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Abstract

Numerical simulation of rolling contact serves as an important complement to laboratory
and full-scale testing in the endeavour to further the understanding of related physical
mechanisms, e.g. the influence of friction on the rolling motion, the thermomechanical
interaction, damage phenomena and related modes of failure. In the development of
computational methods for the analysis of rolling contact, a major challenge is to enhance
predictive capabilities while keeping computational efforts reasonable.

The work presented in this thesis aims to provide a general and versatile theoretical
and computational framework for efficient, high-resolution analysis of fully transient,
thermomechanically coupled, frictional rolling contact between two deformable bodies. To
this end, the pertinent thermomechanically coupled boundary value problem is stated in
terms of an Arbitrary Lagrangian–Eulerian (ALE) kinematical description, whereupon a
computational framework is developed in the context of the Finite Element (FE) method.
Here, the Streamline-Upwind Petrov–Galerkin (SUPG) method is implemented and a quasi
Residual-Free Bubble (RFB) method developed in order to address numerical instability
issues related to the convective ALE description of the energy balance equation. Other
components of the computational model include a support for non-reflecting boundary
conditions, irregular surface profiles, and a computationally efficient methodology for
mixed control between rolling velocities and corresponding driving forces.

In contrast to traditional and still predominant approaches to rolling contact, including
semi-analytical methods based on Hertz and Carter theory, the described computational
model provides a high geometrical versatility, and accommodates a thermomechanically
coupled, fully transient analysis, including inertial effects. The ALE description is noted
to allow for, among other things, a highly localized mesh refinement, linearization of the
thermomechanical response, a compact computational domain and velocity-independent
contact interface modelling.

Numerical simulations are presented, covering a range of transient, thermomechanical
rolling contact phenomena. These show the model to be able to capture e.g. fully transient
stick/slip behaviour, negotiation of strongly non-smooth surface profiles, and a range
of thermomechanical phenomena, including frictional heat generation and the effect of
convective cooling of the rolling body due to the contact with the foundation. Numerical
results are as far as possible validated toward analytical solutions.

Keywords: arbitrary Lagrangian–Eulerian, rolling contact, thermomechanical coupling,
transient analysis, frictional contact, finite element method
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Thesis

This thesis consists of an extended summary and the following appended papers:
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Lagrangian–Eulerian description. Computational Mechanics 54.2 (2014),
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A. Draganis, F. Larsson, and A. Ekberg. Finite element modelling of
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chanical Engineers, Part J: Journal of Engineering Tribology (in review)
(2014)

Paper D
A. Draganis. “Finite element modelling of transient thermomechanical
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Part I

Extended Summary

1 Introduction

1.1 Motivation

Numerical simulation of rolling contact serves as an important complement to laboratory
and full-scale testing in the endeavour to further the understanding of related physical
mechanisms, e.g. the influence of friction on the rolling motion, the thermomechanical
interaction, damage phenomena and related modes of failure. In the development of
computational methods for the analysis of rolling contact, a major challenge is to enhance
predictive capabilities while keeping computational efforts reasonable.

Computational approaches to the analysis of rolling contact predominantly employ
semi-analytical contact models based on Hertz/Carter theory [5, 6, 7]. These approaches
have the advantage of being computationally efficient and simple to implement. An
alternative to these models is provided by Kalker’s and Vollebregt’s CONTACT code
[8, 9], which is a sophisticated framework for the analysis of rolling contact based on
a boundary element (BE) formulation. However, although there are ongoing efforts to
develop these approaches and extend them to new areas of applicability, they are ultimately
limited by the fundamental assumptions upon which they are based. These include the
half-space assumption (which requires the contact region to be small relative to the radii
of curvature of the contacting bodies), assumptions of nominally flat contact surfaces,
quasistatic dynamics, a purely mechanical analysis, and typically elastic materials. In
contrast, a computational rolling contact model of the type considered in this thesis, i.e.
one based on the Finite Element (FE) method and an Arbitrary Lagrangian–Eulerian
(ALE) kinematical description [10], has the advantage of inheriting the great versatility of
the former, and is thus not restricted by any of the aforementioned limitations.

A significant motivation for the work presented in this thesis, and one if its main long-
term goals, is to further the understanding and facilitate the identification of detrimental
operational conditions and modes of failure in railway mechanics applications [11, 12]. Of
particular interest are damage phenomena for which traditional rolling contact models
have proven insufficient. As a particular example, consider the damage shown in Figure
1.1. The pattern with inclined cracks to the right (toward the field side of the wheel) is
due to frictional contact on the low rail during curving. Note the very sharp border to
the nearby damage band with more radially oriented cracks, mainly owing to braking on
(more or less) tangent track. This would correspond to a rather sharp transition in contact
characteristics (in the presented case believed to be related to the profile of the inner
rail in curves). In order to numerically simulate the conditions generating this damage
pattern, it is necessary to account for dynamic wheel–rail forces during curving, braking
forces, and the sharp transition in contact geometries. This requires a numerical model
detailed enough to capture non-Hertzian contact conditions. Ideally, the model should
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Figure 1.1: Surface initiated rolling contact fatigue cracks on a loco wheel tread.

also be able to incorporate elastic-plastic material characteristics.

The need for detailed and general modelling of contact geometries becomes even
more important in the presence of contact geometry discontinuities, e.g. insulated joints,
crossings, indentations, or wheel flats. Under such conditions, half-space based approaches
are generally not applicable.

In addition to the mechanical loading, thermal loads may have a significant influence
on the material response. Consider Figure 1.2, where the wheel tread has been subjected
to a high thermal load in addition to the rolling contact loading. The result is discoloured
spots containing (thermal) cracks. The discolouration is likely to have been caused by
material phase transitions resulting from high temperatures. The cracking is mainly
owing to the thermal loading, although the influence of the mechanical loading may be
significant [13]. To capture these damage phenomenona in numerical simulations, there
is a need for evaluation of the wheel–rail contact stress field under dynamic loading. In
addition, the thermal interaction between the wheel and the rail (and possibly between
wheel and brake blocks) must be included. An important objective in this context is to
capture the effect of rail chill [14], whereby the comparatively cold rail exerts a cooling
influence on the wheel.

In the numerical analysis of rolling contact phenomena, it is often sufficient to focus
on one separate part of the problem at a time. For example, in an analysis where only
the impact load of wheel flats is of interest, a simplified model that focuses solely on
the related dynamics can be adopted [15, 16]. Similarly, when wheel fractures due to
overheating are studied, a commonly employed simplification is to ignore any effects of
the superposed rolling contact loading [14]. However, due to ever-increasing performance
demands on wheels and rails, the number of cases where such simplifications are unviable
is increasing. This is especially clear in cases where there is an obvious interaction between
thermal and mechanical loads, e.g. in the damage pattern in Figure 1.2.

A common simplification in traditional computational approaches to rolling contact is
to limit the analysis to a quasistatic description (and therefore neglect inertial effects).
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Figure 1.2: Wagon wheel tread subjected to thermal and rolling contact loading, resulting
in clustered thermomechanical damage.

An example of an area where this is not acceptable is the study of rail corrugation [17,
18]. The mechanisms behind the onset of corrugation are still largely unknown, and
reliable predictive models are elusive. What is known, however, is that it is essential to
the success of such a model to incorporate the dynamical interaction between wheel and
rail, in connection with a detailed analysis of material damage mechanisms.

The above discussion points toward an emergent need, in the analysis of rolling contact
phenomena in railway mechanics, to go beyond the limitations of traditional approaches.
In particular, this might mean taking dynamic/inertial effects and thermomechanical
coupling phenomena into account, and/or accommodating non-smooth geometries.

1.2 Aim, approach and scope

The work presented in this thesis aims to provide a general and versatile methodology
for efficient, high-resolution analysis of fully transient, thermomechanically coupled,
frictional rolling contact between two deformable bodies. To this end, an analytical
model is developed on the basis of an ALE description [10], which leads to a convective
formulation of the governing thermomechanical boundary value problem. On this basis,
a computational framework based on the FE method is constructed, where numerical
instability issues related to the discretized energy balance equation are addressed using
the Streamline-Upwind Petrov–Galerkin (SUPG) method [19, 20], and a variation of a
particular quasi Residual-Free Bubble (RFB) method [21].

The numerical implementation was written from scratch in MATLAB, with an aim
toward a modular and extensible computational framework. All code was written by
the author, with the exception of a general-purpose meshing library written by Fredrik
Larsson.

Throughout the work presented in this thesis, the analysis has been limited to two-
dimensional geometries, isotropic, linear thermoelasticity, and relatively rudimentary
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mechanical and thermal constitutive contact interface models. Since the long-term goal
of the work is toward railway mechanics applications, material modelling considerations
are focused toward metallic (rather than e.g. polymeric) materials. Furthermore, opti-
mization of computational efficiency and robustness has not been held as the highest
priority. While numerical results have in some cases been qualitatively compared against
data from operational conditions, quantitative experimental verification has not been
performed. These limitations in scope have been for the benefit of a focus toward –
equally – developing the theoretical foundations of the ALE approach to rolling contact,
and tackling fundamental computational issues that arise as it is extended to e.g. fully
transient, thermomechanically coupled applications.

2 Rolling contact mechanics

2.1 The analytical theory

The continuum theory of contact mechanics was developed by Heinrich Hertz at age 23
during his 1880 Christmas vacation [22], and first published in his historic paper from
1882 [5]. Appreciated both for its mathematical elegance and its practical applicability,
the theory attracted considerable attention from the scientific community. In the field
of mechanical engineering, it found early application in railway mechanics, as well as in
the modelling of rolling bearings and gears. Hertzian contact theory is computationally
efficient and – due to subsequent extensions by other researchers over the years – currently
applicable to a broad range of engineering contact problems. It is therefore ubiquitous in
the field of contact mechanics to this day.

Hertzian contact theory considers purely mechanical, frictionless, non-adhesive contact
between two linear elastic bodies [7, 23, 5]. It further assumes that the contacting bodies
are smooth and non-conforming, so that the size of the contact patch may be considered
small in relation to representative dimensions of the bodies (e.g. radii of curvature). The
contact stresses can then be considered to be much larger than those appearing elsewhere
in the system, and highly concentrated to the contact region. For this reason, they may
be seen as dependent only on conditions local to the contact region. Another fundamental
assumption of Hertz theory is the half-space assumption: For the purpose of establishing
relationships between contact pressures and internal stresses and displacements, each
contacting body is approximated as an elastic half-space. This assumption is valid
whenever the contact surface may be considered small in relation to radii of curvature of
the (undeformed) contacting bodies. Furthermore, it makes available the great wealth
of analytical methods developed for the elastic half-space, for the evaluation of stress
and deformation fields in the interiors of the contacting bodies. Two important works
contemporary to Hertz: Cerruti [24] and Boussinesq [25], as well as the famous treatises
on elasticity theory: Love [26] and Timoshenko and Goodier [23], are notable in this
context.

Hertz showed – using analogies between elasticity and electrostatic potential theory –
that the contact pressure distribution acting between two three-dimensional bodies, whose
surfaces are locally approximable by quadratic functions, takes the form of a semi-ellipsoid
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acting on an elliptic contact region. It should here be noted that the Hertzian contact
pressure distribution is obtained using a geometric non-penetration boundary condition
that considers the undeformed shape of the contacting bodies. However, this is the only
way in which the shapes of the contacting bodies are taken into account: throughout the
rest of Hertzian contact theory, they are approximated as elastic half-spaces.

Once the contact pressure distribution is known, analytical theories for the elastic
half-space may be used in order to obtain e.g. distributions of stresses and displacements
in the interiors of the contacting bodies [7, 27, 28].

Since its conception, Hertz theory has been extended outside of the confinements of
its original assumptions of smooth, non-conforming, frictionless, linear elastic contact
situations. The reader is referred to Johnson [7] or Johnson [22] for an extensive discussion
of the development of Hertzian contact theory in the one hundred years following its
conception. To name a few select examples, Steuermann [29], Goodman and Keer [30] and
Paul and Hashemi [31] present analytical theories of elastic, conformal contact, Johnson,
Kendall, and Roberts [32] presents a surface-energy based formulation of adhesive contact
between elastic solids, Johnson [33] studies the situation of a rigid indenter being pressed
down upon an elastic-plastic half-space and Greenwood and Tripp [34] models the case of
an elastic sphere in contact with a rough, elastic plane.

The extension of the continuum contact theory to rolling/sliding contact applications
is of obvious engineering interest. Early work in this area includes Cattaneo [35], where
the static situation of two spheres pressed together and shifted in the tangential direction
is considered, and the resulting tangential contact traction distribution is derived (see
also Mindlin [36]). In this case, the contact region is divided into a central stick zone and
two neighbouring slip zones (see Figure 2.1a).

The analytical continuum theory of tractive rolling contact goes back to the 1920s,
and the mutually independent work of Carter [6] and Fromm [37]. Carter considered
the two-dimensional case of an elastic cylinder in a state of tractive rolling on an elastic
half-space, while Fromm considered the case of two elastic cylinders in rolling contact.
Using the half-space assumption and the elastic theory of Love [26], Carter derived
analytical expressions for the tangential contact traction distribution in terms of the
rolling creepage1. Here, the contact region is divided into two zones: the stick zone,
adjacent to the leading edge of the contact region, and the slip zone, adjacent to the
trailing edge [9, 7] (see Figure 2.1b).

The tangential contact traction distributions shown in Figure 2.1 are based on a
consideration of the following conditions, which are fundamental properties of frictional
contact, valid for every point on the contact surface: i) In the case of slip, the tangential
traction reaches its limiting value: the product of the coefficient of friction and the normal
pressure at the same point (da Vinci, Amontons, Coulomb), ii) in the case of stick, the
slip (or the slip velocity) is zero and iii) the direction of the tangential contact traction
always opposes the direction of the slip (or the slip velocity). In particular, in the case of
tractive rolling contact, it may be shown that the occurrence of a region of slip adjacent
to the leading edge would be inconsistent with condition iii, i.e. the tangential contact
traction and the slip velocity would here be equidirectional [7].

1The rolling creepage is a normalized measure of the nominal slip velocity in the contact region, see
e.g. Johnson [7] or Paper D.
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(b) Tractive rolling (from left to right).

Figure 2.1: Examples of tangential contact traction distributions across the contact region
for two modes of tangential contact. Solid lines: partial slip. Dashed lines: full slip.

The earliest models of three-dimensional, tractive rolling contact were presented in
Johnson [38] and Vermeulen and Johnson [39]. Here, the stick region is assumed to be
an elliptical region located adjacent to the leading edge. Other early approaches [40, 41]
divide the contact surface into a set of thin, longitudinally aligned strips, each of which is
subject to a treatment using a two-dimensional theory for tractive rolling.

2.2 Semi-analytical approaches

Semi-analytical contact models are characterized by the use of some version of Hertz
theory in conjunction with a numerical methodology (e.g. fatigue/wear models, inelastic
material models and/or the FE method). These methods are comparatively simple to
implement and typically computationally efficient. However, despite efforts to expand
the range of applicability of Hertz based approaches (see Section 2.1), they are inevitably
constrained by their foundational assumptions, such as that of half-space geometries and
typically quasistatic dynamics, a purely mechanical response, and elastic materials.

Semi-analytical approaches to the analysis of rolling contact are characterized by a
reliance on analytical expressions for normal and tangential contact traction distributions
obtained from Hertz and – in the case of tractive rolling – Carter theory. In one class
of approaches, the analytical contact traction distributions (and possibly also internal
strain and stress fields) are employed for the computation of e.g. inelastic responses [42,
43, 44] and/or evaluation of various damage criteria [45]. Another class of approaches
instead employ the FE method to analyze the response to the analytically determined
rolling contact loading. Examples include the analysis of elastic-plastic responses [46, 47]
and thermomechanical phenomena [48, 49, 50].

2.3 BE approaches

The Boundary Element (BE) method [51] is a computational technique for the numerical
solution of continuum mechanics problems. In this approach, the governing differential
equations of the physical system under study are first reformulated into a system of
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integral equations, whereupon the divergence theorem is used in order to rephrase all
constituent volume integrals into boundary integrals. The discretization of the resulting
system therefore requires a computational mesh to be constructed only on the boundary
of the studied continuum.

The most prominent example of the use of the BE method for the analysis of frictional
contact problems is the computational code CONTACT [8], which was developed and
released by Kalker in 1982. This code is based on a boundary element formulation (or,
as Kalker calls it, a surface mechanics formulation) of an extended version of the theory
of Duvaut and Lions. The original theory [52] concerns a formulation of static frictional
contact in terms of a variational complementary virtual work principle. Kalker extended
this theory to the case of rolling contact [53], and developed the computational code
DUVOROL, later superseded by CONTACT, on this basis. A comprehensive description
of Kalker’s theory, including extensions subsequent to 1982 [54, 55], is given in Kalker [9].

CONTACT is a sophisticated and robust framework for the analysis of three-dimensional
frictional (static and rolling) contact problems. However, it is limited by a number of
fundamental assumptions, including the half-space assumption, homogeneous and linear
elastic or viscoelastic materials, and the absence of inertial effects in the dynamic response.
The half-space assumption requires the contacting surfaces to be nominally flat and small
with respect to characteristic dimensions of the contacting bodies. However, some classes
of non-Hertzian contact surfaces, including rough and conforming surfaces, are supported.

CONTACT is still under continual development. For instance, recent efforts by
Vollebregt and co-workers have resulted in an increase in the robustness, accuracy and
computational efficiency of the program [56, 57]. Furthermore, the program has been
expanded to new areas of applicability, such as the modelling of surface roughness,
interfacial contaminants [57], and conformal contact [58].

2.4 FE approaches

2.4.1 Overview

After the emergence and popularization of the Finite Element (FE) method in the 1960s
[59], the development of contact algorithms in the FE context soon followed. Early
papers on the subject include Chan and Tuba [60] and Wilson and Parsons [61]. Instead
of relying on idealized analytical expressions based on very specific geometrical and
constitutive assumptions (as in Hertz theory), FE based approaches to computational
contact mechanics take advantage of the discretized geometry of both of the contact
surfaces, as well as that of the interiors of the contacting bodies, thus inheriting the
versatility of the FE method. For instance, through a consideration of the kinematical
interaction between the discretized surfaces, contact constraints may be evaluated in order
to determine nodal contact forces. These may be included in the discrete FE equation
system, which may then be solved in order to evaluate e.g. internal stress and strain
fields. Apart from a geometrical versatility, the FE method offers substantial freedom in
constitutive modelling, and readily allows for the modelling of other physical phenomena
than the purely mechanical response, e.g. thermomechanical effects.
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Today, the field of FE based computational contact mechanics has reached a high level
of sophistication, and provides a wealth of options for contact algorithms and interface
laws. The reader is referred to the famous book by Wriggers [62] for a comprehensive and
well-referenced treatise on the subject.

2.4.2 ALE approaches

The application of the FE method to rolling contact problems goes back to the 1980s [63,
64, 65]. In particular, Oden and Lin [65] presents a relative kinematics framework for
rolling contact in which an intermediate configuration, corresponding to the undeformed
rolling body, is employed as a reference. The relationship between the relative kinematics
approach of Oden and Lin and the ALE methods that saw regular use in fluid mechanics
and fluid–structure interaction problems at the time (see Chapter 4) was first observed
in Nackenhorst [66]. A subsequent paper by the same author [10] presents a complete
mathematical formulation of mechanical rolling contact (including detailed statements of
balance laws, weak forms and contact kinematics) in the context of an ALE kinematical
description. The paper also emphasizes two significant complications associated with
the ALE formulation of rolling contact. Specifically, these are related to the convective
nature of the ALE description, and the related difficulty of tracking material points in
the circumferential direction in the domain of the rolling body (see Section 4). This leads
to complications both in the treatment of inelastic material response and in keeping track
of relative slip distances. Both of these issues are addressed in Ziefle and Nackenhorst
[67], in the context of stationary (steady-state), rolling contact on a rigid, plane surface.

In the aforementioned paper, relative slip distances are introduced as additional
unknowns, and expressed as integrals of slip velocities that are restated in a convective
form. Using these expressions, standard frictional contact laws may subsequently be
employed.

Early approaches to the treatment of inelastic material behaviour in a convective
kinematical framework typically followed one of two approaches: They either relied upon
integration of material data around concentric rings in the undeformed domain [65, 68],
thus imposing the requirement of a structured computational mesh, or they employed
upwind-schemes in order to integrate the advection equation governing the transport of
inelastic history parameters [69]. In Ziefle and Nackenhorst [67], a numerical scheme for
the treatment of inelastic material response based on a fractional step method [70] is
constructed. In this approach, the evolution equation for the inelastic history parameters
is restated into a convective ALE form. Its solution is then divided into a series of
steps: First, the evolution equation is solved while neglecting convective terms. After an
intermediate smoothing step, in which the inelastic parameters are given a continuous
representation in the arbitrarily structured mesh, the convective part of the evolution
equation is finally used to transport the material history data through the computational
domain in the direction of the convective flow. In this last step, a Time-Discontinuous
Galerkin (TDG) approach is used to address numerical instability issues related to the
convective form of the evolution equation.

In Suwannachit and Nackenhorst [71], a computational model for the analysis of rolling
contact between a rubber tire and a rigid surface, based on an ALE kinematical description,
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is presented. A sophisticated thermoviscoelastic constitutive model is employed, including
rate-dependent response, large deformations, and strongly thermomechanical effects
such as dissipative heating and temperature-dependent constitutive parameters (see also
Nackenhorst, Ziefle, and Suwannachit [72] and Suwannachit [73]). Furthermore, the
approach presented in Ziefle and Nackenhorst [67] for the treatment of inelastic material
response is expanded to the thermomechanically coupled case. Here, a staggered approach
is employed, wherein the equations governing the mechanical response, the thermal
response, and the evolution of the inelastic history parameters are sequentially solved in
each iteration.

3 Continuum thermomechanics

3.1 Governing equations

Continuum mechanics [74, 75, 76] is a branch of mechanics based on the assumption that
physical bodies may be modelled as continuous media (or continua), i.e. they continuously
fill the geometrical region in which they are contained. Of course, this model stands in
stark contrast to the known nature of matter as a composition of atoms, which in turn
mostly consist of empty space. Even at intermediate scales, many materials exhibit strong
heterogeneities. For instance, polycrystalline metals are made up of an assemblage of
often randomly oriented crystallites, or grains (with typical dimensions of the order of
micrometers). The continuum assumption is nevertheless a useful and accurate description
at macroscopic scales, i.e. larger scales at which subscale entities such as metallic grains
are numerous enough so that their collective behaviour tend toward a mean constitutive
response.

The physical state of a continuum is usually described using scalar or tensorial field
quantities, defined for every point in the geometrical region occupied by the continuum, and
also potentially time-dependent. These quantities may be kinematical (e.g. displacements
and velocities), measures of strain or stress, or other macroscopic state variables such as
temperature or density.

The continuum mechanics framework is amenable to a mathematical treatment using
integral and differential calculus. With the help of these tools, fundamental physical laws
may be stated in local forms, i.e. as partial differential equations valid for every point in
the continuum. Together with constitutive relations (which describe material properties)
and suitable initial and boundary conditions, these result in boundary value problems
which may be solvable by analytical or numerical methods.

In continuum thermomechanics [74, 77, 78, 79], both mechanical and thermodynamic
balance laws (potentially including thermomechanical coupling phenomena) are considered.
In particular, this approach considers the law of momentum balance and the law of
conservation of energy (or energy balance), which are local forms of Newton’s second
law and the first law of thermodynamics, respectively. The former is expressed in the
Lagrangian (material) description as

ρa− P ·∇−B = 0, (3.1)
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where ρ is the density in the material domain, a is the material acceleration, P is the
first Piola–Kirchhoff stress tensor, ∇ is the vector differential operator with respect to
the material domain, and B is the external body force per unit volume in the material
domain. The energy balance equation is stated in terms of the Lagrangian description as

ρu̇ = Ḟ : P − q ·∇ +R, (3.2)

where u is the mass-specific internal energy, F is the deformation gradient, q is the
heat flux in the material domain and R is the external heat source per unit time and
unit volume in the material domain. The dot notation (e.g. u̇) denotes a material time
derivative and : is the tensorial double contraction operator: For two second order tensors
A and B, A :B = AijBij .

It is noted that eq. (3.2) is expressed in terms of the thermodynamic state variables u
and F . This is just one of several possible options. By introducing the (mass-specific)
Helmholtz free energy

ψ = u− sθ, (3.3)

(where s is the mass-specific entropy) it is possible to reformulate the equation so that it
is instead stated in terms of F and the absolute temperature θ. These state variables are
experimentally observable and controllable (as opposed to e.g. u and s), and are thus a
common choice of unknowns in which to express the energy balance equation.

For a thermoelastic material (which is characterized by the absence of dissipative
stresses and internal, history-dependent parameters), the Helmholtz free energy may be
regarded as a function of θ and F with the properties

s = −∂ψ
∂θ
,

P = ρ
∂ψ

∂F
.

(3.4)

Hence, u̇ may be expressed as

u̇ =
∂ψ

∂θ
θ̇ +

∂ψ

∂F
: Ḟ + ṡθ + sθ̇ =

1

ρ
P : Ḟ + ṡθ

=
1

ρ
P : Ḟ − θ∂

2ψ

∂θ2
θ̇ − θ ∂2ψ

∂θ∂F
: Ḟ =

1

ρ
P : Ḟ + cεθ̇ +

1

ρ
θβ : Ḟ ,

(3.5)

where the mass-specific heat capacity at constant strain,

cε := −θ∂
2ψ

∂θ2
,

and the tensor

β := −ρ ∂2ψ

∂θ∂F

were defined. Hence, eq. (3.2) may be rewritten in terms of F and θ as

θβ : Ḟ + ρcεθ̇ + q ·∇−R = 0. (3.6)
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This equation is commonly referred to as the heat equation.
Eqs. (3.1) and (3.6), again noted to be expressed in terms of a Lagrangian kine-

matical description, form the basis for the derivation of the ALE-formulation of the
thermomechanically coupled equation system, given in Paper B.

3.2 Thermomechanical coupling

The local balance equations (3.1) and (3.6) are in general mutually coupled. For instance,
the stress P will in general depend on the temperature field θ. Consider for instance the
case of a linear thermoelastic, isotropic material, assuming small temperature fluctuations.
In this case, the constitutive relation may be stated as

P = E : [H −H0] = E :H − 3KαθI, (3.7)

where E is the elasticity tensor, H = F − I is the displacement gradient, K is the
bulk modulus, α is the thermal expansion coefficient and H0 = αθI represents thermal
strains, i.e. strains caused by thermal expansion of the material. In particular, for an
unconstrained specimen,

P = 0⇒H = H0,

so that the temperature driven deformation is F = (1 + αθ)I.
The opposite thermomechanical coupling effect, which is represented by the term θβ :Ḟ

in eq. (3.6), represents the Gough–Joule effect [80, 81]: reversible heating/cooling of the
material resulting from a nonzero strain rate. This effect is present both in polymeric
and metallic materials (incidentally, it is negligible for thermoelastic materials [77]), but
has very different causes and characteristics in each case. An atomistic explanation for
the Gough–Joule effect in metals is given in Schweizer and Wauer [82].

There are several other forms of thermomechanical coupling phenomena than those
appearing in the continuum thermomechanical field equations. As an example, inelastic
deformation is an irreversible and hence dissipative process, which therefore generates
an amount of heat that in some applications may not be negligible. Moreover, material
phase transitions, being dependent on both temperature loads and pressures, are also
thermomechanical in nature. Other examples of thermomechanical coupling phenomena
include temperature-dependent constitutive parameters and – in contact mechanics
applications – pressure-dependent thermal constitutive interface laws (see eg. Schrefler
and Zavarise [83]).

In the frictional rolling contact implementation considered in Paper C and Paper D in
this thesis, the dominating modes of thermomechanical coupling are those of frictional
heat generation and interfacial heat transfer. The frictional heat generation is dependent
on local sliding velocities, which are in turn determined by the material velocity field,
accounting for the thermomechanical nature of this phenomenon. The interfacial heat
transfer is in rolling contact situations dependent both on constitutive contact laws and
on the rolling velocity. For instance, in railway mechanics applications, this is termed the
rail chill effect: The higher the speed of the wheel over the rail, the larger the longitudinal
distance across the rail over which heat is transferred during a given unit of time. This
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leads to colder temperatures in the rail and thus a higher heat flux across the contact
interface.

4 The ALE kinematical description

4.1 Brief history

The Arbitrary Lagrangian–Eulerian (ALE) kinematical description is a generalization
of the classical Lagrangian and Eulerian descriptions, which may ideally be used to
combine the advantages and avoid the weaknesses usually associated with the latter two
descriptions. The first implementations of the ALE methodology go back to the early
1960s and 1970s, where it found use in a number of finite difference codes [84, 85, 86].
Early papers on the theory of ALE methods include Hirt, Amsden, and Cook [87] and
Chan [88], which also discuss stabilization methods to mitigate numerical instability issues
related to the convective ALE formulation of flow problems. The use of ALE methods
in the context of FE applications soon followed [89, 90, 91], with the application to
fluid–structure interaction problems as an early motivator.

4.2 Overview

In order to establish a kinematical description of a continuum [75, 74, 20], i.e. to describe
its configuration and its motion in Euclidean space, two geometrical domains are commonly
employed: the undeformed, initial or material configuration ΩX and the deformed, current
or spatial configuration Ωx (see Figure 4.1). ΩX represents the undeformed configuration
of the continuum. It is usually associated with the fixed time t = 0, but does not thereby
necessarily represent the actual configuration of the continuum at this or any other time.
Ωx represents the deformed configuration of the continuum at the current time t, and
thus represents its actual arrangement in physical space. Both ΩX and Ωx are associated
with coordinate systems that may either coincide or be chosen independently.

Due to the association of the undeformed configuration ΩX with a fixed time, this
configuration has the property that each coordinate X ∈ ΩX always corresponds to the
same material point. Hence, parameterization of a given field quantity ψ as ψ = ψX(X, t)
relates ψ to a particular material point X, without any explicit reference to the position
of this material point at the current time t. This approach of using the undeformed
configuration ΩX as the reference configuration characterizes the Lagrangian kinematical
description. In contrast, each coordinate x ∈ Ωx corresponds to a fixed position in physical
space (due to the association of Ωx with the current time). Hence, parameterization of a
field quantity ψ as ψ = ψx(x, t) relates ψ to a particular spatial point x, without any
explicit reference to the identity of the material point that happens to occupy the position
x at the current time t. This approach of using the deformed configuration Ωx as the
reference configuration characterizes the Eulerian kinematical description.

In order to enable a numerical treatment of the governing equations (for instance
using the FE method), the continuum is discretized by introducing a computational mesh
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in the chosen reference configuration. In the Lagrangian description, the computational
mesh will move and deform with the continuum: its nodes will be attached to material
points and its elements will represent the same material regions throughout the whole
motion. This property makes the Lagrangian description very useful for keeping track
of the evolution of history-dependent material parameters, and the motion of material
boundaries. On the other hand, cases involving large deformations might result in a
heavily distorted computational mesh. For this reason, the Lagrangian description is a
common choice in solid mechanics applications, but is seldom used in fluid mechanics.
In the Eulerian description, the computational mesh remains fixed in space, so that any
motion of the continuum will result in convection of material points relative to the mesh.
As a result, the Eulerian description is a suitable choice in cases involving large and/or
complex and convoluted deformations (which are common in fluid mechanics applications),
but ill-equipped to handle the tracking of history-dependent material data and material
interfaces and boundaries. It is further noted that the inherently convective Eulerian
description gives rise to nonsymmetric terms in the governing equations, which may lead
to numerical instability issues (see Section 5).

The ALE kinematical description [20, 92] is a generalization of the Lagrangian and
Eulerian descriptions in which the reference configuration (henceforth denoted by Ωχ; see
Figure 4.1) may be chosen arbitrarily. Hence, this description provides complete freedom
in the choice of the motion of the reference configuration relative to the continuum, and
relative to physical space. In particular, the Lagrangian and Eulerian descriptions are
obtained as special (extreme) cases when the ALE reference configuration Ωχ is chosen
as ΩX (material-fixed) and Ωx (space-fixed), respectively. It should here be noted that
the Lagrangian description is the only one that is completely devoid of any relative
motion (convection) between material points and coordinates in the reference domain. In
particular, the expression for the material time derivative of a continuum field quantity is –
in both the ALE and Eulerian descriptions – split into a convective term and a referential
time derivative. For more information, see Donéa and Huerta [20], Donéa et al. [92],
Nackenhorst [10] or Paper D.

Figure 4.1 shows a schematic illustration of the configuration of a continuum in the
material domain (ΩX), the spatial domain (Ωx), and a particular choice of ALE domain
(Ωχ). The highlighted internal lines in the continuum (as well as its boundary) are
material-fixed. Again, note that the coordinate system (shown in the bottom left in each
of the three figures) may be chosen independently in each domain.

As mentioned previously, the ALE description can be used to combine the advantages of
the Lagrangian and Eulerian descriptions, and in many cases circumvent their weaknesses.
It can also be useful in cases where the motion is naturally divisible into separate
kinematical components, one of which is known a priori (see e.g. Section 4.4). In any
application of the ALE description, its success depends on the appropriate construction
of the reference configuration (including its motion) for the particular problem at hand.
Whenever possible, the motion of the reference configuration (and thus that of the
computational mesh) is completely prescribed a priori. In other cases, the computational
mesh is determined during the simulation based on some automatic remeshing algorithm.
The latter might involve mesh regularization (smoothing) or adaptive mesh refinement
[92].
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(a) Material configuration ΩX . (b) Spatial configuration Ωx.

(c) Chosen ALE configuration Ωχ.

Figure 4.1: The configuration of a continuum in each of the three domains ΩX , Ωx and
Ωχ.

Examples of applications in which ALE methods are often more suitable than La-
grangian or Eulerian approaches include problems involving fluid–structure interaction
[90, 93, 94], free surface flow [95, 96], metal forming [97] and cutting [98, 99] processes,
and rolling contact (see Section 4.4).

4.3 One-dimensional example

Consider a one-dimensional, uncoupled version of the heat equation previously stated in
eq. (3.6):

ρcεθ̇ +∇q −R = 0. (4.1)

Here, the dot notation (e.g. θ̇) again denotes a material time derivative and ∇ is the
one-dimensional version of the material vector differential operator ∇ (see Section 3.1).
The heat flux q is modelled using Fourier’s law:

q = −k∇θ

and the external heat source R and the thermal conductivity k are taken as homogeneous.

The material configuration ΩX 3 X, as well as an artificial configuration Ω̂ 3 X̂ are
now introduced. Ω̂ is identical to ΩX , except that the former features a coordinate system
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that translates with a constant velocity V̄ , so that

X̂ = φ̂(X, t) = X − V̄ t. (4.2)

This relation shows that material points X ∈ ΩX travel to the left as observed from
the translating reference frame of Ω̂. The configuration Ω̂ is here considered to have
no relation to the current configuration of the one-dimensional continuum. Therefore,
this configuration may be interpreted as an artificial ALE domain. The kinematical
description employed in this example is noted to be equivalent to the part of the kinematical
description implemented in the appended papers that corresponds to the plate domain
(see e.g. Paper D).

The material time derivative (see Section 2.1 in Paper D) of the temperature θ may
now be expressed as follows in terms of the convected domain:

θ̇ = ∇̂θ(−V̄ ) + dtθ, (4.3)

where ∇̂ is the differential operator in Ω̂ and dt(·) := ∂(·)/∂t|X̂ denotes the time derivative

in Ω̂. The ALE formulation of (4.1) may then be expressed as

ρ̂cε(−V̄ ∇̂θ + dtθ) + ∇̂q̂ − R̂ = 0, (4.4)

where

q̂ = −k∇̂θ

and (̂·) denotes quantities related to Ω̂. Since there is no deformation between the two

domains ΩX and Ω̂ (i.e. the deformation gradient ∂φ̂(X̂, t)/∂X = 1), it follows that q̂ = q,
ρ̂ = ρ and R̂ = R. Assuming a stationary response (dtθ = 0), the above equation may be
rephrased as

∂2θ

∂X̂2
+
â

k

∂θ

∂X̂
+
R̂

k
= 0, (4.5)

where â := ρ̂cεV̄ . The solution to eq. (4.5) is

θ(X̂, t) = − R̂
â
X̂ − C1e

−âX̂/k + C2, (4.6)

where the constants C1 and C2 may be determined from the boundary conditions of
the problem. The interval of interest in the following is −L < X̂ < L. Furthermore,
homogeneous Dirichlet boundary conditions are imposed at X̂ = ±L.

For illustration purposes, a non-dimensional counterpart of the problem and its solution
is now considered, where the dimensionless parameters L = ρ̂ = cε = k = 1 and R̂ = 1000
are employed. The temperature distribution is shown in Figure 4.2 for three distinct
values of V̄ . The solution is noted to be characterized by an increased dissipation and a
more substantial skewing in the direction of the convective flow, with increasing values of
V̄ .
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Figure 4.2: Analytical solution of the one-dimensional convected heat equation for three
different values of the convective velocity V̄ .

4.4 Application to rolling contact

In the context of rolling contact mechanics, a Lagrangian kinematical description may be
applicable in cases where rolling distances are short and velocities are low (or when the
rolling motion can be considered to be quasistatic), so that the conditions in the contact
region change little between consecutive time steps of the simulation. See for instance
Galantucci and Tricarico [100], where a Lagrangian FE model is employed to model a
hot rolling process. When rolling distances are large and velocities are high, however,
a Lagrangian description (in which the computational mesh follows the motion of the
continuum) leads to significant difficulties in describing the surface interaction during
the rolling motion. For this reason, FE-based rolling contact models usually either adopt
a contact-fixed (i.e. translating) frame of reference, or a relative-kinematics description
of the rolling motion. In both cases, material points are considered to flow through the
contact region via convection, although in different ways. As mentioned in Section 2.4.2,
this formulation was given a more mathematically stringent treatment in Nackenhorst
[10], in terms of an ALE description.

The ALE description employed in Nackenhorst [10] introduces an intermediate ALE
reference domain that represents the undeformed configuration after a rigid body trans-
formation. This transformation represents the nominal rigid body motion (translation
and rotation) of the rolling body across the rolling surface. This way, the ALE kinemat-
ical description effectively decomposes the rolling motion into one nominal rigid body
component (which may be determined a priori), and one corresponding to the actual
deformation. It should here be noted that the kinematical description employed in the
appended papers of this thesis is identical to the one presented in Nackenhorst [10], except
for the fact that it involves a translating coordinate system that that follows the rolling
body in its motion (see e.g. Figure 1 in Paper D).

In the ALE description of rolling contact just described, the contact region in the
reference domain (on both sides of the contact interface) is largely stationary throughout
the rolling motion. This means that the same region in the computational mesh will always
correspond to the region in contact, which allows for highly localized mesh refinement
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(see e.g. Figure 4 in Paper D). As shown in Paper B, the ALE description also allows for
linearization of the thermomechanical response. In the same paper, it is shown that for
an isotropic, thermomechanical system, stationary (steady-state) rolling contact takes
the form of a time-independent problem in the ALE context (a point which is also made
in Nackenhorst [10]). Furthermore, it is noted that the ALE formulation allows for the
compact modelling of the domain corresponding to the foundation1 over which rolling
takes place, regardless of the actual distance traversed during a simulation. The reason is
that by the convective nature of the ALE description, the foundational domain is subject
to continual in- and outflow of material across its artificial bounding edges. Thus, at any
given time, the considered foundational domain corresponds to a section of the full material
domain, that is located in the vicinity of the contact region. Finally, it is noted that in
the case of thermomechanical contact, the velocity-dependence of the effect of convective
cooling of the rolling domain (see Section 3.2), and related heat-partitioning behaviour, is
inherent to the employed ALE descripton. This allows for velocity-independent contact
interface modelling.

It is emphasized that the use of an ALE description for a thermomechanical system
in rolling contact results in a significantly more complicated boundary value problem
as compared to that of a Lagrangian formulation. To see this, compare the Lagrangian
formulation of this problem (eqs. (4), (5), (13) and (15) in Paper B) with the ALE
formulation of the same problem (eqs. (6), (12), (23) and (21) in Paper B). Accounting
for transient rolling contact further complicates the picture, especially when control of
driving forces is to be accommodated (see Paper D).

Being convective in nature, the ALE description is associated with potential difficulties
regarding the tracking of history-dependent material parameters and material boundaries.
In the case studied in the appended papers, all boundaries that are not in- or outflow
boundaries follow the streamlines of the convective velocity field, hence avoiding the latter
complications. Had this not been the case, any boundary irregularity would be transported
in the direction of the convective flow as time progresses. This would necessitate special
measures, such as frequent re-meshing to keep the mesh consistent with the geometry, likely
outweighing any benefit gained from using the ALE description in the first place. Finally,
computational issues such as numerical instabilities (see Paper B), and complications
regarding the treatment of variable rolling velocities, as well as mixed control between
these velocities and external driving forces (see Paper D), require special consideration.

1In the two-dimensional simulations considered in the appended papers, the foundational domain is
referred to as the ”plate” domain
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5 Numerical stabilization of convection–diffusion

problems

5.1 Introduction

The most common weighted residual method used in FE formulations is the Galerkin1

method, in which the weight functions of the weak (variational) formulation of the
governing equations are the same as the approximation (trial) functions [101, 102]. For
the common class of self-adjoint boundary value problems, this leads to a symmetric weak
form, and hence to symmetric coefficient matrices in the FE formulation. In this case, it
can be shown that the discrete solution to the Galerkin FE problem is optimal in the energy
norm [103, 20]. This is known as the Galerkin best approximation property. In problems
involving convection, the presence of the nonsymmetric convective operator means that
the Galerkin best approximation guarantee is lost. In problems where convective effects
dominate, very severe numerical inaccuracies may in fact arise.

Of particular interest in this thesis is the diffusion–convection problem2, which is
associated with the local equation

a ·∇θ −∇ · (k∇θ) = R. (5.1)

Here, a (not to be confused with the acceleration in Section 3) is a first order tensor
which is proportional to the convective velocity, θ is the unknown scalar field, k is a
diffusion coefficient, and R is an external source term. The first and second terms
above are identified as the convective and diffusive terms, respectively. When convective
effects dominate over diffusive effects, the solution tends to feature thin boundary layers
containing sharp gradients, in the vicinity of outflow boundaries for the convective flow.
In these regions, the Galerkin shape functions are ill-suited to represent the shape of the
solution. This leads to stability problems in the form of spurious node-to-node oscillations
[20], where the solution and its derivative vary strongly in space. In contrast, in domains
where the convective streamlines are closed, the solution to the convection–diffusion
problem is not characterized by boundary layers. Instead, the dominating symptom of the
failure of the Galerkin shape functions to capture the shape of the solution is erroneous
numerical dissipation (see Paper B).

The only way to mitigate the aforementioned numerical instability problems in the
standard Galerkin framework is by refinement of the mesh until the shape of the solution
is adequately resolved. However, the degree of mesh refinement required increases
rapidly with the Peclet number3 of the flow, rendering this approach untenable in most
applications.

1The surname, Russian in origin, is more accurately romanized as Galyorkin.
2Note from e.g. Paper B or Section 4.3 that the stationary, uncoupled version of the energy balance

equation as expressed in the ALE context has the same form as eq. (5.1).
3The Peclet number is a dimensionless quantity that may be interpreted as a quantification of the

degree to which convection dominates over diffusion for a given discretization.
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5.2 Numerical stabilization methods

In order to address the numerical instability issues arising in convection-dominated flow
problems in the context of a Galerkin FE formulation, a number of numerical stabilization
methods have been developed. For an extensive summary, see Donéa and Huerta [20] or
Codina [104].

In the appended papers B–D in this thesis, a thermomechanically coupled rolling
contact problem expressed in terms of a convective ALE description is considered. It
has been found that while the discretized momentum balance equation is not affected by
numerical instability issues for the range of convective velocities of interest, the discretized
energy balance equation is strongly affected. To address these problems, the SUPG
method and a quasi RFB method are employed. These are described in further detail
below.

5.2.1 The SUPG method

In order to understand the mechanisms behind numerical stabilization methods for
convection–diffusion problems, it is instructive to begin by considering the one-dimensional
version of the governing equation. In this case, it can be shown that the Galerkin FE
formulation may be modified to obtain a nodally exact solution [20]. This modified scheme
may equivalently be interpreted as stemming from the introduction of artificial diffusion
in the strong form of the problem, or from the application of a modified test function –
corresponding to a stronger weighting in the upstream direction – to the convective term
in the weak form. The latter interpretation has inspired the concept of upwind schemes
[105, 106].

In the generalization of the upwind scheme to the multi-dimensional case, it has been
found to be important to apply numerical stabilization measures only along the streamlines
of the convective flow. Otherwise, excessive numerical diffusion may be introduced. This
has led to the concept of streamline upwind schemes. It is noted that these schemes are
not variationally consistent: the correction to the test function is applied only to the
convective term in the weak form. This shortcoming of the streamline upwind method
motivated the development of the Streamline-Upwind Petrov–Galerkin (SUPG) method,
which was introduced in Brooks and Hughes [19]. In the SUPG method, the test function

wSUPG = wG + τa ·∇wG (5.2)

is used for all terms in the residual equation (note that the second term represents a
directional derivative along a streamline of the convective flow). Here, wG is the standard
Galerkin test function and τ is the stabilization parameter (or the intrinsic time scale). τ
depends both on the magnitude of the convective velocity and on a characteristic element
size (see Donéa and Huerta [20] and Paper D). The choice of the latter is a non-trival
modelling consideration which may have a large influence on the performance of the
SUPG method.
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5.2.2 Bubble function approaches

In the context of the FE method, bubble function methods seek to enrich the functional
space from which test and shape functions are chosen, by the introduction in each element
of a function that vanishes on the element boundaries: a bubble. The shape of a given
bubble function is parameterized via one or more degrees of freedom. Since the bubble
vanishes on the boundaries of the element with which it is associated, these additional
degrees of freedom may be reduced via the process of static condensation, so that they do
not appear in the global equation system. It is emphasized, however, that the process of
static condensation does not change the solution of the problem.

A Galerkin FE approach in which bubble functions have been introduced and their
associated degrees of freedom then condensed may in its totality be interpreted as a
numerical scheme in its own right. It should here be noted that in the special case where
the bubble functions have the same functional shape as the FE test and shape functions
(they may for instance be polynomials of the same order), this scheme is simply equivalent
to a standard Galerkin method on an (”intelligently”) enriched mesh [107].

As previously mentioned, numerical instability issues related to a Galerkin FE for-
mulation of a convection-dominated flow problem arise as a result of the inability of
the Galerkin scheme to resolve the shape of the solution, which involves thin boundary
layers containing sharp gradients. By their nature as a subscale enrichment methodology,
bubble function methods may – with a suitable choice of the enriched FE space – be
employed to address such problems. It has in fact been found that bubble function
approaches to numerical stabilization of convection–diffusion problems are closely related
to streamline-upwind methods such as the SUPG method [108, 109, 110].

The Residual-Free Bubble (RFB) method [111, 112] is a special type of bubble
function method in which the exact solution to the governing boundary value problem
in each element (with homogeneous Dirichlet boundary conditions) is required. Static
condensation is then employed, resulting in a numerical scheme that communicates the
fine-scale behaviour to the coarse-scale problem. Incidentally, RFB methods have been
shown to be a special case of the variational multiscale method [113]. This method,
introduced in Hughes [114] and further developed in Hughes et al. [115] and Hughes
and Sangalli [116], is a powerful computational methodology for the representation of
multiscale phenomena, for which numerical stabilization of convection-dominated flows is
but one possible application [20].

A problem associated with the RFB method is the difficulty associated with solving the
subscale problem. An analytical solution is often not available, necessitating approximate
schemes, which may be called quasi residual-free bubble methods. An example of such a
scheme is given in Brezzi, Marini, and Russo [21]. Here, each triangular element in the
considered two-dimensional domain is subdivided into three elements by the introduction
of an extra node. Linear shape functions are used, thus resulting in a pyramid-shaped
bubble function. The position of the extra node is chosen from a consideration of the
direction and magnitude of the convective velocity field. The stabilization procedure
discussed in Paper B is based on a similar methodology.
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(c) Quasi RFB stabilization.

Figure 5.1: FE solutions to the one-dimensional convected heat equation with and without
numerical stabilization. The analytical solution is also included in each case. V̄ = 200

5.3 One-dimensional example

In Section 4.3, the one-dimensional heat equation was restated in terms of a convective
description. The analytical solution was plotted, and shown to be skewed in the direction
of the convective flow. A Galerkin FE formulation of the problem, using piecewise
linear shape functions, is now implemented in order to illustrate the previously discussed
numerical instability issues associated with such an approach. The same parameters as in
Section 4.3 are used, with V̄ = 200, and the one-dimensional domain is discretized using
20 equal-sized elements. The solution, shown in Figure 5.1a, clearly exhibits strongly
oscillatory behaviour, culminating near the outflow boundary of the convective flow, where
the exact solution exhibits sharp gradients.

Figure 5.1b shows the SUPG-stabilized solution. It is seen that this solution is
completely devoid of numerically erroneous oscillatory behaviour. In fact, the SUPG
method provides a nodally exact solution in the one-dimensional case.

In a final example, a quasi RFB method is implemented to stabilize the solution.
In particular, each one-dimensional element is here subdivided into two elements by
the introduction of an additional node. The position of this node is chosen to coincide
with the stationary point of the exact solution of the heat equation, as considered on
the element in question with homogeneous Dirichlet boundary conditions. The shape
function associated with this node (i.e. the introduced bubble function) is chosen as a
piecewise linear function (note that using the shape of the exact local solution for the
bubble function would result in a pure RFB method). The extra degree of freedom in each
element is eliminated via static condensation, so that a discrete system of the same size
as in the previous two examples is obtained. Note that the fact that the employed bubble
functions are of the same polynomial order as the Galerkin shape functions (together
with the fact that static condensation does not influence the solution) means that the
implemented quasi RFB method is exactly equivalent to a pure mesh refinement scheme,
where the additional nodes coincide with the analytically computed positions. Figure 5.1c
shows the solution to the quasi RFB-stabilized discrete problem. The spurious numerical
oscillations are clearly eliminated, although a nodally exact response is not obtained.
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6 Summary of appended papers

This section contains summaries of the contents of the appended papers. These summaries
are followed by a table (Table 6.1) containing an overview of the set of features of the
computational framework that was used for each appended paper.

Note that all appended papers have in common that they concern a theoretical
and computational framework for rolling contact based on the FE method, an ALE
kinematical description of the type presented in Nackenhorst [10], and a computational
contact formulation based on methodologies described in Wriggers [62]. Further, they
all consider a two-dimensional (plane strain) geometry corresponding to cylinder–plate
rolling contact, and isotropic, homogeneous and linear (thermo-)elastic materials.

• Paper A: Numerical evaluation of the transient response due to non-
smooth rolling contact using an arbitrary Lagrangian–Eulerian formula-
tion.
In the first paper of this thesis, a purely mechanical version of the ALE-based com-
putational framework is employed in a study of transient, frictionless rolling contact,
featuring non-smooth surface profiles. The paper further implements non-reflecting
boundary conditions at the in- and outflow boundaries of the considered plate
domain. These are shown to be successful in preventing reflection of mechanical
waves against the artificial boundaries of the plate. However, since these waves are
found to have a limited influence on the overall stress distribution, these boundary
conditions were not employed in later papers. The non-smooth surface profiles are
modelled via modification of the gap functions of the contact formulation. The
two surface profile shapes used in the numerical simulations are a sharp hole in the
plate and a corrugation pattern based on actual field measurements. Numerical
results are presented, and found to be in qualitative agreement with results in the
literature.

• Paper B: Finite element analysis of transient thermomechanical rolling
contact using an efficient arbitrary Lagrangian–Eulerian description.
This paper contains a comprehensive derivation of the ALE formulation of the
fully transient, thermomechanically coupled boundary value problem, as well as
its weak and FE forms. Relevant tensorial quantities (i.a. the first Piola-Kirchhoff
stress tensor) are expressed in the ALE domain and shown to be free of explicit
time-dependences in the isotropic case. Furthermore, mechanical and thermal
boundary conditions are expressed in the ALE context and discussed in detail.
The paper also contains an investigation of numerical instability issues related to
the discretized energy balance equation. Specific numerical stabilization measures
are proposed, and their performance is assessed. Numerical examples featuring
transient, thermomechanical, frictionless rolling contact are presented, highlighting
the influence of variations in thermal contact conductivity, rolling speed and external
mechanical load on the contact interface heat flux.

• Paper C: Finite element modelling of frictional thermomechanical
rolling/sliding contact using an arbitrary Lagrangian–Eulerian formula-
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tion.
This paper extends the computational model to support frictional (tractive) rolling
contact, although only allowing for control of the rolling velocities, and limited to a
stationary (steady-state) analysis. The paper discusses particular characteristics
of the frictional contact formulation as expressed in the ALE context, such as
the fact that the velocity-dependence of interfacial heat transfer phenomena is
captured inherently. Numerical examples show the model to be able to capture e.g.
stick/slip behaviour, as well as a range of thermal phenomena, including the effect
of convective cooling of the cylinder due to the contact with the plate.

• Paper D: Finite element modelling of transient thermomechanical rolling
contact featuring mixed control of the rigid body motion.
In the final paper of this thesis, the ALE-based computational framework is finally
extended to fully transient, thermomechanically coupled, frictional rolling contact. A
computationally efficient methodology for mixed control between the ALE referential
velocities (i.e. the rolling velocities) and their corresponding driving forces is
developed and discussed in depth. Furthermore, complications related to the
implementation of time-dependent convective velocities in the ALE framework are
addressed. Numerical examples are presented where particular points of emphasis
include dynamical effects in the vicinity of the contact region, and the time scales
on which mechanical and thermal mechanisms operate.

Table 6.1: Overview of the set of features of the computational framework that was used
for each appended paper. Here, a check mark indicates that a given feature is used, and a
horizontal dash that the feature is not applicable, or required, for the considered situation.

Paper A Paper B Paper C Paper D
Thermomechanical coupling X X X

Friction X X
Transient dynamics X X X

Non-smooth surfaces X X X
Non-refl. boundary conditions X

Numerical stabilization — X X X
Variable rolling velocities X
Control of driving forces X

7 Conclusions and outlook

7.1 Contributions of the thesis

A theoretical and computational framework, based on an ALE kinematical description
and aimed toward analysis of fully transient, thermomechanically coupled, frictional
rolling contact between two deformable bodies, has been developed. Implemented features
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include support for non-reflecting boundary conditions, irregular surface profiles, and
mixed control between rolling velocities and corresponding driving forces. Numerical
instability issues related to the convective ALE description of the energy balance equation
are addressed using the Streamline-Upwind Petrov–Galerkin (SUPG) method and a
variation of a known quasi Residual-Free Bubble (RFB) method.

The ALE-formulation of the thermomechanically coupled boundary value problem is
derived and discussed in detail in Paper B. In particular, it is shown that for isotropic,
homogeneous and thermoelastic materials, the push-forwards of relevant tensorial quanti-
ties (e.g. the Piola–Kirchhoff stress tensor and the heat flux tensor) to the ALE domain
are independent of intrinsically time-dependent rigid body rotation tensors. This is noted
to be a necessary condition for the time-independent nature of the ALE-formulation in
the particular case of stationary rolling contact (for the given material properties).

The ALE description is noted to allow for velocity-independent modelling of the contact
interface. In particular, the velocity-dependent effect of convective cooling of the rolling
body, and subsequent heat partitioning between the rolling body and the foundation, is
inherently captured by the convective kinematical description (see Paper C).

The modelling of the foundational body as deformable leads in the ALE context to a
domain bounded on both sides by a pair of artificial boundaries, across which a continual
convective material flow takes place. The convected mechanical and thermal boundary
conditions that arise at these boundaries in the ALE formulation when prescribing natural
tractions and fluxes, are shown in Paper B to be of the Robin type. Furthermore,
mechanically non-reflecting boundary conditions were implemented at these boundaries
(see Paper A). These were shown to be effective in eliminating spurious reflection of
mechanical waves. However, the influence of these mechanical waves on the solution was
noted to be more or less negligible, especially with regard to resultant contact forces.

The use of the ALE description is noted to result in an FE formulation wherein the
constituent matrices and vectors depend on a set of convective velocity parameters. In
transient simulations where these parameters vary in time, there consequently arises an
apparent need to reassemble in each time step the system matrices and vectors that
depend on these parameters. In Paper D, a methodology is developed for the computation
of the FE system matrices as linear combinations of precomputed matrices, thus removing
the need for their recomputation in each time step. The computation times for transient
analyses are thus in general substantially decreased. In the same paper, a methodology
for mixed control between rolling velocities and their corresponding driving forces is
developed and discussed in detail.

Numerical simulations presented in the appended papers show the model to be able to
capture e.g. fully transient stick/slip behaviour and negotiation of strongly non-smooth
and even discontinuous surface profiles. Furthermore, a range of thermomechanical
phenomena, including frictional heat generation and the effect of convective cooling of the
cylinder due to the contact with the plate1 can also be simulated by the developed model.

One of the main motivations for the development of the computational model has
been for it to reach a state where it can be coupled to a multi-body vehicle dynamical
framework – interfacing with the cylinder–plate model via the nominal rolling velocities,

1It is noted that the numerical simulations in the appended papers consider the two-dimensional
situation of cylinder–plate rolling contact.
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or their corresponding driving forces. Although many applications would additionally
require a generalization to three-dimensional geometries for an accurate representation of
pertinent physical phenomena, this point can now be considered to have been reached.
The construction of such a coupled model would result in a framework for vehicle dynamics
analysis equipped with a versatile and sophisticated model for the contact interface. This
would potentially enable high-resolution analysis of e.g. thermomechanical rolling contact
fatigue, thermal damage phenomena, rolling noise generation, corrugation formation
and stick/slip behaviour in the context of rolling–sliding contact interaction. The last
application may for instance take advantage of the implemented methodology for mixed
control between rolling velocities and driving forces. The dynamic stick/slip behaviour of
the rolling system may in this way be evaluated in order to assess the proximity to sliding.
Such analyses may for instance be used as a basis for assessing, in turn, the performance
of automatic slip prevention systems.

7.2 Suggestions for future work

In the further development of the ALE-based computational model presented in this thesis,
measures to increase its robustness and computational efficiency should take priority. In
particular, the treatment of tangential contact is currently modelled using a regularized
friction law (see Paper C), which is conducive to convergence problems and furthermore
dependent on a velocity-dependent regularization parameter that is often very difficult to
choose. An approach independent of numerical modelling parameters, e.g. a Lagrange
multiplier method [62], would here be preferable. Another promising alternative – as yet
only implemented for stationary rolling contact – is presented in Ziefle and Nackenhorst
[67]. Here, relative slip distances are introduced as additional unknowns, and expressed
as integrals of slip velocities that are restated in a convective form.

As discussed in Paper B, it has been found to be necessary to implement quadratic
shape functions (in conjunction with a numerical stabilization scheme) in the domain
of the rolling body in order to obtain a numerically accurate thermal response. Due to
the employed monolithic solution scheme, this has the side-effect of requiring the use of
quadratic shape functions also for the mechanical problem in this domain. The fact that
the domain corresponding to the rolling surface implements linear shape functions thus
results in a discrepancy, which complicates the contact formulation (see e.g. Paper B).
On this basis, it is considered plausible that a staggered solution scheme, which allows
for a separate spatial (and temporal) discretization between the mechanical and thermal
problems, will prove advantageous.

In order to expand the range of practical applicability of the computational framework,
e.g. toward modelling of realistic wheel–rail rolling contact situations, it will be necessary
to implement support for three-dimensional geometries and inelastic material response.
In this endeavour, some of the main challenges are believed to be the appropriate
generalizations of the quasi RFB numerical stabilization scheme and the methodology for
mixed control between rolling velocities and driving forces.
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Abstract: A theoretical and numerical framework to evaluate rolling contact using an arbitrary
Lagrangian–Eulerian (ALE) formulation is established. A finite element formulation is imple-
mented featuring cylinder–plate contact, automated mesh refinement, non-reflecting boundary
conditions, and the ability to incorporate surface roughness through user-defined gap functions.
Presented examples include rolling contact on a corrugated surface and negotiation of a surface
discontinuity. Sensitivity and validation analyses are presented and show the model to be robust
and the trends in parametric responses to be reasonable as compared to results in literature.
Owing to the ALE formulation, the model can be kept very compact and the computational
demands very modest.

Keywords: rolling contact, transient analysis, finite element method, arbitrary Lagrangian–
Eulerian

1 INTRODUCTION

The numerical modelling of rolling contact can,

simplistically, be classified into two approaches: set-

ting out from semi-analytical contact modelling

or based on finite element (FE) simulations. If

one focuses on normal contact, the first approach

typically adopts a Hertzian contact formulation,

whereas an FE approach typically adopts a contact

formulation involving Lagrangian multipliers or a

penalty-based method. A Hertzian approach is com-

putationally efficient, but has drawbacks regarding its

generality since it presumes (among other things)

elastic material response, smooth and continuous

profiles, and a relatively small contact patch. More

details can be found in literature [1, 2].

In contrast, the FE method is very versatile regard-

ing both geometry of the contacting components and

the material response. On the other hand, the simu-

lations are computationally expensive, in particular

if the simulations should feature rolling over longer

distances. This is due to the requirement for a dense

FE mesh in the contact patch and the fact that the

location of contact shifts as the rolling progresses.

Further, the rolling motion will introduce the need

to account for large displacements.

To alleviate these drawbacks, the approach

adopted in this study is to employ an arbitrary

Lagrangian–Eulerian (ALE) approach. Here, a com-

putational domain consisting of the roller and a

small part of the plate on which it is rolling is defined.

Such an approach significantly reduces the size of the

numerical model and related computational efforts,

as detailed in section 4.

Considering purely mechanical wheel–rail contact,

most research is devoted to quasi-static loading

conditions and a (classical) Lagrangian description,

where the material domain is chosen as reference.
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However, in Dang Van et al. [3], elastic–plastic anal-

ysis of rail is carried out based on an ALE formulation.

This allows for material flowing through the compu-

tational domain and thus studying the response

under a moving load without explicitly modelling a

large domain of the rail. Furthermore, in Chang et al.

[4], the full three-dimensional (3D) wheel–rail con-

tact situation is analysed using a similar framework.

However, none of these papers address the dynamic

situation. The dynamic effects of wheel–rail contact

irregularities are significant and have been presented

in a simplified form using measured transfer func-

tions between irregularities and different compo-

nents in Thompson [5]. The influence has further

been assessed through numerical simulation and

measurement [6–9].

The employed 2D model is valid under conditions

where line contact is a good approximation. For con-

ditions resulting in more elliptic contact patches, it

should be considered as a first approximation.

The novel features of the employed model include a

synthesis of computational frameworks: the applica-

tion of non-reflecting boundary conditions in an ALE

formulation of rolling contact and application of the

ALE formulation to operational conditions featuring

transient rolling contact dynamics under non-

smooth (i.e. corrugated or discontinuous) contact

conditions, modelled by an offset in the pertinent

contact conditions [5].

2 MATHEMATICAL MODEL

2.1 Model description

A 2D model of a hollow cylinder rolling on a plate

is studied (Fig. 1). The model features plane strain

and an isotropic, homogeneous, and linear elastic

material. Pure rolling and constant velocity of the

cylinder centre is assumed. An ALE description of

motion is used, in which the reference frame of

the computational domain translates with the cylin-

der. At the (non-physical) vertical boundaries of

the plate, non-reflecting boundary conditions are

imposed. The base of the plate is fixed while the top

of the plate and the outer boundary of the cylinder is

free. The inner boundary of the cylinder (the hub) is

modelled to be rigid and is fixed in the horizontal

direction.

The axle load acting on the cylinder is modelled as a

vertical load applied to the hub. The static weights of

cylinder, plate, and (in relevant cases) point masses

are neglected, whereas their inertia is accounted for.

Figure 1 outlines geometry, boundary conditions, and

load case used for the employed model.

2.2 Kinematical description

An ALE formulation of motion is employed [10, 11].

In the current implementation, two intermediate

configurations are utilized in addition to the refer-

ence (‘undeformed’) configuration, �X3X, and the

current (‘deformed’) configuration, !x3 x. The first

intermediate configuration is denoted as �X̂ 3 X̂ .

The map from �X to �X̂ accounts for rotation of the

cylinder and a translation of the plate. The second

intermediate configuration is denoted as !x̂ 3 x̂.

The map from �X̂ to !x̂ accounts for the deformation

of cylinder and plate. Both intermediate configura-

tions feature a moving reference frame that follows

the cylinder. The map from !x̂ to !x accounts for pure

translation of the system in going back to the original

fixed reference frame.

The maps between the configurations are formu-

lated as X̂ ¼ /̂ðX , t Þ, x̂ ¼ ûðX̂ , t Þ, x ¼ �/ðx̂, t Þ, and

x¼u(X, t), so that u ¼ �/ � û � /̂. Figure 2 shows a

schematic illustration of the employed configurations

with their intermediary maps.

Since the maps X̂ ¼ /̂ðX , t Þ and x ¼ �/ðx̂, t Þ can

be expressed a priori from knowledge of the

Fig. 1 Schematic illustration of the mechanical model:
A, applied load; B, cylinder hub (rigid elements);
C, plate domain ends (non-reflecting boundary
conditions); and D, plate base (fixed in all
degrees of freedom)

Fig. 2 Illustration of configurations and maps relevant
to the employed ALE description
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translational and rotational motions of the cylinder

along the plate, the Lagrangian problem of finding the

map x¼u(X, t) (or the displacement u(X, t)¼ u(X,

t)�X) can be narrowed down to the ALE problem of

finding the map x̂ ¼ ûðX̂ , t Þ (or the displacement

ûðX̂ , t Þ ¼ ûðX̂ , t Þ � X̂ ).

2.3 Equation of motion

The local balance of momentum equation with

respect to a volume element in the initial configura-

tion �X is

�X a � P � JX ¼ B in �X ð1Þ

where P is the first Piola–Kirchhoff stress tensor, rX

the density in the initial configuration, B the external

body force per unit volume (in the initial configura-

tion), and a the acceleration: a¼Dttx¼Dttu, where

Dt(�)� q(�)/qt WX*, Dtt(�)� q2(�)/qt2WX. JX is the gradient

operator with respect to �X. Boundary conditions are

imposed as

P �N ¼ T on @�X , N ð2Þ

u ¼ g on @�X , D ð3Þ

where N is the outward normal, T the external trac-

tion per unit area with respect to �X, and g the known

displacements.

In terms of the ALE description, the boundary value

problem is stated asy

�X̂
€�X þ dtt û þ 2 ðdt ûÞ � Ĵ

h i
� �v þ F̂ � ðDt �vÞ

h

þĜ : ð �v � �vÞ
i
� P̂ � Ĵ� B̂ ¼ 0 in �X̂ ð4Þ

P̂ � N̂ ¼ T̂ on @�X̂ , N
ð5Þ

û ¼ ĝ on @�X̂ , D
ð6Þ

where dt ð�Þ � @ ð�Þ=@t jX̂ , dtt ð�Þ � @
2ð�Þ=@t 2jX̂ , F̂ � x̂ � Ĵ,

Ĝ � x̂ � Ĵ� Ĵ, �X the translation of the cylinder

centre and �v ¼ Dt X̂ the convective velocity; ^ð�Þ

denotes quantities related to �X̂ .

2.4 Contact formulation

In this contribution, frictionless contact is studied.

The employed contact formulation is based on a stan-

dard Lagrange multiplier method [11], which involves

evaluation of gap functions for all cylinder nodes that

are candidates for contact. Each gap function repre-

sents the distance of the corresponding cylinder node

from the plate surface (or the negative of the

penetration distance through the surface). Instances

of negative gap functions give rise to contact forces in

the form of Lagrange multipliers (required to be com-

pressive), introduced as additional unknowns of the

problem. Additional constraint equations are also

added, requiring that the gap functions are zero.

To simulate irregular surface profiles, these gap

functions are modified by an arbitrary offset function

on the surface of the plate mesh for the purposes of

contact evaluation: in effect, contact is checked

against this modified surface rather than against the

plate mesh surface [5]. Figure 3 illustrates this: the

solid line represents the boundary of the plate mesh

and the dotted line the modified surface, on the basis

of which the gap functions are evaluated.

2.5 Non-reflecting boundary conditions

In order to prevent reflection of propagating mechan-

ical waves at the non-physical ends of the plate

domain, a boundary condition that allows the trans-

mission of plane waves of specified propagation

direction is imposed [12]. In short, the known relation

between spatial and temporal derivatives of the dis-

placement function, valid for plane waves, is imposed

at the given boundaries. This means that the traction

term in the weak form will be expressed in terms of

velocity instead of strain, which leads to a contribu-

tion to the damping matrix (instead of the stiffness

matrix) in the FE formulation. In the current imple-

mentation, the propagation direction of the elastic

waves at the vertical ends of the plate is assumed to

be perpendicular to these boundaries for all simula-

tions performed.

3 NUMERICAL IMPLEMENTATION

3.1 Mesh and model parameters

A FE formulation of the problem is implemented in

MATLAB. The element type used is a linear triangular

element with two degrees of freedom per node: hor-

izontal and vertical displacements. The employed

mesh (containing 3282 elements and 1757 nodes) is

shown in Fig. 4. The mesh of the cylinder is con-

structed from a coarse basic mesh that is refined suc-

cessively in a series of gradually smaller domains

centred at the point of initial contact. The tolerance

for element size is defined to guarantee three to five

*X held fixed.
y� denotes the dyadic product.

Fig. 3 Schematic illustration of the plate domain with
a superimposed surface profile offset
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elements across the analytically determined contact

patch (of size dc) in the resulting mesh. Finally, three

global refinements are performed, after which all

nodes are remapped radially so that the outer nodes

describe a circle.

The initial mesh of the plate domain features 31

and 7 nodes in the horizontal and vertical directions,

respectively. The mesh is then refined locally in a

rectangular area centred at the point of initial contact

and extending a distance 2dc horizontally and dc ver-

tically (Fig. 4). The minimum size for an element in

the final mesh of the plate is 1.5 times the size of the

smallest element in the cylinder mesh.

All mesh refinements are performed according to

Rivara’s longest-edge refinement technique [13],

whereby the aspect ratio of the elements is controlled.

A standard parameter set-up, chosen to reflect typ-

ical values encountered in a train–track interaction

setting, is now defined and employed for all subse-

quent simulations unless otherwise stated. Material

parameters for cylinder and plate are: Young’s mod-

ulus E¼ 200 GPa, Poisson’s ratio n¼ 0.3, and density

rX¼ 8000 kg/m3. Outer and inner radii of the cylinder

are ro¼ 460 mm and ri¼ 46 mm, respectively, the

height of the plate h¼ 10 cm, and the width of the

plate domain is chosen as b¼ 1 m.

The applied force, P¼ 4.7 MN/m, results in a con-

tact pressure peak of p0¼ 1 GPa and a contact patch

size of 7 mm, according to Hertzian theory.

The velocity of the cylinder (and thus the velocity of

the reference frame of the computational domain) is

chosen as �v ¼ 100 km/h. The rotational velocity of the

cylinder is then �v=ro, due to the assumption of pure

rolling.

For the transient simulations, a Crank–Nicholson

time integration scheme is used with a time step of

�t¼ 5 � 10�5 s. In each transient simulation, the solu-

tion to the corresponding static problem is used as

the start configuration. Rayleigh damping is applied

to the system with a damping matrix of

C¼ a0Mþ a1K, with a0¼ 0, a1¼ 10�4 s, whereby the

relative modal damping for the lowest eigenfre-

quency of the system becomes 11 per cent. The

reason for setting the mass-proportional damping

coefficient to zero is to have the damping affect

only high-frequency oscillations.

3.2 Sensitivity and validation

A mesh convergence study is performed featuring

a sinusoidally corrugated plate with an amplitude

of 5 mm and a wavelength 5 cm. The (steady state)

amplitude of the vertical contact force evaluated on

the cylinder is normalized by the standard mesh mag-

nitude. This normalized contact force amplitude is

denoted by �FCy .

Mesh parameters varied are the number of global

refinements of the cylinder mesh, nr, and the number

of nodes in the horizontal direction of the mesh of the

plate (before local refinement), nnx. Table 1 gives the

results of the study. The conclusion is that an increase

in mesh resolution in the chosen mesh does not sig-

nificantly influence the results. Based on the results of

this study, the standard configuration was chosen to

feature nr¼ 3 and nnx¼ 31.

The sensitivity to a change in chosen time step size

�t is investigated and the results are presented in

Table 2. Here, �FCy corresponds to normalization

with respect to �t¼ 5 � 10�5 s. Based on the results,

the standard configuration was chosen to feature

�t¼ 5 � 10�5 s.

The width of the plate domain should represent

an acceptable trade-off between compactness of

the computational domain and numerical accuracy

(with respect to quantities of interest). A compara-

tive study is performed in which the width of the

computational domain of the plate, b, and the type

of boundary condition at the plate domain ends (free

Fig. 4 The mesh, along with a zoomed-in view of the refined contact region
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or non-reflecting) are varied. The same measure is

used for the comparison as above, except that �FCy

now corresponds to normalization with respect to

the standard case of b¼ 1 m and non-reflecting

boundary conditions. As observed from Table 3,

both the choice of boundary condition and the mag-

nitude of b seems to be insignificant regarding the

magnitude of �FCy for the parametric ranges studied.

The influence of the non-reflecting boundary con-

ditions can better be demonstrated by studying the

flux of mechanical energy. The model employed for

the study is illustrated in Fig. 5. An element width of

1/30 m and a time step 10�5 s is employed. A vertical

point load with a sinusoidally varying magnitude is

applied on the surface. The frequency is 5 � 104 rad/s

and the load is applied for 1/4 of a period. Three cases

are studied:

(a) a domain coinciding with the shaded area (b¼ 1

m) with non-reflecting boundary conditions at

the ends;

(b) a larger domain of width 4b (Fig. 5) with free

boundary conditions at the ends;

(c) a reference case featuring a domain of width b

with free boundaries.

Figure 6 shows the mechanical energy contained in

the shaded area of Fig. 5 versus time, normalized with

respect to the value of the energy (for case 3) imme-

diately after the load has been removed.

The presumption is that case 2 will provide a ‘true’

reference, which – in a suitably chosen time window –

ideally is unaffected by waves reflected from the

boundaries (located at the distance 4b/2 from the

point load). That is, the better the performance of

the non-reflecting boundary conditions, the more

similar the response between cases 1 and 2. Start

and end times of the plot in Fig. 6 correspond to the

instants in time when the external load is removed

and when a theoretical P-wave reaches the end of

the larger domain, respectively. The solid and

dashed vertical lines correspond to the instants in

Fig. 5 Model employed to study the content of
mechanical energy under varying boundary
conditions. The upper surface is free whereas
the lower surface is fixed in all degrees of
freedom
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Fig. 6 Normalized mechanical energy content in the
shaded subdomain of Fig. 5 as a function of
time for the three configurations studied. The
legend corresponds to the non-vertical curves.
The solid and dashed vertical lines correspond
to the instants in time when theoretical P- and
S-waves (respectively) reach the end of the
smaller domain

Table 1 Influence on normalized contact force �FCy of

the FE mesh as characterized by the number

of global refinements of the cylinder mesh, nr,

and the number of nodes in the horizontal

direction of the plate mesh, nnx

nr nnx No. of elements �FCy

1 11 729 1.28
1 31 1021 1.12
3 11 2820 1.13
3 31 3282 1
3 61 4044 0.97
4 31 5994 0.99
4 61 7540 0.96

Table 3 Influence on normalized contact force �FCy of

the width of the computational domain of the

plate, b, and the adopted boundary condition

at the plate ends

Boundary condition
b (m) at ends �FCy

0.6 Free 1.00
0.6 Non-reflecting 1.00
1 Non-reflecting 1
4 Free 1.00
4 Non-reflecting 1.00

Table 2 Influence of time step size �t on normalized

contact force �FCy

�t (s) �FCy

10�5 1.01
5 � 10�5 1
10�4 0.96
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time when theoretical P- and S-waves (respectively)

reach the end of the smaller domain.

Regarding the influence of the distributed static

weight of the cylinder, it can be noted that the verti-

cal force applied to the cylinder hub is 4.7 MN/m,

whereas the total weight of the cylinder corre-

sponds to 52 kN/m. Thus, neglecting the latter is

reasonable.

In order to validate the numerical model versus

Hertzian contact theory, a simulation was performed

with nr¼ 5 and nnx¼ 61. The resulting peak contact

pressure was 96.8 per cent of the corresponding value

obtained from Hertzian contact theory. Increasing the

width and the height of the plate domain by a factor of

five (while keeping node spacing constant) – in order

to more closely match the Hertzian half-plane

assumption – this figure increased to 99.7 per cent.

The agreement is deemed to be satisfying.

4 RESULTS

To evaluate the dynamic response, three plate profile

configurations are employed in the study. Typical

values for train–track interaction are used for the

parameters.

1. A corrugated plate featuring a sinusoidal profile

with an amplitude of 5 mm and a wavelength 5 cm.

2. A corrugated plate with a roughness spectrum

based on field measurements of rail corrugation

in a curve in the Stockholm metro system [14].

The roughness spectrum, shown in Fig. 7, has

been rescaled to make the highest occurring

amplitude roughly 5 mm.

3. A plate featuring a sharp discontinuity of width

5 mm (Fig. 14).

For results presented in the form of probability

density graphs of the vertical contact force (evaluated

on the cylinder), the probability density p corre-

sponding to a given force interval �P is plotted

against the midpoint of the interval. Here

p ¼
n

�P �N
ð7Þ

where n is the number of time increments with a con-

tact force magnitude within the given interval and N

the total number of time increments.

Figures 8 and 9 show probability density graphs for

a plate profile of type 2 (roughness spectrum) with the

velocity ( �v) and applied load (P) as varied parameters.

Fig. 8 Probability density graph of contact force mag-
nitudes for varying velocity, �v, of the rolling
cylinder

Fig. 9 Probability density graph of contact force mag-
nitudes for varying applied load magnitude, P
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Fig. 7 Roughness level spectrum of the corrugation
pattern used as the plate profile of type 2
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Further, Fig. 10 gives the probability density graph

for simulations featuring a point mass (M) rigidly

attached to the inner boundary of the cylinder. It is

emphasized that the addition of the point mass

affects only the inertia of the system: no correspond-

ing static weight is added. It is seen how an altered

operational velocity or size of an added point mass

will affect the dynamic response towards an

increased influence of inertial effects, whereas an

altered contact load magnitude will only shift the

resulting response corresponding to the change in

applied force magnitude. Figure 8 shows a narrowing

of the probability density peak around the magnitude

of the applied force for decreasing operational vel-

ocity, indicating a trend towards a quasi-static

response. The predictive results can be compared to

similar analyses in literature [9, 15].

In Fig. 11, the time evolution of the contact force

magnitude is presented. The simulation features a

plate profile with a sinusoidal corrugation pattern

(type 1). An increased corrugation amplitude will

increase the amplitude of the contact force. The rela-

tion between corrugation amplitude and steady state

Fig. 11 Evolution in time of the contact force mag-
nitude during negotiation of a plate with a
sinusoidal corrugation pattern of varying
amplitude

Fig. 10 Probability density graph of contact force
magnitudes for varying magnitude of the
added point mass, M

Fig. 12 Steady state contact force amplitude versus
excitation frequency due to rolling with vary-
ing velocity on a plate with a sinusoidal cor-
rugation pattern

Fig. 13 Contact force evolution during negotiation of a
sharp, 5 mm wide discontinuity of the plate for
three different operational velocities
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contact force amplitude is linear for the parametric

range studied. The influence of the operational veloc-

ity is non-linear, as seen in Fig. 12, where the steady

state amplitude of the contact force is plotted versus

the excitation frequency, calculated as �v=�, where �v is

the varied velocity and � the fixed wavelength of the

profile. The peak at �v=� � 3:05 � 103 rad/s corre-

sponds to an eigenfrequency of the system corre-

sponding to vertical oscillation of the cylinder on

the plate. This conclusion was supported by an ana-

lytical consideration in which the contact was

approximated as a (linearized) spring. This analysis

predicted a natural frequency of 2.85 � 103 rad/s.

Figure 13 shows the time evolution of the vertical

contact force magnitude while passing a sharp, 5

mm wide discontinuity (profile type 3). It is seen

how the discontinuity pass triggers a contact force

oscillation, the wavelength and amplitude of which

will depend on the operational velocity. This

response can be compared to similar analyses in lit-

erature [15].

In Fig. 14, the nodal contact force distribution

(evaluated on the cylinder) at three instances in

time when passing the discontinuity are presented.

The operational velocity is �v ¼ 100 km/h. The

deformed cylinder and plate meshes are included,

as is the plate profile (thick solid). Furthermore, cyl-

inder nodes in contact are encircled and correspond-

ing node contact forces plotted as arrows. It is seen

how the reconnection of the two surfaces after the

discontinuity involves high contact forces and local

loss of contact within the contact patch.

To appreciate the computational efforts involved, it

can be noted that all simulations were performed on a

system with an Intel Core 2 Quad Q9400 (2.67 GHz)

processor, 4 GB RAM, Windows 7 (64 bit), and

MATLAB R2009b. The simulation (corresponding to
�v ¼ 100 km/h) presented in Fig. 8 featured 6000 time

steps and 3282 elements. For this set-up, the wall

clock time for the simulation was 50 min.

5 CONCLUDING REMARKS

A theoretical and numerical framework to evaluate

rolling contact has been established based on an

ALE formulation. A FE formulation featuring a

cylinder in contact with a plate has been imple-

mented. The model features automated mesh refine-

ment, non-reflecting boundary conditions, and the

ability to incorporate arbitrary surface profiles. The

presented examples show how the model can

handle harsh contact conditions such as contact sur-

face corrugation and discontinuities. Sensitivity and

validation studies where the influence of numerical

parameters are investigated are presented in this arti-

cle and shows the model to be robust and trends in

parametric responses to be reasonable compared to

similar results in literature. Extreme analyses (not

reported in this article) have shown the model to be

capable of handling a complete lack of contact

between the cylinder and the plate. Despite this ver-

satility, the ALE formulation enables the model to be

very compact and the computational demands very

modest.

The results presented show the influence of sur-

face roughness on the dynamical response of a cyl-

inder–plate contact. The influence of an eigenmode

where the cylinder is vibrating on the contacting

plate while negotiating a corrugated plate was cap-

tured, as was the transient response when negotiat-

ing a severe discontinuity. The simulations further

allowed the influence of operational parameters to

be quantified. In an extension, the model will be

extended to incorporate frictional contact and the

related thermal loading.
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APPENDIX

Notation

a acceleration related to standard

configurations

b plate domain width

B external body force per unit volume in initial

configuration

B̂ external body force per unit volume in ALE

reference configuration

C FE damping matrix

dc analytically determined contact patch size

E Young’s modulus

F̂ deformation gradient related to ALE

configurations
�FCy normalized contact force amplitude

g known displacements related to standard

configurations

ĝ known displacements related to ALE

configurations

Ĝ deformation Hessian related to ALE

configurations

h plate domain height

K FE stiffness matrix

M FE mass matrix

n number of realizations (time increments)

within a given interval (probability

density)

nnx number of nodes in plate in horizontal

direction

nr number of global refinements of cylinder

mesh

N number of time steps

N outward normal related to initial

configuration

N̂ outward normal related to ALE reference

configuration

p probability density

P applied force magnitude

P first Piola–Kirchhoff stress tensor

P̂ first Piola–Kirchhoff stress tensor related to

ALE reference configuration

ri cylinder inner radius

ro cylinder outer radius

T external traction per unit area in initial

configuration

T̂ external traction per unit area in ALE refer-

ence configuration

u deformation related to standard

configurations

û deformation related to ALE configurations
�v cylinder velocity
�v convective velocity

x coordinate in deformed configuration

x̂ coordinate in ALE deformed configuration

X coordinate in undeformed configuration

X̂ coordinate in ALE reference configuration
�X translation of the cylinder center

a0 mass-proportional Rayleigh damping

coefficient

a1 stiffness-proportional Rayleigh damping

coefficient

44 A Draganis, F Larsson, and A Ekberg

Proc. IMechE Vol. 226 Part J: J. Engineering Tribology

 at Chalmers Univ of Technology on August 6, 2014pij.sagepub.comDownloaded from 



�P force interval length for probability density

�t time step size

� wavelength of plate profile

n Poisson’s ratio

�X density in initial configuration

�X̂ density in ALE reference configuration

/̂ placement map from �X to �X̂
�/ placement map from !x̂ to !x

u placement map from �X to !x

û placement map from �X̂ to !x̂

!x current configuration

!x̂ ALE deformed configuration

�X initial configuration

�X̂ ALE reference configuration

JX gradient related to initial configuration

Ĵ gradient related to ALE reference

configuration

Numerical evaluation of the transient response due to non-smooth rolling contact 45

Proc. IMechE Vol. 226 Part J: J. Engineering Tribology

 at Chalmers Univ of Technology on August 6, 2014pij.sagepub.comDownloaded from 



Paper B

Finite element analysis of transient thermomechanical
rolling contact using an efficient arbitrary Lagrangian–
Eulerian description



50



Comput Mech (2014) 54:389–405
DOI 10.1007/s00466-014-0992-6

ORIGINAL PAPER

Finite element analysis of transient thermomechanical rolling
contact using an efficient arbitrary Lagrangian–Eulerian
description

Andreas Draganis · Fredrik Larsson · Anders Ekberg

Received: 20 April 2012 / Accepted: 30 January 2014 / Published online: 27 February 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract A theoretical and computational framework for
the analysis of thermomechanically coupled transient rolling
contact, based on an arbitrary Lagrangian–Eulerian (ALE)
kinematical description, is developed. A finite element for-
mulation featuring 2D cylinder–plate rolling contact is imple-
mented. The implementation features penalty-type contact
formulations for mechanical and thermal contact. It is noted
that the ALE formulation allows for a simplified time descrip-
tion, a compact computational domain and localized mesh
refinement. Numerical simulations considering stationary
and transient rolling conditions are presented. Highlighted
aspects include the influence of variations in thermal con-
tact conductivity, rolling speed and external mechanical load
on the contact interface heat flow. The model is shown to
give predictions in qualitative agreement with results in the
literature. For the velocity range studied, numerical issues
such as spurious numerical dissipation/oscillations in the
temperature field are noted to have a prominent influence.
These phenomena are addressed using a Streamline-Upwind
Petrov–Galerkin stabilization scheme together with a bubble
function approach.

Keywords Thermomechanical analysis · Arbitrary
Lagrangian–Eulerian · Rolling contact · Transient analysis ·
Finite element method

1 Introduction

Thermomechanical analysis of bodies in rolling contact is
of significant engineering and theoretical interest. Thermal

A. Draganis (B) · F. Larsson · A. Ekberg
Department of Applied Mechanics, Chalmers University
of Technology, 412 96 Göteborg, Sweden
e-mail: andreas.draganis@chalmers.se

expansion, dissipative heat generation and frictional heat
generation [1] are all modes of thermomechanical coupling
which may significantly influence the mechanical and ther-
mal behaviour of the contacting bodies, as well as their mate-
rial properties. Examples of applications where a thermome-
chanical analysis might be crucial for an accurate descrip-
tion of the response include rolling mills, roller bearings and
wheel–rail contacts [2]. It should here be noted that the flow
of heat through the contact interface (in railway applications
denoted “rail chill”), as well as the partitioning of the fric-
tional heat generated at the contact interface, depend strongly
on the rolling velocity [3,4]. This point will be further dis-
cussed in subsequent sections.

A common approach to numerical modelling of rolling
contact is to employ a semi-analytical contact model based
on Hertz theory [5–7]. Such an implementation is simple and
fast, but limited by assumptions of elastic material response,
smooth, continuous surfaces and a small relative dimen-
sion of the contact patch. In contrast, a contact formulation
involving deformation dependent contact forces and an iter-
ative contact search algorithm [7,8] adds a significant (often
much-needed) versatility. However, this approach is rela-
tively complicated to implement and increases computational
demands.

In finite element modelling of solid mechanics problems,
a Lagrangian kinematical description is usually employed.
When modelling rolling contact in particular, a problem for-
mulation based instead on an arbitrary Lagrangian–Eulerian
(ALE) description provides important advantages [8,9].
These (elaborated in following sections) include the possibil-
ity to linearize the mechanical response, the compactness of
the computational domain, the simplified time description,
the possibility for highly localized mesh refinement and the
elimination of the need for velocity-dependent contact con-
ductivity modelling.
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The mathematical foundations of mechanical rolling con-
tact in the context of an ALE description were first pre-
sented in Nackenhorst [9]. Here, the relevant kinematical
description, balance laws, weak forms and contact kinemat-
ics are discussed in elaborate detail. The paper highlights the
advantages of the ALE approach, but also discusses com-
plications stemming from the intrinsic difficulty of tracing
material points in this case. These include the difficulty of
handling inelastic material behaviour as well as keeping track
of relative slip distances. Both of these issues were addressed
in Ziefle and Nackenhorst [10], where a staggered solution
scheme is suggested, i.a. involving solution of the advection
equation to keep track of internal variable data. In a recent
paper [11], the use of an ALE method for thermomechani-
cally coupled stationary rolling contact is introduced. Here,
a thermoviscoelastic constitutive model is employed, involv-
ing large deformations and temperature-dependent constitu-
tive parameters.

The present paper aims to provide a comprehensive pre-
sentation of thermomechanically coupled transient rolling
contact in the context of an ALE description. Specific atten-
tion is here given to the stress, the deformation-induced heat
source, the heat flux and the mechanical and thermal bound-
ary conditions as they appear in the ALE framework. Further-
more, issues of numerical inaccuracy related to the solution
of the discretized energy balance equation are discussed in
detail, and stabilization measures are suggested.

The paper is outlined as follows: In Sect. 2, the kinematical
description of the rolling cylinder on the plate is presented.
The thermomechanical boundary value problem, including
its finite element formulation, is defined in Sect. 3. Section
4 contains a discussion about element choice and numerical
stabilization measures necessary for an accurate numerical
response. In Sect. 5, the mechanical and thermal contact for-
mulations are described. Numerical examples are presented
in Sect. 6. In particular, the model is validated and the influ-
ence of key operational parameters is evaluated. With Sect.
7, the paper is concluded with a summary and an outlook
towards future work.

2 ALE description of rolling contact

The employed ALE description of cylinder–plate rolling
motion [12] can be described as follows: Two interme-
diate configurations are utilized in addition to the initial
(“undeformed”) configuration, Ω � X , and the current
(“deformed”) configuration, ω � x. The first intermediate
configuration is denoted Ω̂ � X̂ . The map from Ω to Ω̂

accounts for a rigid body rotation of the cylinder and a pure
translation of the plate. The second intermediate configura-
tion is denoted ω̂ � x̂. The map from Ω̂ to ω̂ accounts for the
deformation of cylinder and plate. Both intermediate config-

Fig. 1 Illustration of configurations and maps relevant to the employed
ALE description

urations feature a moving coordinate system that follows the
cylinder centre. The map from ω̂ to ω accounts for a pure
translation of the system in going back to the original fixed
coordinate system.

The maps between the configurations are formulated as
X̂ = φ̂(X, t), x̂ = ϕ̂(X̂, t), x = φ̌(x̂, t) and x = ϕ(X, t),
so that ϕ(X, t) = φ̌(ϕ̂(φ̂(X, t), t), t). The corresponding
deformation gradients are, in respective order: f̂ , F̂, f̌ and
F. Figure 1 shows a schematic illustration of the employed
configurations, with their intermediary maps and deforma-
tion gradients.

The rigid body maps X̂ = φ̂(X, t) and x = φ̌(x̂, t) can
be expressed a priori from knowledge of the translational and
rotational motion of the cylinder along the plate:

X̂ = φ̂(X, t) =
{

R(t) · (X − X0) + X0 for X ∈ Ωc

X − X̄(t) for X ∈ Ωp , (1)

x = φ̌(x̂, t) = x̂ + X̄(t) for x̂ ∈ ω̂, (2)

where R is a rotation tensor, X0 is the position of the cylinder
centre in the undeformed configuration, X̄ is the translation
of the cylinder centre and Ωc and Ωp are the subsets of
Ω representing the cylinder and plate domains, respectively.
Note that f̂ = R and f̂ = I in the domain of the cylin-
der and plate, respectively, and that f̌ = I . The Lagrangian
problem of finding the map x = ϕ(X, t) (or the displace-
ment u(X, t) = ϕ(X, t) − X) is thus narrowed down to the
ALE problem of finding the map x̂ = ϕ̂(X̂, t) (or the dis-
placement û(X̂, t) = ϕ̂(X̂, t) − X̂). For small strains, the
ALE displacements û will be small, which is generally not
the case for the standard Lagrangian displacements u. Con-
sequently, in the former case (but not the latter) it is possible
to linearize the mechanical response. In particular, it is noted
that the total deformation gradient can be expressed as

F = f̌ · F̂ · f̂ = F̂ · f̂ , (3)
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since f̌ = I . The linearization of the material behaviour
pertains to the assumption that F̂ ≈ I while f̂ is arbitrary.
This point is elaborated in Sect. 3.

Another advantage of the presented convective kinemati-
cal description is the fact that it allows for a compact com-
putational model: only a relatively short section of the plate
domain needs to be modelled, regardless of rolling distance.
Further, the position (in the intermediate domains) of the
contact region in both cylinder and plate is largely stationary
throughout the rolling motion, allowing for localized mesh
refinement. Figure 10 in Sect. 6 illustrates these points.

A potential difficulty in convective formulations is the
tracking of boundaries. In the present case, since a round
cylinder and a flat plate are considered, the boundaries are
stationary and this is not a problem. However, numerical
problems due to convective effects will require attention (see
Sect. 4).

3 Thermomechanical problem

In the following, the strong and weak forms as well as the
finite element formulation of the thermomechanically cou-
pled problem are derived in terms of the ALE description.
Isotropic, homogeneous and thermoelastic materials are ini-
tially assumed. Plane strain and linear elasticity are later
assumed in the derivation of the FE formulation.

3.1 Strong form

The local balance of momentum equation with respect to a
volume element in the initial configuration Ω is

ρa − P · ∇X − B = 0 in Ω, (4)

where P = P(F, θ) is the first Piola–Kirchhoff stress ten-
sor, ρ is the density in the initial configuration, B is the
external body force per unit volume (in the initial configu-
ration) and a is the acceleration: a = Dtt x = Dtt u, where
Dt (·) := ∂(·)/∂t |X

1, Dtt (·) := ∂2(·)/∂t2
∣∣

X . ∇X is the vec-
tor differential operator with respect to Ω . Boundary condi-
tions are imposed as (Γ := ∂Ω)

{
T = T P on ΓNu ,

u = uP on ΓDu ,
(5)

where T := P · N (N is the outward normal), T P is the
prescribed external traction per unit area with respect to Ω

and uP represents prescribed displacements.

1 X held fixed.

In terms of the ALE description, the momentum balance
equation takes the form2 [12]

ρ̂
[ ¨̄X + dtt û + 2

[
(dt û) ⊗ ∇̂

]
· v̄ + F̂ · (Dt v̄)

+Ĝ : (v̄ ⊗ v̄)
]

− P̂ · ∇̂ − B̂ = 0 in Ω̂, (6)

where dt (·) := ∂(·)/∂t |X̂ , dtt (·) := ∂2(·)/∂t2|X̂ are referen-

tial time derivatives, F̂ := x̂ ⊗ ∇̂, Ĝ := x̂ ⊗ ∇̂ ⊗ ∇̂, and

v̄ = Dt X̂ =
{

Ṙ · RT · (X̂ − X0) for X̂ ∈ Ω̂c

− ˙̄X for X̂ ∈ Ω̂p
(7)

is the convective velocity pertinent to the map φ̂ (see Eq. (1)).
Note that due to the nature of the rotation tensor, ∇̂ · v̄ = 0.
ˆ(·) denotes quantities related to Ω̂ . In particular, P̂ = P · f̂

T

is the push-forward of the first Piola–Kirchhoff stress tensor
to Ω̂ .

For a thermoelastic material, the constitutive relation
P(F, θ) for the first Piola–Kirchhoff stress can be defined
from a free energy function Ψ (F, θ) such that P(F, θ) =
∂Ψ (F, θ)/∂ F. For an isotropic material, Ψ should be inde-
pendent of any rotation prior to the deformation, i.e.

Ψ (F · R, θ) = Ψ (F, θ), (8)

for an arbitrary deformation gradient F, temperature θ and
rotation tensor R. Consequently, the derivatives of Ψ with
respect to F (i.e. the stress) must satisfy the conditions

∂Ψ (F̃ · R, θ)

∂ F̃
= ∂Ψ (F̃, θ)

∂ F̃
⇒ P(F̃ · R, θ) · RT

= P(F̃, θ) (9)

for any F̃ and any R. As a consequence,

P(F̂ · f̂ , θ) · f̂
T = P(F̂, θ) (10)

for any f̂ being either a rotation (as in the cylinder) or the
identity (as in the plate). Hence, the original constitutive

model can be used and P̂ (= P̂(F̂, θ) = P(F, θ) · f̂
T =

P(F̂ · f̂ , θ) · f̂
T = P(F̂, θ)) can be expressed indepen-

dently of f̂ . For small deformation/temperature thermoelas-
ticity (F ≈ I and θ ≈ θ ref ) it is commonly adopted that
P ≈ E : [H − αθ̄ I], where H = F − I , E is the elasticity
tensor, α is the thermal expansion coefficient and θ̄ = θ−θ ref

is the excess temperature with respect to the reference θ ref .
Therefore, the linearization of P̂ for small strains (F̂ ≈ I)
and small temperature fluctuations (θ ≈ θ ref ), becomes

P̂ = E : [Ĥ − αθ̄ I] = E : Ĥ − 3Kαθ̄ I, (11)

2 ⊗ denotes the dyadic product.
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where Ĥ = F̂ − I and K is the bulk modulus. Hence, for
an unconstrained specimen ( P̂ = 0), the temperature driven
deformation is F̂ = (1 + αθ̄)I .

Remark 1 In the cylinder domain, it is only the relation P̂(F̂)

—and not P(F) — that can be linearized, since F will here
contain a finite rotation (see Eqs. (3) and (1)).

The boundary conditions can in the ALE framework be
phrased as

{
T̂

TOT + ρ̂(Ĥ · v̄)(v̄ · N̂) = T̂ P on Γ̂Ru

û = ûP on Γ̂Du ,
(12)

where T̂
TOT

in the Robin-type boundary condition (12a) is
the natural boundary traction obtained via integration by parts
in the weak form (see Sect. 3.2).

The strong form of the energy balance equation with
respect to the initial configuration Ω is [13,14]

(θ ref + θ̄ )β : (Dt F) + ρcDt θ̄

+ q · ∇X − r = 0 in Ω, (13)

where

β = − ∂2Ψ

∂θ∂ F
= −∂ P

∂θ
, (14)

is the deformation-induced heat source, c is the mass spe-
cific heat capacity, q is the heat flux and r is the external heat
power per unit volume (in the initial configuration). Bound-
ary conditions are imposed as

{
qN = qN ,P on ΓNθ

θ̄ = θ̄P on ΓDθ ,
(15)

where qN := q · N . In terms of the ALE description, the
energy balance equation takes the form

(θ ref + θ̄ )β̂ :
[
dt Ĥ + (F̂ · v̄) ⊗ ∇̂

]

+ρ̂c
(
∇̂θ̄ · v̄ + dt θ̄

)
+ q̂ · ∇̂ − r̂ = 0 in Ω̂, (16)

where ˆ(·) denotes quantities related to Ω̂ . In particular, β̂ =
β · f̂

T
and q̂ = f̂ · q were introduced. Furthermore, for

isotropic materials,

β̂ = β(F, θ) · f̂
T = −

∂
[

P(F, θ) · f̂
T]

∂θ

= −∂ P(F̂, θ)

∂θ
= β(F̂, θ), (17)

where Eq. (10) was used and a known constitutive relation
β(F, θ) in the initial configuration was assumed. Hence,

β̂ = −∂ P(F̂, θ)

∂θ
= −∂ P̂

∂θ
= 3Kα I, (18)

where the last equality is valid for the linearized case (see
Eq. (11)).

Furthermore, in analogy with the result for the first Piola–
Kirchhoff stress, it can be shown that for an isotropic material
(and for f̂ being a rotation or the identity tensor),

q̂ = q(∇X θ̄ ) · f̂
T = q(∇̂θ̄ · f̂ ) · f̂

T = q(∇̂θ̄ ), (19)

where it was tacitly assumed that the heat flux only depends
on the gradient of the temperature with respect to the ini-
tial configuration. In particular, the linear Fourier’s law is
henceforth adopted, whereby it is obtained that

q̂ = −k∇̂θ̄ , (20)

where k is the constant heat conductivity.
The boundary conditions can in the ALE framework be

phrased as

{
q̂TOT

N̂
− ρ̂cθ̄ (v̄ · N̂) = q̂N̂ ,P on Γ̂Rθ

θ̄ = θ̄P on Γ̂Dθ ,
(21)

where q̂TOT
N̂

in the Robin-type boundary condition (21a) is
the natural boundary flux obtained via integration by parts in
the weak form (see Sect. 3.2).

Linearizing the energy balance Eq. (16) for small strains
and small temperature fluctuations gives

θ ref β̂ : (dt Ĥ + (Ĥ · v̄) ⊗ ∇̂) + (θ ref + θ̄ )β̂ : [v̄ ⊗ ∇̂]
+ ρ̂c

(
∇̂θ̄ · v̄ + dt θ̄

)
+ q̂ · ∇̂ − r̂ = 0 in Ω̂. (22)

For isotropic materials, (18) is valid, and we obtain

3Kαθ ref(I : dt Ĥ + (Ĥ · v̄) · ∇̂)

+ ρ̂c
(
∇̂θ̄ · v̄ + dt θ̄

)
+ q̂ · ∇̂ − r̂ = 0 in Ω̂, (23)

where it was used that v̄ is divergence free (see Eq. (7)).
In summary: For homogeneous, isotropic materials, the

residuals of the linearized strong form of the transient ther-
momechanically coupled problem are

Rs
u(û, θ̄ ) = ρ̂

[ ¨̄X + dtt û + 2
[
(dt û) ⊗ ∇̂

]
· v̄

+ F̂ · (Dt v̄) + Ĝ : (v̄ ⊗ v̄)
]

− P̂ · ∇̂ − B̂ = 0,

Rs
θ (û, θ̄ ) = 3Kαθ ref(I : dt Ĥ + (Ĥ · v̄) · ∇̂)

+ ρ̂c
(
∇̂θ̄ · v̄ + dt θ̄

)
+ q̂ · ∇̂ − r̂ = 0, (24)
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where the linearized form of P̂ is given in (11). It is clear
from (11) that P̂ is temperature dependent, due to the influ-
ence of thermal expansion. This constitutes the influence
of the temperature field on the momentum balance equa-
tion. Furthermore, the deformation-dependent terms in the
second equation above represents the Gough–Joule effect:
reversible heating/cooling of the material resulting from a
nonzero strain rate [15]. In the ALE context, this term is
split into a referential derivative and a convective term (as
seen above). In a stationary analysis, the former vanishes. It
should be noted that the Gough–Joule effect is negligible for
thermoelastic materials [13]. Consequently, the thermome-
chanical coupling is one-sided in this case.

It can be seen that when the translational and rotational
velocity of the system is constant in time, v̄ and ¨̄X are constant

in time (specifically, ¨̄X = 0) and the time dependence in the
above equations is confined to the solution fields (and the
external loads).

If stationary rolling conditions are assumed, all referential

time derivatives (dt , dtt ) as well as ¨̄X are zero, resulting in a
time-independent problem involving the residuals

Rs
u(û, θ̄ ) = ρ̂

[
F̂ · (Dt v̄) + Ĝ : (v̄ ⊗ v̄)

]

− P̂ · ∇̂ − B̂,

Rs
θ (û, θ̄ ) = 3Kαθ ref(Ĥ · v̄) · ∇̂ + ρ̂c∇̂θ̄ · v̄

+ q̂ · ∇̂ − r̂ . (25)

3.2 Weak form

The weak form is obtained by weighting the local expressions
in Eq. (24) with arbitrary (time-independent) test functions
(δû, δθ̄ ) ∈ V0

u × V0
θ , integrating over the whole domain Ω̂

and performing integration by parts. The weak residuals are
thus defined as∫

Ω̂

δû · Rs
u(û, θ̄ ) dV

= ρ̂

∫
Ω̂

δû · dtt û dV

+ 2ρ̂

∫
Ω̂

δû ·
[
(dt û) ⊗ ∇̂

]
· v̄ dV

+
∫

Ω̂

(δû ⊗ ∇̂) : P̂
TOT

dV +
∫

Ω̂

δû · r̂ dV

−
∫

Ω̂

δû · B̂
TOT

dV −
∫

Γ̂Nu

δû · T̂
TOT

d A, (26)

where

P̂
TOT := E : Ĥ − ρ̂ Ĥ · (v̄ ⊗ v̄) − 3Kαθ̄ I,

r̂ := ρ̂ Ĥ · (Dt v̄ − (v̄ ⊗ v̄) · ∇̂),

B̂
TOT := B̂ − ρ̂Dt v̄ − ρ̂

¨̄X,

T̂
TOT := T̂ − ρ̂(Ĥ · v̄)(v̄ · N̂),

∫
Ω̂

δθ̄ Rs
θ (û, θ̄ ) dV

= 3Kαθ ref
∫

Ω̂

δθ̄ I : dt Ĥ dV

+ 3Kαθ ref
∫

Γ̂

δθ̄ (Ĥ · v̄) · N̂ d A

− 3Kαθ ref
∫

Ω̂

(∇̂δθ̄) · (Ĥ · v̄) dV

+
∫

Ω̂

(∇̂δθ̄) · [k∇̂θ̄ − ρ̂cv̄θ̄ ] dV

+ ρ̂c
∫

Ω̂

δθ̄dt θ̄ dV −
∫

Ω̂

δθ̄ r̂ dV

+
∫

Γ̂Nθ

δθ̄ q̂TOT
N̂

d A, (27)

where

q̂TOT
N̂

:= q̂N̂ + ρ̂cθ̄ (v̄ · N̂),

and it was used that

q̂ = −k∇̂θ̄ .

Remark 2 As shown in Nackenhorst [9], it is possible to
obtain a higher degree of symmetry in the weak form (26) by
partial integration of the second term on the right-hand side:

ρ̂

∫
Ω̂

δû ·
[
(dt û) ⊗ ∇̂

]
· v̄ dV

+ ρ̂

∫
Ω̂

δû ·
[
(dt û) ⊗ ∇̂

]
· v̄ dV

= ρ̂

∫
Ω̂

δû ·
[
(dt û) ⊗ ∇̂

]
· v̄ dV

− ρ̂

∫
Ω̂

(δû ⊗ ∇̂) : ((dt û) ⊗ v̄) dV

+ ρ̂

∫
Γ̂

δû · (dt û)v̄ · N̂ d A,

where the divergence theorem and the fact that v̄ is divergence
free were used. It is noted that the first two terms on the
right-hand side constitute an antisymmetric contribution to
the weak form.

The term T̂
TOT

emerges from the ALE formulation of

the momentum balance equation. Thus, prescribing T̂
TOT

on
Γ̂Nu constitutes a natural (Neumann) boundary condition:

T̂
TOT
P = T̂ − ρ̂(Ĥ · v̄)(v̄ · N̂) on Γ̂Nu .

If instead the intrinsic (physical) traction T̂ := P̂ · N̂ is
prescribed, a Robin-type boundary condition is obtained:

T̂
TOT + ρ̂(Ĥ · v̄)(v̄ · N̂) = T̂ P on Γ̂Ru ,

123



394 Comput Mech (2014) 54:389–405

where the boundary Γ̂Nu was simply renamed Γ̂Ru in order
to reflect the type of boundary condition in effect. Similarly,
prescribing the quantity q̂TOT

N̂
on Γ̂Nθ constitutes a natural

(Neumann) boundary condition:

q̂TOT
N̂P

= ρ̂cθ̄ (v̄ · N̂) + q̂N̂ on Γ̂Nθ .

If instead the intrinsic (physical) heat flux q̂ is prescribed, a
Robin-type boundary condition is obtained:

q̂TOT
N̂

− ρ̂cθ̄ (v̄ · N̂) = q̂N̂ ,P on Γ̂Rθ ,

where the boundary Γ̂Nθ was renamed Γ̂Rθ .
In order to state the final version of the weak form, trial and

test spaces are introduced for the respective solution fields
û(X̂, t) and θ̄ (X̂, t):

Vu = {v : v = ûP on Γ̂Du , v sufficiently regular},
V0

u = {v : v = 0 on Γ̂Du , v sufficiently regular},
Vθ = {v : v = θ̄P on Γ̂Dθ , v sufficiently regular},
V0

θ = {v : v = 0 on Γ̂Dθ , v sufficiently regular}. (28)

The exact meaning of sufficiently regular is not elaborated
here (see eg. Brenner and Scott [16]). The weak form of the
ALE boundary value problem derived in the previous section
can now be stated as: Find û ∈ Vu and θ̄ ∈ Vθ such that

Rw
u (û, θ̄; δû) = 0 ∀δû ∈ V0

u,

Rw
θ (û, θ̄; δθ̄) = 0 ∀δθ̄ ∈ V0

θ , (29)

where the residuals are obtained by inserting the afore-
mentioned Robin-type boundary conditions into the integral
expressions in Eqs. (26), (27):

Rw
u (û, θ̄; δû) := ρ̂

∫
Ω̂

δû · dtt û dV

+ 2ρ̂

∫
Ω̂

δû ·
[
(dt û) ⊗ ∇̂

]
· v̄ dV

+
∫

Ω̂

(δû ⊗ ∇̂) : P̂
TOT

dV +
∫

Ω̂

δû · r̂ dV

−
∫

Ω̂

δû · B̂
TOT

dV −
∫

Γ̂Ru

δû · T̂ P d A

+ ρ̂

∫
Γ̂Ru

δû · (Ĥ · v̄)(v̄ · N̂) d A, (30)

Rw
θ (û, θ̄; δθ̄) := 3Kαθ ref

∫
Ω̂

δθ̄ I : dt Ĥ dV

+ 3Kαθ ref
∫

Γ̂

δθ̄ (Ĥ · v̄) · N̂ d A

− 3Kαθ ref
∫

Ω̂

(∇̂δθ̄) · (Ĥ · v̄) dV

+
∫

Ω̂

(∇̂δθ̄) · [k∇̂θ̄ − ρ̂cv̄θ̄ ] dV

+ ρ̂c
∫

Ω̂

δθ̄dt θ̄ dV −
∫

Ω̂

δθ̄ r̂ dV

+
∫

Γ̂Rθ

δθ̄ q̂N̂ ,P d A

+ ρ̂c
∫

Γ̂Rθ

δθ̄ θ̄ (v̄ · N̂) d A. (31)

3.3 Finite element formulation

A finite element formulation of the problem based on plane
strain and linear elasticity is now presented. Voigt matrix
notation is employed. Displacement and temperature fields
are approximated by piecewise linear or piecewise quadratic
functions: Shape function matrices for displacement and tem-
perature are denoted by Nu and Nθ , respectively. Further-
more, Bu := ∇̂u Nu and Bθ := ∇̂θ Nθ , where

∇̂u :=

⎡
⎢⎢⎢⎣

∂

∂ X̂
0

0 ∂

∂Ŷ
∂

∂Ŷ
0

0 ∂

∂ X̂

⎤
⎥⎥⎥⎦ , ∇̂θ :=

[
∂

∂ X̂
∂

∂Ŷ

]
. (32)

Inserting solution field approximations and employing
Galerkin test functions yields the FE formulation

Muu
¨̂u + Cuu

˙̂u + K uu û + K uθ θ̄ = f
uv

+ f
us

,

Cθu
˙̂u + K θu û + Cθθ

˙̄
θ + K θθ θ̄ = f

θv
+ f

θs
, (33)

where

Muu = ρ̂

∫
Ω̂

NT
u Nu dV,

Cuu = 2ρ̂

∫
Ω̂

NT
u v̄l Bu dV,

K uu =
∫

Ω̂

BT
u ETOT Bu dV

+ ρ̂

∫
Ω̂

NT
u v̄r Bu dV + ρ̂

∫
Γ̂Ru

(v̄ · N̂)NT
u v̄l Bu d A,

K uθ = −3Kα

∫
Ω̂

BT
u 1 Nθ dV,

f
uv

=
∫

Ω̂

NT
u B̂

TOT
dV,

f
us

=
∫

Γ̂Ru

NT
u T̂ P d A

Cθu = 3Kαθ ref
∫

Ω̂

NT
θ 1T Bu dV,

K θu = 3Kαθ ref
∫

Γ̂Rθ

NT
θ (N̂ ⊗ v̄)T Bu d A

−3Kαθ ref
∫

Ω̂

BT
θ v̄l Bu dV,

Cθθ = ρ̂c
∫

Ω̂

NT
θ Nθ dV,

K θθ = k
∫

Ω̂

BT
θ Bθ dV − ρ̂c

∫
Ω̂

BT
θ v̄ Nθ dV
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+ ρ̂c
∫

Γ̂Rθ

(v̄ · N̂)NT
θ Nθ d A,

f
θv

=
∫

Ω̂

NT
θ r̂ dV,

f
θs

= −
∫

Γ̂Rθ

NT
θ q̂N̂ ,P d A.

Here, (ETOT)i jkl = Ei jkl − ρ̂δik v̄ j v̄l (ETOT is the Voigt
matrix representation of ETOT), 1 = [1 1 0 0]T, and v̄l and
v̄r are the Voigt matrix representations of the tensors δi j v̄k

and δi j (Dt v̄k − (v̄k v̄l),l), respectively.
In the above FE formulation, the “uθ”- and “θu”-terms

represent the thermomechanical coupling effects previously
described under Eq. (24).

Recall from Sect. 3.1 that the time dependence of the prob-
lem is confined to the solution fields and the loads when the
translational and rotational motion of the system is constant
in time. It is clear from the above that this property is mani-
fested as time-independent matrices in the FE formulation.

In the stationary case, the FE equations reduce to the time-
independent system

K uu û + K uθ θ̄ = f
uv

+ f
us

,

K θu û + K θθ θ̄ = f
θv

+ f
θs

. (34)

4 Element choice and numerical stabilization

Previous studies [12] indicated that, at least for rolling speeds
up to the order of a few hundred km/h, no stability problems
arise related to the discretized momentum balance equation
for the present implementation. By contrast, various numeri-
cal problems have been found to have a prominent influence
for the discretized energy balance equation, even for very
modest rolling speeds. The numerical problems are mani-
fested as node-to-node oscillations in the plate domain and
oscillations together with a damped temperature profile in
the cylinder domain. The former case, involving a uniform
convective velocity field that intersects the boundaries of the
domain, is well understood and amenable to a standard appli-
cation of the SUPG method. The implementation and perfor-
mance of this method will not be elaborated further in this
paper, see instead the references below. The latter case—
involving circular, closed convective streamlines—has been
found to pose more of a challenge to these techniques, how-
ever.

The numerical stabilization methods employed in this
paper is the SUPG method (see Donéa and Huerta [17] and
Codina et al. [18] (for quadratic elements) ) and an approach
employing a variant of residual-free bubbles [19,20].

The employed bubble function approach bears similarities
to that of Brezzi et al. [21], and is implemented as follows:

Fig. 2 Illustration of local element subgrid used in the bubble function
scheme

In each triangular element, an additional node is inserted,
resulting in a subdivision into three triangles (see Fig. 2).
The extra node is positioned along the directed line segment
represented in the figure by a dashed arrow. This line seg-
ment passes through the element centroid (the black dot)
and is parallel with the direction of the convective veloc-
ity evaluated at the centroid. The position of the node along
this line segment is chosen to correspond to the stationary
point of the analytical solution along the line segment, of the
pertinent 1D convection-diffusion problem. The shape func-
tions related to this node (the bubble functions) thus serve
as a rough approximation of the shape of the solution in the
element. Further, their support coincides with the given ele-
ment, so static condensation can be used to keep the global
degree of freedom set unchanged. The bubbles will be cho-
sen as piecewise polynomials of the same order as that of the
global approximation (even though it is possible to choose
these functions independently).

The local subgrid is treated as a standard FE mesh—no two
shape functions are nonzero at any node (not even the added
node). This means that the stated subgrid enrichment scheme
is equivalent to a standard Galerkin formulation featuring an
enriched discrete function space (i.e. on a refined mesh) [22].
The choice of the positions of the extra nodes in this refined
mesh have been informed by appropriate observations of the
convective velocity field, as discussed above.

To illustrate the aforementioned numerical difficulties
arising for sufficiently high convective velocities in the cylin-
der domain, a simple Eulerian formulation of stationary, pure
heat transfer is considered (cf. Eq. (23)):

a · ∇θ + q · ∇ = s, (35)

where θ is the temperature, q is the heat flux and s is the
external heat source. Further,

a = ρcv̄,

where ρ is the density, c is the mass-specific heat capacity
and v̄ is the convective velocity. A two-dimensional annular
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Fig. 3 Illustration of the problem used to study the influence of numer-
ical instability

Fig. 4 Mesh used for the annular domain

domain is considered, in which the convective velocity field is

v̄(r) = ωr eϕ = ω(y,−x),

where ω is the angular velocity, r is the distance from the
center and eϕ is the circumferential unit vector. The temper-
ature is fixed to zero at both the inner and the outer boundary
and the external heat source s is uniform. Figure 3 shows a
schematic illustration of the considered problem. It is noted
that the geometry, boundary conditions and loads result in
a problem that is one-dimensional (radially symmetric) and
has an analytical solution independent of ω [23].

Results presented below correspond to a finite element
solution of Eq. (35). The mesh used (deliberately unstruc-
tured) is shown in Fig. 4. Gaussian quadrature of order 5
(7 integration points) is employed. Unless otherwise stated,
the parameters used are as follows: Outer and inner radii of
the cylinder ro = 50 cm and ri = 5 cm and external heat
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Fig. 5 Temperature distribution along radial line segment for the stud-
ied test problem. No numerical stabilization. a Linear elements, b
Quadratic elements

source s = 1000 Wm−3. Material parameters are chosen to
represent a standard steel material.

Figure 5a, b show the temperature distribution along the
radial line segment x = 0, y < 0 for varying ω and for lin-
ear and quadratic shape functions, respectively. Figures 6, 7
show the same thing, but implementing a SUPG stabilization
method and the stated bubble function method, respectively.

The decay (due to spurious numerical dissipation) of the
solution for an increasing rotation speed ω is clear from Fig.
5, as is the presence of numerical oscillations. As seen in
Fig. 6, the SUPG method is able to smooth out the response,
but unable to deal with the numerical damping effect: instead
seemingly exacerbating it. The same can in general be said
for the bubble function approach using linear elements (Fig.
7a), while the use of quadratic elements seems to work much
better (see Fig. 7b). It should be noted that an integration
order of at least four was found to be necessary in the latter
case: below that, the solution started to decay.

In summary, the following choice of element and stabiliza-
tion scheme has been found to be the most effective in reduc-
ing the influence of the aforementioned numerical issues: lin-
ear elements and a SUPG method in the plate domain (details
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Fig. 6 Temperature distribution along radial line segment for the stud-
ied test problem. SUPG stabilization. a Linear elements. b Quadratic
elements

not shown here), quadratic elements and a bubble function
scheme such as described above in the cylinder domain (see
Figs. 5, 6, 7). An integration order of four for the Gauss
quadrature is used. Due to the similarity between the problem
studied here and the rolling contact problem studied in Sect.
6, it is likely that the scheme described above will be suitable
also for the latter, although a mesh convergence study is nec-
essary to ascertain numerically robust results for the specific
cases studied.

Remark 3 A comparison between Figs. 5b and 7b shows that
the implemented bubble function scheme serves to reduce
both the spurious numerical oscillations and the amount
of spurious numerical dissipation. It is plausible that an
unbiased mesh refinement scheme—where the extra node
is instead placed in the centroid of each element—would
provide a stronger reduction of the numerical dissipation,
but at the cost of a poorer ability of diminishing the numer-
ical oscillations. The test problem studied here exhibits a
high degree of symmetry, which means that the influence
of numerical instability (oscillatory behaviour) is especially
weak. A problem that is more true to life is likely to be less
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Fig. 7 Temperature distribution along radial line segment for the stud-
ied test problem. Bubble function stabilization. a Linear elements.
b Quadratic elements

symmetrical and thus more sensitive to numerical instabil-
ity. The need for the stabilizing effect of the bubble function
scheme would be clearer in such a case.

5 Contact formulation

The employed contact formulation is presented below in the
context of the ALE description. As the focus of this paper
lies elsewhere than in realistic contact interface modelling,
the simplest possible laws are chosen for this purpose. How-
ever, it is emphasized that the computational framework has
been constructed with modularity and extensibility in mind.
The implementation of more complex contact laws should
therefore be straightforward. Examples of more advanced
mechanical/thermal contact interface laws (for frictionless
contact), based on microgeometrical and statistical consider-
ations, can be found in [24–28]. Furthermore, [29] is noted,
in which homogenization of thermal contact resistances is
suggested.
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The presentation given below of the mechanical and ther-
mal components of the implemented contact formulation
relies heavily on concepts described in Wriggers [8].

5.1 Mechanical contact formulation

A standard penalty method is employed for the formula-
tion of normal mechanical contact. This involves applying
a penalty traction at each point X̂ ∈ Ω̂ on the cylinder sur-
face (here denoted the “slave” surface) that, in the deformed
configuration ω̂, penetrates the plate surface (here denoted
the “master” surface). This traction is proportional to the gap
function g (the negative of the penetration distance) and is
directed normal to the master surface. An opposing traction
is applied at the point X̂

m
(X̂) = ϕ̂

−1
(x̂m

(x̂)) on the master
surface, i.e. the point in Ω̂ corresponding to x̂m

(x̂): the nor-
mal projection of x̂ = ϕ̂(X̂) on the deformed master surface.
Assigning superscripts “s” and “m” to terms related to the
slave and master surfaces, respectively, enables formulation
of the normal contact tractions as

ts
nm(X̂) = tn n̂ for X̂ ∈ Γ̂ s

cand,

tm
nm(X̂

m
(X̂)) = −ts

nm(X̂) for X̂ ∈ Γ̂ s
cand,

(36)

where n̂ is the normal of the deformed master surface at
X̂

m
(X̂), Γ̂ s

cand is the candidate contact surface subset of the
slave surface ∂Ω̂s and

tn = ε〈−g〉 (37)

is the scalar n̂-component of the normal contact force acting
on the slave surface. Here, ε is the penalty stiffness,

g(X̂) = (x̂ − x̂m
) · n̂ = (ϕ̂(X̂) − ϕ̂(X̂

m
(X̂))) · n̂ (38)

is the gap function corresponding to the pair of points X̂ and
X̂

m
(X̂) and 〈·〉 are Macaulay brackets. Note that in theory,

limε→∞ g = 0. In a practical numerical implementation, an
increased penalty stiffness ε leads to a decreased absolute
value of the gap function, but an excessive increase leads
to ill-conditioning of the discretized equation system. ε is
typically taken as mesh-dependent, scaling inversely with
some measure of the mesh size (thus having a higher value
in more refined regions) [8]. For the purposes of the cur-
rent implementation, the simple choice ε = εn/h is deemed
adequate, where εn is a constant and h is a local measure of
mesh size. Note that this choice results in the desired property
limh→0 ε = ∞ ⇒ limh→0 g = 0.

If Γ̂ s
c ⊂ Γ̂ s

cand is the contact surface—the subset of the
slave surface corresponding to negative gap functions—the

contribution to the weak form residual (30) due to the contact
tractions is

Rw
u,c(δû, û) =

∫
Γ̂ s

cand

δû(X̂) · ts
nm(X̂) dL

+
∫

Γ̂ s
cand

δû(X̂
m
(X̂)) · tm

nm(X̂
m
(X̂)) dL

=
∫

Γ̂ s
c

εg(X̂)[δû(X̂
m
(X̂))−δû(X̂)] · n(X̂) dL.

(39)

Introducing Galerkin test functions (δû → Nu cu) results in
the following contribution to the left-hand side of the finite
element formulation (33a):

∫
Γ̂ s

c

εg(X̂)[NT
u (X̂

m
(X̂)) − NT

u (X̂)]n(X̂) dL.

At this point, the discretization of the master and slave sur-
faces is introduced. Linear contact elements are used regard-
less of the order of the elements used for the discretization of
the contacting bodies. This is for compability reasons in case
the latter discretizations are of different orders. The above
expression is in this context evaluated via a one-point quadra-
ture scheme with the integration points coinciding with the
nodes of the discretized slave surface (see Wriggers [8]). The
result is the finite element load vector pertaining to the normal
mechanical contact interaction, to be added to the right-hand
side of Eq. (33)a:

f
u,c

(x) =
nc∑

i=1

Wiεgi [NT
u (X̂

m
ai

) − NT
u (X̂ai )]ni . (40)

Here, gi = g(X̂ai ), ni = n(X̂ai ), Wi are integration weights
(related to edge element lengths) and {ai }nc

i=1 is the active set:

the set of nodes in contact. X̂
m
ai

and X̂ai are the undeformed
positions of the respective points x̂m

ai
and x̂ai in the deformed

configuration, where x̂m
ai

is the point on the master surface
closest to the point x̂ai . Figure 8 illustrates a contact element
in the deformed discretized domain. Here, Wi = 1

2 (W l
i +

W r
i ).

Fig. 8 The i :th contact element. The length of the master element is
Li
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5.2 Thermal contact formulation

The formulation of thermal conduction in the contact region
is derived in a manner analogous to the case of normal
mechanical contact. A “penalty” heat flux proportional to
the temperature difference is imposed on surfaces in contact:

qs
n,c(X̂) =

{
kcΔθ X̂ ∈ Γ̂ s

c

0 X̂ /∈ Γ̂ s
c

,

qm
n,c(X̂

m
(X̂)) = −qs

n,c(X̂), (41)

where kc is the (velocity-independent) contact conductivity
and

Δθ(X̂) = θ(X̂) − θ(X̂
m
(X̂)) = θ̄ (X̂) − θ̄ (X̂

m
(X̂)) (42)

is the temperature difference. Note that perfect thermal con-
tact is represented by limkc→∞ Δθ = 0. That is, the contact
conductivity kc would play a role similar to that of the penalty
stiffness ε in the mechanical normal contact formulation.
However, kc should here in general be interpreted as a phys-
ical conductivity pertaining to the surface properties at the
contact. In reality, this parameter exhibits a complex depen-
dence on e.g. microgeometry, third body characteristics and
contact pressure. However, following the stated ambition to
keep the contact interface model as simple as possible, kc is
taken as constant. This choice is adequate for the purposes of
the present paper, but would obviously be an oversimplifica-
tion in implementations striving for more realistic modelling
of the contact interface.

The contribution from the contact fluxes to the weak form
residual (31) is

Rw
θ,c(û, θ̄; δθ̄) =

∫
Γ̂ s

cand

δθ̄(X̂)qs
n(X̂) dL

+
∫

Γ̂ s
cand

δθ̄(X̂
m
(X̂))qm

n (X̂
m
(X̂)) dL

=
∫

Γ̂ s
c

kcΔθ(X̂)[δθ̄(X̂)−δθ̄(X̂
m
(X̂))] dL.

(43)

Introducing Galerkin test functions (δθ̄ → Nθ cθ ) and
employing one-point quadrature as above yields the finite
element load vector pertaining to the interfacial thermal con-
duction, to be added to the right-hand side of Eq. (33)b:

f
θ,c

(θ̄) =
nc∑

i=1

Wi kc[NT
θ (X̂ai ) − NT

θ (X̂
m
ai

)]Δθ̄i , (44)

where, Δθ̄i = Δθ̄(X̂ai ).

5.3 Solution method

The addition of the (generally nonlinear) contact contribu-
tions (40) and (44) to the (otherwise linear) FE formulation
of the thermomechanical boundary value problem (Eq. (33))
leads to a nonlinear equation system. This system is solved
monolithically by the Newton method (which requires lin-
earization of the contact contributions, although these expres-
sions are not shown in this paper).

The employed contact iteration scheme is identical to the
one described in Wriggers [8]: In each iteration of the Newton
solver, the residual vector and the tangent stiffness matrix
are constructed, followed by an update of the solution guess.
The construction of the residual and the tangent involves a
contact search procedure, a central step of which being the
identification of the set of active nodes (using the contact
condition gi < 0).

6 Numerical investigations

6.1 Numerical model

The following numerical examples are based on a 2D (plane
strain) model of an annular cylinder rolling on a plate. Owing
to the convective ALE description, the latter can be kept
fairly short, regardless of the actual distance traversed by
the cylinder during a simulation. As mentioned in Sect. 3,
the model features an isotropic, homogeneous, linear elastic
material. Pure rolling and constant rolling velocity (velocity
of the cylinder centre relative to a fixed coordinate system)
are assumed. A vertical distributed load is applied along the
inner boundary of the cylinder. In addition, a constant nor-
mal heat flux is applied to given sections of the cylinder
perimeter (each having an angular extension of 45◦). Gravi-
tational loads on the bodies are not included. The base of the
plate is fixed in all degrees of freedom and the cylinder inner
boundary is fixed in the horizontal direction. All other bound-
aries are free. The temperature at the plate ends is fixed (to
the reference temperature) while all other boundaries (not in
contact) are thermally insulated. Figure 9 shows a schematic
illustration of the geometry, boundary conditions and loads
in the employed model. It is noted that these exhibit vertical
symmetry.

A standard parameter setup (used in the following simu-
lations unless otherwise indicated) is now defined. Material
parameters for cylinder and plate are: Young’s modulus E =
200 GPa, Poisson’s ratio ν = 0.3, specific heat capacity c =
460 Jkg−1 K−1, thermal conductivity k = 45 Wm−1K−1,
thermal expansion coefficient α = 4.8 · 10−6 K−1, density
ρ = 8 · 103kgm−3. Outer and inner radii of the cylinder
are ro = 50 cm and ri = 5 cm, respectively. The height of
the plate is h = 0.1 m and the width of the plate domain is
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Fig. 9 Schematic illustration of the thermomechanical model. A
applied mechanical load, B cylinder inner boundary (fixed in horizontal
direction), C artificial plate domain ends (fixed temperature), D plate
base (fixed in all degrees of freedom), E interfaces with prescribed heat
flux

chosen as b = 1 m. The contact conductivity is kc = 107

Wm−2 K−1 and the penalty stiffness is εN = 5 TN/m. The
reference (environmental) temperature is θ ref = 293 K. The
mechanical load is P = 10 kN/m and the heat flux into the
cylinder at each interface E is Win = 30 W/m.

The rolling velocity is chosen as constant with magnitude
v̄ = 50 km/h. The rotational velocity of the cylinder is then
v̄/ro, due to the assumption of pure rolling.

As mentioned in the discussion following Eq. (24), the
Gough–Joule effect is negligible for thermoelastic materials.
It will therefore not be modeled in the following numerical
examples.

Much of the following presentation will study the
weighted mean temperature θ̄m, which for an arbitrary
domain V0 can be defined as

θ̄m = 1

|V0|
∫

V0

θ̄ dV . (45)

where |V0| is the volume of V0. In the following, V0 will
be chosen to represent the cylinder domain and the plate
domain, alternatively. It should here be emphasized that in the
latter case, the magnitude of the resulting mean temperature
is rather arbitrary, since it depends strongly on the volume of
the arbitrary domain over which the mean is taken.

6.2 Discretization

The finite element formulation of the problem is implemented
in MATLAB. The element type used is a triangular element
with two or one degrees of freedom per node in the mechan-
ical and thermal problems, respectively. The approximation
for both displacements and temperatures is piecewise linear

Fig. 10 The employed finite element mesh, with a zoomed-in view of
the refined contact region

in the plate and piecewise quadratic in the cylinder. Note that
the discrepancy in element order between cylinder and plate
has implications for the contact formulation. The approach
taken here is to regard both domains as linear as far as the
contact formulation is concerned (as was discussed in Sect.
5.1).

The employed mesh is shown in Fig. 10. The mesh of the
cylinder is constructed from a coarse basic mesh which is
refined according to the following scheme: successive refine-
ment in a series of gradually smaller domains centered at the
point of initial contact → global refinements (2 are here used)
→ refinement of the largest elements along the periphery.
After that, all nodes are remapped radially so that the outer
nodes describe a circle. At this point, even though measures
have been taken to ensure that the outer boundary is as round
as possible despite local refinement near the contact region
(via peripheral refinement), the centroid is inevitably slightly
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displaced compared to that of the enclosing circle. This has
the effect of making the resultant of the centrifugal force vec-
tor (the second component of the vector f

uv
, see Eqs. (33),

(26)) nonzero, which is unphysical for a circular domain.
Further, this causes considerable errors in the contact com-
putation. For this reason, the inner boundary is rigidly moved
so that the position of the centroid of the discretized domain is
corrected (thus slightly modifying the geometry). The posi-
tions of the inner nodes of the mesh are then determined by
linear elastic equilibrium.

The plate domain mesh is constructed by starting from a
structured mesh and refining it locally in a rectangular area
centered at the point of initial contact. This area extends a
distance 2dc horizontally and dc vertically, where dc is an
analytical prediction (using Hertz theory) of the contact patch
size. The minimum allowed size for an element in the final
mesh of the plate is 1.5 times the size of the largest element
in the cylinder mesh in the most refined region.

All mesh refinements are performed according to Rivara’s
longest-edge refinement technique [30], and the final mesh
contains 8017 elements and 12608 nodes.

6.3 Numerical stabilization

SUPG stabilization is employed in the plate (linear elements)
and a bubble function scheme (according to the description
in Sect. 4) is used in the cylinder (quadratic elements). An
integration order of four is employed for the Gauss quadra-
ture.

6.4 Convergence study

A mesh convergence study is performed in which the num-
ber of global refinements of the cylinder mesh, nr, is varied.
Figure 11 shows a plot of the temperature along the radial
line segment x = 0, y < 0 (see Fig. 3) for varying val-
ues of nr. Note that the horizontal axis represents the dis-
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Fig. 11 Mesh convergence study

tance r from the cylinder center. The range is here limited to
ro −dc/5 < r < ro. These results indicate that the employed
choice nr = 2 results in a mesh that is sufficiently fine for
the purposes of the subsequent numerical investigations.

6.5 Stationary analysis

Figure 12 shows the stationary temperature distribution in
two small regions close to the contact patch (each having
the dimensions 2 mm × 1 mm). The regions are displaced
to the left: the middle of the contact patch is highlighted by
a vertical gray mark. The combined influence of heat flux
across the contact interface and convective effects is here
evident. In particular, the skewing influence of the latter,
despite the symmetrical boundary conditions and loads, is
noted.

Figure 13 shows a comparison between the computed nor-
mal contact stress distribution and the analytical Hertzian
solution [6,31]. It is clear from the close correspondence
between the two curves that the influence of thermomechan-
ical effects on the mechanical solution is not enough to visibly
affect the contact stress distribution.

6.5.1 Influence of rolling speed

Figure 14 shows weighted mean temperatures of cylinder
and plate (calculated using Eq. (45) for each subdomain)
versus the rolling speed. The figure shows that the model
is successful in capturing the effect of an increased cool-
ing rate of the cylinder with increasing rolling speed (even
with a velocity-independent contact conductivity kc). Note
that the free boundary of the cylinder is insulated, imply-
ing that the cause of the cylinder mean temperature decrease
can only be a higher heat flux through the contact interface,
in turn caused by a decreased local temperature in the plate
at the contact due to an increased convection in the plate.
Furthermore, the latter phenomenon leads to a higher rate
of heat extraction out of the modeled plate domain (which
is bounded by the artificial edges denoted by C in Fig. 9).
This explains the significant decrease in mean temperature
in the plate with increasing rolling speed, seen in the fig-
ure.

6.5.2 Influence of thermal contact conductivity

Figures 15 (top) and (middle) show weighted mean temper-
atures in cylinder and plate, respectively, versus the con-
tact conductivity kc. Figure 15 (bottom) shows the tem-
perature difference between the cylinder and plate nodes
of initial contact. The temperatures in cylinder and plate
are seen to approach each other (although the increase
in temperature in the plate is very slight), and a satura-
tion effect can be observed from the graphs. It can be
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Fig. 12 Zoomed in plot of
temperature distribution in
cylinder and plate [K]. The
center of the contact patch (to
the right in the figure) is
highlighted by a vertical gray
mark

−2 −1 0 1 2

x 10
−4

0

5

10

15

20

25

30

35

Horizontal position [m]

S
tr

es
s 

[M
P

a]

t
n

Analyt. (Hertz)

Fig. 13 Normal contact stress distribution

concluded that the interval kc > 107 Wm−2 K−1 may be
considered as resulting in a state of perfect thermal con-
tact. A similar behaviour was observed in Vernersson [3],
where a numerical model of wheel–rail heat transfer was
used to model the rail chill effect on tread braked railway
wheels.

6.5.3 Influence of mechanical load

Figures 16 (top) and (middle) show weighted mean temper-
atures in cylinder and plate, respectively, for varying applied
mechanical load. Figure 16 (bottom) shows the contact patch
width. The redistribution of temperature between cylinder
and plate as the applied load increases is clear from the two
upper graphs (although, also in this case, the change in mean

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Rolling speed [km/h]

M
ea

n 
ex

ce
ss

 te
m

pe
ra

tu
re

 [K
]

Cylinder mean excess temperature

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4
x 10

−4

Rolling speed [km/h]

M
ea

n 
ex

ce
ss

 te
m

pe
ra

tu
re

 [K
]

Plate mean excess temperature

Fig. 14 Weighted mean temperatures of cylinder and plate versus
rolling speed

temperature in the plate is very small), and is due to the
increased contact patch width (as seen in the lower graph).
Note that this effect would have been even stronger had the
contact conductivity been modeled as pressure-dependent.

6.6 Transient analysis

For the transient simulations, a backward Euler time integra-
tion scheme is used. Three different scenarios involving tran-
sient processes are simulated: (i) the external heat flux Win

is applied at time t = 0, (ii) the external heat flux is retracted
at t = 0, (iii) a sharp hole of width 0.2 mm in the plate is tra-
versed. In all cases, the appropriate stationary solution (i.e.
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Fig. 15 Weighted mean temperatures of cylinder (top) and plate
(middle) versus contact conductivity. Bottom temperature difference
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Fig. 16 Weighted mean temperatures of cylinder (top) and plate (mid-
dle) versus applied mechanical load. Bottom size of contact patch versus
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featuring i: Win = 0, ii/iii: Win = 30 W/m) is employed as
the initial configuration.

The plate profile used in case iii is implemented in the
manner described in Draganis et al. [12], which in turn is
based a methodology described in Thompson [32]. In this
approach, a given offset function is imposed on the gap func-
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Fig. 17 Time evolution of weighted mean temperatures in cylinder
and plate. a External heat flux applied at t = 0. b External heat flux
retracted at t = 0
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Fig. 18 Normal contact stress distribution at four distinct points in
time as the hole is traversed

tions (38), effectively resulting in a modified plate profile.
As time progresses, this profile will be advected through the
computational domain. This approach is limited in that there
is no actual modification of the plate domain—only of the gap
functions. However, where applicable (e.g. when the analy-
sis is focused on contact pressures and/or resultant contact
forces), it is highly preferable to actual modifications of the
computational domain in the context of an ALE description,
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Fig. 19 Time evolution of contact force resultant as the hole is tra-
versed

due to the intrinsic difficulty of tracking material boundaries
in this case.

In cases i and ii, the time evolution of the weighted mean
temperatures in both bodies is studied, while in case iii, the
analysis is focused on the evolution of contact stresses and
-forces as the hole in the plate is traversed. The former phe-
nomenon occurs on a vastly larger time scale than the latter.
The time steps used in the respective cases are i/ii: Δt = 500
s and iii: Δt = 10−6 s. These time step sizes have been veri-
fied (details not given here) to give a numerically convergent
response with respect to phenomena of interest in the present
analysis. It is noted that the former time step size implies that
the cylinder undergoes many revolutions per time step. In
particular, this means that the simulation is unable to resolve
mechanical phenomena in this case, which occur on vastly
smaller time scales. However, their influence on the studied
quantity in cases i and ii: the comparatively very slow evo-
lution of the temperature distribution, is negligible. Taking
into account also that the constitutive model does not include
inelastic material parameters, it is concluded that the given
choice of time step is admissible in this case.

Figure 17 shows the time evolution of the weighted mean
temperatures in cylinder and plate for the respective cases i,
ii. Figure 17a also shows the stationary solution for reference.
Due to the large difference in magnitude of the cylinder and
plate temperatures (discussed in previous sections), a loga-
rithmic axis is used for the vertical axis in these figures. The
exponential decay of the temperature in 17b is noted. Fig-
ure 18 shows the contact stress distribution at four distinct
points in time as the hole is traversed. Figure 19 shows the
time evolution of the resultant contact force. Note that in
order to resolve higher frequencies of the oscillations result-
ing from the contact interaction at the discontinuity, a smaller
time step would be required.

7 Concluding remarks

A theoretical and computational framework governing ther-
momechanically coupled transient rolling contact based on
an ALE kinematical description has been developed. The
ALE formulation allows for linearization of the mechanical
response, localized mesh refinement and a compact com-
putational domain. Further, it was shown to simplify the
time-description of the transient rolling contact problem and
enable the formulation of the stationary rolling problem as
time-independent.

Numerical simulations featuring both mechanical and
thermal loads were performed. The results showed the
thermomechanical contact model (featuring a velocity-in-
dependent contact conductivity) to be able to capture the
effect of convective chilling of the cylinder due to the contact
with the plate. A study of the influence of the contact conduc-
tivity was performed, and results were found to correspond
qualitatively to results in the literature. Further, the relation
between the magnitude of the heat flux through the contact
interface and the applied mechanical load (owing to the influ-
ence of the latter on the contact patch width) was emphasized.
Transient simulations showed the model to be able to cap-
ture phenomena occurring on disparate time scales, as well
as simulations featuring very rough contact geometries.

The convective ALE formulation of the energy balance
equation was found to be sensitive to stability problems
and other numerical issues in its discretized form. Numer-
ical stabilization techniques were implemented, satisfyingly
addressing these problems. Since the numerical issues man-
ifest themselves in essentially different ways in the two
domains (due to the differences in the convective velocity
fields), the numerical stabilization techniques implemented
in these domains had to be designed thereafter.

Upcoming work will be focused on modelling frictional
contact. Particular applications of interest include modelling
of stick/slip phenomena and frictional heat generation.
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Abstract

A theoretical and computational framework for the analysis of thermomechanically coupled, frictional, stationary
(steady-state) rolling contact based on an Arbitrary Lagrangian–Eulerian (ALE) kinematical description is presented.
The finite element method is employed in an implementation featuring 2D cylinder–plate rolling contact, with a
contact formulation including mechanical and thermal frictional contact. The ALE formulation is noted to allow
for linearization of the governing equations, localized mesh refinement, a time-independent description of stationary
dynamics and velocity-independent contact interface modelling, etc. Numerical simulations show the model to be able
to capture e.g. stick/slip behaviour and a range of thermal phenomena, including the effect of convective cooling of
the cylinder due to the contact with the plate.
Keywords: thermomechanical analysis, arbitrary Lagrangian–Eulerian, rolling contact, friction, partial slip, finite
element method

1 Introduction

The current paper presents a versatile methodology for
the analysis of thermomechanical, frictional, stationary
(steady-state) rolling/sliding contact. The motivation
for the study and the goal for the development of the
model is the application to wheel–rail contact situations.
Currently, such analyses are most often based on semi-
analytical contact models, e.g. Hertz- and Carter the-
ory [1, 2, 3]. Such simplified models are sufficient in
many situations. For instance, wheel–rail contact analy-
ses as a basis for train–track interaction models usually
do not require high-resolution evaluation of the contact
stress distribution. However, there are other cases within
wheel–rail contact applications where this is vital. This
includes cases where an accurate prediction of plastic de-
formation [4], wear [5] and/or rolling contact fatigue [6]
of wheel and rail is required.

The current paper builds on previously published
developments [7, 8] in order to present a finite ele-
ment framework for the analysis of frictional, thermome-
chanically coupled rolling/sliding contact, based on an
Arbitrary Lagrangian–Eulerian (ALE) kinematical de-
scription [9, 10, 11]. This approach leads to a more
complicated boundary value problem, but also allows
for highly localized mesh refinement, a more compact
computational domain, linearization of the governing
equations, a time-independent description of stationary
rolling/sliding contact and velocity-independent contact
interface modelling. In following sections, a 2D imple-
mentation of cylinder–plate rolling/sliding contact is em-

ployed to illustrate these points, as well as investigate the
computational capabilities of the model, in terms of both
mechanical and thermal characteristics.

2 Kinematical description

The employed ALE description of cylinder–plate rolling
motion [9, 7, 8] can be described as follows: Two interme-
diate configurations are utilized in addition to the initial
(“undeformed”) configuration, Ω 3 X, and the current
(“deformed”) configuration, ω 3 x. The first intermedi-
ate configuration is denoted Ω̂ 3 X̂. The map from Ω to
Ω̂ accounts for a rigid body rotation of the cylinder and
a pure translation of the plate. The second intermediate
configuration is denoted ω̂ 3 x̂. The map from Ω̂ to ω̂
accounts for the deformation of cylinder and plate. Both
intermediate configurations feature a moving coordinate
system that follows the cylinder center. The map from
ω̂ to ω accounts for a pure translation of the system in
going back to the original fixed coordinate system.

The maps between the configurations are formulated
as X̂ = φ̂(X, t), x̂ = ϕ̂(X̂, t), x = φ̌(x̂, t) and x =
ϕ(X, t), so that ϕ(X, t) = φ̌(ϕ̂(φ̂(X, t), t), t), with cor-
responding deformation gradients f̂ , F̂ , f̌ and F . Figure
1 shows a schematic illustration of the employed config-
urations, with their intermediary maps and deformation
gradients.

The rigid body maps X̂ = φ̂(X, t) and x = φ̌(x̂, t)
can be expressed a priori from knowledge of the trans-
lational and rotational motion of the cylinder along the
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Figure 1. Illustration of configurations and maps relevant to the em-
ployed ALE description.

plate:

X̂ = φ̂(X, t)

=

{
R(t) · (X −X0) +X0 for X ∈ Ωc

X − X̄(t) for X ∈ Ωp ,
(1)

x = φ̌(x̂, t) = x̂+ X̄(t) for x̂ ∈ ω̂, (2)

where R is a rotation tensor, X0 is the position of the
cylinder centre in the undeformed configuration, X̄ is
the translation of the cylinder centre, and Ωc and Ωp are
the subsets of Ω corresponding to the cylinder and plate
domains, respectively. Note that f̂ = R and f̂ = I
in the domain of the cylinder and plate, respectively,
and that f̌ = I. The Lagrangian problem of finding
the map x = ϕ(X, t) (or the displacement u(X, t) =
ϕ(X, t)−X) is thus narrowed down to the ALE problem
of finding the map x̂ = ϕ̂(X̂, t) (or the displacement
û(X̂, t) = ϕ̂(X̂, t) − X̂). For small strains, the ALE
displacements û will be small, which is generally not
the case for the standard Lagrangian displacements u.
Consequently, in the former case (but not the latter) it
is possible to linearize the mechanical response.

Another advantage of the presented convective kine-
matical description is the fact that it allows for a com-
pact computational model: only a relatively short section
of the plate domain needs to be modelled, regardless of
rolling distance. Further, the position (in the intermedi-
ate domains) of the contact region in both cylinder and
plate is largely stationary throughout the rolling motion,
allowing for localized mesh refinement. Figure 4 illus-
trates these points.

A potential difficulty in convective formulations is the
tracking of boundaries. In the present case, since a round
cylinder and a flat plate are considered, the boundaries
are stationary and this is not a problem. However, nu-
merical problems due to convective effects will require
attention, as elaborated in following sections.

3 Thermomechanical problem

In the present section, the ALE-formulation of the ther-
momechanically coupled boundary value problem (as-
suming isotropic, homogeneous and thermoelastic ma-
terials) is presented. For a more detailed derivation, cf.
Draganis et al. [8].

In terms of the ALE description, the momentum bal-
ance equation takes the form1

ρ̂
[

¨̄X + dttû+ 2
[
(dtû)⊗ ∇̂

]
· v̄ + F̂ · (Dtv̄)+

Ĝ : (v̄ ⊗ v̄)
]
− P̂ · ∇̂− B̂ = 0 in Ω̂, (3)

where dt(·) := ∂(·)/∂t|X̂ , dtt(·) := ∂2(·)/∂t2|X̂ are refer-

ential time derivatives, F̂ := x̂⊗ ∇̂, Ĝ := x̂⊗ ∇̂⊗ ∇̂, ρ̂
is the density in Ω̂ and B̂ is the external body force per
unit volume in Ω̂. Further,

v̄ = DtX̂ =

{
Ṙ ·RT · (X̂ −X0) for X̂ ∈ Ω̂c

− ˙̄X for X̂ ∈ Ω̂p
(4)

is the convective velocity. Note that due to the nature of

the rotation tensor, ∇̂ · v̄ = 0. Finally, P̂ = P · f̂T
is the

push-forward of the first Piola–Kirchhoff stress tensor to
Ω̂.

For a thermoelastic, isotropic material, it can be shown
that P̂ = P (F̂ , θ) [8], where P (F , θ) is the original con-
stitutive relation in the material reference frame. This
means that P̂ can be linearized for small strains (F̂ ≈ I)
and small temperature fluctuations (θ ≈ θref) using the
original constitutive model, i.e.:

P̂ = E : Ĥ − 3Kαθ̄I, (5)

where the isotropic tensor of elasticity E = ∂P
∂H =

2GIsym
dev + KI ⊗ I (where G is the shear modulus and

K is the bulk modulus) was introduced. Furthermore,
Ĥ = F̂ − I is the displacement gradient, α is the ther-
mal expansion coefficient, and θ̄ = θ − θref is the excess
temperature with respect to the reference θref .

The boundary conditions can in the ALE framework
be phrased as

{
T̂

TOT
+ ρ̂(Ĥ · v̄)(v̄ · N̂) = T̂P on Γ̂Ru

û = ûP on Γ̂Du

, (6)

where T̂
TOT

in the Robin-type boundary condition (6a)
is the natural boundary traction obtained via integration
by parts in the weak form [8]. Further, T̂ is the intrinsic
(physical) traction, N̂ is the outward normal of Ω̂, and
the subscript P represents prescribed quantities.

1⊗ denotes the dyadic (open) product.
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In terms of the ALE description, the energy balance
equation takes the form

(θref + θ̄)β̂ :
[
dtĤ + (F̂ · v̄)⊗ ∇̂

]
+

ρ̂c
(
∇̂θ̄ · v̄ + dtθ̄

)
+ q̂ · ∇̂− r̂ = 0 in Ω̂, (7)

where c is the (mass-) specific heat capacity and r̂ is
the external heat power per unit volume in Ω̂. Further,

β̂ = β · f̂T
and q̂ = f̂ · q (where β is the deformation-

induced heat source and q is the heat flux) were intro-
duced. For a thermoelastic, isotropic material, it can be
shown that β̂ = β(F̂ , θ) [8], where β(F , θ) is the original
constitutive relation in the material reference frame.

Linearizing the energy balance equation (7) for small
strains and small temperature fluctuations and assuming
isotropic materials gives

3Kαθref(I : dtĤ + (Ĥ · v̄) · ∇̂)

+ ρ̂c
(
∇̂θ̄ · v̄ + dtθ̄

)
+ q̂ · ∇̂− r̂ = 0 in Ω̂, (8)

where it was used that v̄ is divergence free. The linear
Fourier’s law is henceforth adopted, whereby

q̂ = −k∇̂θ̄, (9)

where k is the constant heat conductivity.
The boundary conditions can in the ALE framework

be phrased as
{

q̂TOT
N̂

− ρ̂cθ̄(v̄ · N̂) = q̂N̂,P on Γ̂Rθ

θ̄ = θ̄P on Γ̂Dθ

, (10)

where q̂TOT
N̂

in the Robin-type boundary condition (10a)
is the natural boundary flux obtained via integration by
parts in the weak form [8]. Further, q̂N̂ is the intrin-
sic (physical) heat flux, and the subscript P represents
prescribed quantities.

If stationary rolling conditions are assumed, all refer-

ential time derivatives (dt, dtt) as well as ¨̄X are zero,
resulting in a time-independent problem involving the
strong form

ρ̂
[
F̂ · (Dtv̄) + Ĝ : (v̄ ⊗ v̄)

]
− P̂ · ∇̂− B̂ = 0,

3Kαθref(Ĥ · v̄) · ∇̂ + ρ̂c∇̂θ̄ · v̄ + q̂ · ∇̂− r̂ = 0.
(11)

It is clear from (5) that P̂ is temperature depen-
dent, due to the influence of thermal expansion. This
constitutes the influence of the temperature field on
the momentum balance equation. Furthermore, the
deformation-dependent terms in the energy balance
equation represent the Gough–Joule effect: reversible
heating/cooling of the material resulting from a nonzero
strain rate [12]. This effect is negligible for thermoelas-
tic metals [13], and will therefore not be modelled in the
following numerical simulations.

x̂

n̂

m̂

x̂m

Figure 2. A point on the slave surface and its projection on the master
surface, along with relevant unit vectors.

4 Contact formulation

The mechanical and thermal components of the em-
ployed contact formulation are presented below in the
context of the ALE description. Contact interface laws
are kept simple in the interest of clarity. However, it is
emphasized that the computational framework has been
constructed with modularity and extensibility in mind.
The implementation of more complex contact laws would
therefore be straightforward. Much of the presentation
relies on concepts described in Wriggers [14].

4.1 Mechanical contact formulation

As a point x̂ on the slave surface (here chosen as the
cylinder) comes into contact with the master surface (the
plate), its projection point x̂m(x̂) on the master surface,
as well as the associated normal (n̂) and tangential (m̂)
vectors, can be identified (see Figure 2). The gap func-
tion corresponding to the points x̂ and x̂m, or their re-
spective undeformed counterparts X̂ and X̂

m
(X̂), can

then be computed as

g = (x̂− x̂m) · n̂ = (ϕ̂(X̂)− ϕ̂(X̂
m

(X̂))) · n̂. (12)

A standard penalty method is employed for the for-
mulation of normal mechanical contact. This involves
applying a penalty traction tnn̂ at each point x̂ ∈ Γ̂s

c,
where Γ̂s

c is the set of points on the slave surface pen-
etrating the master surface, i.e. for which g < 0. An
opposing force is imposed at x̂m(x̂). Here,

tn = −εg, (13)

where ε is the penalty stiffness. In theory, limε→∞ g = 0.
In a practical numerical implementation, an increased
penalty stiffness ε leads to a decreased absolute value
of the gap function, but an excessive increase leads to
ill-conditioning of the discretized equation system. ε
is typically taken as mesh-dependent, scaling inversely
with some measure of the mesh size (thus having a
higher value in more refined regions) [14]. In the cur-
rent implementation, ε = εn/h is employed, where εn
is a constant and h is a local measure of mesh size.
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Figure 3. Regularized version of Coulomb’s friction law.

Note that this choice results in the desired property
limh→0 ε =∞⇒ limh→0 g = 0.

Frictional interaction between the surfaces results in
a force tmm̂ being applied at each point x̂ ∈ Γ̂s

c. An
opposing force is imposed at x̂m(x̂). Here,

tm = −µ|tn|φ(ṡ), (14)

where µ is the coefficient of friction and

ṡ = [Dtx̂−Dtx̂
m] · m̂

= [Dtϕ̂(X̂
m

)−Dtϕ̂(X̂)] · m̂(X̂)
(15)

is the slip velocity. For stationary contact, one obtains

ṡ = [F̂ (X̂) · v̄(X̂)− F̂ (X̂
m

) · v̄(X̂
m

)] · m̂(X̂).

Further, φ(ṡ) is a function of the same sign as ṡ, satisfy-
ing |φ| ≤ 1. In the current implementation, a regularized
version of Coulomb’s law is used, so that

φ(ṡ) = tanh(ṡ/εr), (16)

(see Figure 3) where εr [m/s] is a regularization param-
eter. Note that in this case, the friction force is un-
ambiguously determined from the slip velocity, and that
Coulomb’s friction law (which is equivalent to a Lagrange
multiplier method) is obtained in the limit εr → 0.
εr should be chosen in the range εconv

r ≤ εr ≤ εnum
r ,

where εconv
r represents the limit below which the contact

iterations do not converge and εnum
r the limit above which

computed results exhibit a dependency on εr. These lim-
its depend on (increase with) the overall magnitude of
the slip velocity in the contact region, and must be ob-
tained via a convergence study. Note that εconv

r can be
decreased by computational strategies aimed at facilitat-
ing convergence (see Section 5.3). These are important,
since it otherwise might occur that εconv

r > εnum
r .

4.2 Thermal contact formulation

The formulation of thermal conduction in the contact
region is derived in a manner analogous to the case of
normal mechanical contact. A “penalty” heat flux of
magnitude kc∆θ is imposed across the contact interface.
Here, kc is the contact conductivity and

∆θ(X̂) = θ(X̂)−θ(X̂m
(X̂)) = θ̄(X̂)−θ̄(X̂m

(X̂)) (17)

is the temperature difference. Perfect thermal contact
is represented by limkc→∞∆θ = 0. That is, the con-
tact conductivity kc would play a role similar to that
of the penalty stiffness ε in the mechanical normal con-
tact formulation. However, kc should here in general be
interpreted as a physical conductivity pertaining to the
surface properties at the contact. Although here taken
as constant in the interests of simplicity, this parame-
ter would in a more realistic model exhibit a complex
dependence on e.g. microgeometry, third body charac-
teristics and contact pressure. Further, the phenomenon
of interfacial heat conduction is strongly dependent on
the relative velocity of the contacting bodies. However,
since this dependency is inherent in the convective ALE
formulation of the energy balance equation (see Section
6.3.2 and 6.3.3 for a more detailed discussion), there is
no need to have kc depend on the velocity.

Frictional interaction between surfaces generates a
frictional power

wf = |tmṡ| = −tmṡ = µ|tn|φ(ṡ)ṡ, (18)

where it was used that tmṡ < 0. It is assumed that a
portion w′f of this heat is transferred into the contacting
bodies. This amount is governed by the frictional heat
transfer ratio γf , so that w′f = γfwf . The parameters αs

f

and αm
f (αs

f + αm
f = 1) govern the heat partitioning, so

that the heat fluxes due to the generated heat are

qs
n,f(X̂) =

{
−αs

fw
′
f X̂ ∈ Γ̂s

c

0 X̂ /∈ Γ̂s
c

,

qm
n,f(X̂

m
(X̂)) =

{
−αm

f w
′
f X̂ ∈ Γ̂s

c

0 X̂ /∈ Γ̂s
c

,

(19)

where w′f = γfµ|tn|φ(ṡ)ṡ. In the subsequent numerical
simulations, the heat partitioning parameters are simply
chosen as αs

f = αm
f = 1/2. Note that there is no need to

include heuristic time-dependencies in the parameters αs
f

and αm
f in order to capture the dependence of heat parti-

tioning on the relative velocity of the contacting bodies.
Again, this is due to the fact that this effect is inherent
in the employed ALE formulation.
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5 Solution method

5.1 Discretization

The finite element formulation of the problem is imple-
mented in MATLAB. The element type used is a trian-
gular element with one/two degrees of freedom per node
in the thermal/mechanical problems, respectively. The
approximation for both displacements and temperatures
is piecewise linear in the plate and piecewise quadratic in
the cylinder. Note that the discrepancy in element order
between cylinder and plate has implications for the con-
tact formulation, which is further discussed in Section
5.3.

The employed mesh is shown in Figure 4. The mesh
of the cylinder is constructed from a coarse basic mesh
which is refined according to the following scheme: suc-
cessive refinement in a series of gradually smaller do-
mains centered at the point of initial contact → global
refinements (2 are here used)→ refinement of the largest
elements along the periphery. After that, all nodes are
remapped radially so that the outer nodes describe a cir-
cle. At this point, the centroid of the discretized domain
is inevitably slightly displaced compared to that of the
ideal annular domain. This causes considerable errors
in the contact computation [8]. To compensate, the in-
ner boundary is rigidly moved so that the position of
the centroid of the discretized domain is corrected (thus
slightly modifying the geometry). The positions of the
inner nodes of the mesh are then determined by linear
elastic equilibrium.

The plate domain mesh is constructed by starting from
a structured mesh and refining it locally in a rectangular
area centered at the point of initial contact. This area ex-
tends a distance 2dc horizontally and dc vertically, where
dc is an analytical prediction (using Hertz theory) of the
contact patch width. The minimum allowed size for an
element in the final mesh of the plate is 1.5 times the
size of the largest element in the most refined region of
the cylinder mesh.

All mesh refinements are performed according to Ri-
vara’s longest-edge refinement technique [15]. The final
mesh contains 8017 elements and 12608 nodes.

5.2 Element choice and numerical stabi-
lization

Previous studies [7] indicated that, at least for rolling
speeds up to the order of a few hundred km/h, no nu-
merical stability problems arise related to the discretized
momentum balance equation for the present implementa-
tion. By contrast, various numerical problems have been
found to have a prominent influence for the discretized
energy balance equation, even for very modest rolling
speeds [8]. The numerical problems are manifested as

Figure 4. The employed finite element mesh, with a zoomed-in view of
the refined contact region.
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node-to-node oscillations in the plate domain and oscil-
lations together with energy dissipation in the cylinder
domain.

In order to address these problems, two numerical
stabilization methods are employed: The Streamline-
Upwind Petrov–Galerkin (SUPG) method [10, 16] is used
for the plate domain, and a quasi residual-free bubble
approach [17, 18], which is a variant of the scheme pre-
sented in Brezzi et al. [19], is used for the cylinder do-
main. The reader is referred to Draganis et al. [8] for a
detailed description of the latter method and an investi-
gation of its performance.

5.3 Contact iterations

A linear–linear contact element is used in the cylinder–
plate interface, regardless of the element orders used to
discretize the two domains. This means that with regard
to the employed triangular elements, contact forces are
assembled exclusively to corner degrees of freedom.

The addition of the nonlinear contact contributions to
the (otherwise linear) FE formulation of the thermome-
chanical boundary value problem leads to a nonlinear
equation system. This system is solved monolithically
by the Newton method, employing a contact iteration
scheme following Wriggers [14].

Obtaining convergence in the frictional contact itera-
tions is difficult, especially when slip velocities are high.
To address this problem, a velocity stepping scheme is
implemented in which convective velocities in cylinder
and plate are gradually increased, the solution for one
step serving as a start guess for the next. The start guess
used for the first velocity-stepping iteration is the solu-
tion to the corresponding frictionless contact problem
(which is far less susceptible to convergence problems).
The start guess used here is in turn obtained from a sim-
plified problem employing appropriate Hertzian contact
pressure distributions as contact loads.

6 Numerical examples

6.1 Numerical model

The following numerical examples are based on a 2D
(plane strain) model of a hollow cylinder rolling on a
plate. The model features an isotropic, homogeneous,
linear elastic material. A constant translational velocity
of the cylinder centre (relative to a fixed coordinate sys-
tem) is assumed, while a vertical force is applied on the
inner boundary (hub) of the cylinder. In order to facil-
itate comparisons to analytical solutions, gravitational
loads on the bodies are not included (inertial effects are
modelled, however). The base of the plate is fixed in all
degrees of freedom and the cylinder hub is fixed in the
horizontal direction (in Ω̂). All other boundaries are free.

A

B

C C

D

Figure 5. Schematic illustration of the thermomechanical model. A:
applied mechanical load, B: cylinder hub (fixed in horizontal direction,
fixed temperature), C: artificial plate domain ends (fixed temperature),
D: plate base (fixed in all displacement degrees of freedom).

The temperature is prescribed (to the reference tempera-
ture) along the cylinder hub and at the plate ends, while
all other boundaries (not in contact) are thermally insu-
lated. Figure 5 shows a schematic illustration of the ge-
ometry, boundary conditions and loads of the employed
model.

A reference parameter setup (used in the following
simulations unless otherwise indicated) is now defined.
Material parameters in both bodies are: Young’s mod-
ulus E = 200 GPa, Poisson’s ratio ν = 0.3, specific
heat capacity c = 460 Jkg−1K−1, thermal conductivity
k = 45 Wm−1K−1, thermal expansion coefficient α =
4.8·10−6K−1 and density ρ = 8·103 kgm−3. Outer and
inner radii of the cylinder are ro = 50 cm and ri = 5 cm,
respectively. The height of the plate is h = 0.1 m and
the width of the modeled plate domain is chosen as b = 1
m. The contact conductivity is kc = 107 Wm−2K−1, the
frictional heat transfer ratio is γf = 10% and the penalty
stiffness is εn = 5 TN/m. The reference (environmental)
temperature is θref = 293 K and the mechanical load is
P = 10 kN/m.

The (absolute) translational velocity of the cylinder
center is chosen as VT = 50 km/h. The rotational veloc-
ity of the cylinder is chosen independently, whereby the
creepage [3]

ξ := 2(VT − VC)/(VT + VC), (20)

is controlled. Here, VC is the circumferential convective
velocity at the outer boundary. Unless otherwise stated,
the creepage is chosen as ξ = −5 · 10−5.

The following presentation includes studies of the
mean excess temperature θ̄m, which for an arbitrary do-
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Figure 6. Resultant tangential contact force F// vs. the frictional
regularization parameter εr.

main V0 (of volume V0) is defined as

θ̄m =
1

V0

∫

V0
θ̄ dV. (21)

In the following, V0 is taken as the cylinder domain and
the plate domain, alternatively.

6.2 Convergence study for εr

Figure 6 shows the dependence on εr of the resultant
tangential contact force F// for given values of VT and ξ.
Based on this data, it can be deduced that εnum

r ≈ 10−4.
εr =

√
10 · 10−5 will henceforth be used.

6.3 Rolling/sliding contact simulations

6.3.1 Contact stress distributions

Figure 7 shows the ratio of the resultant tangential
contact force F// and the limiting friction force µF⊥
(where F⊥ is the resultant normal contact force) ver-
sus the creepage ξ. An analytical curve obtained from
Carter’s force–creepage law [20, 3], valid for purely me-
chanical cylinder–plate rolling contact, is superimposed.
Figures 8–10 show the normal and tangential contact
stress distributions for the creepages ξ = −5 · 10−5,
ξ = −1.25 · 10−4 and ξ = −2.5 · 10−4, respectively.
Note that the last creepage value corresponds to full slip
(cf. Figure 7). Analytical curves obtained from Carter–
Hertz theory [2] are superimposed. Additionally, Figure
11 shows slip velocity profiles across the contact zone for
the three cases studied.

Due to local deformations in the contact region, the
numerical solution deviates from the idealized Carter–
Hertz solution, especially near the point of transition
between the stick- and slip regions (see Figures 11–14).
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Figure 7. Force–creepage curve.
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Figure 11. Slip velocity profiles for three rolling contact simulations.

Further, it is noted that since the controlled quantity is
the creepage (rather than the driving moment or hori-
zontal force), there is a discrepancy also in the resultant
tangential force.

6.3.2 Temperature distributions

Figure 12 shows the temperature distribution for the case
ξ = −5 ·10−5 in two regions on either side of the contact
interface, each having the dimensions 1.5 mm × 0.3 mm.
In each case, the edges of the contact zone are highlighted
by vertical gray marks. As seen in Figures 7 and 8,
the employed value of ξ corresponds to a situation of
mixed stick/slip. The frictional interaction between the
surfaces gives rise to heat generation in the slip region
(see Section 4.2), i.e. the segment near the left (trailing)
edge of the contact zone roughly corresponding to the
interval −0.25 mm < X̂ < −0.14 mm (cf. Figure 8).

Another thermal phenomenon affecting the tempera-
ture distribution shown in Figure 12 is the convection
inherent to the employed ALE formulation, resulting in
a temperature distribution skewed in the direction of the
convective flow. Note in particular the displacement of
the region of the frictionally induced temperature peak
from the slip region (whose location in the contact re-
gion can be seen in Figure 8). Interfacial heat transfer
(see Section 4.2) further contributes to a redistribution
of temperature between cylinder and plate. As men-
tioned in Section 3, the Gough–Joule effect – if modelled
– would here have a negligible influence on the tempera-
ture field.

The mean temperatures in cylinder and plate for the
case studied above are 2.26 · 10−6 K and 4.45 · 10−9 K,
respectively. To an extent, the large difference in mag-
nitude is due to convective effects: heat is transported
out of the considered plate domain while cold material

8



Figure 12. Patch plot of the temperature distribution near the contact
interface [K]. Zoomed-in view: each plot window has the dimensions
1.5 mm × 0.3 mm. The gray marks highlight the edges of the contact
region. ξ = −5 · 10−5.

is transported into it. Note however that these quan-
tities are not readily comparable, due to the inherent
arbitrariness of the mean temperature measure (21) and
the volume over which it is taken.

Figure 13 shows the temperature distribution for the
case where the rotational motion of the cylinder is locked
(ξ = 2) – which means that the convective velocity in the
cylinder domain is zero. A comparison between Figures
12 and 13 predictably shows that pure sliding contact
results in vastly higher temperatures overall. This is due
to higher slip velocities causing an increased frictional
heat generation. Another contributing factor is the lack
of convection in the cylinder, which means that diffusion
and interfacial heat transfer are the only mechanisms
transporting heat away from the region in the cylinder
closest to the contact. The reason for the asymmetri-
cal temperature distribution in the cylinder (despite the
lack of convection in that domain) is the interfacial heat
transfer in conjunction with the fact that the tempera-
ture distribution in the plate is asymmetric due to con-
vective effects.

6.3.3 Influence of operational parameters

Figure 14 shows mean temperatures in the cylinder ver-
sus translational velocity VT for four different values of
the creepage ξ (including the case of pure sliding: ξ = 2).
In each of these cases, an increased velocity VT leads
to higher slip velocities and thus an increased frictional
heat generation. This in turn leads to higher temper-
atures, both globally (see Figure 14) and locally in the
contact region. However, since the convective velocity in
the plate also increases (with VT), so does the interfacial
temperature difference and, in turn, the heat conduction

Figure 13. Patch plot of the temperature distribution near the contact
interface [K]. Zoomed-in view: each plot window has the dimensions
1.5 mm × 0.3 mm. The gray marks highlight the edges of the contact
region. Locked cylinder (pure sliding: ξ = 2).

through the contact interface. As a result, the increase
of temperature in the cylinder is slowed, as seen in the
figure. A similar behaviour was observed in Vernersson
and Lundén [21], where a numerical model of wheel–rail
heat transfer was used to investigate the influence of rail
chill on tread braked railway wheels.

Figure 15 shows the mean temperatures in cylinder
and plate plotted against the contact conductivity kc,
for a rolling contact simulation featuring ξ = −5 · 10−5.
An increased contact conductivity facilitates redistribu-
tion of temperature between cylinder and plate, hence
the saturation effect apparent in the figure – which is in
qualitative agreement with studies performed in Vern-
ersson and Lundén [21].

7 Concluding remarks

A theoretical and computational framework governing
thermomechanically coupled, stationary rolling/sliding
contact based on an ALE kinematical description is
presented. The ALE formulation allows for lineariza-
tion of the mechanical response, localized mesh refine-
ment and a compact plate domain. It further en-
ables formulation of the stationary rolling contact prob-
lem as time-independent and the contact interface law
as velocity-independent. Numerical examples featuring
frictional rolling/sliding contact show the model to be in
agreement with analytical solutions and able to capture
stick/slip behaviour. Further, the influence of convec-
tive effects on the temperature distribution is illustrated
(in the presence of frictional heat generation), including
the effect of convective cooling of the cylinder due to the
contact with the plate.

9



0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cylinder translation speed [m/s]

M
ea

n 
ex

ce
ss

 te
m

pe
ra

tu
re

 [K
]

 

 

ξ = −5.00e−005

ξ = −1.25e−004

ξ = −2.50e−004

ξ = 2.00e+000

Figure 14. Mean temperatures in cylinder and plate versus cylinder
translation speed for varying values of ξ.

10
2

10
4

10
6

10
8

10
10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Contact conductivity k
c
 [W/(m2K)]

M
ea

n 
ex

ce
ss

 te
m

pe
ra

tu
re

 [K
]

 

 
Cylinder
Plate

Figure 15. Mean temperatures in cylinder and plate versus contact
conductivity for rolling contact featuring ξ = −5 · 10−5.

It was shown that normal/tangential contact pres-
sures, temperatures and slip velocities are computable
at a local level. Thus, quantities derived from these are
readily available in postprocessing. For instance, the lo-
cal wear rate could be computed (e.g. using Archard’s
law [22]) and interpolated across the contact zone, using
knowledge of contact pressures, slip velocities, contact
interface constitutive data and possibly temperatures.

Upcoming work will be towards implementing support
for transient simulations. This would allow for high-
resolution investigation of non-stationary, thermome-
chanical rolling/sliding contact situations, e.g. strongly
non-Hertzian contact conditions and transient braking
simulations.
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Abstract

A theoretical and computational framework for the analysis of fully transient, thermomechanically coupled, frictional
rolling contact based on an Arbitrary Lagrangian–Eulerian (ALE) kinematical description is presented. In particular, a
computationally efficient methodology for mixed control between the ALE referential velocities and their corresponding
driving forces is developed and discussed in depth. Numerical examples involving 2D cylinder–plate rolling contact
are presented, covering a range of transient, thermomechanically coupled rolling contact phenomena, existing on a
broad range of time scales. Here, particular points of emphasis include dynamical effects in the vicinity of the contact
region, and the time scales on which mechanical and thermal mechanisms operate.

Keywords: arbitrary Lagrangian–Eulerian, rolling contact, frictional contact, thermomechanical coupling, transient
analysis, finite element method

1 Introduction

Computational approaches to rolling contact problems
commonly employ semi-analytical models, where analyt-
ical expressions (usually from Hertz and Carter theory
[1, 2, 3]) are used in conjunction with e.g. Finite El-
ement (FE) analysis of contacting bodies (see e.g. Xu
and Jiang [4] and references therein). These approaches
entail low computational costs, but are only applicable
to situations in which their underlying assumptions hold.
For instance, Hertz theory is based on the half-space as-
sumption (which in turn requires the contact patch to be
small relative to the radii of curvature of the contacting
bodies) and is limited to smooth contact surfaces and
quasistatic dynamics. Another approach to computa-
tional rolling contact analysis is represented by Kalker’s
and Vollebregt’s CONTACT software [5, 6]: a versatile
and robust framework which is based on the boundary
element method. However, CONTACT is also based on
the half-space assumption, does not support a thermo-
mechanical analysis, and is limited to quasistatic dynam-
ics.

A third option is to employ a full FE discretization
of the contacting bodies. Although there are cases in
this context in which a standard Lagrangian kinematical
description can be used [7], an Arbitrary Lagrangian–
Eulerian (ALE) kinematical description [8, 9] is a more
suitable choice when large rolling distances and velocities
are involved. When properly configured, such a descrip-
tion separates the rigid body component of the rolling
motion from the deformation dependent part, and en-
ables linearization of the mechanical response. Further-

more, the region of contact remains largely stationary
throughout the rolling motion in this case, which allows
for localized mesh refinement and a compact computa-
tional domain.

The use of similar relative kinematics approaches for
analysis of rolling contact goes back to the eighties [10,
11, 12]. The relation between these methods and the
ALE methods that saw regular use in fluid mechanics
and fluid–structure interaction problems at the time was
observed in Nackenhorst [13]. In a later paper by the
same author, a complete mathematical formulation of
mechanical rolling contact in the context of an ALE kine-
matical description was established [8]. Here, detailed
derivations of the kinematical description, balance laws,
weak forms and contact kinematics are presented in the
ALE framework. The paper furthermore discusses com-
putational advantages gained from the use of the ALE
description, including the resulting time-independent de-
scription of stationary (steady-state) rolling and local-
ized mesh refinement, but also highlights complications
stemming from the associated difficulty of tracking mate-
rial points. These include handling inelastic material be-
haviour and keeping track of relative slip distances, both
of which were addressed in a subsequent paper [14]. In
Suwannachit and Nackenhorst [15], the use of an ALE
formulation for thermomechanically coupled stationary
rolling contact was introduced. Here, a thermoviscoelas-
tic constitutive model is employed, involving large de-
formations and temperature-dependent constitutive pa-
rameters.

In Draganis et al. [16], the mathematical framework
for thermomechanically coupled, frictionless, transient
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rolling contact was derived in the context of an ALE
description. Support for tangential contact stresses and
frictional heat generation was added to the contact for-
mulation in Draganis et al. [17]. Numerical examples in
the context of stationary rolling contact were here pre-
sented in a study of the thermomechanical response of
the computational model.

This paper concerns thermomechanically coupled,
transient, frictional rolling contact. It discusses com-
putationally efficient strategies for analysis of problems
involving variable velocities, as well as mixed control
between the ALE referential convective velocities and
corresponding driving forces. Numerical examples are
presented, covering a range of transient, thermomechan-
ically coupled rolling contact phenomena. Here, par-
ticular points of emphasis include dynamical effects in
the vicinity of the contact region and the time scales on
which mechanical and thermal mechanisms operate.

The remainder of the paper is outlined as follows: In
Section 2, the kinematical description of the rolling mo-
tion is described. The thermomechanical problem and
the contact formulation are presented in Sections 3 and 4,
respectively. Section 5 describes implemented numerical
stabilization schemes, strategies for computationally effi-
cient analysis of problems involving variable velocities, as
well as a method for mixed control between the ALE ref-
erential convective velocities and corresponding driving
forces. Numerical examples involving transient, thermo-
mechanical rolling contact phenomena are presented in
Section 6. Finally, Section 7 concludes the paper with a
summary and an outlook toward future work.

2 Kinematical description

The employed ALE description of cylinder–plate rolling
motion [8, 16] can be described as follows: Two interme-
diate configurations are utilized in addition to the initial
(“undeformed”) configuration, ΩX 3X, and the current
(“deformed”) configuration, ωX 3 x. The first interme-
diate configuration is denoted Ω̂ 3 X̂. The map from ΩX
to Ω̂ accounts for a rigid body rotation of the cylinder
and a pure translation of the plate. The second interme-
diate configuration is denoted ω̂ 3 x̂. The map from Ω̂
to ω̂ accounts for the deformation of cylinder and plate.
Both intermediate configurations feature a moving co-
ordinate system that follows the cylinder center. The
map from ω̂ to ωX accounts for a pure translation of
the system in going back to the original fixed coordinate
system.

The maps between the configurations are formulated
as X̂ = φ̂(X, t), x̂ = ϕ̂(X̂, t), x = φ̌(x̂, t) and x =
ϕ(X, t), so that ϕ(X, t) = φ̌(ϕ̂(φ̂(X, t), t), t), with cor-
responding deformation gradients f̂ , F̂ , f̌ and F . Fig-
ure 1 contains a schematic illustration of the employed

ΩX

Ω̂

ω̂

ωX

φ̂, f̂

ϕ̂, F̂

φ̌, f̌

ϕ,F

Figure 1: Illustration of configurations and maps relevant
to the employed ALE description.

configurations, with their intermediary maps and defor-
mation gradients.

The rigid body maps X̂ = φ̂(X, t) and x = φ̌(x̂, t)
can be expressed a priori from knowledge of the trans-
lational and rotational motion of the cylinder along the
plate:

X̂ = φ̂(X, t) =

{
R(t) ·X for X ∈ Ωc

X

X − X̄(t) for X ∈ Ωp
X

(1)

x = φ̌(x̂, t) = x̂+ X̄(t) for x̂ ∈ ω̂, (2)

where R is a rotation tensor, X̄ is the translation of
the cylinder center, and the notation (·)c and (·)p de-
notes subsets of the relevant domain corresponding to
the cylinder and plate domains, respectively. Above
and henceforth, a coordinate system originating from the
cylinder center is employed for the domains ΩX and Ω̂.
The Lagrangian problem of finding the map x = ϕ(X, t)
(or the displacement u(X, t) = ϕ(X, t)−X) is thus nar-
rowed down to the ALE problem of finding the map x̂ =
ϕ̂(X̂, t) (or the displacement û(X̂, t) = ϕ̂(X̂, t) − X̂).
For small strains, the ALE displacements û will be small,
which is generally not the case for the standard La-
grangian displacements u. Consequently, in the former
case (but not the latter) it is possible to linearize the
mechanical response.

Another advantage of the presented convective kine-
matical description is the fact that it allows for a com-
pact computational model: only a relatively short section
of the plate domain needs to be modelled, regardless of
rolling distance. Further, the position (in the intermedi-
ate domains) of the contact region in both cylinder and
plate is largely stationary throughout the rolling motion,
allowing for localized mesh refinement. Figure 4 illus-
trates these points.

A potential difficulty in convective formulations is the
tracking of boundaries [8]. In the present case, since a
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round cylinder and a flat plate are considered, the bound-
aries are stationary and this is not a problem.

2.1 Material time derivatives

The material time derivative of a tensor quantity s =
sX(X, t) = ŝ(X̂, t) (of any order) may be transformed
as follows:

Dts =
∂

∂t
ŝ(φ̂(X, t), t)

=
∂ŝ(X̂, t)

∂X̂
· ∂φ̂(X, t)

∂t
+
∂ŝ(X̂, t)

∂t

= (s⊗ ∇̂) · v̄ + dts,

(3)

where Dt(·) := ∂(·)/∂t|X1, dt(·) := ∂(·)/∂t|X̂ , ∇̂ is the

vector differential operator with respect to Ω̂, and v̄ is
the (undeformed) convective velocity:

v̄ := Dtφ̂(X, t) =

{
ω(t)Q · X̂ for X̂ ∈ Ω̂c

−V̄ (t)ex for X̂ ∈ Ω̂p
, (4)

where Q is the constant matrix fulfilling Ṙ ·RT = ωQ.
Here, ω is the counter-clockwise angular velocity and V̄
is the rightward translational velocity of the cylinder2.
Note that v̄(X̂, t) is the velocity in Ω̂ of the material
point X 3 ΩX which at the time t occupies the position
X̂ in Ω̂.

In particular, the material velocity and acceleration
are expressed as follows in terms of the ALE description:

v = Dtx = ˙̄X +Dtx̂ = ˙̄X + F̂ · v̄ + dtx̂ (5)

and

a = Dtv = ¨̄X + Ĝ : (v̄ ⊗ v̄) + 2(dtF̂ ) · v̄
+ F̂ · (Dtv̄) + dttx̂,

(6)

respectively. Here, Ĝ := x̂⊗ ∇̂⊗ ∇̂ and

Dtv̄ =

{
ω̇Q · X̂ − ω2X̂ for X̂ ∈ Ω̂c

− ˙̄V ex for X̂ ∈ Ω̂p
. (7)

A useful kinematical quantity in the context of rolling
contact is the creepage [18]:

ξ :=
(VT − VC)

(VT + VC)/2
, (8)

where VT = V̄ is the rightward translational velocity of
the cylinder and VC = −roω (where ro is the radius of the
cylinder) is its clockwise peripheral velocity. The creep-
age is thus the difference between the translational and
peripheral velocity of the cylinder, normalized by their

1X held fixed.
2For brevity, the argument t is henceforth omitted.

mean value. It can be used to characterize the rolling
motion in the stationary/quasistatic case: In an idealized
(undeformed) situation, ξ = 0 (VT = VC ⇒ V̄ = −roω)
corresponds to pure rolling, ξ < 0 to accelerated rolling
and ξ > 0 to decelerated rolling (braking). In particular,
ξ = 2 corresponds to pure sliding (ω = 0, V̄ arbitrary).

3 Thermomechanical problem

Assuming isotropic, homogeneous materials, small
strains and small temperature fluctuations, the gov-
erning thermomechanical equations (momentum balance
and energy balance, respectively) take the following form
in terms of the ALE description [16]:

ρ̂
[

¨̄X + Ĝ : (v̄ ⊗ v̄) + 2(dtĤ) · v̄

+ F̂ · (Dtv̄) + dttû
]
− P̂ · ∇̂− B̂ = 0 in Ω̂, (9)

3Kαθref(I : dtĤ + (Ĥ · v̄) · ∇̂)

+ ρ̂c
(
∇̂θ̄ · v̄ + dtθ̄

)
+ q̂ · ∇̂− r̂ = 0 in Ω̂. (10)

Here, ρ̂ is the density in Ω̂, Ĥ = F̂ − I is the displace-
ment gradient, B̂ is the external body force per unit
volume in Ω̂, K is the bulk modulus, α is the thermal
expansion coefficient, θ̄ = θ − θref is the excess temper-
ature with respect to the reference θref , c is the mass
specific heat capacity, and r̂ is the external heat power

per unit volume in Ω̂. Further, P̂ = P · f̂T
and q̂ = f̂ ·q

are push-forwards to Ω̂ of the first Piola–Kirchhoff stress
tensor P and the heat flux q, respectively. In particular,
a linear thermoelastic constitutive law is used for P̂ :

P̂ = E : [Ĥ − αθ̄I] = E : Ĥ − 3Kαθ̄I, (11)

where E is the elasticity tensor. Further, Fourier’s law is
used as a constitutive law for q̂:

q̂ = −k∇̂θ̄, (12)

where k is the constant heat conductivity. A more de-
tailed derivation is given in Draganis et al. [16], which
also states boundary conditions and presents the weak
and FE forms of the problem.

Note that the deformation-dependent terms in the en-
ergy balance equation represent the Gough–Joule effect:
reversible heating/cooling of the material resulting from
a nonzero strain rate [19]. This effect is negligible for
thermoelastic metals [20], and will therefore not be mod-
elled in the following numerical simulations.

By construction of the employed ALE kinematical de-
scription, the intermediate time derivatives dt(·) and
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x̂

n̂

m̂

x̂m

Figure 2: A point on the slave surface and its projection
on the master surface, along with relevant unit vectors.

dtt(·) vanish in the stationary case, resulting in a time-
independent formulation [16]. In the transient case, a
state of rolling where the cylinder’s translational and ro-
tational velocities are constant results in a problem in
which the time-dependence is confined to the solution
fields and external forces/fluxes. This means that in the
FE formulation of the problem, the constituent matrices
will be time-independent. If the assumption of constant
velocities is not valid, these matrices are time-dependent

(via the quantities ¨̄X and v̄).

4 Contact formulation

The employed thermomechanical contact formulation –
described in further detail in Draganis et al. [17] – is
based on the computational contact theory presented in
Wriggers [21]. In summary, a penalty formulation is
used for normal mechanical contact, and a regularized
version of Coulomb’s friction law is used for tangential
contact. A linear model of interfacial heat conduction is
employed, and the heat flux due to frictional heat genera-
tion is based on an equal local heat partitioning between
cylinder and plate. In the following, the basic kinemat-
ical and thermal quantities of the contact formulation
are presented in the context of transient dynamics. Fur-
ther, contact contributions to the weak form correspond-
ing to tangential mechanical and thermal contact are ex-
pressed, hence complementing the corresponding normal
contact contributions, previously expressed in Draganis
et al. [16].

As a point x̂ 3 ω̂ on the slave surface (here chosen as
the cylinder surface) approaches the master surface (the
plate surface), its projection point x̂m(x̂, t) on the master
surface, as well as the associated normal (n̂) and tangen-
tial (m̂) vectors can be identified (see Figure 2). The gap
function corresponding to the points x̂ and x̂m (or their

respective undeformed counterparts X̂ and X̂
m

(X̂, t))
can then be expressed as [21]

g = (x− xm) · n = (x̂− x̂m) · n̂, (13)

where n is the counterpart of n̂ in ωX . In terms of the

coordinates X̂ and t,

g = gX̂(X̂, t) :=
(
ϕ̂(X̂, t)

− ϕ̂(X̂
m

(X̂, t), t)
)
· n̂(X̂, t).

(14)

The slip velocity can be expressed as

ṡ = (Dtx−Dtx
m) ·m = (Dtx̂−Dtx̂

m) · m̂, (15)

where m is the counterpart of m̂ in ωX . In terms of the
coordinates X̂ and t,

ṡ = ṡX̂(X̂, t) :=
(

(Dtx̂)(X̂, t)

− (Dtx̂
m)(X̂

m
(X̂, t), t)

)
· m̂(X̂, t).

(16)

Using eq. (5), the expression for ṡ can be expanded and
divided into one stationary and one dynamic part:

ṡ = ṡstat(X̂, t) + ṡdyn(X̂, t), (17)

where

ṡstat =
(
F̂ (X̂, t) · v̄(X̂, t)

− F̂ (X̂
m
, t) · v̄(X̂

m
, t)
)
· m̂(X̂, t)

and

ṡdyn =
(

(dtx̂)(X̂, t)− (dtx̂
m)(X̂

m
(X̂, t), t)

)
· m̂(X̂, t).

As mentioned in Draganis et al. [17], the employed reg-
ularization of Coulomb’s law means that the step func-
tion that appears in the expression for the tangential
force is replaced by the function

φ(ṡ) = tanh(ṡ/εr). (18)

Here, εr is a regularization parameter: the step func-
tion (Coulomb’s law) is obtained in the limit εr → 0. εr
has to be carefully chosen: For values that are too high,
the computed solution will exhibit a dependence on εr,
whereas values that are too low lead to convergence prob-
lems in the iterative solver. Note also that the range of
acceptable values of εr depends on the magnitude of the
slip velocity in the contact region [17].

The temperature difference, expressed in terms of X̂
and t, is

∆θ(X̂, t) =θ(X̂, t)− θ(X̂m
(X̂, t), t)

=θ̄(X̂, t)− θ̄(X̂m
(X̂, t), t).

(19)

The contributions to the weak form residual [16] cor-
responding to frictional forces and frictional heat gener-
ation are, respectively,

−
∫

Γ̂s
c

εµgφ(ṡ)[NT
u (X̂)−NT

u (X̂
m

(X̂))]m̂ dL
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and

1

2

∫

Γ̂s
c

γfεµgφṡ[N
T
θ (X̂) +NT

θ (X̂
m

(X̂))] dL.

Here, Γ̂s
c is the contact surface, ε is the penalty stiff-

ness [21, 16], µ is the coefficient of friction and γf is the
frictional heat transfer ratio: a parameter governing the
ratio of the heat generated in the contact interface that
enters the contacting bodies. An equal local heat parti-
tioning between cylinder and plate was assumed.

In the discretized domain, a node-to-segment approach
is used to construct contact elements across the con-
tact interface. In the current study, these are chosen
as linear–linear, regardless of the element orders used
to discretize the two domains. For the triangular mesh
used subsequently (see Section 5.4), this means that node
forces and fluxes that arise due to the contact interaction
are assembled only to corner nodes.

4.1 Irregular surface profiles

As mentioned in Section 2, one of the disadvantages of
the ALE description is the associated difficulty of track-
ing domain boundaries. Specifically, since the ALE de-
scription involves convection of material points through
the domain, any irregularity along the boundary is sim-
ilarly transported in the direction of the convective flow
as time progresses. This necessitates special measures
such as frequent re-meshing to keep the mesh consistent
with the geometry, likely outweighing any benefit gained
from using the ALE description in the first place. These
complications are avoided if all boundaries that are not
in- or outflow boundaries follow the streamlines of the
convective velocity field, as is the case for the currently
considered problem (see Figure 5 and eq. (4)).

One way of modelling non-smooth surface profiles in
the context of an ALE description while avoiding the
complications discussed above, is by way of modification
of the gap functions of the contact formulation [22, 23]
(eq. (13)). Here, an offset function, fixed in the material
domain ΩX and representing the desired modification of
the nominal surface profile, is imposed on the gap func-
tion g. No modifications to the computational domain
itself are required.

5 Solution method

5.1 Numerically stabilized finite element
formulation

The thermomechanical boundary value problem is dis-
cretized using the FE method. The weak and FE forms
of the problem are derived in Draganis et al. [16].

Numerical instability problems related to the dis-
cretized energy balance equation have been found to arise

for the studied range of convective velocities. In order
to address these problems, two different numerical stabi-
lization methods are applied: For the plate domain, the
Streamline-Upwind Petrov–Galerkin (SUPG) method [9,
24] is used. In the cylinder domain, a quasi residual-free
bubble approach [25, 26], which is a variant of the scheme
presented in Brezzi et al. [27], is used for the cylinder do-
main. The reader is referred to Draganis et al. [16] for a
detailed description of the latter method, and an inves-
tigation of its performance.

5.2 Matrix decomposition scheme for
system matrices

5.2.1 Finite element matrices

As mentioned in Section 3, the use of the ALE descrip-
tion results in an FE formulation wherein the constituent
matrices (and vectors) depend on a set of convective ve-
locity parameters. As a result, in simulations where these
parameters vary in time, there arises an apparent need to
reassemble in each time step the system matrices/vectors
that depend on these parameters. This would result in
very high computation times. However, in the present
case (see Draganis et al. [16]), it may be observed that
for each FE matrix/vector which depends on the con-

vective velocity parameters ω, ω̇, V̄ and ˙̄V , functions of
these parameters may be factored out:

Kuu = K0
uu + ω2Kω2

uu + ω̇Kω̇
uu + V̄ 2KV̄ 2

uu + ˙̄VK
˙̄V
uu,

Cuu = ωCω
uu + V̄CV̄

uu,

Kθθ = K0
θθ + ωKω

θθ + V̄KV̄
θθ,

Kθu = ωKω
θu + V̄KV̄

θu,

f
uv

= f ext

uv
+ ω2fω

2

uv
+ ω̇f ω̇

uv
+ ˙̄V f

˙̄V

uv
.

(20)

See Appendix A for a detailed derivation of these expres-
sions. Note that the matrices Muu, Cθu, Kuθ and Cθθ,
and the force vectors f

us
, f

θv
and f

θs
are independent

of the convective velocity parameters [16].
Each right-hand side expression above is a linear com-

bination of a series of time-independent matrices, with
coefficients that are functions of the convective veloc-
ity parameters and their time-derivatives. Note that
these time-independent matrices only have to be assem-
bled once. After having done so, the time required for
constructing a system matrix as a linear combination of
these pre-assembled components is negligible compared
to that of a full assembly of the matrix in question. Al-
though complicated to implement, this scheme results
in a vast reduction in computation times. Furthermore,
in cases where the FE matrices need to be assembled
multiple times per time step (such as when the external
driving moment or horizontal force is to be controlled:
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see Section 5.3), the reduction in computation time is
even more significant.

5.2.2 Bubble stabilization matrices

The employed bubble function stabilization scheme in-
volves constructing a local subgrid in each element, the
configuration of which depends on the convective velocity
field [16, 25]. For this reason, the resulting contributions
to the FE matrices/vectors exhibit very complex depen-
dences on the convective velocity parameters, and hence
do not lend themselves to factorization in the manner de-
scribed above. Instead, these contributions will be com-
puted at predetermined instants in time: In case ω and V̄
are controlled, the contributions are updated whenever
any one of these has changed by more than a specified
factor as compared to the value at the previous update.
This way, the total number of updates does not increase
with the number of time steps. A convergence study with
respect to this update frequency should be performed in
this case, in order to ascertain the numerical soundness
of the results.

In case the external moment M ext and the external
horizontal force F ext

x are to be controlled, the angular
velocity ω and the horizontal velocity V̄ (respectively)
are unknown quantities (see Section 5.3). Hence, pre-
computation of the stabilization matrices is not possible
in this case, necessitating a modification of the strategy
stated above. Instead, the stabilization contributions are
assembled in the first time step (for which there exists
a stationary start guess, containing information about
initial velocities), and then reassembled at any time step

at which the converged values of ωn+1 and V̄
n+1

has
changed by more than a specified factor as compared to
the value at the previous update. It is noted that this
complication emerges in part due to the adoption of a
monolithic solution scheme (see Section 5.5). In con-
trast, in a staggered approach in which the mechanical
problem is first solved separately, information about the
convective velocities is always available at the stage when
the thermal problem is to be solved, enabling computa-
tion of the stabilization contributions.

5.2.3 SUPG matrices

As mentioned in Section 5.1, the SUPG method [9] is
used to stabilize the response in the plate domain. This
method employs the test function

δθ̄SUPG = τeρ̂cv̄ · ∇̂δθ̄G,

where δθ̄G is the standard Galerkin test function and

τe =
he

2ρ̂c|v̄| (coth(Pe)− 1/Pe).

Here, he is a measure of the element size and Pe =
ρ̂c|v̄|he/(2k) is the Peclet number. Note that Pe depends

F ext
x

F ext
y

M ext

F c
x

F c
y

Figure 3: Resultants of external forces and moments act-
ing on the cylinder.

both on the convective velocity parameters and on the
element-dependent quantity he.

The matrix decomposition scheme described in Sec-
tion 5.2.1 relies upon a reformulation of each matrix into
a sum of matrices, each one being a multiplicative split
into one matrix independent of the convective velocity
parameters, and a coefficient that may be a function
of these parameters. The term coth(Pe) in the expres-
sion for τe contains both the element-dependent quantity
he and the convective velocity v̄. It therefore renders
such a decomposition impossible for the SUPG contri-
butions. This problem can be circumvented by approxi-
mating coth(Pe) by a Taylor series for low values of Pe,
and by 1 for high values. Which of these approxima-
tions to choose can be decided on an element-to-element
basis. The approach taken subsequently is to use a first-
order version of this scheme where applicable (i.e. where
encountered values of Pe do not come close to the in-
termediate range in which the above approximation is
inaccurate) and the approach described in Section 5.2.2
– involving full assembly at select time steps – for all
other cases.

5.3 Control of driving forces

Figure 3 illustrates all external forces and moments act-
ing on the cylinder in the considered case. Here, M ext,
F ext
x and F ext

y represent the resultant external driving
moment and the two components of the resultant exter-
nal driving force acting on the cylinder inner boundary.
F c
x and F c

y are the two components of the resultant con-
tact force on the cylinder arising due to interaction with
the plate.

It is noted that (M ext, ω) and (F ext
x , V̄ ) are both work-

conjugate pairs, in that M ext · ω and F ext
x · V̄ represent

rates of work done on the cylinder. As such, one member
of the pair must be prescribed in each case, while the
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other takes the role of a reaction, computable in post-
processing. Prescribing either one of the velocity com-
ponents ω and V̄ is straightforward, since they appear
in the expression for v̄ (eq. (4)). Conversely, prescribing
either one of M ext and F ext

x requires the introduction of
constraint equations and iteration upon the respective
unknowns ω and V̄ .

5.3.1 Stationary dynamics

The FE formulation of the stationary problem can be
written as follows [16]:

ru(û, θ̄, ω, V̄ ) = f
int,u

(û, θ̄, ω, V̄ )− f
ext,u

= 0,

rθ(û, θ̄, ω, V̄ ) = f
int,θ

(û, θ̄, ω, V̄ )− f
ext,θ

= 0.
(21)

Here, f
ext,u

and f
ext,θ

contain external forces: both pre-

scribed forces and reactions. Further,

f
int,u

(û, θ̄, ω, V̄ ) = Kuu(ω, V̄ ) û+Kuθ(ω, V̄ )θ̄

− f
conv,u

(ω, V̄ )− f
c,u

(û, θ̄, ω, V̄ ),

f
int,θ

(û, θ̄, ω, V̄ ) = Kθu(ω, V̄ )û

+ (Kθθ(ω, V̄ ) +Kstab
θθ (ω, V̄ ))θ̄ − f stab

conv,θ
(ω, V̄ )

− f
c,θ

(û, θ̄, ω, V̄ ).

(22)

are internal forces. Here, f
c,u

and f
c,θ

are the contact

contributions and f
conv,u

represents fictitious (inertial)

forces arising due to the employed kinematical descrip-
tion. The superscript “stab” denotes contributions cor-
responding to stabilization schemes (see Section 5.1).

In order to prescribe the moment M and/or the ver-
tical force Fx acting on the cylinder hub, one or both
of the following constraint equations are added to the
equation system:

rω(û, θ̄, ω, V̄ ) = M(û, θ̄, ω, V̄ )−M ext = 0

rV̄ (û, θ̄, ω, V̄ ) = Fx(û, θ̄, ω, V̄ )− F ext
x = 0.

(23)

Here,

M(û, θ̄, ω, V̄ ) = AM (û)f
ext,u

(û, θ̄, ω, V̄ )

= AM (û)f
int,u

(û, θ̄, ω, V̄ )

Fx(û, θ̄, ω, V̄ ) = AFx
f

ext,u
(û, θ̄, ω, V̄ )

= AFx
f

int,u
(û, θ̄, ω, V̄ )

(24)

where AM (û) and AFx
are appropriately constructed

matrices (see Appendix B.1). The deformation-
dependence of the former matrix, owing to the slight
change in shape of the cylinder inner boundary in its
deformed state, is neglected in the following.

In case both M and Fx are to be controlled (which
will be assumed in the following), the set of unknowns
to iterate upon is û, θ̄, ω and V̄ . The resulting non-linear
problem is expressed as

r(X) = 0, (25)

where

r(X) =




ru(X)
rθ(X)
rω(X)
rV̄ (X)


 , X =




û
θ̄
ω
V̄


 . (26)

In order to express the tangent stiffness ∂r/∂X for this
system, analytical expressions for the derivatives of f

int,u

and f
int,θ

with respect to ω and V̄ are additionally re-

quired. One may here take advantage of the decompo-
sition of time-dependent FE matrices and vectors de-
scribed in Section 5.2. Starting from these expressions
– being linear combinations of coefficients that are func-
tions of ω and V̄ , and matrices that do not depend on
these parameters – this differentiation is straightforward
(see Appendix B.2).

Similarly, derivatives of SUPG contributions are sim-
ple to express in cases where the matrix decomposition
scheme is applicable, but complicated otherwise. Deriva-
tives of the bubble stabilization contributions are very
complicated to express, due to their complex dependence
on the convective velocities (see Section 5.2.2). The
course taken in the current paper is to ignore the con-
tribution from the stabilization terms to the rows and
columns of the tangent stiffness matrix corresponding to
ω and V̄ .

5.3.2 Transient dynamics

In the transient case, the residual equation for each time
step is

r̃( Xn+1 ) = 0,

where r̃( Xn+1 ) is the time-discretized residual associ-
ated with the time interval tn < t < tn+1 and Xn+1 =

[ ûn+1 θ̄
n+1

ωn+1 V̄
n+1

]T is the set of unknowns. The
components of the residual are

r̃u( Xn+1 ) = f̃
int,u

( Xn+1 )− f̃
ext,u

= 0,

r̃θ( Xn+1 ) = f̃
int,θ

( Xn+1 )− f̃
ext,θ

= 0

r̃ω( Xn+1 ) = M̃( Xn+1 )− M̃ ext = 0

r̃V̄ ( Xn+1 ) = F̃x( Xn+1 )− F̃ ext
x = 0,

(27)
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where

f̃
int,u

( Xn+1 ) = M̃uuṽd( ûn+1 ) + C̃uuṽ( ûn+1 )

+ K̃uu
˜̂u( ûn+1 ) +Kuθ

˜̄θ( θ̄
n+1

)

− f̃
conv,u

( ωn+1 , V̄
n+1

)− f
c,u

( Xn+1 )

f̃
int,θ

( Xn+1 ) = C̃θuṽ( ûn+1 ) + K̃θu
˜̂u( ûn+1 )

+ C̃θθ
˜̄θd( θ̄

n+1
)

+ (K̃θθ + K̃
stab

θθ ) ˜̄θ( θ̄
n+1

)

− f̃ stab

conv,θ
( ωn+1 , V̄

n+1
)− f

c,θ
( Xn+1 )

v = ˙̂u.

(28)

(the dependence of the M̃ - C̃- and K̃-matrices above

on ωn+1 and V̄
n+1

has been suppressed for brevity). In
the above, the notation (̃·) denotes quantites in which all
time-dependent quantities are time-discretized as

s ≈ s̃ = Θ sn+1 + (1−Θ) sn ,

and their time-derivatives as

ṡ ≈ s̃d =
sn+1 − sn

∆t

Here, Θ = 1 in the present case (corresponding to an
Euler Backward scheme) and ∆t is the time step size.
Note that the contact contributions f

c,u
, f

c,θ
are always

evaluated at the current time step.
The construction of the tangent stiffness matrix in

the transient case additionally requires the derivatives

of f̃
int,u

and f̃
int,θ

with respect to ωn+1 and V̄
n+1

.

Here, as before, the contributions from the stabilization
matrices are neglected. Noticing that

∂s̃

∂ sn+1
= Θ,

∂s̃d

∂ sn+1
= 1/∆t,

and that the transient parts of the contact forces are in-

dependent of ωn+1 and V̄
n+1

(see Section 4), it is seen
that the construction of the tangent stiffness matrix in
the transient case does not involve any significant com-
plications as compared to the stationary case.

5.4 Discretization

The FE formulation of the problem is implemented in
MATLAB. The element type used is a triangular ele-
ment with one/two degrees of freedom per node for the
thermal/mechanical fields, respectively. The approxima-
tion for both displacements and temperatures is piece-
wise linear in the plate and piecewise quadratic in the
cylinder.

Figure 4: Employed FE mesh, with a zoomed-in view of
the refined contact region.

The employed mesh, shown in Figure 4, is constructed
according the scheme described in Draganis et al. [16].
The Euler-backward scheme is chosen for the time-
discretization.

5.5 Contact iterations

The addition of the nonlinear contact contributions to
the (otherwise linear) FE formulation of the thermo-
mechanical boundary value problem leads to a nonlin-
ear equation system. This system is solved monolithi-
cally by the Newton method, employing a contact iter-
ation scheme following Wriggers [21]. For the transient
problem, the contact contributions are consistently eval-
uated at the current time step, regardless of the time-
discretization scheme used for the solution fields in other
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terms.
In the frictional contact iterations, convergence can

sometimes be difficult to achieve, especially when slip
velocities and/or normal pressures are high. For the sta-
tionary problem (e.g. when computing the stationary
start configurations used for the transient simulations), a
velocity stepping scheme is implemented to address this
issue. Here, convective velocities in cylinder and plate
are gradually increased, the solution for one step serving
as a start guess for the next. The start guess used for the
first velocity-stepping iteration is the solution to the cor-
responding frictionless contact problem. The start guess
used here is in turn obtained from a simplified problem
employing appropriate Hertzian contact pressure distri-
butions as contact loads.

In the transient case, convergence problems might
arise as a result of the chosen time step size being too
large to resolve dynamical phenomena local to the con-
tact region. Hence, convergence may in this case be fa-
cilitated by a reduction of the time step size.

6 Numerical examples

The following numerical examples are based on a 2D
(plane strain) model of a hollow cylinder rolling on a
plate. The model features an isotropic, homogeneous,
linear elastic material. A vertical force is applied on
the inner boundary (hub) of the cylinder. Gravitational
loads on the bodies are not included, whereas inertial ef-
fects are modelled. The base of the plate is fixed in all
degrees of freedom and the cylinder hub is fixed in the
horizontal direction (in Ω̂). All other boundaries are free.
The temperature is prescribed (to the reference tempera-
ture) along the cylinder hub and at the plate ends, while
all other boundaries (not in contact) are thermally insu-
lated. Figure 5 shows a schematic illustration of the ge-
ometry, boundary conditions and loads of the employed
model. Note that the resultant driving force and mo-
ment (shown in Figure 3) are not included in this figure.
The reason is that they are not imposed explicitly: They
either take the form of reactions or are imposed via ad-
ditional constraint equations (see Section 5.3).

A reference parameter setup (used in the following un-
less otherwise indicated) is now defined. Material pa-
rameters in both bodies are: Young’s modulus E = 200
GPa, Poisson’s ratio ν = 0.3, specific heat capacity c =
460 Jkg−1K−1, thermal conductivity k = 45 Wm−1K−1,
thermal expansion coefficient α = 4.8·10−6K−1 and den-
sity ρ = 8·103 kgm−3. Outer and inner radii of the cylin-
der are ro = 50 cm and ri = 5 cm, respectively. The
height of the plate is h = 0.1 m and the width of the
modeled plate domain is chosen as b = 1 m. The coef-
ficient of friction is µ = 0.4, the (velocity-independent)
interfacial heat conductivity is kc = 107 Wm−2K−1, the
frictional heat transfer ratio is γf = 10%, the penalty

A

B

C C

D

Figure 5: Schematic illustration of the thermomechani-
cal model. A: applied mechanical load, B: cylinder hub
(fixed in horizontal direction, fixed temperature), C: ar-
tificial plate domain ends (fixed temperature), D: plate
base (fixed in all displacement degrees of freedom).

stiffness is εn = 5 TN/m and the regularization param-
eter for the friction law is εr = 10−4 m/s. The reference
(environmental) temperature is θref = 293 K and the
applied mechanical load is F ext

y = 100 kN/m.

For some of the subsequent numerical examples (when
explicitly stated), Rayleigh damping [28] is implemented.
When it is used, the coefficients corresponding to the
mass- and stiffness matrices are r0 = 0 and r1 = 10−4 s.
Wherever Rayleigh damping is not used in the following,
the reason is to keep computed results free from extrane-
ous influencing factors, in order to facilitate and clarify
their qualitative study.

6.1 Analytical validation

Carter theory concerns 2D rolling contact between an
elastic cylinder and an elastic half-space [2, 18, 3]. By
Carter theory, a given normal load and creepage ξ (as
defined in eq. (8)) – along with information about ge-
ometrical and constitutive parameters – correspond to
a certain tangential pressure distribution. Carter’s ana-
lytical theory requires the assumptions underlying Hertz
theory to hold, i.e. it concerns stationary/quasistatic,
purely mechanical rolling, and is based on the half-space
assumption. The Carter–Hertz theory will nevertheless
be used in the following for comparisons with computed
results.

The computational model has been validated against
analytical solutions to one-dimensional transient heat
conduction problems.
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Figure 6: Force–creepage curve from a series of station-
ary simulations, along with the analytical Carter–Hertz
solution.

6.2 Transient simulations

A series of simulations featuring various transient, ther-
momechanically coupled rolling contact phenomena are
presented in the following. Each simulation employs a
given stationary solution – prevailing at time t ≤ 0 – as
a start configuration.

6.2.1 Stick/slip transitional states

Figure 6 shows the ratio of the resultant horizontal fric-
tion force F c

x and its limit µF c
y versus the creepage ξ for a

series of stationary simulations3. The analytical Carter–
Hertz force–creepage curve is also shown. If ξ = ξfs is
the point of onset of full slip, it is seen from the figure
that ξfs ≈ −6 · 10−4. Furthermore, it is noted that the
simulated resultant tangential contact force is nonzero
for ξ = 0. This is a consequence of local deformations
in the vicinity of the contact region slightly displacing
the creepage value corresponding to pure rolling (i.e.
rolling with F c

x = 0). This phenomenon also accounts
for the discrepancy between the two curves in the inter-
val 0 < ξ < ξfs. However, the creepage ξ = 0 will still
be used in the following whenever free rolling is to be
prescribed.

In order to analyze the dynamical transition from pure
rolling to full slip, a series of simulations are performed.
For each one, the start condition is a state of stationary,
pure rolling with V̄ = 50 km/h. During the time interval
0 < t < 0.7te, the creepage is varied linearly from ξ = 0

3Due to local deformations, the x- and y-directions do not ex-
actly coincide with the tangential and normal directions, respec-
tively, across the contact region. F c

x/(µF
c
y ) is therefore only ap-

proximately equal to unity in the case of full slip, although the
difference is negligible.
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Figure 7: Prescribed time-history of ξ.

to ξ = −8·10−4, whereafter it is kept constant. Here, te is
the end time of the simulation. The time interval of each
simulation performed in the following can be denoted
as 0 < t̃ < 1, where t̃ := t/te is a normalized time
parameter. The time-history of the prescribed creepage
can then be expressed as

ξ(t̃) =

{
ξ0t̃/t̃0 0 ≤ t̃ < t̃0

ξ0 t̃0 ≤ t̃ ≤ 1,
(29)

where ξ0 = −8 · 10−4 and t̃0 = 0.7 (see Figure 7). Note
that ξ = ξ0 > ξfs represents a state of rolling well above
the limit of full slip (cf. Figure 6). The creepage is pre-
scribed by holding V̄ constant and appropriately control-
ling ω. The subsequent simulations all feature different
values of te, which means that the value of the creepage
rate ξ̇ in the interval 0 < t̃ < t̃0, namely ξ̇ = ξ0/(t̃0te),
also takes different values. Table 1 shows the simulation
time te, the resulting creepage rate ξ̇, and the number of
time steps used for each simulation. Note that simula-
tions 5 and 6 use a larger number of time steps than the
others. This is for convergence reasons.

Figure 8 shows the frictional ratio F c
x/(µF

c
y ) versus

the normalized time t̃ for each simulation. The vertical
dashed line indicates the instant in time t̃ = t̃0, i.e. the
time in which ξ reaches its final value ξ0. Also included in
the figure is the analytical Carter–Hertz curve, and the
data from the stationary/quasistatic simulations, previ-
ously shown in Figure 6. Here, the well-defined relation
between the creepage ξ and the normalized time t̃ in each
simulation (eq. (29)), is used to adapt this data to Fig-
ure 8, in which the quantity used for the x-axis is the
latter. The curves representing the simulations 1–6 are
arranged from bottom to top in the figure.

It is seen from Figure 8 that for approximately |ξ̇| <
4 · 10−3 s−1, the creepage rate is sufficiently low for the
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Figure 8: Frictional ratio F c
x/(µF

c
y ) vs. normalized time

t̃ for the considered transient simulations, along with
stationary/quasistatic (circles) and analytical (dashed
curve) solutions. The vertical dashed line corresponds to
t̃0: the time at which ξ reaches its final value. The curves
representing the simulations 1–6 are arranged from bot-
tom to top.

Table 1: Number of time steps, simulation times te and
creepage rates ξ̇ used in the transient simulations.

Sim. no. Time steps te [s] ξ̇ [s−1]
1 100 1.0 · 10−3 −1.1
2 100 3.2 · 10−3 −3.6 · 10−1

3 100 1.0 · 10−2 −1.1 · 10−1

4 100 3.2 · 10−2 −3.6 · 10−2

5 200 1.0 · 10−1 −1.1 · 10−2

6 200 3.2 · 10−1 −3.6 · 10−3

mechanical response to behave essentially quasistatically,
whereas in the approximate range |ξ̇| > 4 · 10−3 s−1, the
response exhibits transient behaviour: the mechanical
response lags behind the variation in creepage.

Figure 9 shows snapshots of the normal and tangen-
tial stress distributions (acting on the plate surface) at
specified values of t̃ (and thus specified values of ξ).
Each figure shows data from two of the transient sim-
ulations: no. 3 & 5, along with data from the corre-
sponding stationary/quasistatic solution. The analyti-
cal Carter–Hertz contact stress curves are also included.
As mentioned earlier, the discrepancies between the an-
alytical curves and the stationary solutions are due to
deformation-dependent effects that are not modelled in
Carter–Hertz theory. In each time instant, the momen-
taneous discrepancy between the transient solutions and
the stationary/quasistatic solution – which is larger for
higher values of ξ̇ – is due to dynamical effects. Note from
Figure 8 that the points at which the transient curves
connect with the quasistatic curve vary between the sim-
ulations. In particular, this occurs around t̃ = 0.65 for
simulation no. 3 and around t̃ = 0.5 for simulation no.
5. Before this point of connection, the stress distribution
– and the extents of the regions of stick/slip – differ from
those of the quasistatic solution. This is reflected in the
plots in Figure 9.

Figure 10 shows the temperature at the point X̂ ∈ Ω̂
pertaining to initial contact on the cylinder surface, ver-
sus the normalized time t̃, for the considered set of simu-
lations. Here, as in Figure 8, the curves representing the
simulations 1–6 are once again positioned from bottom
to top. No tendency toward a convergence to quasistatic
behaviour can be observed from the figure: much smaller
creepage rates ξ̇ than those presently considered would
be required for that to occur. Note also how the temper-
ature barely changes at all for the highest creepage rate
featured (curve no. 1). Clearly, the mechanical response
operates on much smaller time scales than the thermal
response.

6.2.2 Tractive rolling

In the following, a series of simulations featuring tractive
rolling are presented. In the first set of simulations, the
rolling velocities ω and V̄ are controlled. In a following
simulation, the driving force Fx and the driving moment
M will instead be chosen as the controlled quantities.

Controlled velocities Sudden, heavy braking from a
state of pure rolling (ξ = 0) with V̄ = 50 km/h, to a
state of pure rolling with V̄ = 10 km/h, is considered.
The simulation time is te = 10 s and the number of time
steps is 100. Two simulations (a and b) are performed,
which differ only in the prescribed time-history of V̄ .
In both simulations, ω is prescribed in the same way.
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(a) t̃ = 0.17 (ξ = −2 · 10−4).
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(b) t̃ = 0.44 (ξ = −5 · 10−4).
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(c) t̃ = 0.61 (ξ = −7 · 10−4).

Figure 9: Contact stress distributions on the plate sur-
face for three different values of t̃ and ξ. In each plot, the
upper/lower set of curves represents normal/tangential
contact stress distributions, respectively. The Carter–
Hertz analytical solution, the stationary/quasistatic so-
lution, and two transient solutions are included.
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Figure 10: Excess temperature at the point of initial con-
tact on the cylinder surface versus the normalized time
t̃, for the considered set of simulations. The curves rep-
resenting the simulations 1–6 are arranged from bottom
to top.

In particular, ω reaches its final value before V̄ does.
The chosen piecewise linear–quadratic time-histories of
VT = V̄ and VC = −roω are shown in Figure 11.

Figure 12 shows the resulting time-history of the creep-
age ξ. For reference, recall that ξ = 2 corresponds to
pure sliding (see eq. (8)). For both simulations, the
smallest nonzero value of the creepage for any discrete
time step is still well above the full slip limit ξfs, i.e. the
transition between stick/slip and full slip is not resolved
in this simulation (as opposed to the case in Section
6.2.1). For this reason, it is also the case that F c

x = µF c
y

whenever ξ 6= 0.

Figure 13 shows the resultant horizontal reaction force
F ext
x (see Figure 3), the resultant horizontal contact force
F c
x , and their sum F tot

x := F ext
x + F c

x . Note that F tot
x =

mcyl
˙̄V , where mcyl is the mass of the cylinder, i.e. F tot

x

derives directly from controlled quantities (cf. Figure 11,
where V̄ (t) is shown). Further, note that the value of F c

x

is not quite zero for ξ = 0. The reason, as mentioned in
Section 6.2.1, is that local deformations in the contact
region slightly displace the creepage value corresponding
to pure rolling.

As mentioned, F ext
x = mcyl

˙̄V − F c
x is a reaction. For

simulation a, F ext
x is almost zero in the initial interval in

which V̄ varies linearly (see Figure 13a). It can there-
fore be concluded that it is the frictional force alone
that accounts for the acceleration in this region, i.e.

F c
x ≈ F tot

x = mcyl
˙̄V here. Further, since F c

x = µF c
y

in the region where F tot
x varies linearly, the reaction

F ext
x must as a result include a spike here (i.e. to ful-

fill F ext
x = F tot

x − F c
x), which may be observed in both

12
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Figure 11: Prescribed time-histories of the translational
rolling velocity V̄ and the peripheral velocity −roω.
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Figure 12: Time-history of the creepage ξ as a result of
the prescribed time-histories of V̄ and ω.
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Figure 13: Computed time-evolutions of horizontal
forces.

13



0 2 4 6 8 10
−2

−1

0

1

2

3

4
x 10

4

Time [s]

M
om

en
t a

bo
ut

 c
yl

in
de

r 
ce

nt
er

 [N
m

]

 

 
Mext

Mc

M tot

(a) Simulation a.

0 2 4 6 8 10
−2

−1

0

1

2

3

4
x 10

4

Time [s]

M
om

en
t a

bo
ut

 c
yl

in
de

r 
ce

nt
er

 [N
m

]

 

 
Mext

Mc

M tot

(b) Simulation b.

Figure 14: Computed time-evolutions of moments about
the cylinder center.

plots in Figure 13. Seen from another perspective, the
spike in F ext

x is a consequence of the particular choice of
V̄ (t) and ω(t) deviating from the natural time-evolutions
of these quantities that would result from controlling the
external moment M and the external force Fx.

Figure 14 shows the resultant reaction moment about
the cylinder center, M ext (see Figure 3), the resultant
moment of the contact forces, M c ≈ roF

ext
x , and their

sum M tot := M ext +M c (all moments are positive in the
counter-clockwise direction). Note that M tot = Icylω̇,
where Icyl is the moment of inertia of the cylinder about
its central axis. Thus, M tot derives directly from con-
trolled quantities (cf. Figure 11, where ω(t) is shown).
The time-evolution of M c can be understood by noting
that M c ≈ roF

ext
x (see Figure 3) and comparing with

Figure 13.
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Figure 15: Temperature at the point of initial contact on
the cylinder surface for simulations a and b.

evolution of M ext (i.e. for t > 1.1 s in both simulations),
this moment is exactly equal and opposite to M c: The
latter, directed clockwise, tends to bring the system back
to a state of pure rolling, and must thus be opposed by a
counter-clockwise moment in order to satisfy the require-
ment ω̇ = 0 (cf. Figure 11). At the first plateau, M ext

is larger still, so as to give rise to a counter-clockwise
(braking) angular acceleration (ω̇ > 0).

Figure 15 shows the time-evolution of the temperature
at the point of initial contact on the cylinder surface for
both simulations. The shape of the curve is close to that
of the creepage curve, seen in Figure 12. The reason is
that the latter corresponds closely to the time-history of
local slip velocities in the contact region, and hence to
the frictional heat generation.

Controlled driving forces In the next example, the
driving force and moment are controlled (using the
methodology described in Section 5.3) with the aim to
bring about a motion similar to that achieved in the pre-
vious example: Starting from a stationary state of pure
rolling (ξ = 0) with V̄ = 0, the external driving moment
M ext is varied in a piecewise linear fashion (as shown in
Figure 16b), so as to reduce the horizontal rolling veloc-
ity V̄ to around 10 km/h in a time that is in the order
of 5 s. The external horizontal driving force F ext

x is kept
largely constant, except that it is varied linearly from its
start value to its end value (see Figure 16a).

The initial and final values of M ext and F ext
x are cho-

sen to the values they obtain in the case of stationary,
pure rolling featuring V̄ = 50 km/h and V̄ = 10 km/h,
respectively (separately determined in a set of stationary
analyses).

Temperatures will not be included in the presented
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Figure 16: Time-histories of forces and moments.
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Figure 17: Computed time-evolutions of the transla-
tional rolling velocity V̄ and the peripheral velocity
−roω. Note: the two curves coincide in the figure.

results, which will instead be focused on the computed
velocities. Hence, there is no need for numerical stabi-
lization in this case, and it will therefore not be imple-
mented.

The resulting time-evolutions of the velocities and the
creepage are shown in Figure 17 and Figure 18, respec-
tively. It is noted that the maximum value of the creep-
age is only about 1.9·10−4, which means that the brak-
ing tangential contact force F c

x only reaches about 48%
of its maximum value (cf. Figure 6). In contrast, simu-
lation a of the previous example (which is comparable to
the current simulation in that in both cases, F tot

x ≈ F c
x

throughout most of the braking phase) involved a fully
developed frictional force F c

x . Hence the shorter braking
time in the latter case (compare Figures 11 and 17).

6.2.3 Negotiation of non-smooth surface profile

Pure sliding (ξ = 2) with V̄ = 50 km/h over a sharp hole
in the plate is considered. The hole has a width of 0.5
mm, perpendicular edges, and is modelled as described in
Section 4.1. It is deep enough so that contact between its
bottom and the cylinder does not occur during traversal,
but may be considered shallow enough so as not to affect
the structural properties of the plate domain. It is noted
that the width of the hole is about 1/3 of the contact
patch width (cf. Figure 9). The hole is positioned so that
the contact patch reaches it at approximately t1 = 90 µs
and leaves it at approximately t2 = 230 µs. Due to the
violent interaction between cylinder and plate as the hole
is traversed, Rayleigh damping is implemented, using the
coefficients stated previously. The total simulation time
is te = 10 ms and the number of time steps is 1000.

Figures 19 and 20 show the time-evolution of the tem-
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Figure 18: Computed time-evolution of the creepage.

peratures measured at the nominal contact points on the
cylinder and plate surfaces. The former figure shows the
time interval 0 < t < 2t2 and the latter the interval
0 < t < te. The momentaneous, local loss of contact,
which occurs as the cylinder traverses the hole in the
plate (during the time interval t1 < t < t2), results in a
slight, temporary decrease in the rate of frictional heat
generation, as well as in the interfacial heat flux. Figure
19 shows that the latter effect is dominant, as there is an
increase in temperature in the cylinder domain, owing
to a temporary decrease in the convective cooling effect
that arises due to thermal interaction with the colder
plate. Conversely, there is a decrease in temperature in
the plate domain, owing to a temporary decrease in the
supply of heat from the hotter cylinder domain. The
effect of the temporary decrease in the rate of frictional
heat generation – which should tend to lower the temper-
atures in both cylinder and plate – is visible in that the
magnitude of the temperature change during the traver-
sal of the hole is larger in the plate than in the cylinder.
Had this effect been absent, these temperature changes
would have been roughly equal. Had it been dominant,
the temperature would decrease in both domains.

After the contact patch has passed over the hole (i.e.
for t > t2), the temperatures oscillate somewhat while
converging to their stationary values (Figure 20). The
reason is the oscillations in the normal contact pressures
shown in Figure 21, which in turn influence the frictional
heat generation. The resulting temperature fluctuations
are not instantaneous, which is the reason for the phase
shift observed between Figures 20a/b and 21.
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Figure 19: Time-evolution of the excess temperature at
the point of initial contact.
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Figure 20: Time-evolution of the excess temperature at
the point of initial contact.
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Figure 21: Time-evolution of the resultant normal force.

7 Concluding remarks

A theoretical and computational framework based on an
ALE kinematical description and aimed toward analy-
sis of fully transient, thermomechanically coupled, fric-
tional rolling contact has been established. Furthermore,
a matrix decomposition scheme for computationally ef-
ficient assembly of the time-dependent FE matrices, as
well as a methodology for controlling external driving
forces (rather than nominal rolling velocities), have been
developed. Here, the aforementioned matrix decompo-
sition scheme was again employed, this time to derive
the tangent stiffness matrix for the associated nonlinear
equation system.

Numerical examples were presented, covering a num-
ber of distinct dynamical, thermomechanical rolling con-
tact phenomena, operating on a broad range of time
scales. These examples illustrate the modelling capa-
bilities of the computational framework, which include
capturing inertial effects and accommodating thermo-
mechanical phenomena and highly discontinuous surface
geometries.

Highlighted aspects in the thermomechanical analysis
includes convective cooling of the rolling body due to
contact with the running surface, frictional heat genera-
tion, and their dependence on local, transient variations
in the slip velocity field. Furthermore, the time scales
on which mechanical and thermal mechanisms operate
were assessed, and found to be very different in magni-
tude. This meant that a choice always had to be made
between a time step size small enough to resolve small
time scale phenomena (such as the redistribution of slip
velocities as a result of a change in the creepage: see Sec-
tion 6.2.1), and one large enough to allow for simulation
times suitable for analyzing large time scale phenomena
(such as acceleration/braking simulations: see Section
6.2.2). Thus, the implementation of support for variable
time step sizes should be considered for the continued
development of the computational model. This would
allow for local refinement of the time discretization in
the vicinity of regions where small time scale phenom-
ena are especially prevalent. An obvious example of a
situation where such functionality would be useful is one
including traversal of a sharp discontinuity in the plate
(see Section 6.2.3).

Another priority for upcoming work should be to re-
place the regularized friction law by an approach inde-
pendent of numerical modelling parameters. Viable op-
tions include a Lagrange multiplier method [21] or the
approach presented in Ziefle and Nackenhorst [14], which
is based on integration of slip velocities along material
path lines. An approach that is devoid of parameters
whose appropriate values depend on slip velocity mag-
nitudes does not require special considerations (such as
parametric convergence studies) when rolling velocities
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are varied across orders of magnitude, and is furthermore
likely to be more robust.

Apart from the presented numerical simulations, an-
other example of a possible mode of analysis using the
presented computational model is an investigation of the
slip behaviour of systems in rolling contact: Using the
aformentioned methodology for controlling external driv-
ing forces, one may in each instant in time evaluate the
distribution of slip velocities to an arbitrarily high reso-
lution in time and space, in order to assess the proximity
to sliding. Further, one might consider cases of varying
tribological properties across the contact interface (for
instance, the coefficient of friction could be given a spa-
tial dependence), e.g. in order to investigate the perfor-
mance of automatic slip prevention systems.

One of the main motivations for the development of
the computational model has been for it to reach a state
where it can be coupled to a multi-body vehicle dy-
namical framework – interfacing with the cylinder–plate
model via the nominal rolling velocities, or the driving
forces acting on the cylinder hub. Although many ap-
plications would additionally require a generalization to
3D geometries for an accurate representation of pertinent
physical phenomena, this point can now be considered to
have been reached. The construction of such a coupled
model would result in a framework for vehicle dynam-
ics analysis equipped with a versatile and sophisticated
model for the contact interface. This would potentially
enable high-resolution analysis of e.g. thermomechani-
cal rolling contact fatigue, thermal damage phenomena,
rolling noise generation and corrugation mechanisms.

A Decomposition of system ma-
trices

The following is the subset of all FE matrices that de-
pend on the convective velocity parameters ω, V̄ and

their derivatives [16]:

Kuu =

∫

Ω̂

BT
u EBu dV − ρ̂

∫

Ω̂

BT
u v̄EBu dV+

ρ̂

∫

Ω̂

NT
u v̄rBu dV + ρ̂

∫

Γ̂Ru

(v̄ · N̂)NT
u v̄lBu dA,

Cuu = 2ρ̂

∫

Ω̂

NT
u v̄lBu dV,

Kθθ = k

∫

Ω̂

BT
θBθ dV − ρ̂c

∫

Ω̂

BT
θ v̄ N θ dV

+ ρ̂c

∫

Γ̂Rθ

(v̄ · N̂)NT
θN θ dA,

Kθu = αEθref

∫

Γ̂Rθ

NT
θ (N̂ ⊗ v̄)TBu dA

− αEθref

∫

Ω̂

BT
θ v̄lBu dV,

f
uv

=

∫

Ω̂

NT
u B̂ dV − ρ̂

∫

Ω̂

NT
u v̄B dV.

Here, (v̄E)ijkl = δikv̄j v̄l, (v̄l)ijk = δij v̄k, (v̄r)ijk =

δij(Dtv̄k− (v̄kv̄l),l), (v̄B)i = Dtv̄i− ¨̄Xi and v̄ are tensors

dependent on the convective velocity parameters. N̂ is
the outward normal to Ω̂ and Γ̂R is the subset of the
boundary Γ̂ of Ω̂ where Robin-type boundary conditions
are imposed [16]. Nu, N θ are shape function matrices
and Bu, Bθ their respective gradients. The underline
notation denotes the use of a Voigt matrix representa-
tion of tensors.

As stated in Section 5.2.1, the above matrices may
be rewritten as linear combinations of time-independent
matrices, with coefficients that are functions of the con-
vective velocity parameters and their time-derivatives
(see eq. (20)). In order to achieve this, the convective
velocity parameters are first factored out from the ten-
sors in which they are contained, and finally from each
integral expression as a whole. For instance, v̄ and Dtv̄
(see eqs. (4) and (7), respectively) are rewritten as

v̄ =

{
ωw̄c,ω

v̄ for X̂ ∈ Ω̂c

V̄ w̄p,V̄
v̄ for X̂ ∈ Ω̂p

, (30)

Dtv̄ =

{
ω̇w̄c,ω̇

Dtv̄ + ω2w̄c,ω2

Dtv̄ for X̂ ∈ Ω̂c

˙̄V w̄p, ˙̄V
Dtv̄ for X̂ ∈ Ω̂p

, (31)

where w̄c,ω
v̄ = w̄c,ω̇

Dtv̄ = Q · X̂, w̄p,V̄
v̄ = w̄p, ˙̄V

Dtv̄ = −ex and

w̄c,ω2

Dtv̄ = −X̂. Setting out from these expressions, the
following can be stated:

v̄E =

{
ω2w̄c,ω2

E

V̄ 2w̄p,V̄ 2

E

v̄r =

{
ω2w̄c,ω2

r + ω̇w̄c,ω̇
r

˙̄V w̄p, ˙̄V
r

(32)

v̄l =

{
ωw̄c,ω

l

V̄ w̄p,V̄
l

v̄ · N̂ =

{
0

V̄ w̄p,V̄

v̄·N̂
(33)
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N̂ ⊗ v̄ =

{
ωw̄c,ω

N̂⊗v̄
V̄ w̄p,V̄

N̂⊗v̄
v̄B =

{
˙̄V w̄c, ˙̄V

B + ω2w̄c,ω2

B + ω̇w̄c,ω̇
B

0

(34)
where the top/bottom rows in each expression corre-
spond to the cylinder/plate domain, respectively. The
explicit expressions for the w̄-terms are omitted. At
this stage, the velocity-independent matrices shown in
eq. (20) may be expressed as follows:

K0
uu =

∫

Ω̂

BT
u EBu dV,

Kω2

uu = −ρ̂
∫

Ω̂c

BT
u w̄

c,ω2

E Bu dV

+ ρ̂

∫

Ω̂c

NT
u w̄

c,ω2

r Bu dV,

Kω̇
uu = ρ̂

∫

Ω̂c

NT
u w̄

c,ω̇
r Bu dV,

KV̄ 2

uu = −ρ̂
∫

Ω̂p

BT
u w̄

p,V̄ 2

E Bu dV

+ ρ̂

∫

Γ̂p
Ru

w̄p,V̄

v̄·N̂N
T
u w̄

p,V̄
l Bu dA,

K
˙̄V
uu = ρ̂

∫

Ω̂p

NT
u w̄

p, ˙̄V
r Bu dV,

(35)

Cω
uu = 2ρ̂

∫

Ω̂c

NT
u w̄

c,ω
l Bu dV,

CV̄
uu = 2ρ̂

∫

Ω̂p

NT
u w̄

p,V̄
l Bu dV,

(36)

K0
θθ = k

∫

Ω̂

BT
θBθ dV,

Kω
θθ = −ρ̂c

∫

Ω̂c

BT
θ w̄

c,ω
v̄ N θ dV,

KV̄
θθ = −ρ̂c

∫

Ω̂p

BT
θ w̄

p,V̄
v̄ N θ dV

+ ρ̂c

∫

Γ̂p
Rθ

w̄p,V̄

v̄·N̂N
T
θN θ dA,

(37)

Kω
θu = αEθref

∫

Γ̂c
Rθ

NT
θ w̄

c,ω

N̂⊗v̄Bu dA

− αEθref

∫

Ω̂c

BT
θ w̄

c,ω
l Bu dV,

KV̄
θu = αEθref

∫

Γ̂p
Rθ

NT
θ w̄

p,V̄

N̂⊗v̄Bu dA

− αEθref

∫

Ω̂p

BT
θ w̄

p,V̄
l Bu dV,

(38)

f ext

uv
=

∫

Ω̂

NT
u B̂ dV,

fω
2

uv
= −ρ̂

∫

Ω̂c

NT
u w̄

c,ω2

B dV,

f ω̇
uv

= −ρ̂
∫

Ω̂c

NT
u w̄

c,ω̇
B dV,

f
˙̄V

uv
= −ρ̂

∫

Ω̂c

NT
u w̄

c, ˙̄V
B dV.

(39)

B Control of driving forces

B.1 Expressions for the driving force
and moment

As shown in eq. (24), the driving force Fx and the
(counter-clockwise) driving moment M are expressed as

M(û, θ̄, ω, V̄ ) = AM (û)f
int,u

(û, θ̄, ω, V̄ )

Fx(û, θ̄, ω, V̄ ) = AFx
f

int,u
(û, θ̄, ω, V̄ )

(40)

Here,

AM (û) = [| − ŷn1 |x̂n1 | . . . | − ŷnN |x̂nN |]
AFx

= [|1|1| . . . |1|1|]. (41)

In these expressions, the notation ’|’ represents a se-
quence of zeros, zero or more in number. The nonzero
elements are distributed so as to correspond to the fol-
lowing set of degrees of freedom on the cylinder inner
boundary: dn1,x, dn1,y, . . ., dnN ,x, dnN ,y. For instance,
dni,x is the horizontal degree of freedom corresponding
to node number ni on the cylinder inner boundary (of
which the total number is N). Note that AM may be
approximated as deformation-independent by evaluating
it in the undeformed domain.

B.2 Tangent stiffness matrix

The tangent stiffness matrix for the case where both the
external moment M and the external horizontal force Fx
are controlled is expressed as follows in the stationary
case:

∂r

∂X
=




∂ru/∂û ∂ru/∂θ̄ ∂ru/∂ω ∂ru/∂V̄
∂rθ/∂û ∂rθ/∂θ̄ ∂rθ/∂ω ∂rθ/∂V̄
∂rω/∂û ∂rω/∂θ̄ ∂rω/∂ω ∂rω/∂V̄
∂rV̄ /∂û ∂rV̄ /∂θ̄ ∂rV̄ /∂ω ∂rV̄ /∂V̄


 ,

(42)
where the residual r and the array of unknowns X were
given in Section 5.3.1. Omitting contributions from the
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stabilization matrices, the tangent stiffness matrix is ex-
pressed as

∂r

∂X
=




Kuu Kuθ 2ω(Kω2

uuû− fω
2

uv
)

Kθu Kθθ Kω
θuû+Kω

θθθ̄

AMKuu AMKuθ 2ωAM (Kω2

uuû− fω
2

uv
)

AFx
Kuu AFx

Kuθ 2ωAFx
(Kω2

uuû− fω
2

uv
)

2V̄KV̄ 2

uu û

KV̄
θuû+KV̄

θθθ̄

2V̄AMK
V̄ 2

uu û

2V̄AFx
KV̄ 2

uu û


− ∂




f
c,u

(û, θ̄, ω, V̄ )

f
c,θ

(û, θ̄, ω, V̄ )

AMf c,u
(û, θ̄, ω, V̄ )

AFx
f

c,u
(û, θ̄, ω, V̄ )


 /∂X.

(43)

The expressions for the derivatives of the contact terms
are not shown. However, these are fairly straightforward,
since the only constituent quantity of these terms that
depends on the convective velocity parameters is the sta-
tionary part of the slip velocity ṡ. The derivatives of the
slip velocity ṡ with respect to ω and V̄ are (cf. eq. (17)
and eq. (4))

∂ṡ

∂ω
=
∂ṡstat

∂ω
= (F̂ ·Q · X̂) · m̂

∂ṡ

∂V̄
=
∂ṡstat

∂V̄
= (F̂

m · ex) · m̂.

(44)

The expression for the tangent stiffness matrix in the
transient case is omitted. However, as argued in Section
5.3.2, it is not much more complicated as compared to
the stationary case.
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