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We present a numerical tool that searches an optimal cross section geometry of silicon-on-insulator waveguides
given a target dispersion profile. The approach is a gradient-based multidimensional method whose efficiency
resides on the simultaneous calculation of the propagation constant derivatives with respect to all geometrical
parameters of the structure by using the waveguide mode distribution. The algorithm is compatible with regular
mode solvers. As an illustrative example, using a silicon slot hybrid waveguide with 4 independent degrees of
freedom, our approach finds ultra-flattened (either normal or anomalous) dispersion over 350 nm bandwidth in
less than 10 iterations. © 2014 Optical Society of America

OCIS codes: (130.2035) Dispersion compensation devices; (130.3120) Integrated optics devices; (130.4310)
Nonlinear.
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1. INTRODUCTION
Chromatic dispersion is one of the most important properties
that controls the physical behavior of waveguides in both the
linear and nonlinear regimes. Its design is key to achieving
high performance in applications such as dispersion compen-
sation [1], parametric amplification [2], wavelength conversion
[3,4], and supercontinuum generation [5,6]. The waveguide
dispersion not only depends on its constituent materials, but
also displays a high sensitivity to changes in geometry (see e.g.,
[7]). This is especially true for silicon-on-insulator (SOI) wave-
guides [2–6,8]. Here, there is a high-index-contrast between
materials and the possibility exists to engineer the design at
the nanometer scale. These characteristics enable an unprec-
edented control on the waveguide’s dispersion properties.

Algorithms allowing for the optimization of the design
are tools of great interest. The most widespread techniques
rely on commercially available software that calculates the
dispersion profile given a certain structure. This favors direct
optimization methods by trial and error. For example, the zero
dispersion can be tuned within the C-band by adjusting the
height and width of a strip waveguide [4,5,9]. Notwithstand-
ing, there are advanced configurations with multiple geomet-
rical degrees of freedom that allow for a much finer control of
the dispersion curve [10–12]. The multidimensional optimiza-
tion renders impractical the application of the direct methods.

Gradient-based algorithms (GBAs) [13] speed up the conver-
gence process with estimations of the direction in the param-
eter space (e.g., the cross section geometries of the waveguide)
that lead to the largest improvement of the magnitude to
be optimized (e.g., dispersion). Topology optimization is a
particular GBA that defines some feature (e.g., the refractive
index) of all the sampling points of the cross section as free
parameters. Hence, it can manage a great number of degrees
of freedom [14]. It has been previously used in nanophotonics
design [14] and dispersion-compensating fibers [15].

In [16], our group proposed an inverse dispersion engineer-
ing approach, based on a multidimensional gradient algorithm,
to calculate directly the derivatives of the propagation
constant with respect to all the structural parameters of a
waveguide in a full vectorial framework. It is worth emphasiz-
ing that this result does not rely on any particular technique for
solving the wave equation. Certainly, this approach circum-
vents one of the main disadvantages of direct methods and,
therefore, provides results in just a few iterations. Previously,
it was successfully applied in the context of photonic crystal
fibers [16,17].

In this work, we apply this technique to SOI waveguides.
Due to its intrinsic high index contrast, we take special care
of the vectorial nature of the problem, since the axial compo-
nent in electric and magnetic fields can be significant in these
waveguides [18]. In the next section, we explain our GBA,
paying particular attention to the specific numerical issues
related to high-index-contrast waveguides. Section 3 is
devoted to the numerical results computed through our pro-
cedure, including optimizations under additional constraints,
and in Section 4 we deal with an analysis of the solutions
achieved. Finally, themain conclusions are drawn in Section 5.

2. GRADIENT-BASED OPTIMIZATION
ALGORITHM
GBAs are the first choice in multidimensional optimization
when the derivatives of the fitness function are available [13].
Therefore, with the aim of tackling the dispersion engineering
of waveguides, a procedure based in the evaluation of the
derivatives of the propagation constant β with respect to the
design parameters was proposed in [16]. In this section, we
present a close expression for those derivatives well-function-
ing, even in the case of high-index-contrast waveguides, and
include a detailed description of their implementation.
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For dispersion engineering purposes, a simple definition
for the merit function in the optimization procedure is the
mean squared of the difference between the group-velocity
dispersion (GVD), namely β2�ω� � d2β∕dω2, of a particular
structure represented by p and a target GVD:

χ2�p� � 1
Nω

XNω

k�1

�β2�p;ωk� − βtarget2 �ωk��2; (1)

where p � �p1;…; pN � is the set of parameters defining the
waveguide degrees of freedom. This expression corresponds
to the variance of the dispersion with respect to the target
dispersion profile in the frequency range of design, and the
optimum configuration will correspond to the minimum of χ2.

To reach that minimum, we follow a sequential linear pro-
gramming (SLP) strategy for producing a series of quadratic
problems to be minimized. To be more precise, given a point
in the parameter space p�m�, we can obtain the linear approxi-
mation of β2�p� around it:

βlin2 �p;ω� � β2�p�m�;ω� � ∂pβ2�p�m�;ω� · �p − p�m��; (2)

and, accordingly, a local (quadratic) approximation of the
actual merit function:

χ2loc�p� �
1
Nω

XNω

k�1

�βlin2 �p;ωk� − βtarget2 �ωk��2: (3)

Thus, if ∂pβ2 is known, χ2loc can be built, and its minimum
p�m�1�, can be easily determined with no additional computa-
tional effort. This new point is expected to be closer to the
target and can be used as the starting point in a new iteration
of the procedure.

In Appendix A, we go one step further than [16] and derive
the following expression for the gradient of the propagation
constant in the parameter space:

∂pβ � ϵ0ω

2

R
S�−et · �∂pϵtt�et � �∂pϵzz�e2z�dSR

S�et × ht� · ẑdS
; (4)

where integrals extend to the entire transverse domain where
fields are defined S, and involve components of the electro-
magnetic field and derivatives of the dielectric tensor. The
subscript t indicates transverse components, ϵ0 is the permit-
tivity of the vacuum, and ω is the light frequency. It is worth
emphasizing a couple of points around Eq. (4). On the one
hand, �∂pϵzz�e2z is the explicit contribution of the vector nature
of the electromagnetic field and must be taken into account
for high-index-contrast waveguides [18]. On the other hand,
Eq. (4) enables the calculation of ∂pβ by means of the mode
fields of the waveguide at only one parameter configuration.
This means that there is no need to know the propagation
constant at any other point p� δp of the multidimensional
parameter space to compute its derivatives.

If we focus on geometrical parameters defining waveguides
composed of homogeneous materials, then a smoothed
effective dielectric tensor ϵ̂ should be used [19]. This descrip-
tion of the material distribution allows us to evaluate these
derivatives in an easy way, avoiding infinities at the disconti-
nuities, whereas derivatives are nonzero only near interfaces.
This tensor ϵ̂ must be defined at each spatial sampling point,

according to the effective-medium theory [20], as explained in
Appendix B.

A. Accurate Calculations for High-Index-Contrast
Waveguides
From the numerical point of view, and taking into account
the discretization of the integration domain S, the integral
in the numerator of Eq. (4) can present a considerable error
in its evaluation owing to the strong discontinuity around the
interface of the normal component of the electric field. That
difficulty can be overcome if we choose a local basis for the
electric field defined by the unit vectors �n̂; T̂; ẑ�: the normal
and the tangent to the interface in the transverse plane, n̂ and
T̂, and the propagation direction ẑ. On this basis, Eq. (4) can
be rewritten as

∂pβ � ϵ0ω

2

R
S��∂pϵ−1nn�d2n − �∂pϵTT �e2T � �∂pϵzz�e2z�dSR

S�et × ht� · ẑdS
; (5)

where dn is the component of the electric displacement field
normal to the interface and eT is the component of the electric
field tangent to the interface in the transverse plane. It is
worth remembering that the dielectric tensor is diagonal in the
new local basis since the effective medium around the inter-
face corresponds to a uniaxial anisotropic medium [19], and
its extraordinary axis is normal to the interface (parallel to n̂).

Fig. 1. (a) Outline of the slot waveguide under study [11]. Compari-
son of the derivatives of the effective refractive index (b) and the
group-velocity dispersion parameter (c) with respect to the geomet-
rical parameters h, w, hs, and ds, shown in (a), calculated numerically
(dashed curves) and by Eq. (5) (crosses).
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Therefore, Eq. (5) extends the applicability of Eq. (4) to
high-index-contrast waveguides.

To check the numerical precision of Eq. (5), we consider a
silicon strip waveguide with a horizontal silica slot, proposed
in [11] by Zhang et al., which is shown in Fig. 1(a). These
waveguides present four geometrical degrees of freedom,
which we define as the width of the waveguide (w), the height
of the waveguide (h), the height of the slot (hs), and the posi-
tion of the slot center with respect to the waveguide center
(ds). This is a computationally demanding structure owing
to the narrow low-index layer in the middle of a high-index,
strongly confining waveguide, near the maximum of field den-
sity. Indeed, the light-guiding mechanism of the transverse
magnetic- (TM)-mode (vertically polarized) of this kind of
waveguide induces a strong change on the normal component
of the electric field at the slot lower interface [11]. Let us
consider the following arbitrary configuration: w � 650 nm,
h � 460 nm, hs � 50 nm, and ds � 115 nm. We calculate the
propagation constant and the fields of the TM-mode using an
iterative two-dimensional procedure [21] within a squared
sampling window of 1.8 μm long, and a sampling distance
of 6.25 nm. Furthermore, if a sampling grid parallel to the
structure were used, then the derivatives would be highly sen-
sitive to the position of the sampling points around the slot

horizontal interfaces. To deal with this numerical problem,
we rotate the structure slightly (1.5°) with respect to the sam-
pling grid. In Fig. 1(b), we compare results from Eq. (5) with
those computed numerically (in particular, solving the wave
equation also for neighbor configurations by changing the ini-
tial value of each parameter by �0.5 nm and �1.0 nm, fitting
the results to a second order polynomial, and calculating its
derivative at the initial point). We can observe that the ana-
lytical derivatives are in very good agreement with the numeri-
cal calculations.

Equation (5) allows us to easily compute the first deriva-
tives of β and engineer magnitudes that depend algebraically
on β. Nevertheless, there is no closed expression for calculat-
ing higher-order derivatives in a straightforward manner [21].
Despite this, if we are interested in optimizing the chromatic
dependency of a derivative of β, then we just need to evaluate
Eq. (5) for different frequencies, fit those data as a function of
ω, and perform successive derivatives with respect to fre-
quency. This approach is fast and, as can be appreciated in
Fig. 1(c), keeps a high accuracy.

3. NUMERICAL RESULTS
We illustrate our approach in Fig. 2, where we plot five differ-
ent examples of the optimization processes with different

Fig. 2. Five examples of optimization starting from the same geometry (dotted black curve, see details in the text) and with five different flattened
dispersion profiles as a goal (solid blue line); namely, zero (a), low and anomalous (b), low and normal (c), high and anomalous (d), and high and
normal (e). Dispersion profiles between the first iteration (dotted–dashed green curve) and the last one (dashed red line) are omitted.
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flattened dispersion profiles over 350 nm, in the range
1.55 μm ≤ λ ≤ 1.90 μm as target: namely, β2�ω� � 0, �0.2 and
�0.8 ps2 m−1. For all five cases, we start from the same wave-
guide configuration [11], hence, showing this choice is not
particularly relevant. This corresponds to the geometry used
to test the accuracy of the analytical derivatives in the pre-
vious section, whose dispersion is far from being flattened.
In our simulations, we describe the refractive index of silicon
and silica using the Sellmeier coefficients provided in [22].
In these examples, six wavelengths in the above range are
considered as the points used for evaluating the local approxi-
mation of the merit function [Eq. (3)].

It is worth noting that the target curves are recovered to
different extents. In other words, the achievable minimum
of χ2 depends on the target curve and on the waveguide’s de-
grees of freedom. To ensure that the procedure converges
properly, it is convenient to moderate the speed of conver-
gence. In Fig. 3, the evolution of the parameters at each step
along the procedure is shown, in which we have allowed
variations up to 10% in each step and we consider the process
has converged when the difference of χ between two succes-
sive steps is smaller than 0.001 ps2 m−1. The specific designs
obtained after convergence are indicated in Table 1. Note that,
for the β2 � 0 case, the slot parameters, which are the most

sensitive ones [see Fig. 1(c)], are in close agreement with
those reported in [12], where hs � 40 nm and ds � 104 nm.
We emphasize that curves close to the target are found in a
few steps (see Fig. 3). This illustrates the efficiency of this
approach compared with trial-and-error methods.

Since Eq. (1) has been defined in this work for engineering
β2, other magnitudes can be altered during the optimization
process. In the cases shown in Fig. 2, for instance, the effec-
tive refractive index grows as β2 approaches its target and,
therefore, modes become more confined. The effective index
behavior is associated with the positive sign of the derivatives
with respect to the height of the waveguide, and the fact that
this parameter has been increased along the processes [see
Figs. 1(a) and 3].

A. Inclusion of Feasibility Restrictions
The manufacturing of integrated waveguides is, of course,
constrained by the limitations of the fabrication method.
Therefore, any realistic design procedure must include this
kind of additional requirement. Our algorithm also allows us
to deal with these fabrication restrictions. They are imple-
mented as constraints in the variables of the local merit
function χloc, i.e., limiting the possible values of p or bounding
them.

Fig. 3. Plot of the evolution of the geometrical parameters during the optimization procedure of the same five examples shown in Fig. 2,
normalized to its starting values (solid colored curves, left-hand axis). Dashed black curves represent the evolution of the square root of the merit
function, the standard deviation of β2 with respect to the target in the design frequency range (right-hand axis).
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The dispersion profile is more sensitive to those parameters
related to the slot [see Fig. 1(c)]. Therefore, to illustrate the
possibility of including some constraints in our algorithm, we
have imposed a lower boundary of 45 nm to the slot height in
the optimization processes of Fig. 2. The dispersion profiles
obtained under such a condition are shown in Fig. 4. Of
course, the impact of this constraint depends on each case.
In our examples, it affects the two cases of normal dispersion
to a greater extent (see results in Fig. 4) since such cases
show the narrowest slots in the unrestricted optimization
(see Table 1).

4. ANALYSIS OF TOLERANCES
In this work, we have engineered the dispersion profile of
SOI waveguides in an efficient way, implementing a powerful
differential tool that allows us to evaluate, with no additional
computational effort, the gradient of the propagation constant
in the parameter space. We used a kind of slot waveguide
proposed by Zhang et al. [11,12] to illustrate our inverse
dispersion engineering proposal. Nonetheless, we cannot omit
the practical interest of the specific structures obtained apply-
ing our tool. For example, the cross section designs that
provide the dispersion curves of Figs. 2(a)–2(c) could have
applications for soliton formation in optical microresonators
[23] or coherent ultraflat supercontinuum generation [12,17],
whereas the dispersion profiles shown in Figs. 2(d) and 2(e)
could be used for dispersion compensation of ultrashort
pulses [1]. In this sense, a crucial point to test the feasibility
of any design is to know how it performs facing inevitable
changes with respect to the optimized structure. To this end,
and for the sake of completeness, we characterize in this
section the sensitivity of the waveguides shown in Fig. 3 to
fabrication tolerances. In addition, note that our approach
also allows us to analytically evaluate the uncertainty of
the effective index or the dispersion due to the fabrication

tolerances by using the standard technique of propagation of
errors (see e.g., [16]).

In Fig. 5, the effect of small perturbations of the geometrical
parameters on dispersion curves is represented. We take
the geometry obtained by means of the optimization process
shown in Fig. 2(b) as reference. Since current integrated
waveguides can be fabricated with typical tolerances of a few
nanometers [24], we have increased and decreased by 2 nm
the parameters of that structure. As expected from Fig. 1(c),
the GVD is more sensitive to changes that affect the slot com-
pared with perturbations of the strip.

5. SUMMARY
The physical properties of subwavelength waveguides are
highly dependent on its geometry due to their small dimensions
and high index contrasts. This feature becomes an advantage
as long as their cross section can be suitably designed. Usually,
optimum waveguide designs are found by varying separately
the geometrical degrees of freedom in their transverse planes.
Consequently, this trial-and-error procedure becomes much
more challenging when one considers advanced designs con-
taining multiple degrees of freedom.

In this work, we overcome this issue by means of an inverse
dispersion engineering approach. Given a target for the
dispersion curve, we can simultaneously modify all geometri-
cal parameters of the waveguide toward new values where
the structure shows dispersion profiles closer to the target.
In this way, in a few iterations we find specific structures with
dispersion curves matching, as much as possible, the target.
The key fact is the possibility of computing the gradient of
the propagation constant with respect to all the geometrical
parameters by means of the information provided by the
analysis of only one geometry. In addition, our algorithm is
compatible with any wave equation solver, since it only needs
the information of the mode fields.

Table 1. Geometrical Parameters and Merit Function after Convergence for the Five Dispersion Targets

(Fig. 2)

βtarget2 (ps2 m−1) iter. χ (ps2 m−1) w (nm) h (nm) hs (nm) ds (nm)

(a) �0.0 4 0.018 788 504 42 110
(b) −0.2 8 0.011 634 547 42 114
(c) �0.2 8 0.012 840 599 40 108
(d) −0.8 6 0.052 665 537 51 129
(e) �0.8 9 0.042 887 518 39 93

Fig. 4. Last four target (solid blue lines) and optimized (dashed red
curves) dispersion profiles shown in Fig. 2 together with those
obtained under the restriction hs ≥ 45 nm (dotted green curves).

Fig. 5. Plot of the dispersion profiles corresponding to the optimized
geometry for the system described in Fig. 2(b) (solid black curve,
see details in the text); and the same geometry with each one of the
design parameters (h,w, hs, and ds) increased (red lines) or decreased
(green lines) by 2 nm.
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APPENDIX A: DERIVATIVE OF THE
PROPAGATION CONSTANT
Let us write the two-dimensional wave equation for the
transverse components of the magnetic field of a mode in a
waveguide [16],

Lht � f∇t∇T
t � ηϵttη

T ω
2

c2
− ηϵtt∇t�ϵ−1zz∇T

t η�ght � β2ht; (A1)

where the subscript t indicates transverse components, the
superscript T refers to the transpose of a matrix or vector,
ϵ is the effective dielectric tensor [19], and η represents the
completely antisymmetric tensor in two dimensions ��0;�1�;
�−1; 0��. The above equation can be recognized as an eigenpro-
blem and, therefore, the Hellmann–Feynman theorem [25]
could be used for calculating derivatives of its eigenvalues.
This strategy has been applied in solving electromagnetic
problems in cavities, where eigenvalues are the resonant
frequencies [14,26]. However, as the operator L, defined by
the left-hand side of Eq. (A.1), is nonself-adjoint (cf. [15],
where polarization effects are discarded, and L becomes
self-adjoint), a generalization based on biorthogonality [27]
must be used. The general expression for this mathematical
problem turns out to be [16]

∂�β2�
∂p

� h ~htj�∂pL�hti
h ~htjhti

; (A2)

where p � �p1;…; pN � are the parameters defining the wave-
guide, ~ht is the eigenvector of the adjoint operator of L, whose
eigenvalue is the complex conjugate of β2 [i.e., L† ~ht � �β2�� ~ht]
and, therefore, ~ht � ηe�t , being et the transverse components
of the electric field of the considered waveguide mode [27].
h∘j∘i stands for the standard scalar product for complex vector
functions. It is worth recalling that only the elements explicitly
dependent on any pk contribute to the derivation of L.

To derive Eq. (4) from Eq. (A.2), first we explicitly write the
numerator on the right-hand side in Eq. (A.2),

h ~htj�∂pL�hti �
Z
S
dS

�
ω2

c2
eTt �∂pϵtt�ηTht

− eTt �∂pϵtt�∇t�ϵ−1zz∇T
t ηht�−eTt ϵtt∇t��∂pϵ−1zz �∇T

t ηht�
�
:

(A3)

Let us consider now the following Maxwell equations:

∇ ×H � −i
�����
ϵ0
μ0

r
ω

c
ϵE; (A4)

∇ × E � i
�����
μ0
ϵ0

r
ω

c
H; (A5)

∇ · D � 0: (A6)

If we separate the transverse and longitudinal field compo-
nents, then E � �et � ezẑ� exp�iβz� and H � �ht � hzẑ�
exp�iβz�, and we obtain

∇T
t ηht � −i

�����
ϵ0
μ0

r
ω

c
ϵzzez; (A7)

∇tez � −i
�����
μ0
ϵ0

r
ω

c
ηht � iβet; (A8)

∇T
t �ϵttet� � −iβϵzzez; (A9)

from Eqs. (A.4), (A.5), and (A.6), respectively. If we take into
account Eqs. (A.7) and (A.8), then we can simplify the second
term on the right-hand side in Eq. (A.3),

−

Z
S
dSeTt �∂pϵtt�∇t�ϵ−1zz∇T

t ηht�

� −

Z
S
dSeTt �∂pϵtt�

�
−

ω2

c2
ηht � ϵ0ωβet

�
: (A10)

Next, using Eqs. (A.7) and (A.9) and integrating by parts the
third term on the right-hand side in Eq. (A.3), we find

−

Z
S
dSeTt ϵtt∇t��∂pϵ−1zz �∇T

t ηht� � ϵ0ωβ

Z
S
dS�∂pϵzz�e2z: (A11)

Finally, Eq. (4) is directly derived using Eqs. (A.10) and (A.11).

APPENDIX B: EFFECTIVE DIELECTRIC
TENSOR
Permittivity is a space-averaged magnitude involving micro-
scopic parameters [28]. At the interface, the averages only
change softly, ensuring smooth transitions between media
[20]. This description avoids unphysical discontinuities
that would otherwise be detrimental for the numerical
algorithms [19].

Following [19,20], let us consider an interface between
two homogeneous media of permittivities ϵ1 and ϵ2. On the
one hand, components of the dielectric tensor affecting the
electric field parallel to the interface must be calculated as
a weighted average of the permittivities hεi � f 1ϵ1 � f 2ϵ2.
On the other hand, components of the dielectric tensor acting
on the electric field normal to the interface must be computed
as the inverse of a weighted average of the inverse permittiv-
ities h1∕ϵi � f 1∕ϵ1 � f 2∕ϵ2. The weight functions f a at each
sampling point are evaluated in this work as the relative vol-
ume occupied by the ath material in a sphere of radius equal
to the sampling distance centered at each sampling point.
Finally, the effective dielectric tensor can be written as [19]

ε̂ � 1
h1∕εiP � hεi�I − P�; (B1)

where I is the identity matrix and P is the projection matrix
onto the normal to the interface n̂, i.e., Pij � n̂in̂j . It is worth
noting that, far from the interfaces, ϵ̂ is a multiple of the iden-
tity, recovering the original values for the permittivities ϵ1
or ϵ2.
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