead the
variances were thought to be from the same distribution with the fitted hyperparameters.

To correct for the multiple testing problem Benjamini Hochberg correction was used
to adjust the p-values which controls the false discovery rate. The FDR adjusted p-
values are interpreted such that for the chosen threshold 0.01, all probes with adjusted
p-values lower than 0.01 are called significantly differentially expressed. Among these,
the expected proportion of probes falsely called differentially expressed are less than the
threshold value i.e. 1% (Smyth, 2005).

The above described steps were done in the software R using the limma package in
Bioconductor which calculates the log fold change and adjusted p-value.

3.3.2 Differences in gene expression based on pollution classification

For comparing sites with different pollution classification the design matrix consisted
of covariates indicating site, meaning that an overall site effect was estimated for each
site and this was done for each probe separately. The interpretation of a site coefficient
with large magnitude is that all together something in the environment or population
of the fish from this site had a large impact on the expression of this particular gene
in comparison to fish from other sites. Using the contrast matrix two groups were then
formed. One consisted of all samples from reference sites and the other of samples from
polluted sites. By comparing groups chosen to be reference and polluted we compared,
for each probe, if there was any difference in effects between these groups. In other words,
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we test how likely it is that the regulation of this gene was caused by the fish being in
reference or polluted environment. This was done by having positive weights in the
contrast for reference sites and negative weights for polluted sites. For this comparison
the site coefficients were weighted by the number of samples from each site. The medium
polluted sites had elements zero in the contrast matrix. The group sizes for this contrast
were 51 samples in the reference group and 68 samples in the polluted group.

When looking at the regional comparison the sites could not be divided as easily
into one reference group and one polluted group. The reason for this was the number
of sites and the unbalanced partition of sites with different pollution classifications, see
table 3.1. To overall get as good groups as possible and to stay consistent the group
division for the regional comparisons were made such that medium polluted sites were
combined with reference sites and compared against polluted sites. Notice that this
means that for the Swedish west coast reference sites were compared against polluted
sites while for Germany medium polluted sites were compared against the polluted site.
The group sizes using above contrast were for: Swedish west coast 21-21, Swedish east
coast 30-8, Denmark 20-29 and for Germany 19-10. Also for the regional comparisons all
site coefficients were estimated but now only site effects for sites belonging to the same
region were compared. This by setting all but one regions coefficients in the contrast
matrix to zero and reweight.

3.3.3 Gene expression in relation to the biomarker EROD

In an aquatic system the type or mixture of contamination may be hard to know and a
biomarker, indicator of some biological state or condition, can be of good use. Hepatic
EROD induction in fish has shown to be useful in such situations and has successfully
been used as a biomarker of general contamination (Whyte et al., 2000). EROD mea-
sures the enzyme activity of the CYP1A gene and its level of gene expression has been
measured using four probes.

Correlation between EROD activity and expression of CYP1A

The within-site correlation between the log transformed EROD values and the log trans-
formed measured expression of CYP1A was computed as Pearson correlation coefficient.
This was done for each site separately and the regional estimations of the correlation
were retrieved by averaging the within-site correlation for each region. The reason to
first compute the within-site correlations is to get the correlation at individual level.
Otherwise it might be the case that EROD level and expression of CYP1A might cor-
relate at site level but that this correlation is not representative for the correlation at
individual level.

Differences in gene expression for samples with high and low EROD activity

To compare the difference in gene expression in relation to levels of EROD two groups
were formed. The high EROD group consisted of the 5% of the samples with highest
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EROD values, values above 0.400, and the low EROD group were the 5% of the samples
with lowest EROD values, values 0.037 and lower. This gave a group size of 8 in the high
level group and 7 in the low level group. No other factors were taken into account for
this comparison and only samples within these groups were used to fit the linear model.

This was repeated with high and low EROD individuals from the Swedish west
coast. This time the limit for high EROD values were 0.35 and low EROD values were
considered to be values 0.06 and under, giving group sizes of 3 and 4.

3.3.4 Difference in gene expression based on reproduction success

Reproduction success was measured using rate of total abnormal fry which was defined
to be the number of dead and malformed fry divided by the total brood size. A low rate
of abnormal fry means good reproduction success. In the same way as for the high and
low EROD comparison the only features included in the comparison were indication of
belonging to the high or low rate of abnormal fry group and only samples within these
groups were included in the model. High rate of abnormal fry was chosen to be rates
0.05 or more while low rates were values 0.03 or lower. This to create two large groups
of size 60 for the high rate group and 77 for the low rate group.

3.4 Within-site correlation

The common assumption of independence between samples is most likely not true since
there are common factors affecting all fish from the same site such as ecological parame-
ters and pollution. The assumption was tested by estimating ρ describing the correlation
between samples belonging to the same site and σ2 describing the variance. This was
done for each probe separately and the subscript indicating probe has therefore been
omitted. A simplifying assumption made was that these parameters were the same for
all sites and that there were no correlations between samples belonging to different sites.
The covariance matrix was as follows

Σ =


Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · ΣM


where each Σi, for sites 1,...,M , is the submatrix describing the covariance for site i and
has dimension ni × ni where ni is the number of samples at site i. The submatrix for
each site of the covariance matrix Σ was

Σi = σ2


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

 .
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We hence assumed that there existed within-site correlation for the samples but no
between-site correlation.

The estimation was done by maximizing the multivariate normal log likelihood

l(σ2,ρ) = −n
2
ln(2π)− 1

2
ln(det(Σ))− 1

2
(y − µ)TΣ−1(y − µ).

The average of the log transformed gene expressions was subtracted for each sample
by replacing µ with ȳ where ȳ =

∑N
i=1 yi and N is the total number of samples. To

ease the optimization this was rewritten by taking advantage of the structure of the
covariance matrix Σ, using the matrix determinant lemma, Sherman-Morrison formula
and the multinomial theorem (Bernstein (2009) Fact 2.16.1 concerning determinant and
invers and Fact 1.17.1), yielding

l(σ2,ρ) =− 1

2

(
Nlog(2πσ2) + (N −M)log(1− ρ) +

M∑
i=1

log(1− ρ+ ρ · ni)

)

− 1

2

(
1

σ2

M∑
i=1

(aiAi + biBi)

)

where

ai =
−(ni − 2)ρ− 1

((ni − 1)ρ+ 1)(ρ− 1)
, bi =

ρ

((ni − 1)ρ+ 1)(ρ− 1)

and

Ai =

ni∑
k=1

(yik − µi)2, Bi =

(
ni∑
k=1

yik − µi

)2

−Ai

where yik is the kth sample in the ith site. For maximization of the likelihood numerical
optimization in R using optim was performed.
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4
Results

The result section is divided into three parts. First is the exploratory analysis which
investigates the general appearance and similarities between samples. In the next part
changes in the gene expression patterns are analysed. The final part investigates inde-
pendence between the samples.

4.1 Exploratory analysis

To get an understanding of the data the unsupervised analysis methods hierarchical clus-
tering and principal component analysis were performed on the samples’ gene expression
profiles.

4.1.1 Hierarchical clustering

The dendrogram in figure 4.1 shows a distinct clustering by region. A German cluster
containing two thirds of the German samples and only one non-German sample was
found. The Swedish east coast samples were also well clustered except the samples
from the site Marsö. These were clustered into a separate cluster and then joined with
clusters for other regions while the large Swedish east coast cluster was late joined with
other clusters. Two clear Swedish west coast clusters were formed. However, the cluster
consisting of samples from Fjällbacka and Göteborg in the lower part of figure 4.1 is
likely due to technical variation since all these were measured on the same physical chip.
The Danish samples were more scattered than the samples from the other regions and
no complete Danish clusters are seen even though some Danish samples were clustered
together.

A clear grouping was seen for the clustering based on high variance probes, figures
4.1 and 4.2, in comparison to clustering using low variance probes, figures A.1 and A.2
in appendix.
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Figure 4.1: Hierarchical clustering using correlation distance metric and complete linkage
based on the 10% most varying probes. Dendrogram coloured by region and sites numbered
in alphabetic order which shows a clear regional clustering of the samples.

A large part of the regional clustering came from clustering by site which was found
at a lower hierarchical level than the regional clustering and is seen in figure 4.2 where
the dendrogram is coloured by site. Even if not all samples from the same site were
clustered together small clusters tended to be formed by samples from the same site.

We did not identify any clustering based on levels of pollution, figure 4.3. The small
tendencies seen seem more to be site or region effects that make some pattern appear.

4.1.2 Principal component analysis

The principal component analysis gave no distinct division of the samples into regions
or pollution classification when looking at two dimensional principal component plots.
The first 10 principal components captured 57 % of the variance and how the variance
captured by the principal components declines is shown in figure B.1 in appendix. As
in line with the hierarchical clustering there seemed to be more grouping by region than
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Figure 4.2: Hierarchical clustering using correlation distance metric and complete linkage
based on the 10% most varying probes. Dendrogram coloured by site and numbered in
alphabetic order visualising that the samples were clustered by site.

pollution.
Figure 4.4 shows an example of the principal component analysis. In the left plot

it is seen that some discrimination between regions can be found but the overlap was
quite large for the confidence ellipses at confidence level 75%. The right plot in the same
figure shows the same principal components but this time the samples were marked
by pollution level for which the confidence ellipses coincide. Comparison by the left
and right subplots tells us that these two principal components divided better between
regions than pollution.

Even when performing PCA within each region the overlap for samples from different
sites were considerable. It was however possible to find principal components that to
some extent divided the samples by site, for an example see figure 4.5. As for the PCA
using all samples there were no distinct segregation based upon pollution classification
but tendencies could be found. For example figure 4.6 shows Danish samples marked
either as reference or medium polluted and polluted where a division between polluted
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Figure 4.3: Hierarchical clustering using correlation distance metric and complete linkage
based on the 10% most varying probes. Dendrogram coloured by pollution classification and
sites numbered in alphabetic order showing that no clustering based on pollution was found.

and non-polluted samples are seen. This could however be a result of aggregation by
site that occasionally looks like grouping by pollution.

4.2 Gene rank analysis

For the following analysis the linear statistical model presented in theory has been used
for each probe assuming independent normally distributed log transformed gene expres-
sions. The empirical Bayes method in the limma-package was then used to estimate the
variance (see theory chapter for details).

The results were visualised in volcano plots where each probe is a point represented
by its log fold change on the horizontal axis and its false discovery rate adjusted p-value
on the vertical axis. These are interpreted such that large magnitudes in horizontal
direction are probes which differ a lot in expression between the groups while points
close to zero in horizontal direction do not alter in expression between the groups. The
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Figure 4.4: Unscaled principal component analysis performed on all samples with confi-
dence ellipses at confidence level 75%. Same principal components are visualised in both
subplots and samples coloured by region to the left and coloured by pollution to the right.
This shows that the samples were to some extent divided into region but not into pollution
classification by these components.

vertical axis describes the significance in the changes represented as minus the base ten
logarithm of the FDR adjusted p-values. This means that points far up on the vertical
axis have very small p-values and high significance. Probes in the top left and right
corners are the probes that altered the most and had changes with high significance.

4.2.1 Differences in gene expression based on pollution classification

Since reference sites were compared against polluted sites a negative log fold change
means that the probe was upregulated in the polluted sites compared to in the reference
sites. The effects seen were not very strong and a FDR cut-off at 0.01 gave 1553 signif-
icantly differentially expressed probes. Figure 4.7 shows that the comparison between
samples from reference sites against samples from polluted sites had more downregulated
than upregulated probes in the polluted sites. There was however a larger number of
high significance changes for the in polluted sites upregulated probes than the number
of high significance changes for the downregulated probes

When moving to regional comparisons the log fold changes and significance were
overall larger (figures 4.8-4.11). The number of significantly differentially expressed
probes for FDR cut-off 0.01 were 5276 for Swedish west coast, 7085 for Swedish east coast,
3112 for Denmark and 5172 for Germany. The volcano plots were quite symmetrical for
all but Swedish east coast (figure 4.9) which had much more high significance probes
with positive log fold changes than negative log fold changes. This means that Swedish
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Figure 4.5: Unscaled principal component
analysis performed on German samples with
confidence ellipses at confidence level 75%.
Samples are marked by site which shows
that these principal components gave some
division of the German samples into site.
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Figure 4.6: Unscaled principal component
analysis performed on Danish samples with
confidence ellipses at confidence level 75%.
The samples are coloured by pollution clas-
sification where medium polluted sites have
been grouped with polluted sites which gave
a division of the samples.

east coast seems to have had more significantly downregulated genes in the polluted sites
compared to the other regions but the cause for this is not known.

4.2.2 Gene expression in relation to the biomarker EROD

Correlation between EROD activity and expression of CYP1A

The regional correlations were formed by taking average of the site correlations for each
of the four probes and are summarised in table 4.1 while all site correlations can be
seen in table C.1 in appendix. There was a clear positive correlation between measured
expression of CYP1A and levels of EROD, measure of the enzyme activity of CYP1A.
Two of the sites had however negative correlations. In figure 4.12 log transformed EROD
values are shown at the horizontal axis and log transformed expression for CYP1A for
one of the probes on the vertical axis. Linear regression was performed for each site to get
a visualisation of the relation at individual level. The mean of the regional correlations
were 0.45 for Swedish west coast, 0.35 for Swedish east coast, 0.25 for Denmark and 0.26
for Germany. The correlation was highest for the Swedish west coast. If not for the site
G̊asö the correlation for the Swedish east coast would have been high as well. It can be
noticed that the German samples had lower EROD levels compared to the other regions
but the same levels of CYP1A expression.
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Figure 4.7: Volcano plot for comparison of hepatic gene expression for samples from refer-
ence sites against polluted sites. A negative log fold change tells that an upregulation was
seen in the fish from polluted sites. The line represents a FDR cut-off at 0.01 and shows
that small but significant effects were seen.

Differences in gene expression for samples with high and low EROD activity

As expected all CYP1A probes were upregulated in the high EROD group and we saw
log fold changes between 0.56 to 1.39 with adjusted p-values between 0.08 and 0.195
(table 4.2). It was however not the probes for gene expression of CYP1A that were
the probes with most extreme log fold changes even if the groups were chosen based on
EROD. Instead other probes had log fold changes with very large magnitudes. When
using a FDR cut-off at 0.01 there were 1178 significantly changed probes, the probes for
CYP1A not being any of them.

There were less significantly differentially expressed probes in the comparison of high
and low EROD individuals from the Swedish west coast than in the all regions comparison
of high and low EROD individuals. The number of significantly differentially expressed
probes was 51 for the within Swedish east coast comparison. The log fold changes in
the comparison between high and low EROD samples from the Swedish west coast had
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Figure 4.8: Volcano plot for comparison
of hepatic gene expression for samples from
Swedish west coast where samples from ref-
erence sites were compared against sam-
ples from polluted sites. Negative log fold
changes indicate upregulations in fish from
the polluted sites and the line represents a
FDR cut-off at 0.01. Larger effects were
seen here compared to the all regions com-
parison of reference against polluted.

Figure 4.9: Volcano plot for comparison
of hepatic gene expression for samples from
Swedish east coast where samples from ref-
erence and medium polluted sites were com-
pared against samples from polluted sites.
Negative log fold changes indicate upregu-
lations in fish from the polluted sites and
the line represents a FDR cut-off at 0.01. A
large proportion of the probes were down-
regulated in the polluted sites.

Table 4.1: Table showing the regional correlations of log transformed EROD levels and log
transformed gene expression of CYP1A measured using four different probes. All regions
had clear positive correlations for all probes. The strongest correlation was found at the
Swedish west coast.

Probe 13544 Probe 13545 Probe 13546 Probe 13547 Mean

SW 0.386 0.473 0.375 0.580 0.453

SE 0.292 0.347 0.401 0.368 0.352

Dk 0.220 0.210 0.332 0.250 0.253

Ger 0.270 0.267 0.171 0.322 0.257

larger magnitudes than in the all regions comparison and also the log fold changes for the
CYP1A probes were larger. The p-values were smaller but still not significant (table 4.3).
Notice the difference in rank of the CYP1A probes between the all sample comparison
and the within Swedish west coast comparison (table 4.2 and table 4.3).
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Figure 4.10: Volcano plot for compari-
son of hepatic gene expression for samples
from Denmark where samples from refer-
ence and medium polluted sites were com-
pared against samples from polluted sites.
Negative log fold changes indicate upregu-
lations in fish from the polluted sites and the
line represents a FDR cut-off at 0.01 show-
ing large and significant changes.

Figure 4.11: Volcano plot for compari-
son of hepatic gene expression for samples
from Germany where samples from medium
polluted sites were compared against sam-
ples from polluted sites. Negative log fold
changes indicate upregulations in fish from
the polluted sites and the line represents a
FDR cut-off at 0.01. Large and significant
changes were seen despite the absence of ref-
erence sites.

Table 4.2: Table of changes for the
probes measuring expression of CYP1A
in the comparison between the 5% of the
individuals with highest levels of EROD
against the 5 % with lowest EROD lev-
els. There was large upregulation of the
CYP1A gene in the high EROD group
but using a FDR cut-off at 0.01 none of
these changes were considered as signifi-
cant.

Probe Rank log FC FDR adj.

p-val

13547 12372 1.39 0.08

13545 26170 0.56 0.18

13544 27235 0.41 0.19

13546 27931 1.01 0.20

Table 4.3: Table of changes for the
probes measuring expression of CYP1A
in the comparison between high and low
EROD individuals at the Swedish west
coast. A larger upregulation was seen in
this comparison than in the all regions
comparison based on EROD but still, us-
ing a FDR cut-off at 0.01, none of the
changes were considered to be significant.

Probe Rank log FC FDR adj.

p-val

13546 3206 2.18 0.08

13544 4213 0.95 0.09

13547 4472 2.45 0.10

13545 9442 1.15 0.15
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Figure 4.12: Scatterplots of log transformed EROD levels against log transformed gene
expression for one of the probes measuring expression of CYP1A. Linear regression has
been plotted for each site. The region correlation is the average of this probe’s within-site
correlations for each region. All sites but Frederiksværk and G̊asö had positive correlations
and most correlations were strong. Notice the low levels of EROD in the German samples
compared to the other regions.

4.2.3 Difference in gene expression based on reproduction success

A change in gene expression as a result of external impact is on its own not a bad
sign for the fish. Instead it could be a confirmation that the species has the necessary
tools to cope with a changing environment. What it all comes down to in the end is
the possibility to successfully reproduce. By looking at differences in gene expression in
relation to rate of abnormal fry we got a linking between the processes at mRNA level
in the fish and impact on reproduction ability.

Figure 4.14 shows the volcano plot for the comparison based on rate of abnormal
fry. There was a high density of probes with low significance and close to zero log fold
change. The number of significantly changed probes using a FDR cut-off at 0.01 was
100. Very few probes had a log fold change with larger magnitude than one which
makes this comparison the one with the smallest differences in gene expression. For the
differences that were found there was approximately the same amount of upregulated as
downregulated genes.
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Figure 4.13: Volcano plot for comparison of hepatic gene expression for the 5% of the
individuals with highest levels of EROD against the 5 % with lowest EROD levles. A
positive log fold change tells that an upregulation was seen in fish in the high EROD group.
Large effects were found and the line representing a FDR cut-off at 0.01 shows that many
of these were significant but the four probes measuring expression of CYP1A, listed in table
4.2 and here marked with triangles, were not.

4.3 Within-site correlation

To investigate the within-site relationship between the samples a within-site correlation
parameter ρ was estimated together with an estimation of the variance σ2 for each probe.

The estimated variances ranged between 0.006 and 10.3 with median 0.183. In em-
pirical Bayes for microarray data the variances are assumed to be from an inverse gamma

distribution which the histogram of σ̂2 (figure 4.15) follows. This is consistent with re-
sults of Smyth et al. (2003) and Kristiansson et al. (2005) which concluded that inverse
gamma is a good distribution assumption in microarray analysis. In the histogram the

412 probes with σ̂2 larger than 3 have been left out.
Often the within-site correlation is assumed to be zero but the clustering gave indices
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Figure 4.14: Volcano plot for comparison of hepatic gene expression based on rate of
abnormal fry which was defined to be the number of dead and abnormal fry didvided by the
total brood size. Two large groups contaning almost all samples were formed and the high
rate of abnormal fry group was compared aganist the low rate group. Small effects were
seen and the line representing a FDR cut-off at 0.01 shows that few probes were significantly
changed.

that there are apparent similarities between samples belonging to the same site and here
we saw that independence between samples from the same site was most of the times
not the case. A majority of genes seem to have been affected by within-site correlation.
The within-site correlation ranged between -0.09 and 0.840 with median 0.175 (figure
4.16). Out of the 135 091 probes the number of negative ρ̂ was 4980.

The relation between the variance and the within-site correlation for each probe is

seen in figure 4.17. The highest density of probes was found for σ̂2 close to 0.11 and ρ̂
close to 0.16. Noticeable is that for both high and low variance probes large values of ρ̂
were found and the within-site correlations were spread over the same range.

There were numerous probes with large within-site dependence. The probes that
represent known genes and with largest ρ̂ are listed in table 4.4, for a more extensive
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Figure 4.15: Truncated histogram of esti-

mated variance, σ̂2, of each probe. The his-
togram seems to follow an inverse gamma
distribution which is consistent with the as-
sumption made in empirical Bayes.
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Figure 4.16: Histogram of estimated
within-site correlation, ρ̂, for each probe.
This shows that many genes seem to have
been affected by within-site correlation and
several strong within-site correlations were
seen.

listing see table D.1 in appendix. At the top we find genes associated with tryptase-2
precursor, ATP binding cassette, ice structuring protein and antifreeze proteins. Genes
with smallest ρ̂ were connected to ribosomal functions.
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Figure 4.17: Scatterplot showing the relation between estimated variance, σ̂2, and esti-
mated within-site correlation, ρ̂, for the probes. The dispersion of the points, each point
representing a probe, shows that the range of estimated within-site correlations was the
same for all variances.
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Table 4.4: List of the probes representing known genes and which had largest estimated
within-site correlations. Genes appearing multiple times are represented as the probe with
largest estimated within-site correlation.

Rank ρ̂ Annotation

1 0.84 tryptase-2 precursor

15 0.73 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

22 0.72 ANP2 ANALU Type-3 ice-structuring protein

31 0.69 type III antifreeze protein

45 0.66 cytochrome P450, family 2, subfamily J, polypeptide 2

51 0.65 type III antifreeze protein

58 0.64 protein FAM110B-like

71 0.61 PAX3 and PAX7 binding protein

78 0.60 RNA-binding protein 6-like

81 0.59 PAX3- and PAX7-binding protein

82 0.59 hypothetical protein

87 0.59 splicing regulatory glutamine/lysine-rich protein

99 0.58 ANP3 ZOAAM Ice-structuring protein
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5
Discussion

In this study hepatic gene expression microarray data from wild fish of the species
eelpout was analysed. The fish, 158 in total, were sampled at 16 sites located in four
large geographical regions in the Baltic Sea. The aim was to understand microarray gene
expression patterns in the fish eelpout and how they change in connection to pollution.
Discrimination between samples based on field site, population and exposure of pollu-
tion was investigated. Differences in gene expression of the fish in relation to exposure
of contamination and the biomarkers EROD and reproduction success were identified
using linear model and empirical Bayes. Using numerical optimization under the as-
sumption of normal distributed gene expressions the within-site correlation between the
gene expressions was estimated for each probe separately. Clustering analysis showed
that fish from the same region and site had a high tendency to group together. The com-
parison between fish from reference and polluted sites had significant differences in gene
expression but the effects were in general small. This is likely an indication that there
were few shared differentially expressed genes between the polluted sites. The effects
where however larger and more significant for the regional comparisons based pollution
classification which could either be due to differences in population that was blurring
out the signal or that the pollution in each region was more homogeneous. The large
effects identified in connection to region and site may indicate that ecological factors
and population parameters had a substantial impact on the observed gene expression
profiles. Large and significant effects were also seen when comparing fish with low and
high values of the known biomarker EROD. We observed strong correlations between
measured gene expression for CYP1A gene and levels of EROD. The strength of the
correlation varied between regions and the highest correlation was found at the Swedish
west coast. There were, however, small effects on the gene expression between fish with
high and low rate of abnormal fry and a more thorough investigation of the reproduc-
tion success and its connection to changes in gene expression should be performed. We
assessed the independence between sampled fish and found that several genes had a high
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within-site correlation. This underlines the importance to use a model that models site
specific effects and/or correlations.

Large-scale field studies will always have factors that affect the sampling procedure
and retrieving of data. Such factors are sampling bias and systematic effects caused by
different sampling circumstances for the regions. An example from this study is that
testing was done at site for some regions and for others the samples needed to be moved
before testing was performed. It is often hard to remove the impact of these factors and
larger and more complex studies will typically result in more varying conditions. The
extensive set-up of this study is unique and much care has been put into making the
sampling and testing procedure for all sites as similar as possible such as performing all
microarray and enzyme analyses by the same laboratory.

The general appearance was analysed by hierarchical clustering, using correlation
distance metric and complete linkage, as well as by unscaled PCA. This showed that
site and region had a high tendency to group together. According to the hierarchical
clustering of the samples, region and site seem to be the factors that had largest influence
on the general appearance of the gene expression profiles of the fish. For discrimination
into site and region the high variance probes contained more information than the low
variance probes. Three of the regions, namely Swedish west coast, Swedish east coast
and Germany, had clear regional grouping while the Danish fish did not seem to stand
out compared to fish from the other regions. The variable reduction into two variables
using principal component analysis was not able to capture the division into region or
site in a credible way. Summing up the explanatory analysis there was apparent division
into region and site but no perfect segregation was seen. It could also be concluded that
neither the clustering nor the PCA showed clear grouping based on pollution which in-
dicate that there were likely not a large number of genes collectively induced by different
types of contamination.

Often large-scale gene expression studies address short term hypotheses for controlled
experiments in laboratory. In contrast, this study considered wild sampled fish that,
due to its stationary, had lived at the same site for a long time. Therefore, the fish was
assumed to have been chronically exposed to the ecological and anthropogenic conditions
at the site and many of the short term stress responses could be assumed to have settled
down. Using a linear model, gene expression profiles between samples from reference and
polluted sites were compared. There were significant differences in gene expression but
the effects were in general small. The effects were however larger and more significant
when the pollution classification based comparisons were performed within each region.
The in general small effects in the comparison between fish from reference and polluted
sites could be due to various reasons. One of them is the difficulty of prior pollution
classification. It is for example possible that some reference sites are not completely clean.
It is also possible that the level of exposure differed between the polluted sites, which
may induce variation in the gene response. The regional comparisons showed larger
effects despite that reference and medium polluted sites now were combined into one
group and compared against polluted sites. This indicated that there was another cause
for the small effects in the all regions comparison than solely the pollution classification.
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It should also be noted that the polluted sites are likely to have been exposed in different
ways which led to differences in gene expression profiles within the group of polluted.
This implied that there were significant effects in the data but either the differences
in population was blurring out the signal or there was more similar types of pollution
within the same region.

The regional averages of the within-site Pearson correlation coefficients between mea-
sured expression of CYP1A and levels of EROD, measure of the enzyme activity of
CYP1A, showed strong positive correlations. The clear positive correlations we saw for
all regions, average between 0.26 and 0.45, lies in line with the correlations seen in Guo
et al. (2008) which were between 0.21 and 0.64. In Guo et al. (2008) the relation between
mRNA levels and protein expression in human circulating monocytes was investigated
and even though this study investigated mRNA levels in the liver of eelpouts compared
to activity of protein this gave an indication of what to be expected. Considering the
difference in measuring protein expression and activity of protein it seems as the correla-
tions seen here were almost a bit stronger than expected especially for the Swedish west
coast. It can be noticed that the German samples had lower levels of EROD compared
to the other regions but the same measured expression of CYP1A. This could have been
a cause of inhibition or population effects.

The gene expression profiles of the 5% of the individuals with highest levels of EROD
were compared against the 5% of the individuals with lowest levels of EROD. It was
found to be large and significant differences in gene expression between the groups.
EROD is used as a general biomarker for pollution but its biological function is complex
and involves detoxification of foreign chemical substances which includes both ecological
impact and anthropogenic pollution. The more specialized biological function of EROD
than as protection against general pollution could be the reason for the larger effects
in the comparison based on EROD than the effects seen in the comparisons based on
pollution classification. We saw upregulation for many genes in the high EROD group
and it is likely that other genes than CYP1A also were upregulated due to the same
external influence.

As an indicator of reproduction success the rate of abnormal fry was chosen and
defined to be the number of dead and abnormal fry divided by the total brood size.
Two large groups were formed containing almost all samples and fish with high rates of
abnormal fry were compared against samples with low rates. Small differences in the
gene expression profiles were seen for these groups. The reproduction process involves
many biological systems and therefore it might be too complex to be captured by a
comparison of this type. This would be the case if having many different reasons for the
high abnormal rate which means that different genes are changing for the samples within
the same group. It is likely that the number of fry and the rate of abnormal fry were
affected by physiological and ecological parameters. The number of fry was for example
strongly correlated with the length of the fish which was biased by region. Furthermore,
small brood sizes tended to have a lower rate of abnormal fry. There was therefore no
clear way how to choose the groups for the reproduction comparison. Based on the
comparison performed it cannot be concluded that the data do not contain information
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about the relationship between gene differences and reproduction success but rather that
the comparison needs to be done more carefully.

By maximizing the normal log likelihood for each probe with respect to variance and
within-site correlation the dependencies between the samples were investigated. This
was performed under the assumptions that the parameters were the same for all sites
and that there were no correlation between samples from different sites. It is a common
assumption in microarray analysis using linear models that the samples are independent
but it was here shown that many genes were affected by within-site correlation and
that it was strong for several genes. Due to this dependence the p-values calculated
under the assumption of independence cannot be assured to be accurate. For many
biological question the most interesting is however the ordering of the genes and even
if the magnitude of the p-values was not reliable due to correlation the ranking of the
probes may be more robust.Two approaches that could be used to take care of the
within-site correlation are either by modifying the covariance matrix in the linear model
or to use mixed models. Out of the roughly 135 000 probes 4% had negative within-
site correlation, all with small magnitudes. Among the genes with negative within-site
correlation there was an overrepresentation of genes associated with basal functions
such as ribosomal processes. These processes are thought not to be easily affected by
environmental impact and therefore not subject of within-site correlation. Considering
the large number of estimations performed, one for each probe, the negative within-site
correlations are likely to be due to variations around zero seen when having a large
number of independent samples. To be able to make inference on individual level the
dependence should be taken into account. One way to interpret the impact of within-site
correlation is in the context of sampling design. If a specific gene is to be investigated
and its within-site correlation is low fish from the same site can be considered to be
independent replicates.

To conclude, this work shows that large-scale gene expression is a viable tool for
assessing differentially expressed genes in wild fish. Our results suggest there are small
effects on gene expression connected to pollution and rate of abnormal fry in the case
of large-scale sampling and that factors such as population might interfere. We could,
however, identify large effects connected to region and site which may indicate that eco-
logical factors and population parameters have a substantial impact on gene expression
profiles. Finally, we demonstrated that genes tend to have similar expression levels in
fish from the same site which underlines the need of taking dependences into account if
inference on individual level is to be made.
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Figure A.1: Hierarchical clustering of the samples based on correlation distance metric
and complete linkage using the 10% least varying probes. Dendrogram coloured by region
and sites numbered in alphabetic order showing less grouping than was seen for clustering
using the 10% most varying probes.
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Figure A.2: Hierarchical clustering of the samples based on correlation distance metric
and complete linkage using the 10% least varying probes. Dendrogram coloured by site and
numbered in alphabetic order. Less grouping was seen here than for the clustering using the
10% most varying probes.
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Figure A.3: Hierarchical clustering of the samples based on correlation distance metric
and complete linkage using the 10% least varying probes. Dendrogram coloured by pollution
classification and sites numbered in alphabetic order. Neither this nor the clustering using
the 10% most varying probes gave any division based on pollution classification.
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Figure B.1: The percentage of variance that was explained by the principal components
in the unscaled principal component analysis performed on samples from all regions.
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Table C.1: Table showing the within-site Pearson correlation coefficients for the correlation
between log transformed EROD levels and log transformed gene expression of CYP1A. There
were clear positive correlations for almost all sites and strongest correlations were seen for
Swedish sites.

Probe Probe Probe Probe Mean Sd

13544 13545 13546 13547

Agersö 0.291 0.235 0.438 0.244 0.302 0.094

Eggers Wiek -0.258 -0.003 -0.195 0.085 -0.093 0.161

Fjällbacka 0.776 0.808 0.825 0.783 0.798 0.022

Fredriksvaerk -0.031 -0.009 0.129 -0.002 0.022 0.073

G̊asö -0.100 -0.219 -0.018 -0.312 -0.162 0.130

Göteborg harbour 0.579 0.565 0.534 0.794 0.618 0.119

Isefjord 0.471 0.305 0.450 0.573 0.450 0.111

Karrebaek Fjord -0.167 0.204 -0.017 0.050 0.017 0.154

Kvädöfjärden 0.525 0.717 0.643 0.736 0.655 0.096

Marsö 0.640 0.656 0.663 0.583 0.636 0.036

Ringhals -0.073 0.244 0.042 0.354 0.142 0.193

Roskilde Fjord 0.538 0.318 0.661 0.384 0.475 0.155

Salzhaff/Kroy 0.674 0.367 0.492 0.460 0.498 0.129

Slakmöre 0.105 0.236 0.315 0.466 0.280 0.151

Stenungsund 0.262 0.277 0.097 0.388 0.256 0.120

Wesmar/Wendorf 0.393 0.436 0.217 0.421 0.367 0.101

Mean 0.289 0.321 0.330 0.375

Sd 0.335 0.274 0.302 0.305
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Table D.1: The within-site correlation was estimated for each probe under the assump-
tion of no between-site correlation. The probes representing known genes and had largest
estimated within-site correlations, ρ̂, are listed below.

Rank ρ̂ Annotation

1 0.84 tryptase-2 precursor

5 0.83 tryptase-2 precursor

8 0.81 tryptase-2 precursor

9 0.81 tryptase-2 precursor

15 0.73 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

22 0.72 ANP2 ANALU Type-3 ice-structuring protein

23 0.71 ANP2 ANALU Type-3 ice-structuring protein

26 0.70 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

28 0.70 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

31 0.69 type III antifreeze protein

35 0.68 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

36 0.68 type III antifreeze protein

39 0.678 ANP2 ANALU Type-3 ice-structuring protein

42 0.67 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

45 0.66 cytochrome P450, family 2, subfamily J, polypeptide 2

46 0.66 ANP2 ANALU Type-3 ice-structuring protein

48 0.65 cytochrome P450, family 2, subfamily J, polypeptide 2

49 0.65 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

50 0.65 cytochrome P450, family 2, subfamily J, polypeptide 2

51 0.65 type III antifreeze protein

54 0.65 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

56 0.64 type III antifreeze protein

58 0.64 protein FAM110B-like

59 0.64 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

63 0.63 ATP-binding cassette, sub-family B (MDR/TAP), member 6a

65 0.62 cytochrome P450, family 2, subfamily J, polypeptide 2

70 0.61 type III antifreeze protein

71 0.61 PAX3 and PAX7 binding protein

72 0.61 type III antifreeze protein

73 0.61 type III antifreeze protein

75 0.60 PAX3 and PAX7 binding protein
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