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ABSTRACT 

The use of 3D finite element (FE) analysis has increased substantially in recent years 

for design of reinforced concrete slabs. A common problem in this type of analysis is 

the occurrence of unrealistic force concentrations, caused by concentrated forces or 

supports. These concentrations may not be as critical in reality due to the non-linear 

response of reinforced concrete and introducing methods for estimating this more 

favourable force distribution is therefore of interest. Recently, guidelines of how to 

treat this problem have been presented in the literature. 

The aim of this Thesis was to examine how force concentrations in linear elastic FE 

analysis can be redistributed to better simulate the real behaviour of a structure. Focus 

was directed towards moment distribution in the serviceability limit state, where 

different scenarios which may appear in real structures were examined. An objective 

was also to evaluate the recommendations given by the present guidelines.  

The main instrument for the studies conducted in this Thesis was non-linear FE 

analysis. A beam grillage model, in liaison with multi-linear moment-curvature 

relations that defined the material response, was utilized. However, difficulties arose 

regarding the choice of the torsional stiffness and how it should be implemented in 

such an analysis. A parametric study demonstrated that the behaviour of a beam 

grillage model is highly dependant on the torsional stiffness adopted. However, even 

with conservatively chosen values of the torsional stiffness, the recommendations 

given in the literature were still shown to be conservative. 

The aim of this Thesis was also to study how cyclic loading influences the 

development of plastic rotation in reinforced concrete slabs. The objective was to 

study how the plastic rotation accumulates and develops with an increased number of 

load cycles, different load combinations and varying load magnitudes.  

The studies showed that the structures in this Thesis adapted to the moving forces and 

thus the influence of the forces decreased as the number of load cycles increased. 

Further, the analyses of moving forces demonstrated that such repetitive load 

combination yields significantly more damage to a structure than static forces of the 

same magnitudes. A superposition approach was finally proposed for estimating 

future development of plastic rotations, caused by moving concentrated forces. 

Key words: Non-linear 3D FE analysis, reinforced concrete slabs, concentrated forces, 

moment distribution, cumulative plastic rotation, beam grillage model 
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SAMMANFATTNING 

Användningen av tredimensionella finita elementanalyser (FE-analyser) har ökat 

kraftigt under de senaste åren. Ett vanligt problem vid dessa typer av analyser är 

förekomsten av orealistiskt stora koncentrationer av påkänningar från koncentrerade 

laster eller stöd. Dessa koncentrationer är inte nödvändigtvis kritiska för verkliga 

konstruktioner på grund av det olinjära verkningssätt som armerad betong uppvisar. 

Det är således av intresse att studera och introducera metoder som tar hänsyn till den 

verkliga konstruktionens mer fördelaktiga spridning av påkänningar. Riktlinjer för hur 

dessa frågeställningar ska behandlas har nyligen presenterats i litteraturen. 

Syftet med detta examensarbete var att studera hur kraftkoncentrationer i 

linjärelastiska FE-analyser kan omfördelas för att bättre simulera en konstruktions 

verkliga beteende. Fokus har riktats mot momentfördelning i bruksgränstillstånd där 

olika scenarier som kan förekomma i verkliga konstruktioner studerades. Avsikten var 

att utvärdera de aktuella rekommendationer som presenterats i litteraturen. 

Verktyget för de studier som genomförts i detta examensarbete var ickelinjära FE-

analyser där multilinjära moment-krökningssamband definierade materialresponsen i 

balkrostmodeller. Svårigheter påträffades emellertid gällande valet av vridstyvhet och 

hur den ska behandlas i vald modell. En parameterstudie visade att beteendet, till hög 

grad, styrs av vridstyvheten. Fastän en låg vridstyvhet valdes, visades det att de 

rekommendationer, givna i litteraturen, är konservativa. 

Syftet var också att studera inverkan av rörlig cyklisk belastning och hur den påverkar 

utvecklingen av plastisk rotation i armerade betongplattor. Avsikten var att studera 

hur plastisk rotation ackumuleras och utvecklas för ett ökande antal lastcykler, olika 

lastkombinationer och varierande laststorlekar. 

Genomförda studier visade att undersökta konstruktioner anpassades till den skada 

som de cykliska lasterna gav upphov till samt att lasternas inverkan på skade-

utvecklingen minskade då antalet lastcykler ökade. Analyser påvisade också att 

cykliska laster ger upphov till betydligt större skada än motsvarande statiska laster. En 

metod baserad på superposition introducerades i detta examensarbete för estimering 

av framtida utveckling av plastisk rotation, orsakad av rörlig cyklisk belastning.   

Nyckelord: 3D finit elementanalys, armerade betongplattor, koncentrerade laster, 

momentfördelning, ackumulerad plastisk rotation, balkrostmodell 
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1 Introduction 

This chapter covers the background, scope, method and limitations of this Thesis. 

Further, the outline of the report is presented. 

 

1.1 Background 

Structural engineers have in the past used traditional design tools such as analytical 

two-dimensional (2D) analysis for the design of reinforced concrete bridge deck slabs. 

However, with increased computational power and software development, the use of 

three-dimensional (3D) finite element (FE) analysis has increased substantially in 

recent years. The advantage of such analyses is the possibility for a more accurate 

approximation of the structural response. The introduction of FE analysis has, 

however, introduced problems that were not present in traditional 2D analysis. A 

common problem in linear elastic FE analysis is unrealistic force concentrations 

caused by concentrated forces or supports, such as columns. These force 

concentrations may not be as critical in reality due to the non-linear behaviour of 

reinforced concrete. In reality, a redistribution of forces will take place which can be a 

result of cracking of concrete and yielding of reinforcement. Hence, in a real 

structure, there will normally be a considerably more favourable force distribution 

than what is obtained from a linear elastic FE analysis. 

It is possible to create a more realistic approximation of the structural behaviour with 

the help of a more advanced FE model that takes the non-linear behaviour of 

reinforced concrete into account. This will however require an iterative and thus more 

time-consuming procedure which may not be feasible for design of an ordinary civil 

engineering structure. It is therefore important to understand how force concentrations 

obtained from linear elastic analysis should be distributed in the design process. 

Guidelines have recently been presented in Pacoste et al. (2012) on how to treat this 

problem. These recommendations are however believed to be conservative and a 

literature study performed by Pacoste et al. show that a very small amount of studies 

within the field have been documented. A too conservative method yields unnecessary 

use of materials together with economic and environmental losses which motivates 

further studies within the field. 

This project is a continuation of a previous Master Thesis on the subject, Lim (2013). 

That Thesis was mostly directed towards the ultimate limit state and studied the 

plastic rotation in a cantilever slab exposed to concentrated forces. Lim gave 

recommendations for further studies within the area where one such recommendation 

was to study the effect of moving load; in order to study in what way it might affect 

the total need of plastic rotation. A moving load can for instance be a traffic load on a 

bridge structure.  

 

1.2 Aim and objectives 

The aim of this Thesis was to examine how the force concentrations in linear elastic 

finite element analyses can be redistributed to better imitate the real behaviour of a 

reinforced concrete slab. Focus was directed toward moment distribution in the 

serviceability limit state (SLS). One objective was to improve understanding of how 

cracking and varying stiffness in different directions would influence the moment 
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distribution in the slab. For example, varying stiffness can be a product of different 

reinforcement amounts in two main directions, or a product of different normal 

stresses in those directions. In addition, the response of a single and two adjacent 

concentrated forces were studied. Another objective was to evaluate the 

recommendations in Pacoste et al. (2012).  

The aim was also to study in which way a moving load would affect the total plastic 

rotation in a reinforced concrete slab. The objective was to study how the plastic 

rotation accumulates with the number of load cycles, load combinations and varying 

load magnitudes.  

 

1.3 Method 

Tools for this project were linear and non-linear FE analyses. A large number of case 

studies were of interest which motivated the choice of a numerically stable and 

relatively simple analysing tool. It was therefore chosen to utilize a beam grillage 

model, where multi-linear moment-curvature relations can be used as input. The use 

of beam grillage models is a relatively common approach to analyse different types of 

structures assuming a linear elastic response, while the method is uncommon for non-

linear analysis. However, the method is believed to yield a satisfactory approximation 

of the non-linear behaviour of reinforced concrete for the studies conducted in this 

Thesis. The finite element software used was the student version of ADINA (2012).  

In this Thesis, simple structures were examined and the knowledge gained from these 

was aimed to enable understanding of more complex structures. Two different types 

of structures were chosen, a cantilever slab and a simply supported one-way slab.  

For studies related to moment distribution in SLS, a number of cases were studied 

which were intended to represent scenarios which may appear in a reinforced concrete 

bridge. Examples of such cases are varying reinforcement amounts in different 

directions and the effect of normal stresses in the slab. Multi-linear moment-curvature 

relations were constructed to approximate the non-linear behaviour of reinforced 

concrete and the solutions were compared with the isotropic and orthotropic linear 

elastic solutions.  

For studies related to cumulative plastic rotation, bilinear moment-curvature relations 

were used as input, where the second branch of the relation was intended to represent 

yielding of reinforcement. A value of the plastic rotation capacity was calculated and 

concentrated forces were modelled such that they moved across the slab along a 

chosen path. The slab was then exposed to several load cycles until it reached its 

calculated rotation capacity. Several cases were studied including varying load 

magnitudes and varying distance between two concentrated forces. 

 

1.4 Limitations 

Due to the limited time of this Master’s Thesis, only a small selection of structures 

and different load combinations were examined. Focus was directed toward bending 

action in the slab; hence shear forces and displacements were not discussed. In this 

Thesis, the effect of creep and shrinkage was not taken into account, which may have 

a significant effect. Further, all analyses in this Thesis are static and do not take into 

account the dynamic response. No tests of real structures have been performed in 
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order to verify the FE models, but they are assumed to describe the reality to a 

satisfactory extent. 

 

1.5 Outline of the report 

The first part, Chapter 2, states basic background theory of reinforced concrete. The 

material response of plain concrete and reinforcing steel is discussed and expanded to 

how a moment-curvature relation for a reinforced concrete beam can be simplified. 

Further, reinforced concrete slabs are categorised and torsional forces in slabs are 

discussed. 

In Chapter 3, finite element models for slabs are discussed, which include shell 

element models and beam grillage models. The recommendations for moment 

redistribution for linear elastic FE analyses given in Pacoste et al. (2012) are 

presented. Further, traffic load models stated in Eurocode are presented.  

Chapter 4 and 5 treats moment distribution in SLS for a cantilever slab and a simply 

supported one-way slab, respectively. The methodology used when constructing the 

moment-curvature relations is explained and the results from the analyses performed 

are presented. In Chapter 4, the influence of the torsional stiffness of the beam 

elements in the beam grillage model is discussed. 

Chapter 6 and 7 treats cumulative plastic rotation for a cantilever slab and a simply 

supported one-way slab, respectively. The bilinear moment-curvature relations used 

as input are presented and a plastic rotational capacity is calculated. Further, the 

results from the analyses performed are presented. 

The results from Chapter 4 to 7 are discussed in Chapter 8, where observations and 

comparisons are made. 

Finally, concluding remarks and recommendations for further studies are presented in 

Chapter 9. 
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2 Structural response of reinforced concrete 

This chapter covers the material response of reinforcing steel and concrete. The 

material response of these two materials is also expanded to structural response of 

reinforced concrete beams and slabs. The different states of concrete from first 

loading to failure and the development of plastic rotation and the plastic rotation 

capacity of a cross-section is also treated in this chapter. 

 

2.1 Material response 

Concrete is a complex material with a wide range of stress-strain relationships 

depending on the concrete strength class. Since concrete is a brittle material, it will 

crack for relatively low stresses in the magnitude of 2-4 MPa, while the strength in 

compression is considerably higher. Common structural concrete have an axial 

compressive strength in the range of 20-50 MPa. A typical stress-strain relation for 

axially loaded plain concrete is illustrated in Figure 2.1a. For characteristic strength 

values of concrete, the reader is referred to Eurocode 2, CEN (2004). 

Reinforcing steel has a pronounced linear elastic behaviour up to a certain stress 

where the steel starts to yield. When the yield stress fy is reached, the reinforcing steel 

will develop plastic deformations. Reinforcing steel of grade B or C exhibits a 

pronounced strain hardening effect when the steel is loaded beyond the yield stress. 

The stress-strain relationship for typical hot-rolled reinforcing steel (class B and C) 

are shown in Figure 2.1b. For characteristic strength values of reinforcing steel the 

reader is referred to Eurocode 2. 

 

Figure 2.1 Typical stress-strain relationship for: (a) plain concrete (b) hot-rolled 

reinforcing steel of class B or C in tension. 

When unloaded, both steel and concrete will have unloading curves as shown in 

Figure 2.2. If a second load cycle is initiated the load will follow a similar path to the 

original stress-strain curve. The dashed line in the figure represents an approximation 

for both steel and concrete where the unloading and reloading follows the same curve. 
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Figure 2.2 Typical unloading and reloading behaviour for: (a) concrete, and (b) 

hot-rolled reinforcing steel of class B or C in tension. 

 

2.2 Structural response of beams 

This section will, as an introduction of the structural response of reinforced concrete, 

cover the response of reinforced concrete beams since it is the most comprehensive 

structure to analyse in a simplified way. The theories presented in this section can be 

expanded to more complex structures, such as slabs. 

 

2.2.1 Introduction to local and global response 

The nature of reinforced concrete is a highly non-linear behaviour as shown in 

Section 2.1. The structural response of a reinforced concrete member is influenced by 

the structural response of the two constituent materials and the interaction between 

them. The most pronounced non-linear behaviour is derived from cracking of concrete 

and yielding of reinforcement. 

The response of a reinforced concrete member can be divided into local and global 

response. The local response is the structural response of the cross-section in a single 

section of the beam and is determined by the relationship between the moment and the 

average curvature in that particular section. The sum of all local responses yields the 

overall behaviour of the beam i.e. the global response. The curvature χ of a cross-

section is the inclination of the local deformation, i.e. strain ε, shown in Figure 2.3 

and Equation (2-1). 
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Figure 2.3 Relation between deformation and curvature. 

dr

cs 





1
 

(2-1) 

 

Where:       = curvature 

    r  = radius of curvature 

    c  = concrete strain 

    s  = reinforcement strain 

    d  = effective depth of the cross-section 

 

When loaded until failure, the beam illustrated in Figure 2.3 will go through three 

stages; State I (uncracked state), State II (cracked state) and State III (ultimate state) 

according to Eurocode 2, CEN (2004). If the applied moment and the corresponding 

curvature are plotted, the three states mentioned above are clearly visible as can be 

seen in Figure 2.4. 

 

Figure 2.4 Response of a reinforced concrete member subjected to bending 

illustrated (a) the moment-curvature relation and (b) a simplified model 

for a combination of State I, II and III. 

 

2.2.2 Uncracked state (State I) 

The uncracked state (State I) is characterised by a linear behaviour of the cross-

section. The curvature of the cross-section increases linearly with the applied bending 

moment, which is also reflected by the global response. It is generally assumed that 

the reinforcement have a small impact on the behaviour of the cross-section in the 

uncracked state. This is an assumption which underestimates the stiffness of the 

uncracked section since the stiffness can be increased by more than 20 % when the 

reinforcement is included, depending on the reinforcement amount, according to 

Engström (2011). 
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Figure 2.5 Internal forces, stresses and strains for a reinforced concrete cross-

section in State I. 

In order to evaluate the uncracked reinforced concrete section, illustrated in 

Figure 2.5, αs is introduced as a factor between the stiffness of the reinforcement and 

the concrete, using the latter as the reference stiffness: 

c

s
s

E

E
  (2-2) 

Where:     s  = stiffness factor  

     sE  = Young’s modulus for reinforcing steel 

     cE  = Young’s modulus for concrete 

 

The concrete stresses are calculated as:  

z
I

M
z

I

Ic )(.  (2-3) 

Where:   Ic.  = concrete stress at the level z  

   M  = bending moment at the considered section 

   z  = distance from the gravity centre, see Figure 2.5 

   II  = moment of inertia for a State I cross-section 

 

The steel stress is calculated according to Equation (2-4) and can be calculated as a 

resulting force according to Equation (2-5).  

)(.. sIcsIs z   (2-4) 

sIsIs AF ..   (2-5) 

Where:   Is.  = steel stress in State I  

   sz  = distance from the gravity centre to the reinforcement 

   IsF .  = resultant steel force in State I 

   sA  = reinforcement area 
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The moment-curvature relation for a State I model can be calculated according to 

Equation (2-6) and is shown in Figure 2.6. 

II

cr
cr

IE

M
  

(2-6) 

 

Where:   cr  = curvature at cracking in State I 

   crM  = moment corresponding to cracking of the cross-section 

   
IE  = Young’s modulus in State I  

 

 

Figure 2.6 Moment-curvature relation for a State I model. 

 

2.2.3 Cracked state (State II) 

The cracked state (State II) is initiated when the concrete cracks. This will be the case 

when the stress in the outermost fibre of the cross-section reaches the tensile strength 

of the concrete fct. The local response of the reinforced concrete section in a State II 

model is, just as in a State I model, characterised by a linear behaviour. 

The stiffness of a cracked reinforced concrete section is less than for an uncracked 

section. The effect of this can be seen in Figure 2.4 where the inclination of the line in 

the moment-curvature diagram is decreased when Stage II is initiated. There is a 

horizontal leap from State I to State II at the cracking moment. This is because the 

State II model assumes all local cross-sections of the global structure to be fully 

cracked, this is however not the case in a real structure. 

As in the State II model, the stiffness in a real structure decreases when the concrete 

cracks. However, the decrease in stiffness does not occur immediately at the cracking 

moment Mcr due to a phenomenon called tension stiffening. As can be seen in 

Figure 2.7, there are still uncracked sections between the cracks that occur at the 

cracking moment. These uncracked sections are still in State I and will therefore 

contribute to the global stiffness positively. As a result, the State II model 

overestimates the overall deformations. When the moment is increased, the number of 

fully cracked sections will increase and thus approaching the assumption of a fully 

cracked member. The effect of tension stiffening can be incorporated in a simplified 

model as can be seen in Figure 2.7b.  
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Figure 2.7 Influence of tension stiffening: (a) beam in state II (b) a simplified model 

including tension stiffening. 

The State II model contains limitations related to steel stress and concrete 

compressive stresses. The model is limited to steel stresses up to yielding fy and 

compressive stresses up to 50 % of the concrete compressive strength fc according to 

Engström (2011). If this is the case, it is preferable to analyse the reinforced concrete 

section with a State III model that allows a non-linear material response of concrete 

independently of the response of the reinforcement. 

 

Figure 2.8 Internal forces, stresses and strains for a reinforced concrete cross-

section in State II. 

The concrete stresses in State II are calculated in a similar manner as for the State I 

model: 

z
I

M
z

II

IIc )(.  (2-7) 

Where:   IIc.  = concrete stress at the level z in State II 

   III  = moment of inertia for a State II cross-section 

 

The steel stress is calculated according to Equation (2-8) and can be calculated as a 

resulting force according to Equation (2-9).  

)(.. sIIcsIIs z   (2-8) 

sIIsIIs AF ..   (2-9) 

Where:   IIs.  = steel stress in State II  

   IIsF .  = resultant steel force in State II  
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The moment-curvature relation for a State II model can be calculated according to 

Equation (2-10) and is shown in Figure 2.9. 

y

cc
y

x


   

(2-10) 

 

Where:   y  = curvature at reinforcement yielding in State II 

   yx  = height of the compressive zone related to the moment at which the 

=  reinforcement starts to yield 

   cc  = concrete strain  

 

 

Figure 2.9 Moment-curvature relation for a State II model. 

 

2.2.4 Ultimate state (State III) 

The ultimate state (State III) is initiated when the reinforcement starts to yield or 

when the concrete stress reaches its compressive strength. The capacity of the cross-

section can be increased due to a decreased height of the compression zone, or due to 

the positive effect of strain hardening of the tensile reinforcement. The ultimate 

capacity of the cross-section is assumed to be reached when the tensile reinforcement 

is torn off or the concrete is crushed. 

 

Figure 2.10 Internal forces, stresses and strains for a reinforced concrete cross-

section in State III. 

The concrete stresses in State III are calculated according to Equation (2-11) as a 

resultant force of the non-linear stress profile shown in Figure 2.10. 
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bxfF cRc   (2-11) 

Where:   cF  = resultant concrete force for State III concrete 

   
R  = stress block factor 

   cf  = concrete compressive strength 

   b  = width of the cross-section 

   x  = height of the compressive zone, see Figure 2.10 

 

The values of the stress block factors, αR and βR, varies as a function of the concrete 

compressive strain εcc. The values of the stress block factors for the ultimate 

compressive strain εcu for normal strength concrete (C12/16-C50/60) are stated in 

Equation (2-12) and (2-13). For stress block factors for concrete compressive strains 

other than the ultimate compressive strain, the reader is referred to Engström (2011). 

810.0R  (2-12) 

416.0R  (2-13) 

The reinforcing steel is assumed to be yielding in the State III model and the steel 

stress is therefore replaced by the yield stress fy according to: 

sys AfF   (2-14) 

Where:   sF  = resultant steel force 

   
yf  = steel yield stress 

 

The moment-curvature relation for a State III model can be calculated according to 

Equation (2-15) and is shown in Figure 2.11. 

 

Figure 2.11 Moment-curvature relation for a State III model. 

u

cu
u

x


   

(2-15) 

 

Where:   u  = ultimate curvature in State III 

   ux  = height of the ultimate compressive zone 

   cu  = ultimate concrete strain 
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Note that the plastic curvature will propagate over a plastic region. This is covered in 

Section 2.2.6. 

2.2.5 Simplified non-linear behaviour 

The non-linear moment-curvature relationship for reinforced concrete shown in 

Figure 2.4 can be simplified to multiple linear curves as shown in Section 2.2.1 to 

2.2.4. These curves can be used as input data for finite element analysis in order to 

model the non-linear behaviour of reinforced concrete. Figure 2.12 illustrates how 

these curves can be combined in order to capture this behaviour from first loading, to 

cracking of the concrete, yielding of the reinforcement and finally failure of the 

structure.   

 

Figure 2.12 Linear, trilinear and quadlinear models used for reinforced concrete in 

a: (a) State I, (b) State II and (c) State III model. 

 

2.2.6 Plastic rotation capacity 

The reason for a collapse of a reinforced concrete member can either be derived from 

local or global failure. In order to develop a global failure, the structure needs to have 

sufficient plastic rotation capacity. If the structure does not have sufficient plastic 

rotation capacity, local failure, such as crushing of concrete or reinforcement rip off 

will take place and cause a global collapse. 

In the yield line theory, plastic hinges are assumed to be concentrated to singular 

points with no propagation along the member in the global structural analysis model, 

Engström (2011). The response of the structure is assumed to behave linear elastically 

between the plastic hinges that are formed. The plastic hinges are considered as single 

or double, depending on where in a member it forms, see Figure 2.13. Single plastic 

hinges can be formed in fixed ends, such as cantilever supports while double plastic 

hinges can be formed in the span of a beam or over an inner support of a continuous 

structure.  

 

Figure 2.13 Single and double plastic hinges formed in: (a) a cantilever support, (b) 

the span of a simply supported beam, and (c) the mid-support of a 

continuous beam. 
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In a real structure, the plastic hinges will propagate over a certain length lpl where the 

tensile steel strain exceeds the yield strain, see Figure 2.14. 

 

Figure 2.14 (a) moment-curvature relationship for elastic-plastic and plastic case 

and (b) plastic rotation development length over an inner support. 

In case of a double plastic hinge, the total length of the plastic region is the sum of the 

lengths lpl1 and lpl2 and the total plastic rotation is in accordance the sum of the plastic 

rotation θpl1 and θpl2, see Figure 2.14b. The plastic rotation can be obtained by 

integrating the plastic curvature over the propagation length of the plastic region lpl, 

see Figure 2.14 and the following equations: 


2

1

x

x

plpl dx  
(2-16) 

 

Where: 

ypl  
 

(2-17) 

21 xxlpl   (2-18) 

Where:   
pl  = plastic rotation  

   
pl  = plastic curvature 

     = curvature 

   
y  = yield curvature 

   
pll  = propagation length of a plastic region 

   
1x  = section x1 

   
2x  = section x2 

 

Eurocode 2, CEN (2004), provides a simplified approach in order to estimate the 

plastic rotation capacity of a reinforced concrete cross-section. This simplified 

approach is based on the plastic rotation capacity as a function of the xu/d ratio. 

Values of the plastic rotation capacity are presented in a diagram in Eurocode 2. Since 

no explicit values are stated in Eurocode 2, an interpretation of the diagram is 

presented in Figure 2.15, and the interpreted values are stated in Table 2.1. This 

diagram is valid for reinforced concrete sections with a shear slenderness λ=3, and 

concrete strength classes with an upper limit of C90/105 and reinforcement steel of 

ductility class B and C. For concrete strength classes C55/67 to C80/95, linear 

interpolation should be used. The diagram yields conservative values of the plastic 

rotation capacity and the positive effect of any transverse reinforcement is neglected. 
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Reinforcement class A is not recommended if plastic rotation is demanded and is 

therefore omitted in this section. For cross-sections with a shear slenderness λ ≠ 3, the 

values from Figure 2.15 should be multiplied by a factor kλ according to 

Equation (2-19). 

 

Figure 2.15 Diagram representing  the correlation between maximum allowable 

plastic rotation, θpl,d and  xu/d ratio for concrete sections of different 

concrete strengths with reinforcement class B and C. This diagram is 

valid for sections with a shear slenderness λ=3. 

 

Table 2.1 Interpreted values from Eurocode 2 of the maximum allowable plastic 

rotation θpl,d and  xu/d ratio for concrete sections of different concrete 

strengths with reinforcement class B and C 

Concrete 

strength class 

)0( /dxθ upl,d

[mrad] 

max,,dpl  
)45.0( /dxθ upl,d

[mrad] 
dpl,  [mrad] dxu / [m] 

Class C, 

≤ C50/60 
17.0 33.0 0.080 7.50 

Class C, 

≤ C90/105 
17.0 32.5 0.045 4.50 

Class B, 

≤ C50/60 
6.50 13.5 0.160 5.50 

Class B, 

≤ C90/105 
6.50 13.0 0.080 3.00 

The plastic rotation capacity increases with increasing xu/d ratio for small values of 

xu/d up to a certain break point. The reason for this behaviour is that for small values 

of xu/d, the plastic rotation capacity is limited by the ultimate steel strain εsu. For 

higher values of xu/d, i.e. after the breaking point, the rotation capacity is limited by 

the ultimate concrete strain εcu. 
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According to Eurocode 2, CEN (2004), for shear slenderness values other than λ=3, 

the plastic rotation capacity θrd can be calculated as: 

dplrd k ,   (2-19) 

Where: 

3


 k  (2-20) 

d

x0  (2-21) 

Where:  rd  = plastic rotation capacity  

  
dpl,  = plastic rotation capacity according to Figure 2.15  

  k  = modification factor  

    = shear slenderness 

  0x  = distance between the considered maximum moment section and the 

=  adjacent zero moment section after plastic redistribution, see 

=  Figure 2.16 

  d   = effective depth of the considered cross-section 

 

 

Figure 2.16 Example of distance between maximum and zero moment x0 and effective 

depth of the considered cross-section d, after plastic redistribution. 

In order to simplify Equation (2-21), Eurocode 2 provides a possibility to estimate the 

shear slenderness λ based on the design forces and effective depth of the considered 

cross-section as: 

dV

M

Ed

Ed  (2-22) 

Where:   EdM  = design value of bending moment 

   EdV  = design value of shear force 
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2.3 Structural response of slabs 

This section covers the definition and categorisation of slabs, presented in 

Eurocode 2, CEN (2004), that are used in this Thesis. Furthermore, the influence of 

torsional forces in slabs and how these can be treated in analyses is covered. 

 

2.3.1 Definition and categorisation 

The structural response of a slab is different to that of a beam. The difference can be 

derived from the transverse action that needs to be considered in a slab due to a high 

width to height ratio. According to Eurocode 2, there is a strict difference in definition 

between a beam and a slab that is specifically related to the relationship between the 

width and the height of the cross-section. A slab is, by this definition, a structural 

member with a width to height ratio, no smaller than 5. Furthermore, Eurocode 2 

distinguishes between two types of slabs; one-way and two-way spanning slabs where 

the first of the two is defined as: 

“A slab subjected to dominantly uniformly distributed loads may be considered to be 

one-way spanning if either: 

- it possesses two free (unsupported) and sensibly parallel edges, or 

- it is the central part of a sensibly regular slab supported on four edges with a 

ratio of the longer to shorter span greater than 2.” 

Since the definition presented in Eurocode 2 does not cover all possible cases, Pacoste 

et al. (2012) defined a third category of slabs, predominantly one-way supported 

slabs. The practical application of this third type is slab bridges where the slabs often 

are supported by a combination of line supports (abutments) and point supports 

(intermediate columns). The columns are arranged in such a way that the span is 

significantly larger in one direction compared to the other, see Figure 2.17. 

 

Figure 2.17 Examples of bridge structures that can be interpreted as: (a) two-way 

spanning slabs, (b) one-way spanning slabs and (c) predominantly one-

way spanning slabs, proposed by Pacoste et al. (2012). 

The cantilever slab is also a frequently used structure in the bridge design community. 

The difference between the type of slabs mentioned above and the cantilever slab is 

that in the latter case, the loads are mainly carried in the transversal direction of the 

bridge to the main load carrying structure.  

Cantilever slabs can be observed in a vast range of structures. The most common 

cantilever slab in buildings is the cantilevered balcony. In the bridge design 

community, cantilever slabs are mainly found in composite bridges or concrete beam 

bridges, see Figure 2.18. 
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Figure 2.18 Cantilever slab in: (a) composite bridges and (b) concrete beam 

bridges.  

 

2.3.2 Torsional forces 

The torsional stiffness has a significant influence on the structural behaviour and thus 

the displacements of slabs. Torsion is particularly important for slabs which are 

subjected to concentrated forces. However, there is little knowledge of the torsional 

stiffness in slabs, especially in the cracked state (State II). In the ultimate limit state 

(State III), the torsional stiffness is usually omitted and the slab is considered to carry 

the load only in the directions of the reinforcement which is sufficient to fulfil 

equilibrium. However, in the service state, when there is a need to estimate the actual 

moments experienced by the slab, the torsional stiffness has a significant role.  

For members where the load is predominantly carried by bending, a relation between 

uncracked and cracked stiffness in the range of 3-5 is reasonable. Since the stiffness 

range is highly dependent on the reinforcement amount and the position of the bars, 

the stiffness relation might therefore be outside of the above stated interval. However, 

when torsion has a predominant role, this relation is no longer valid. Torsional 

moments lead to a greater loss of stiffness in the cracked state than that of bending. 

According to tests performed on a reinforced concrete slab in Lopes et al. (2014), the 

torsional stiffness in a cracked state is about 1/17-1/15 of the stiffness in the elastic 

state. BBK (2004) states that when calculating deformations caused by torsion in 

reinforced concrete beams, the torsional stiffness should be reduced with a factor 0.3 

of the elastic stiffness. This applies if flexural cracks are present and a factor 0.1 

should be used if shear or torsional cracks are present.  

If a beam grillage model is used for non-linear analysis, it is important to characterize 

the torsional stiffness of the beams in order to receive a representative behaviour. It 

was discussed in Lopes et al. that in numerical simulation, the torsional stiffness 

adopted in the stiffness matrix of the finite element, greatly influence the slabs 

deformation in both linear and non-linear analysis. However, it is complicated and 

cumbersome to relate the torsional moment with angle of twist for beam elements in 

the grillage model, particularly in the post-cracking state. The problem originates both 

from the fact that bundled beams that are not attached to each other longitudinally 

behave very differently from a solid section with the same total width, and that there 

is little knowledge of the torsional stiffness in the cracked state. 
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3 FE-modelling and traffic load application 

This chapter covers background theory of possible ways to model slabs with the finite 

element method. This chapter also covers load models on bridge structures provided 

by Eurocode 1, CEN (2003), and the actual loads that can occur on real bridge 

structures. As a final part of this chapter, current recommendations by Pacoste et al. 

(2012) on how to redistribute moments from concentrated forces in different types of 

slabs are covered. 

 

3.1 Finite element models for slabs 

In this Thesis, slabs are analysed using finite element models. The finite element 

software used is the student version of ADINA (2012). Several approaches to model 

reinforced concrete slabs exist. For instance, different types of elements can be 

utilized which approximates the structural behaviour in different ways. In this Thesis, 

the beam grillage model was chosen for non-linear analysis. In addition, linear elastic 

shell element models were used for an early verification. However, fundamental 

differences between the shell element model and the beam grillage model exist and 

these will therefore not yield the same results even for matching input data. One of 

these fundamental differences is how torsional moments are treated. The two different 

types of models are illustrated in Figure 3.1. 

 

Figure 3.1 (a) Shell element model, (b) Beam grillage model 

 

3.1.1 Shell element models 

In the early stages of ordinary reinforcement moment design, there is no knowledge of 

the stiffness proportions in different directions of a slab. It can therefore be necessary 

to start with a linear elastic isotropic model to acquire approximate reinforcement 

amounts. The shell element model offers a simple way to model the behaviour of a 

slab and the approach is widely used in both the bridge and building design 

community. However, since the moment distribution is governed by stiffness, this 

type of analysis will not yield the actual moment distribution experienced by the slab 

since the behaviour is changed when reinforcement amounts are chosen. It is however 

possible with shell elements, when reinforcement amounts are chosen, to perform a 

second iteration with different stiffness in different directions corresponding to the 

chosen reinforcement amount and layout. This can be made by manipulating the 

Young’s modulus in different directions.  
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A result of linear finite element analysis using shell elements is that unrealistic 

concentrations of cross-sectional moments and shear forces occur. According to 

Pacoste et al. (2012), there are mainly two simplifications of the reality that creates 

these unrealistic force concentrations. The first of these two is geometrical 

simplifications such as simplification of connections, supports and loads, which is 

common in finite element analysis in order to save computation power and time. 

When a support, or a concentrated force, is applied to a single node, a singularity is 

introduced in the system and thus the solution. The second simplification is an 

approximation of the mechanical properties of the chosen materials. It is often 

assumed that reinforced concrete is an isotropic material and behaves linear 

elastically. However, reinforced concrete shows a high degree of non-linear behaviour 

due to cracking and crushing of concrete and yielding of reinforcement.  

When a 3D linear elastic analysis is made for reinforcement design, calculated 

sectional forces contain both bending and torsional moments, see Figure 3.2.  

 

Figure 3.2 Bending and torsional moments acting on a shell element. 

In reality, it is most common for the reinforcement to be arranged in grids with 

reinforcement bars perpendicular to each other. This means that torsional moments 

cannot be resisted effectively by the reinforcement. For simplicity, it is recommended 

to transform the torsional moments into bending moments in the two main directions: 

xyxnegposrx mmm )(,
 (3-1) 

xyynegposry mmm


1
)(,   (3-2) 

Where:   rxm  = design reinforcement moment in x-direction 

   rym  = design reinforcement moment in y-direction 

   xm  = bending moment in x-direction from the linear solution 

   ym  = bending moment in y-direction from the linear solution 

   xym  = torsional moment from the linear solution 

     = factor that can be chosen with respect to practical considerations, 

=  usually close to 1.0 or equal to 1.0 

 

The indices pos and neg in the equations above refer to bottom and top reinforcement, 

where for positive bending moments, a positive contribution from the torsional 

moment should be added, and vice versa.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
21 

For analyses including shell elements in this Thesis, four-node isoparametric shell 

elements were used. The element formulation used in ADINA is based on two main 

assumptions, ADINA (2012): 

 A line normal to the midsurface of the element that is originally straight 

remains straight during deformations. 

 The stress in the direction normal to the midsurface of the structure is zero. 

Newton-Cotes integration method is used over the thickness of the shell elements with 

7 integration points, while Gauss integration method is used over the width of the 

elements with two integration points in both directions. 

 

3.1.2 Beam grillage models 

In order to model the non-linear behaviour of reinforced concrete slabs, the Thesis 

utilizes a method offered in ADINA where non-linear moment-curvature relations are 

used as input for beam elements which are used in a beam grillage model. The method 

offers a simplified approach to model the non-linear response due to cracking and 

yielding of reinforcement. Each section can be in different states regarding the 

reinforced concrete response, see Figure 3.3. Each beam element can be given an 

individual moment-curvature relation input, which yields the possibility to model 

different behaviour in different directions. 

 

Figure 3.3 Beam grillage model where different sections are in different states and 

therefore in different levels in their corresponding moment-curvature 

relationship. 

The relevant inputs needed for this approach are the moment-curvature relations 

around three axes. The three axes are illustrated in Figure 3.4 and are in ADINA 

denoted s, t and r. The moment-curvature input for axes s and t correspond to flexural 

bending while the input for r-direction corresponds to torsion and the input is 

therefore named torsional moment versus angle of twist. The bending stiffness around 

the t-axis will not affect the structural behaviour of a slab to a significant extent and 

the input data for this parameter is therefore omitted in this section. Hence, when 

moment-curvature input is further discussed in this Thesis, it is referred to bending 

around the s-axis.   
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Figure 3.4 Local coordinate system for a beam element in ADINA. 

The use of a beam grillage models is believed to be an acceptable approximation of 

the structural response for the analyses made in this Thesis. Even though more refined 

models exist, where concrete and reinforcement is modelled separately, the beam 

grillage model has the advantage of being more numerically stable. 

The torsional behaviour of a beam, and thus also a beam grillage model, is different 

from the torsional behaviour of a plate element, see Figure 3.5. It can therefore be 

difficult to approximate the torsional stiffness that should be used as input for the 

beam grillage model.  

 

Figure 3.5 Principle torsional moments for a shell element and a beam grillage 

section. 

As described in Lim (2013), the results obtained from the beam grillage model for the 

linear elastic case were highly dependent on the density of the chosen mesh. The 

torsional stiffness is highly dependent on the cross-sectional geometry, especially the 

width of the cross-section, see Equation (3-3). Therefore, the torsional stiffness 

changes with the mesh density as the cross-sectional width is chosen equal to the 

spacing between the beams. With a coarser mesh, wider cross-sections of the beams 

are obtained and therefore a significant increase of the torsional stiffness. It can 

therefore be concluded that, in comparison to shell elements, an increased mesh 

density does not lead to convergence.  

3hbKv   (3-3) 

Where:    vK  = torsional stiffness of a rectangular cross-section. 

      = constant depending on the height to width ratio of the cross-section 

   h   = height of a rectangular cross-section 

   b   = width of a rectangular cross-section 
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For analysis involving beam elements in this Thesis, two-node elements were used. 

The element is initially straight and is based on assumptions of a Hermitian beam 

which neglects the effect of transverse shear deformations. 

 

3.2 Traffic loads on bridges 

There are numerous load models and load application types defined in standards that 

are used in different parts of the world. This section focuses on the two most 

commonly used vertical load models for vehicles (LM1 and LM2) presented in 

Eurocode 1, CEN (2003). For additional applications and limitations for the two load 

models, the reader is referred to Eurocode 1. Horizontal forces, such as breaking and 

acceleration forces, are not covered in this Thesis and are therefore omitted in this 

section. 

 

3.2.1 Load model 1  

Load model 1 (LM1) is presented in Eurocode 1 and is described as: 

“Concentrated and distributed loads, which cover most of the effects of the traffic of 

lorries and cars. This model should be used for general and local verifications” 

Load model 1 consists of two partial systems. The first system consists of double-axle 

concentrated loads where the load on each axle is defined as: 

kQ Q  (3-4) 

where αQ is an adjustment factor which can be found in Eurocode 1. The load from 

each axle pair is assumed to be distributed to two identical wheels, each consisting of 

the concentrated load: 

kQ Q5.0  (3-5) 

where the contact surface of each wheel is a square with a side of 0.4 m. The second 

system consists of uniformly distributed loads that only should be applied in the 

unfavourable parts of the structure with a load according to: 

kq q  (3-6) 

where αq is an adjustment factor. The characteristic load values include the influence 

of dynamic amplification and are presented in Table 3.1.  

Table 3.1 Characteristic loads values valid for load model 1 Eurocode 1. 

Location Axle loads Qik [kN] 
Distributed loads qik 

[kN/m
2
] 

Lane Number 1 300 9 

Lane Number 2 200 2.5 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
24 

Lane Number 3 100 2.5 

Other lanes 0 2.5 

Remaining area 0 2.5 

Load model 1 is illustrated in Figure 3.6 where each lane has a width of 3 m.   

 
Figure 3.6 Geometrical application for load model 1 (LM1), Eurocode 1. 

 

3.2.2 Load model 2 

Load model 2 (LM2), in comparison to load model 1, only consist of one single axle 

load which can be applied at any location on the carriageway. The value of each axle 

load is defined as: 

akQ Q  (3-7) 

where Qak = 400 kN which includes the influence of dynamic amplification and βQ is 

an adjustment factor. The load from the axle pair is assumed to be distributed to two 

identical wheels, each consisting of the concentrated load: 

akQ Q 5.0  (3-8) 

The contact surface for each wheel should be modelled as a rectangle of sides 0.35 

and 0.6 m, see Figure 3.7. 

 
Figure 3.7 Geometrical application for load model 2 (LM2), Eurocode 1 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
25 

3.3 Measured traffic loads on bridges 

A crucial part of ensuring a long service life of a bridge structure is to measure the 

actual load levels that it is subjected to. A common approach to obtain this data today 

is to utilize the Weigh-in-Motion (WIM) technique, Zhou el al. (2014). WIM is a 

device that is designed to capture and record axle weights and gross vehicle weights 

as vehicles passes over a predefined measurement site. This technique is capable of 

measuring vehicles travelling at normal speed and is therefore comprehensive for 

measuring the loads acting on a bridge structure. 

It is stated in Eurocode 1, CEN (2003) that bridge structures should be able to resist 

the characteristic value for a 1000-year return period. This means that the probability 

of the occurrence of one such load should be less than 5 % in a time period of 50 

years. Since it is impossible to collect data for such time periods, smaller samples of 

measurements and various extrapolation methods are used. 

The load models presented in Eurocode 1 are based on WIM data collected in 1986 at 

a WIM station on the heavy trafficked A6 motorway in Auxerre, France. The data 

obtained from this two week period of measurements were used for calibrating the 

characteristic values presented in Eurocode 1, Zhou el al. In a study conducted by 

Zhou et al. the data from 1986 was compared with WIM data from a comparable 

bridge, a bridge located on the A9 motorway in St Jean de Vedas, France. It was 

shown from these results that the mean flow (vehicles per hour) had more than 

doubled since 1986. The traffic composition showed that five-axle trucks and thus the 

heavy traffic had a large increase during that time period. It was concluded that the 

load models provided by Eurocode 1 still yields satisfying safety margin but it has 

been reduced since the writing of the code due to changed regulations on weights and 

dimensions of vehicles.  

From what have been found in the literature study conducted in this Thesis, no WIM 

results have given indications of higher total applied loads than what is predicted by 

the load models provided by Eurocode 1. Siegert et al. (2008) studied the deflections 

in the mid-span of a bridge during a 256 days period in 2004 and 2005. From the 

obtained data, estimated values, based on a 1000 year return period, were presented 

and compared with LM1, presented in Eurocode. The deflections from an LM1 model 

yielded deflections 42 % greater than what was estimated by the study and the load 

model was therefore considered as conservative in that isolated case. 

Severe load events have, however, been observed which may cause local damages. An 

extreme value was found in a study conducted by Treacy & Brühwiler (2013) which 

was assumed to be derived from a special permission vehicle. This assumption was 

based on the fact that the value was obtained on a Sunday when such loads usually are 

permitted due to lesser traffic and safety reasons. It was also assumed by Nowak 

(1993) that extremely heavy loaded trucks purposefully avoids routs with known 

WIM stations and the data obtained for the severe loads might therefore be 

underestimated. This indicates that loads of magnitudes higher than expected might 

arise on a bridge structure during its service life. 
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3.4 Redistribution of reinforcement moments 

The moment distribution in a slab is more complex to predict compared to that of a 

beam because of the transverse action. It is however necessary to make a reasonable 

estimation of the moment distribution, both in the service state and the ultimate limit 

state. The different states vary both in magnitude and shape of the moment 

distribution due to the non-linear behaviour of concrete. In recent years, 3D finite 

element analysis has become more frequently used for design of reinforced concrete 

bridges. However, in linear elastic 3D analysis, some problems occur that was not 

present in traditional 2D design. One such problem is how to treat force 

concentrations which, for example, can be caused by concentrated loading or 

concentrated supports, such as columns. Recently, guidelines on how to treat this 

problem have been presented by Pacoste et al. (2012). These recommendations are 

given as widths under which the total bending moment can be assumed to be 

distributed, with a constant moment distribution over the width. These recommended 

widths are based on old regulations such as Bro (2004) and BBK 04 (2004).  

In this section, an example of a traditional approach is presented for better 

understanding of how this situation was treated in old regulations. Further, the 

recommendations in Pacoste et al. for FE analysis are presented.  

 

3.4.1 Traditional approach 

In the bridge design community, 2D analysis has been the main tool for design of 

reinforced concrete bridge decks up until recent years. Demands and requirements of 

structures are normally stated in norms, which also treated moment distribution 

widths for concentred loading to some extent. For example, the old code B7 (1968), 

included recommendations on moment distribution widths for concentrated loading on 

slabs. For slabs supported along two parallel edges, the total moment in the ultimate 

limit state was recommended to be distributed with a constant value within a width 

calculated in Equation (3-9), see Figure 3.8 for notations. 

  tbl
4

3
w 








 m5.2,min  (3-9) 

Where:    w  = distribution width 

    l  = the characteristic span length 

    b  = width of the concentrated force 

    t  = height of fill material 
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Figure 3.8 Moment distribution width for slabs supported along two parallel edges. 

Together with the recommendation for distribution width, demands were also made 

on the transverse reinforcement. B7 also included recommendations for cantilever 

slabs, designed with edge beams. The expressions take the stiffness of the edge beam 

and the stiffness along the support into account, see Equation (3-10). For notations see 

Figure 3.9. 

  
n

w
2

  (3-10) 

Where:  

  4

14EI

c
n   (3-11) 

Where: 

  3

23

a

EI
c   (3-12) 

Where:     E  = Young’s modulus for concrete 

     1I  = moment of inertia of the edge beam and an additional part of the slab 

= from the edge beam to the applied load 

     2I  = moment of inertia along the support, per unit width 

     a  = distance from support to applied load 

 

 

Figure 3.9 Notations for a cantilever slab structure with an edge beam. 
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3.4.2 Recommendations from Pacoste et al. for FE analysis 

The recommendations, restrictions and limitations presented in this section can be 

generally applied for slabs. There is however additional limitations and 

recommendations for each individual type of slab presented in Figure 2.17. Simply 

supported one-way slabs are treated in Section 3.4.2.1 and 3.4.2.2, cantilever slabs are 

treated in Section 3.4.2.3, while two-way and predominantly one-way spans are 

omitted in this Thesis. For information on the latter two types of slabs, the reader is 

referred to Pacoste et al. (2012). The following recommendations for moment 

distribution widths at a support are given by Pacoste et al: 











10
,3min

l
hw            for 45.0

d

xu
 (0.35 for concrete grades ≥ C55/67) (3-13) 











5
,5min
l

hw            for 30.0
d

xu
 (0.23 for concrete grades ≥ C55/67) (3-14) 

4

l
w                           for 25.0

d

xu
 (0.15 for concrete grades ≥ C55/67) (3-15) 

2

l
w                           for 15.0

d

xu
 (0.10 for concrete grades ≥ C55/67) (3-16) 











5
,5min
l

hw           for 0.0
d

xu
 (3-17) 

Where:   h  = height of the cross-section 

   ux  = depth of the neutral axis in ultimate limit state after redistribution 

   d  = effective depth at the critical cross-section 

   l  = characteristic span length 

 

For ductility values between the limits stated above, linear interpolation can be used 

in order to obtain values of the corresponding distribution width w. Independent of the 

requirements of ductility; the distribution width should be chosen according to: 

  ahww  2min  (3-18) 

Where a is the dimension of the support in the considered direction. When using 

Equation (3-13) to (3-17), additional limitations for columns with drop panels apply. 

These types of supports are not covered in this Thesis but for more information on the 

subject, the reader is referred to Pacoste et al. (2012). There is however an additional 

restriction to the above stated equations on the ratio between the average and 

maximum reinforcement moment:  

  6.0
max,

,


rx

avrx

m

m
  (3-19) 
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Where mrx,av and mrx,max can be determined based on Figure 3.10a and Equation (3-20) 

if the distribution width exceeds the distance between the points of zero moments and 

Figure 3.10b and Equation (3-21) if the distribution width is smaller than the distance 

between the points of zero moments.  

 

Figure 3.10 Definition of the average value of reinforcement moment distribution 

where: (a) the distribution width is greater than the distance between 

the points of zero moment and (b) the distribution width is less than the 

distance between the points of zero moment. 

The average moment after distribution mrx,av in Figure 3.10a and Figure 3.10b can be 

obtained using Equation (3-20) and (3-21), respectively. 

dym
w

m

w

rxavrx 
0

0

,

1
 (3-20) 

dym
w

m

w

rxavrx 
0

,

1
 (3-21) 

 

3.4.2.1 Distribution widths for one-way slabs in ULS 

The recommendations and restrictions on how to determine the distribution width for 

simply supported one-way slabs are treated in this section. These are applied in 

addition to those stated for slabs in Section 3.4.2. The distribution width for the 

moment is divided into longitudinal and transversal direction. The characteristic span 

length in the longitudinal direction is defined by Equation (3-22) and by 

Equation (3-23) in the transverse direction and illustrated in Figure 3.11. In addition 

to the general restrictions defined in Equation (3-13) to (3-17), the distribution width 

in the transverse direction is limited to Equation (3-24). 

yLl   (3-22) 

 xBl   (3-23) 

2

y

x

L
w   (3-24) 
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Figure 3.11 Distribution widths for a simply supported one-way slab in longitudinal 

and transversal direction. 

 

3.4.2.2 Distribution widths for one-way slabs in SLS 

According to Pacoste et al. (2012), there are very few recommendations in the 

literature on how to choose an appropriate distribution width for moments in the 

serviceability limit state. The reason for this is the difficulty of determining the 

behaviour of the reinforced concrete immediately after the slab starts to crack. 

The distribution of the reinforcement should reflect the assumed behaviour of the 

slabs in working conditions which leads to a concentration of reinforcement over 

columns. Pacoste et al. recommends that 50 % of the total amount of the top 

reinforcement should be concentrated to a strip over the column with the width, w: 

88

21 ll
w   (3-25) 

where l1 and l2 are the distances between the column and the adjacent columns in the 

direction perpendicular to the reinforcement which is illustrated in Figure 3.12. This 

approach generally leads to a larger reinforcement concentration in the column strip 

than what is obtained by linear elastic analysis.  

 

Figure 3.12 Illustration of Equation (3-25). 

The recommendation is to adapt a more conservative approach when choosing 

moment distribution widths in SLS in comparison to the ULS. Due to this reason, 

Pacoste et al. recommends the distribution width to be restricted to the 

equation below, which is a combination of Equation (3-13) and (3-14). 


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





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l
h  (3-26) 
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3.4.2.3 Distribution widths for cantilever slabs 

The recommendations given by Pacoste et al. are the result of a literature study, 

mainly based on recommendations from Swedish handbooks such as BBK 04 (2004) 

and also Davidson (2003). These recommendations are originally based on the work 

and tests performed by Hedman and Losberg (1976). According to Pacoste et al, these 

recommendations are not believed to be as conservative as the recommendations for 

moment and shear distribution widths for simply supported slabs.  

The simplest case of moment distribution in a cantilever slab is for one concentrated 

static force. The load is transferred to the support over a distribution width due to the 

effect of plastic redistribution. For one concentrated force, see Figure 3.13a, the 

width w over which the moment is distributed in the ultimate limit state is defined as: 










csyd

tbd
w

3.110

7
min  (3-27) 

Where:     xu = depth of the neutral axis in ultimate limit state after redistribution 

    d = effective depth at the critical cross-section 

    h = height of the cantilever at the critical cross-section 

    b = width of the load 

    t = thickness of the surfacing 

    ycs = distance from the centre of the load to the critical cross-section 

 

The above stated distribution width w applies for the following limits of the xu/d ratio: 

25.015.0 
d

xu
for concrete classes  C12/15 to C50/60 (3-28) 

15.010.0 
d

xu
for concrete classes C55/67 and greater (3-29) 

For values outside the above stated limits, the distribution width wy should be defined 

as the distribution width for the serviceability limit state: 

tbhwy  2  (3-30) 

 

Figure 3.13 Moment distribution widths for: (a) one concentrated force and (b) two 

or several concentrated forces. 
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For the case of two or several concentrated forces, a similar distribution width as for 

one concentrated force can be used. If the distance between the concentrated forces is 

such that the distribution widths do not overlap, Equation (3-27) can be used for each 

individual load. If on the other hand, the distribution widths from the concentrated 

forces overlap, the combined distribution width wyR should be used:  

yRyR wyw  2  (3-31) 

Where: 






n

R
y

y
y

1
min  (3-32) 

Here, yR is the minimum distance between the outer concentrated forces and the 

resultant force R, for a geometrical interpretation see Figure 3.14. 

 

Figure 3.14 Geometrical interpretation of Equation (3-32).  
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4 Moment distribution in SLS – Cantilever slab 

In this Thesis, simple structures were examined and the knowledge gained from these 

is aimed to enable understanding of more complex structures. The aim of Chapter 4 

and 5 was to increase the understanding of moment distribution in slabs which are 

subjected to concentrated forces in the service limit state. The shear force distribution 

is not discussed in this Thesis, but is shown in Appendix I for the interested reader. In 

this chapter, a cantilever slab was analysed. First, the response of a single 

concentrated force was studied in Section 4.2. This study was then expanded to the 

response of two concentrated forces which is covered in Section 4.3. The 

methodology was then repeated for a new structure, a simply supported one-way slab 

in Chapter 5. 

The cantilever slab was 8 m long and had a free edge and a fixed edge along the 

length. The slab was 1.6 m wide, had a thickness of 0.2 m and is illustrated in 

Figure 4.1. A coordinate system was chosen so that the x-axis was along the length of 

the slab, and y-direction was along the width of the slab. 

 

Figure 4.1 Geometry and dimensions of the studied cantilever slab. 

 

4.1 Methodology 

This section covers the methodology used for the studies related to moment 

distribution in the service state and thus also applies to Chapter 5. 

 

4.1.1 Moment-curvature relations 

In this study, the aim was to gather reasonable estimates of the moment distribution in 

slabs and gather more knowledge around important factors which can influence the 

distribution. Such factors can be varying stiffness in different directions due to 

varying reinforcement amounts or normal stresses. A stiffness factor α was therefore 

introduced as: 

y

x

E

E
  (4-1) 

Where Ex and Ey was the stiffness in the x- and y-direction, respectively. Also, in an 

effort to include parts of the non-linear behaviour of reinforced concrete, analyses 

involving trilinear moment-curvature relations were performed. The moment-
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curvature relations were used as input in beam grillage models and were intended to 

imitate the behaviour before yielding in a small reinforced concrete section, see 

Figure 4.2.  

 

Figure 4.2 Trilinear moment-curvature relation. 

This study was directed towards serviceability limit state and no yielding was 

therefore allowed in the model. The shape of the real moment-curvature relationship 

for a small section in a slab is case specific, and will depend on several factors 

including slab thickness and reinforcement amounts. Also, the stiffness of reinforced 

concrete is significantly influenced by normal stresses. Therefore, the study was 

divided into three parts, representing different scenarios. The three scenarios were 

intended to represent different regions of a bridge, where the cantilevering part of the 

structure is subjected to global forces. For example, the upper flange of a bridge 

cross-section will be in compression for a positive global moment, have no bending 

stresses where the moment is zero, and be in tension for a negative global moment, 

see Figure 4.3.  

 

Figure 4.3 The three studied scenarios, dividing the cantilever in the categories 

Uncracked (compressed), Neutral and Cracked (tensioned). 
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The names of the scenario imply on the state and corresponding stiffness in the x-

direction. 

The three chosen scenarios were: 

1. “Uncracked” (U), where the slab was assumed to be compressed in x-

direction, i.e. have the stiffness of uncracked concrete. In y-direction, the slab 

was assumed to be uncracked at the starting point but able to crack as the force 

was applied, i.e. have a trilinear moment-curvature relation. 

 

2. “Neutral” (N), where the slab was assumed to be loaded only by the 

concentrated force, i.e. have no significant normal stresses in the x-direction 

due to the global response. The slab was modelled with trilinear moment-

curvature relations in both directions. 

 

3. “Cracked” (C), where the slab was assumed to be under tension in x-direction, 

i.e. already in a cracked state when the concentrated force was applied, while 

it had a trilinear moment-curvature relation in y-direction. 

In addition, a variety of stiffness proportions and values of the cracking moment were 

chosen. The magnitude of the applied load influence the behaviour since it decides in 

which state the structure is in, for example if the structure experience a small or large 

effect from tension stiffening. In order to have better control over the effect from 

tension stiffening, it was decided that the cracking moment would be determined from 

a factor of the maximum moment obtained from the corresponding orthotropic linear 

solution. Two different levels of cracking moments were chosen, namely one half and 

one third of the maximum linear moment: 

2

)αE(EM
M

yxmax.linear

cr


  (4-2) 

3

)αE(EM
M

yxmax.linear

cr


  (4-3) 

The lower branch of the trilinear moment-curvature relation in Figure 4.2 represents 

an uncracked concrete section and the curvature χcr at the cracking moment Mcr was 

calculated analytically as:  

Ic

cr
cr

IE

M
  (4-4) 

Where:    cE   = 33 GPa 

 cI   = moment of inertia for one uncracked beam used in the beam grillage 

= model 
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In a linear case, for example with the use of linear elastic shell elements, it is possible 

to utilize a simple variation of stiffness proportions by modifying the modulus of 

elasticity in different directions. If one direction is kept constant while the other 

direction is given a fictitious modulus of elasticity, it would mean that for high values 

of the stiffness factor α, the stiffness would be greater than the stiffness in the 

uncracked state. When using trilinear moment-curvature input, with an analytically 

computed stiffness in the uncracked state, it is thus no longer possible to utilize the 

same kind of methodology. The upper branch of the moment-curvature relation 

represented cracked reinforced concrete sections. A range of inclinations were chosen 

to represent different reinforcement amounts.  

For the case “Uncracked”, the stiffness proportions can be large since uncracked 

concrete has a larger stiffness compared to when it is in the cracked state. Therefore a 

variety of the stiffness factor α, from 1 to 10 was studied, where 10 was the stiffness 

that corresponded to a stiffness that was 10 times softer than in the uncracked state, 

see Table 4.1. The table present the methodology used when constructing the input 

data, however, the exact input data used is stated in Appendix C. Note that, since two 

levels of cracking moment were chosen, each case of stiffness proportion yielded two 

solutions. 

For the case “Neutral”, the stiffness range was lower since the proportions imply on a 

cracked state, which was why only a variety of the stiffness factor α, from 0.5 to 2 

was studied. A reinforcement ratio of 0.5 % was used as reference and the 

corresponding stiffness was calculated analytically as: 

hbAs  005.0  (4-5) 
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IIc IE
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
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%5.0  (4-8) 

Where:   x   = height of the compression zone with a triangular stress block  

   III   = the moment of inertia for a transformed concrete section 

 

The calculated value was used for the upper branch in the moment-curvature relation 

and was used in both directions for the case Ex=Ey, see Table 3.2. For calculated 

values, see Appendix C. 

For the case “Cracked”, the same moment-curvature relations used in “Neutral” were 

utilized but with a linear relation corresponding to a cracked state in x-direction, since 

the slab was considered cracked before the concentrated load was applied, see 

Table 4.3. 
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Table 4.1 Moment-curvature relations for the case Uncracked. 

Global region: 

 

 Moment-curvature relations used 

in x-direction 

Moment-curvature relations used 

in y-direction 

Ex = 2Ey 

  

Ex = 5Ey 

 
 

Ex = 10Ey 
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Table 4.2 Moment-curvature relations for the case Neutral. 

Global region: 

 

 Moment-curvature relations used 

in x-direction 

Moment-curvature relations used in 

y-direction 

Ex = 0.5Ey 

  

Ex = Ey 

  

Ex = 2Ey 
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Table 4.3 Moment-curvature relations for the case Cracked. 

Global region: 

 

 Moment-curvature relations used 

in x-direction 

Moment-curvature relations used in 

y-direction 

Ex = 0.5Ey 

  

Ex = Ey 

  

Ex = 2Ey 

 
 

 

Due to numerical stability reasons, a slight inclination was chosen for the second 

branch of the trilinear relations, such that M2 = 1.05Mcr. Where M2 is the moment at 

the intersection between the second and third line. Tests showed that this inclination 

did not affect the results to a significant extent. 
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4.1.2 Finite element model 

The finite element software used was the student version of ADINA (2012). Due to a 

restraint in the student version, which only allows a maximum of 900 nodes, the slab 

was modelled with a symmetry boundary condition, dividing the model to a length of 

4 m. The moment distribution along the fixed edge was of interest in this study and is 

presented along the length of 4 m. The coordinate x = 0 refer to the centre of the fixed 

edge. The modelled part of the slab is presented in Figure 4.4. 

 

Figure 4.4 Modelled part of the slab. 

For the majority of analyses, beam grillage models where moment-curvature relations 

are used as input were utilized. However, shell element models were used for early 

verification of the linear elastic beam grillage models. For the shell element model, it 

was concluded that a mesh size of 0.2 m gave satisfying results in terms of 

convergence, see Appendix A. In the linear elastic case, where the concrete was 

assumed to be uncracked, it was concluded that the grillage model with a beam width 

of 0.2 m yielded results that were similar to the results from a shell element model, 

which is why the width of 0.2 m was chosen, see Appendix A. The choice of 0.2 m 

width was also made in Lim (2013). For further information about the shell and beam 

element type and properties, see Section 3.1. 

The concentrated force was modelled as a point load to a single node for both the 

shell element model and the beam grillage model. Since the moment along the fixed 

support was of interest, which is a certain distance from the applied load, it was 

concluded that this approximation was acceptable. The boundary condition along the 

fixed edge was modelled as fixed in all translations and rotations. The symmetry 

boundary condition was modelled as a fixed rotation around the y-axis and a fixed 

translation in the x-direction. Beams that were placed in the symmetry lines were 

modelled as beams with half the cross-sectional width. 

The Poisson’s ratio was chosen to 0. The iteration method for the non-linear analysis 

was chosen to the full Newton method in ADINA and the iteration tolerance type was 

set to energy. 
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4.1.3 Torsional stiffness 

When modelling the structure in a cracked state, difficulties arise regarding which 

torsional stiffness of the beam elements that should be used. In Lim (2013), an elastic 

(uncracked) torsional stiffness was used throughout the Thesis. It was however 

discovered that the torsional stiffness dominates the behaviour of the structure. A 

parametric study was performed with varying values of the torsional stiffness, see 

Appendix B. The structure studied was the cantilever slab presented in this section 

and a variety of the torsional stiffness was chosen which included 1, 1/8, 1/16 and 0 of 

the elastic (uncracked) torsional stiffness of a concrete beam with a width and height 

of 0.2 m. It was shown that, for a linear elastic isotropic case with a concentrated 

force of 200 kN, the maximum moment was in the range between 75 and 113 kNm/m, 

see Figure 4.5a. The influence of the torsional stiffness on the plastic rotation was also 

studied. Both bilinear and trilinear moment-curvature relations were used in the study, 

which showed that the plastic rotation significantly increases as the torsional stiffness 

decreases, see Figure 4.5b. The case with zero torsional stiffness became too unstable 

and the analysis was aborted. For more detailed information of the study, see 

Appendix B.  

  

Figure 4.5 Results from the parametric study of the torsional stiffness: a) moment 

distribution for an isotropic linear case, b) plastic rotation for an 

isotropic bilinear and trilinear case. 

According to tests presented in Lopes (2014), the torsional stiffness of a slab in a 

cracked state is about 1/17-1/15 of the stiffness in the elastic state. Based in this, the 

torsional stiffness of the beam elements throughout this Thesis was chosen to a linear 

relation of 1/16 of the elastic stiffness of a concrete beam with a width and height of 

0.2 m. The relation was kept constant independent on stiffness proportions. As stated 

in Section 3.1, it should however be noted that the torsional stiffness of a plate is 

different from the torsional stiffness of a beam grillage model, which further 

complicates the choice of torsional stiffness. However, the choice was believed to be 

conservative.  

The torsional stiffness for a beam element is defined by a torsional moment verses 

angle of twist per unit length relation. Since a linear relation of 1/16 of the elastic 

stiffness was chosen, the model was unable to accurately describe parts that were 

uncracked in the structure. A better approximation would have been to connect the 

torsional stiffness to the bending moment such that when the element was uncracked 

in bending, an elastic uncracked torsional stiffness would be active. This was however 

not possible in ADINA and was believed to make the choice of torsional stiffness 

even more conservative.  
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The relation between torsional moment and angle of twist for a beam is defined as: 

vGK

T
  (4-1) 

Where:      = angle of twist per unit length 

   T   = torsional moment 

   G   = shear modulus 

   vK   = torsion constant, see Equation (3-3) 

 

For a linear relation, ADINA requires two points in the torsional moment versus angle 

of twist diagram to be defined and interpolates linearly between those two points. 

Since one point was defined in the origin, only one point needed to be calculated. A 

reference torsional moment of 10 kNm was chosen and the corresponding angle of 

twist which was 16 times weaker than the torsional stiffness of uncracked concrete 

became: 

GPa5.16
)01(2

1033

)1(2

9











cE

G  (4-2) 

4433 m1026.22.02.0141.0  bhKv   (4-3) 

m

1
043.016

1026.2105.16

00001
49









vGK

T
  (4-4) 

Where:   cE   = modulus of elasticity 

      = poisons ratio, chosen to 0 

      = constant depending on the height to width ratio of the cross-section, 

= equal to 0.141 for a section with equal width and height 

 

It should be noted that by reducing the torsional stiffness of the beam elements, the 

results will not match the results obtained by a shell element model, even for a linear 

elastic case. 
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4.2 Response of a single concentrated force 

The first case of interest was the response of a single concentrated force. The study is 

then in Section 4.3 expanded to the response of two concentrated forces. The model 

was analysed for a static concentrated force with a magnitude of 200 kN, see 

Figure 4.6.  

 

Figure 4.6 Location and magnitude of the applied concentrated force. 

 

4.2.1 Linear elastic orthotropic case 

In the start of ordinary design, there is no knowledge of the stiffness proportions in 

different directions of a slab. It is therefore necessary to start with a linear elastic 

isotropic model to acquire needed reinforcement amounts. However, since the 

moment distribution is governed by stiffness, this type of analysis will not yield the 

actual moment distribution experienced by the slab. It was therefore of interest to 

investigate how the design values are influenced by changes in stiffness in different 

directions.  

The slab was analysed using a linear elastic model to acquire values to which a more 

refined model could be compared. In addition, a range of stiffness proportions was 

used as input to later investigate how well a simple linear elastic orthotropic model 

can describe the moment distribution when the reinforcement amounts are known. 

The analysis was based on a beam grillage model where moment-curvature relations 

were used as input for the beam elements. In the isotropic case, Ex = Ey, the beams 

were given an uncracked stiffness in both directions and the relation between 

curvature and moment was calculated analytically as: 

Ic IE

M
  (4-5) 

Where:   cE   = 33 GPa 

   II   = moment of inertia for the gross concrete section of one beam element 

 

For the orthotropic cases, the curvature in the y-direction was kept constant while the 

stiffness in the x-direction varied with the stiffness factor α. The torsional stiffness of 

the beam elements was, as previously stated in Section 4.1.3, 1/16 of the elastic 

uncracked stiffness. The results from the analysis are shown in Figure 4.7. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
44 

 

Figure 4.7 Linear elastic orthotropic moment distribution. 

 

4.2.2 Trilinear elastic orthotropic case 

Following the methodology presented in Section 4.1, the cantilever slab was analysed 

with multilinear moment-curvature input. As stated in Section 4.1.1, the magnitude of 

the cracking moment was a factor 1/2 and 1/3 of the maximum moment measured in 

the corresponding orthotropic linear elastic solution, presented in Figure 4.7. This 

means that for each stiffness proportion there were two magnitudes of the cracking 

moment.  

The results from the analysis are presented in Figure 4.8 to Figure 4.10. The 

distributions with equal stiffness factor α are plotted against each other together with 

both the isotropic and their corresponding orthotropic linear solutions, which are the 

same solutions as presented in Figure 4.7. The influence from uncracked concrete 

sections, i.e. the effect of tension stiffening, can then be observed. The linear solution, 

Mcr=Mlin /3 and Mcr=Mlin /2 can be seen as no, small and large effect of tension 

stiffening, respectively. 

For exact input data, see Appendix C. The results are discussed in Section 4.2.3.  

 

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

M
o

m
en

t,
 m

y 
[k

N
m

/m
] 

 

Coordinate, x [m] 

Ex=0.1Ey

Ex=0.2Ey

Ex=0.5Ey

Ex=Ey

Ex=2Ey

Ex=5Ey

Ex=10Ey



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
45 

a) Ex = 2Ey 

 

b) Ex = 5Ey 

 

c) Ex = 10Ey 

 

Figure 4.8 Moment distributions from the case Uncracked with varying magnitude 

of the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 4.9 Moment distributions from the case Neutral with varying magnitude of 

the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 4.10 Moment distributions from the case Cracked with varying magnitude of 

the cracking moment. 
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4.2.3 Discussion 

The maximum moment was found at the centre of the slab where the concentrated 

force was applied. It should be noted that no self-weight was applied, which means 

that the concentrated force was acting on the model exclusively. 

In the results from the case Uncracked, shown in Figure 4.8, it is clearly visible that a 

lower maximum moment was obtained as the stiffness in the x-direction increased. 

The orthotropic linear solution and the trilinear solutions are fairly similar, but the 

trilinear solutions show a marginally lower maximum moment. This is due to the fact 

that some elements still were in the uncracked state and therefore attracted additional 

moment, close to the edge of the slab. However, there seems to be an insignificant 

difference between the two levels of cracking moment. 

The cracking moment is clearly visible throughout the results as a plateau, similar to 

what would be expected from a bilinear moment-curvature input where yielding takes 

place. However, as the curvature further increases, the beam element reaches the 

upper branch in the trilinear moment-curvature relation and adopts the stiffness of 

state II. In the case Uncracked, it is the stiffness in y-direction which was varied and 

the plateau is situated on a level of 1/3 and 1/2 of the maximum moment of the 

orthotropic linear solution. However, in the case Neutral, it was the stiffness in x-

direction which was varied which means that the plateau was situated on the same 

level for all different stiffness proportions, since it is the moment in y-direction which 

is presented.  

The orthotropic linear solution is no longer close to the trilinear solutions for the case 

Neutral. The trilinear solutions are very similar independent on stiffness proportions; 

i.e. the stiffness in x-direction seems to have a very low influence. It should be noted 

that the uncracked stiffness was equal for all cases, which could mean that the 

uncracked stiffness in x-direction dominates the behaviour.  

In the case Cracked, the linear orthotropic solution was again close to the trilinear 

solutions. As in the case Neutral, the plateau is situated on the same level for all 

stiffness proportions since the moment-curvature input in the y-direction was the 

same. However, contrary to the case Neutral, the trilinear solutions are not similar 

between the different stiffness proportions. The two levels of cracking moment do 

however still seem to have a low influence.  

A positive moment was observed close to the edge of the slab, and was believed to be 

a phenomenon owing to the use of a beam grillage model. The beams positioned in 

the x-direction are deflected downwards due to the applied load. However, the beams 

in the y-direction acted as spring supports which pushed the edges of the beams in the 

x-direction upwards, creating a positive moment, see Figure 4.11. 

 

Figure 4.11 Illustration of how the positive moment occurs. 

The effect was believed to be strongest in the trilinear solution because the beams 

were still in an uncracked stiffness, due to the low moment close to the edges, making 

the springs in Figure 4.11 stiffer. 
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4.3 Response of two concentrated forces 

In the case of two static concentrated forces, the examined slab was exposed to two 

forces acting along the free edge of the slab. The two forces were of equal magnitude 

and were positioned with a mutual distance of 1.2 m, see Figure 4.12. The chosen 

distance between the loads originates from the traffic load model described in 

Section 3.2.  

 

Figure 4.12 Geometry and position of loading. 

 

4.3.1 Linear elastic orthotropic case 

The linear elastic orthotropic analysis presented in Section 4.2.1 was also performed 

here, and the results are presented in Figure 4.13. 

 

Figure 4.13 Linear elastic orthotropic moment distribution. 

 

4.3.2 Trilinear elastic orthotropic case 

The multilinear analysis presented in Section 4.2.2 was also performed here, and the 

results are presented in Figure 4.14 to Figure 4.16. For exact input data, see 

Appendix C. The results are discussed in Section 4.3.3.  
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a) Ex = 2Ey 

 

b) Ex = 5Ey 

 

c) Ex = 10Ey 

 

Figure 4.14 Moment distributions from the case Uncracked with varying magnitude 

of the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 4.15 Moment distributions from the case Neutral with varying magnitude of 

the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 4.16 Moment distributions from the case Cracked with varying magnitude of 

the cracking moment. 
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4.3.3 Discussion 

In general, the same observations made in Section 4.2.3 also apply here. As for the 

single concentrated force, the linear orthotropic solution describes the trilinear 

solutions fairly well for the cases Uncracked and Cracked, while it differs from the 

trilinear solutions for the case Neutral.  

The maximum moment was still found at the centre of the slab, which means that the 

spacing between the loads were small enough to have a substantial overlapping effect. 

The isotropic linear solution was slightly lower than the isotropic linear solution for a 

single point load multiplied by 2, which is reasonable since there was a certain 

distance between the loads.  

The linear results were also compared by means of superposition. For example, for the 

linear isotropic case, the moment for a single concentrated force at the position 

x = 0.6 m was: 

kNm/m103)6.0(1F xm  (4-6) 

Since both of the loads in the case with two concentrated forces were acting a distance 

of 0.6 m from the centre of the slab, the moment measured at x = 0 should be twice as 

large: 

kNm/m2061032)6.0(2 1F  xm  (4-7) 

The actual moment measured in the case for two concentrated forces at x = 0 was: 

kNm/m206)0(2F xm  (4-8) 

This means that, for the isotropic linear case, the structure was long enough for 

superposition of the results. 
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5 Moment distribution in SLS – Simply supported 

slab 

In the previous chapter, the cantilever slab was examined. The same types of analyses 

were expanded to a new structure, a simply supported one-way slab. The comparison 

between the cantilever slab and the simply supported slab were believed to be 

interesting because of the, in some ways similar and in other ways different, structural 

behaviour. For example, when exploiting a symmetry condition for the simply 

supported structure, the forces acting on the two structures are mirrored, see 

Figure 5.1. 

 

Figure 5.1 Similarities between a cantilever and a simply supported one-way 

structure. 

The examined slab was similarly to the cantilever slab 8 m long, but had a width of 

3.2 m. It was simply supported along the length of the slab, see Figure 5.2. The 

moment distribution in the middle of the slab, along the length, was of primary 

interest in this case. The shear force distribution is not discussed in this Thesis, but is 

shown in Appendix I for the interested reader. A coordinate system was chosen such 

that the x-axis runs along the length of the slab, while the y-axis runs along the width. 

 

Figure 5.2 Geometry and dimensions of the studied one-way slab. 

As for the cantilever slab, analyses where trilinear moment-curvature relations were 

used as input were conducted to investigate the influence of uncracked concrete 

sections in the slab. This study was directed towards serviceability limit state and no 

yielding was therefore allowed in the model. The methodology presented in 

Section 4.1 was also applied here. See Table 4.1 to Table 4.3 for descriptions of the 

moment-curvature relations used in this study. For exact moment-curvature input 

data, see Appendix C.  
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5.1 Finite element model 

In general, the choices described in Section 4.1.2 also apply here. However, some 

specific choices were made for the simply supported slab which is described in this 

section. 

The slab was modelled with symmetry boundary conditions, dividing the model to a 

length of 4 m and a width of 1.6 m. The moment distribution along the centre of the 

slab was of interest in this study and is therefore presented along the length of 4 m. 

The coordinate x = 0 refer to the centre of the slab. The modelled part of the slab is 

presented in Figure 5.3. 

 

Figure 5.3 Layout of the modelled slab with symmetry conditions. 

As for the cantilever slab, shell element models were used for early verification. It 

was concluded that shell element mesh sizes of 0.2 m gave satisfying results in terms 

of convergence, see Appendix A. As for the cantilever slab, it was found that for the 

linear elastic case where the concrete was assumed to be uncracked, beam widths of 

0.2 m in the beam grillage model gave similar results as the shell element model. 

Based on this, the spacing between beams in the grillage model was chosen to 0.2 m.  

Since the moment distribution along the centreline was of interest, the point load was 

positioned in the line where the moment was measured. Contrary to the cantilever slab 

where the moment was measured a certain distance from the point load, attention had 

to be directed to how the point load was modelled in order to obtain reasonable 

results. It was therefore chosen to spread the concentrated force over an area of 

0.4 x 0.4 m
2
. However, since it is not possible to model pressure loads on beam 

elements, it was decided that the load should be divided into smaller point loads 

acting on the intersection points within the chosen area, see Figure 5.4a. Note that the 

nodal forces were divided in such a way that the proportion of each point load 

represented the sum of an equivalent pressure load. In the modelled part of the slab, 

one quarter of the load was modelled for the case with one concentrated force, see 

Figure 5.4b. For the case with two concentrated forces, half of the load was modelled, 

see Figure 5.4c. 

 

Figure 5.4 Force application on the beam grillage model. 
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5.2 Response of a single concentrated force 

In the case of a single static concentrated force, the examined slab was exposed to a 

force acting in the centre of the slab, see Figure 5.5. 

 

Figure 5.5 Position of loading on the modelled part of the slab. 

 

5.2.1 Linear elastic orthotropic case 

The linear elastic orthotropic analysis presented in Section 4.2.1 was also performed 

here, and the results are presented in Figure 5.6. 

 

Figure 5.6 Linear elastic orthotropic moment distribution. 

 

5.2.2 Trilinear elastic orthotropic case 

The multilinear analysis presented in Section 4.2.2 was also performed here, and the 

results are presented in Figure 5.7 to Figure 5.9. For exact input data, see Appendix C. 

The results are discussed in Section 5.2.3.  
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a) Ex = 2Ey 

 

b) Ex = 5Ey 

 

c) Ex = 10Ey 

 

Figure 5.7 Moment distributions from the case Uncracked with varying magnitude 

of the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 5.8 Moment distributions from the case Neutral with varying magnitude of 

the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 5.9 Moment distributions from the case Cracked with varying magnitude of 

the cracking moment. 
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5.2.3 Discussion 

The results follow the same pattern as for the cantilever slab in Section 4.2.2 and 

4.3.2. The orthotropic linear solution describes the trilinear solutions fairly well for 

the cases Uncracked and Cracked, while the trilinear solutions differ from the 

orthotropic linear solution for the case Neutral. 

The curves are not as smooth, close to the applied load, in comparison to the 

cantilever slab. This is due to the fact that the moment was measured directly under 

the point load, while for the cantilever slab, the moment was measured a certain 

distance from the load. 

The trilinear solutions for the case Neutral are again very similar, independent on 

stiffness proportion. The low influence from the variety of stiffness in the x-direction 

can be explained by the dominating behavior from uncracked concrete sections which 

had equal stiffness. It would mean that most of the beams in x-direction still were in 

an uncracked state. To investigate this behavior further, different load levels were 

chosen for the case Neutral with a level of the cracking moment Mcr=Mlin /3 and the 

resulting moment distributions are presented in Figure 5.10. Moment distributions 

with equal cracking moment, but varying stiffness proportions, are plotted together for 

the load levels 100, 200 and 400 kN. 

 

Figure 5.10 Moment distributions from the case Neutral, with the cracking moment 

Mcr=Mlin / 3 and varying stiffness proportions. 

It is observed that, for larger forces, the solutions became more dependent on the 

stiffness proportions which were believed to be an effect of decreasing tension 

stiffening.  

The trilinear solutions from each stiffness proportion in the case Cracked were very 

similar, independent on the level of the cracking moment. 
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5.3 Response of two concentrated forces 

In the case of two static concentrated forces, the examined slab was exposed to two 

forces acting along the centreline of the slab. The two forces were of equal magnitude 

and were positioned with a mutual distance of 1.2 m, see Figure 5.11. The chosen 

distance between the loads originates from the traffic load model described in 

Section 3.2.  

 

Figure 5.11 Geometry and position of loading. 

 

5.3.1 Linear elastic orthotropic case 

The linear elastic orthotropic analysis presented in Section 4.2.1 was also performed 

here, and the results are presented in Figure 5.12. 

 

Figure 5.12 Linear elastic orthotropic moment distribution. 

 

5.3.2 Trilinear elastic orthotropic case 

The multilinear analysis presented in Section 4.2.2 was also performed here, and the 

results are presented in Figure 5.13 to Figure 5.15. For exact input data, see 

Appendix C. The results are discussed in Section 5.3.3.  
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a) Ex = 2Ey 

 

b) Ex = 5Ey 

 

c) Ex = 10Ey 

 

Figure 5.13 Moment distributions from the case Uncracked with varying magnitude 

of the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 5.14 Moment distributions from the case Neutral with varying magnitude of 

the cracking moment. 
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a) Ex = 0.5Ey 

 

b) Ex = Ey 

 

c) Ex = 2Ey 

 

Figure 5.15 Moment distributions from the case Cracked with varying magnitude of 

the cracking moment. 
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5.3.3 Discussion 

In general, the results follow the same pattern as in Section 4.2.3, 4.3.3 and 5.2.3. 

However, contrary to the cantilever slab in the case with two concentrated forces, the 

maximum moment was not found in the slab centre. This is most likely due to the fact 

that, contrary to the cantilever slab, the moment was measured directly under the 

concentrated force. 

As described in Section 4.3.3, the linear results can be compared between a single and 

two concentrated forces by means of superposition. Here, the measured moment for a 

single concentrated force at the position x = 0.6 m was: 

kNm/m5.44)6.0(1F xm  (5-1) 

Since both of the loads in the case with two concentrated forces were acting a distance 

of 0.6 m from the centre of the slab, the moment measured at x = 0 should be twice as 

large: 

kNm/m895.442)6.0(2 1F  xm  (5-2) 

The actual moment measured in the case for two concentrated forces at x = 0 was: 

kNm/m89)0(2F xm  (5-3) 

This means that, for the isotropic linear case, the structure was long enough for 

superposition of the results. 
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6 Cumulative plastic rotation – Cantilever slab  

As mentioned in Chapter 4, simple structures were in this Thesis examined and the 

knowledge gained from these are intended to enable understanding of more complex 

structures. The aim of Chapter 6 and 7 was to increase the understanding of 

development of accumulated damage in long slabs which are subjected to moving 

concentrated forces at, below or above magnitudes predicted by the serviceability 

limit state, SLS. The response of static forces was first studied for comparison 

purposes and as reference results. The response of a single moving concentrated force 

was thereafter studied and then expanded to two moving concentrated forces. The 

forces were applied with constant and varying magnitudes in different orders. The 

distance d between the two moving concentrated forces was altered in order to cover a 

broader spectrum of possible load combinations. The same methodology was repeated 

for a simply supported one-way slab, presented in Chapter 7. 

The cantilever slab studied in Chapter 4 was for these analyses modelled without a 

symmetry boundary since such a boundary could not reflect the moving forces of 

interest in this Thesis. When the cantilever slab from Chapter 4 was modelled without 

symmetry boundary conditions, numerical problems occurred. These numerical 

problems were obtained due to disturbances of the slab in the vicinity of the free 

edges. Since the scope of this analysis was to investigate how plastic rotation in a long 

cantilever slab develops, the previous dimensions were altered. The new slab width 

was set to 12 m while other geometrical parameters were kept constant.  

 

Figure 6.1 Geometry and dimensions of the studied cantilever slab 
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6.1 Methodology 

This section covers the methodology used for the studies related to the development 

of plastic rotation and thus also applies for Chapter 7. The background and the 

practical application of these studies, the moment-curvature relations, the finite 

element model and the influence of the torsional stiffness are also treated in this 

section. 

 

6.1.1 Background 

The aim of this study was to gather reasonable estimates of the development of plastic 

rotation in long slabs and to gather knowledge around important factors which can 

influence the development. This study was directed towards load magnitudes that 

causes plastic rotation in bridge structures but is also applicable for structures 

subjected to similar forces. This Thesis defined two likely situations where plastic 

rotation may occur which are presented below. 

The first of the two situations were observed in Chapter 4, where moments higher 

than predicted by a simplified linear elastic analysis occurred when a more refined 

analysis was conducted. This difference was derived from the orthotropic stiffness 

which was a result from varying reinforcement amounts in different directions. This 

behaviour was observed for the linear elastic orthotropic case in Figure 4.7 and is also 

illustrated here in Figure 6.2. 

 

Figure 6.2 Linear elastic orthotropic moment distribution. 

As can be seen in Figure 6.2, there was a significant difference in maximum moment 

between the isotropic (solid line) and the orthotropic solutions where an orthotropic 

case yielded the highest moment. This means that a bridge structure, designed 

according to a simplified linear elastic model, can be subjected to moments higher 

than the design values and thus initiate plastic rotation. 

The second situation when loads causes plastic rotation was here defined as forces of 

magnitudes above what is predicted by the serviceability limit state (SLS) but below 

those defined by the ultimate limit state (ULS), see Figure 6.3. 
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Figure 6.3 Area of interest for the analyses in this section. 

Bridge structures should not be exposed to these load levels but due to heavy 

transportation, such as authorized industrial transportation and uncontrolled highly 

loaded vehicles, these load levels may still be exceeded. When these load levels are 

exceeded, a permanent damage arises in the structure which will continue to grow 

each time the serviceability limit state load is exceeded. For additional information 

about these load situations, the reader is referred to Section 3.3  

The analyses in this section were conducted for a large number of load cycles n where 

each load cycle represents a crossing of a vehicle below, at, or above the 

serviceability limit state load that causes plastic rotation. 

 

Figure 6.4 Practical interpretation of the load model used in this section. 
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6.1.2 Moment-curvature relations 

The non-linear behaviour of reinforced concrete, used in Chapter 4, was here 

simplified to a bilinear behaviour. The trilinear moment-curvature relation used in 

Chapter 4 could not be implemented in a plastic analysis due to restrictions in the FE 

software ADINA. A simplified moment-curvature relation was therefore used in these 

analyses and the reader is referred to Appendix C for additional information. The 

moment-curvature relation used as input for the beam grillage models was intended to 

simulate a simplified behaviour of the reinforced concrete structure, see Figure 6.5. 

 

Figure 6.5 Bilinear plastic moment-curvature relation. 

As can be seen in Figure 6.5, the elastic section of the moment-curvature relation was 

based on a state II model, i.e. the cracked stiffness of a small reinforced concrete 

section. The background for this choice can be derived from the restrictions in the 

ADINA software and are treated separately in Appendix C.  

Due to the limited timeframe of this Thesis, the analyses was only conducted on an 

isotropic structure with a stiffness factor α = 1 according to Equation (6-1). The same 

moment-curvature relations were therefore utilized in both x- and y-direction.  

y

x

E

E
  (6-1) 

The bilinear plastic moment-curvature relation for the slab was based on the elastic 

response of an isotropic, cracked cantilever slab subjected to a concentrated force of 

200 kN at the centre of the primary free edge. This was the elastic moment-curvature 

relation used for the cracked case in Chapter 4 for the cantilever structure in SLS. The 

elastic part of the moment-curvature relation and the corresponding moment 

distribution in the fixed support is illustrated in Figure 6.6. 

  

Figure 6.6 Elastic moment-curvature relation and the corresponding moment 

distribution in the fixed support.  
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The plastic moment Mpl was chosen to 60 % of the maximum elastic moment Mel: 

elpl MM  6.0
 (6-2) 

The choice of the plastic moment was based on a recommendation by Pacoste et al. 

(2012) where the following limits for redistribution of reinforcement moments were 

proposed: 

elasticplasticelastic MMM 6.0
 (6-3) 

Failure of the cantilever slab was defined as the plastic rotation capacity θrd for a 

cross-section with a reinforcement amount of 0.5 %: 

mrad4423.θrd   
(6-4) 

For additional and a more profound description on the modelling choices, the 

construction of the plastic moment and the design of the plastic rotation capacity, the 

reader is referred to Appendix C.  

To summarize; the bilinear plastic moment-curvature relation used in this section was 

based on: 

 The elastic response of an isotropic, cracked cross-section 

 The plastic moment Mpl, based on the elastic response of the structure   

 The plastic rotation capacity θrd of the cross-section 

Since the beam grillage model was designed with beams of the half cross-sectional 

width in the boundaries, which is covered in Section 6.1.3, the plastic moment was set 

to half of that in the rest of the beams in the beam grillage model. These two moment-

curvature relations used as input for the FE model are illustrated in Figure 6.7. 

 

Figure 6.7 Bilinear plastic moment-curvatures used for the analyses in this section. 

 

6.1.3 Finite element model 

As mentioned in the introduction of Chapter 6, the cantilever structure experienced 

numerical problems due to disturbances at the boundaries. The cantilever slab was 

therefore extended to 12 m and the moving concentrated forces was set to operate 

within a length of 4.8 m, concentrated to the centre of the slab. The numerical 

problems were in this way avoided and the model used for these analyses is illustrated 

in Figure 6.8. 
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Figure 6.8 Geometry and dimensions of the studied cantilever slab, here subjected 

to a single moving concentrated force. 

As in the analyses of moment distribution in Chapter 4 and 5, the finite element 

software used was the student version of ADINA (2012). The plastic rotation and the 

development of plastic rotation in the centre of the fixed support were of interest in 

this study and are therefore presented in this section in the result point P1, illustrated 

in Figure 6.1. When the development of the plastic rotation along the fixed support is 

illustrated in this section, the coordinate x = 0 refer to the centre of the fixed support 

(due to the symmetry behaviour of the structure).  

For the beam grillage model, it was concluded that a beam width of 0.2 m yielded 

satisfactory results. The mesh was however orthotropic with an increased mesh 

density at the fixed support, where the element length was set to 0.05 m which is 

further discussed in Appendix C. This mesh density was also chosen for similar 

studies in Lim (2013). 

The moving concentrated forces were modelled as point loads, applied to single 

nodes. Since the plastic rotation at the fixed support was of interest, which was a 

certain distance from the applied forces, it was concluded that this approximation was 

acceptable. The boundary condition at the fixed support was modelled as fixed in all 

translations and rotations. The beams in the beam grillage model that were placed in 

the boundaries (the fixed support and the free edges) were modelled as beams with 

half the cross-sectional width.  

The FE model was designed as static, i.e. without considering any dynamic effects of 

the structure or of the load application. This modelling choice was believed to yield 

results on the unsafe side. The dynamic amplification of the applied forces is however 

included in the characteristic load values provided by Eurocode 1 (2003) which was 

presented in Section 3.2. Since the aim of this section was to study the development of 

plastic rotation in a bridge structure, it was reasonable to treat the problem as static 

since it is the most common approach in the bridge design community and 

recommended by Eurocode 1. 

The Poisson’s ratio was chosen to 0. The iteration method for the non-linear analysis 

was chosen to the full Newton method in ADINA and the iteration tolerance type was 

set to energy. 

Since the behaviour of a long slab was of interest in this analysis, the plastic rotation 

θpl was only measured at the centre of the fixed support in the result point P1 which 
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can be seen in Figure 6.1. The plastic rotation was measured after each completed 

load cycle n.  

The plastic rotation was calculated using an approximate approach from the deflection 

in the second and third node, u2 and u3. The angle α, i.e. the plastic rotation, was 

calculated from the triangle created by the deflected nodes, which can be seen in 

Figure 6.9   

 

Figure 6.9 The approximate approach for calculating the plastic rotation θpl in the 

centre of the fixed support in the cantilever slab. 

The angle α and thus the plastic rotation θpl, was calculated from the deflection from 

the second and third node due to how the ADINA software treats the plastic curvature 

in the FE model. ADINA provides the plastic curvature χpl in five integrations points, 

uniformly distributed over each element. The plastic rotation is obtained if the area A1 

and A2, which are illustrated in Figure 6.10, is calculated. This is one of the options 

that ADINA provides in order to obtain the plastic rotation. The FE program 

distributes the plastic curvature to the two nodes of the element and thus gives 

contributions to the plastic curvature to those nodes. In order to capture the plastic 

rotation for the complete element, the difference in deflection has to be calculated 

using the second and third node, as described above. 

 

Figure 6.10 Illustration of how ADINA treats the plastic curvature and how it is 

distributed to the two nodes of the element. 

The angle α was dependent on the mesh density since a finer mesh provides a better 

approximation. The orthotropic mesh density described above yielded satisfactory 

results and an increase of the mesh density did not influence the results significantly. 

As described above, ADINA provides an option for obtaining the plastic curvature in 

the integration points for each element. If the plastic curvature is summarized over the 

element length, the plastic rotation is obtained. This option provided by ADINA is, 

however rather cumbersome when exporting the obtained data for analysis. The 

influence of the approximation stated above was small and the option provided by 

ADINA was therefore rejected. The reader is referred to Appendix D for the study and 

the influence of the approximation of determining the plastic rotation in the cantilever 

structure 
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6.1.4 Torsional stiffness 

It was concluded in Section 4.1.3 that the torsional stiffness dominates the behaviour 

of the structures in this Thesis when subjected to concentrated static forces. It was 

also concluded that difficulties arose regarding how to model the torsional stiffness in 

the cracked state (state II). Lim (2013) assumed that the torsional stiffness of a beam 

in the beam grillage model had a constant value of the torsional stiffness 

independently of the state of the reinforced concrete. A parametric study was also 

here performed in order to evaluate the influence of the torsional stiffness on moving 

concentrated forces. The structure studied was the cantilever slab presented in this 

section where the torsional stiffness was set according to the values presented in 

Section 4.1.3. As in the case of a single static concentrated force, the plastic rotation 

significantly increases as the torsional stiffness decreases, see Figure 6.11. The case of 

an elastic torsional stiffness yielded no plastic rotation and the case with zero torsional 

stiffness became too unstable and the analysis was aborted. For more detailed 

information of the study the reader is referred to Appendix B. 

  

Figure 6.11 Plastic rotation development for a moving concentrated force of 150 kN. 

Torsional stiffness of 1/8 and 1/16 of the elastic stiffness to the left and 

right, respectively. 

Based on the work done by Lopes (2014) and what is presented and treated in 

Section 4.1.3 the torsional stiffness of the beam elements throughout the Thesis was 

chosen to a linear relation of 1/16 of the elastic stiffness of a concrete beam with a 

width and height of 0.2 m. As stated in Section 4.1.3, it should however be noted that 

the torsional stiffness of a plate is different from the torsional stiffness of a beam 

grillage model which further complicates the choice of torsional stiffness. As in 

Section 4.1.3 the choice of torsional stiffness is believed to be conservative. 

As described in Section 4.1.3, the torsional stiffness of a beam element is defined by a 

torsional moment versus the angle of twist per unit length. Since a linear relation of 

1/16 of the elastic stiffness was chosen, the model does not accurately describe parts 

that are uncracked in the structure. The whole structure was however assumed to be 

fully cracked due to the restrictions in the ADINA software which yielded even more 

conservative results. For the definition and more detailed information of the torsional 

stiffness, the reader is referred to Section 4.1.3. 
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6.2 Response of a single and two static forces 

The response and the development of plastic rotation for a single and two static forces 

of varying magnitudes are treated in this section. The aim of this section was to study 

how the cantilever structure behaves under static forces so that the development of 

plastic rotation caused by moving concentrated forces can be compared and evaluated. 

This evaluation is treated in Section 6.6.2.  

The cantilever slab was subjected to single forces F of the following magnitudes: 

 kN215210205...125120115F
 

(6-5) 

The forces that were applied on the slab had a range of 115 kN, where no plastic 

rotation occurred, and 215 kN which was the force of the smallest magnitude to cause 

failure due to plastic rotation θpl. The forces were applied in the centre of the primary 

free edge which can be seen in Figure 6.12. 

 

Figure 6.12 Geometry and dimensions of the studied cantilever slab subjected to a 

single static concentrated force. 

The slab was also subjected to two concentrated forces F1 and F2 that varied 

according to the following magnitudes: 

 kN135130125...75706521  FF

 

(6-6) 

The distance between the two forces was altered according to: 

 m0.26.12.1d

 

(6-7) 

The forces that were applied on the slab had a range of 65 kN, where no plastic 

rotation occurred for d = 1.2 m, and 135 kN which was the force of the smallest 

magnitude to cause failure due to plastic rotation for d = 2.0 m. The forces were also 

here applied in the centre of the primary free edge which can be seen in Figure 6.13. 
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Figure 6.13 Geometry and dimensions of the studied cantilever slab subjected to a 

pair of static concentrated forces. 

The results from the analyses are shown in Figure 6.14 where it is clearly shown that 

it was advantageous for the cantilever structure with an increased distance between 

the two concentrated forces. In order to compare the pair of static forces to a single 

static force, the total applied force Ftot was defined according to: 

21 FFFtot 

 

(6-8) 

 

Figure 6.14 Plastic rotation at the centre of the cantilever slab for different 

magnitudes of static forces. 

As a validation of the model, the cantilever structure was subjected to a single static 

force of 180 kN that were applied over ten load cycles (applied and removed ten 

times). A static force should in theory cause a plastic rotation that does not develop 

when the number of load applications increases. As can be seen in Figure 6.15, there 

is a slight development during the first load cycles but the model was after that 

stabilized and no further disturbances occurred. 
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Figure 6.15 Plastic rotation at the centre of the cantilever slab for a static force 

F=180 kN during ten load cycles. 
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6.3 Response of a single moving force 

The response and the development of accumulated damage, i.e. plastic rotation, for a 

single moving concentrated force of constant and varying magnitudes is treated in this 

section. A comparison between the different load combinations and how a traditional 

superposition approach corresponds to the behaviour of the slab from the conducted 

analyses is also treated in this section. 

 

Figure 6.16 Geometry and dimensions of the studied cantilever slab subjected to a 

single moving concentrated force. 

 

6.3.1 Load magnitudes – Constant 

The slab in Figure 6.16 was exposed to a range of a moving concentrated forces F of 

different magnitudes: 

 kN185180175...125120115F
 

(6-9) 

The forces that were applied on the slab had a range of 115 kN, where no plastic 

rotation occurred, and 185 kN where failure occurred during the first load cycle. As 

can be seen in Figure 6.17, a high load magnitude led to failure in a small number of 

load cycles while a low load magnitude led to failure with a higher number of load 

cycles. This behaviour corresponded to the expected behaviour of the structure. 

The cantilever slab was subjected to up to 150 load cycles n for each load 

magnitude F.  

Forces with a magnitude ranging from 165 kN to 185 kN reached failure in two or 

less load cycles, which is shown in Figure 6.18 for scale purposes.  
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Figure 6.17 Plastic rotation for different magnitudes of moving concentrated forces. 

 

Figure 6.18 Plastic rotation for different magnitudes of moving concentrated forces. 

It is clear that the magnitude of the applied force F have a substantial influence on the 

number of load cycles the cantilever slab can sustain before the occurrence of failure 

due to plastic rotation. The number of load cycles to failure nu for different 

magnitudes of the applied forces is shown in Figure 6.19. 
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Figure 6.19 Number of load cycles to failure for different magnitudes of moving 

concentrated forces. 

For a certain load level, plastic rotation was obtained during the early load cycles 

while an increased number of load cycles approached a stable value of the plastic 

rotation. The plastic rotation approached a stable state where the occurrence of failure 

was unlikely to occur within a number of load cycles that could be analysed in this 

Thesis. Due to this reason, a critical force Fcrit was defined in this Thesis as the force 

F that causes failure of the cantilever slab at 150 load cycles: 

rdcritpl F  )(
 (6-10) 

 

Figure 6.20 Plastic rotation for different magnitudes of moving concentrated forces. 
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The critical force was in the case a single moving concentrated force somewhere 

between 140 kN and 145 kN. It can, from Figure 6.20 and the critical force, be 

concluded that forces that causes a relative high degree of plastic rotation can be 

acceptable for the studied structure. It is relatively safe to assume that a force 

F ≤ 140 kN does not reach failure due to the asymptotic behaviour. 

The reason for the phenomenon shown in Figure 6.20 can be derived from how the 

cantilever slab behaves when the yield moment is marginally exceeded.  

 

Figure 6.21 Development of the plastic rotation θpl over time in the cantilever slab 

after one and several load cycles. 

During the first load cycle, the load requires plastic rotation in the slab in the most 

critical section, which in this analysis was located at the centre of the fixed support. 

As the first element started to yield, no additional load was taken in this element 

which led to a redistribution of forces to the elements in the immediate vicinity. As 

the number of load cycles increased, an increased number of elements reached 

yielding. The redistribution of forces from the elements in the plastic state led to a 

point where the slab approximately behaved linear elastically due to the fact that the 

number of active elements approached a stable state. It should here, however, be 

noted that the slab was not linear elastic but merely exhibited such behaviour. This 

hypothesis is illustrated in Figure 6.21 where half of the studied cantilever slab is 

illustrated with corresponding moment-curvature relations. The dots on the moment-

curvature relations illustrates where in this relation each section of the structure was 

located. This illustrates how the plastic rotation developed in the cantilever structure 

and the reason for the linear elastic behaviour that was obtained after a large number 

of load cycles. 

The hypothesis illustrated in Figure 6.21 was studied for a moving concentrated force 

with a magnitude of 135 kN for an increasing number of load cycles. As can be seen 

in Figure 6.20, the development of plastic rotation in the centre of the cantilever slab 

for a moving concentrated force of 135 kN was decreased with an increased number 

of load cycles. The plastic rotation along the fixed boundary is therefore shown in 
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Figure 6.22 where it is clearly visible that the cantilever slab approached a linear 

elastic behaviour as the number of load cycles increased.  

It can be seen that the plastic rotation did not reach its maximum in the centre of the 

slab during the first four load cycles. The reason for this behaviour was believed to be 

derived from the fact that the slab was completely undamaged before the first load 

cycle. The plastic rotation development of the slab in Figure 6.22 is illustrated on the 

half of the slab where the moving force was removed, i.e. not the half that was 

subjected to the force first. This means that the moving force accumulated plastic 

rotation as it passed over the structure. When the structure accumulated enough 

damage (after five load cycles for this particular force magnitude), the maximum 

plastic rotation was located in the centre of the fixed support where it continued to 

grow. 

 

Figure 6.22 Development of plastic rotation θpl along the fixed support for a load 

magnitude of 135 kN. 

The phenomenon described above would not occur if the load were applied over the 

total length of the cantilever slab. In such a case, the plastic rotation would increase 

near the free edges since there would be insufficient elements in order to redistribute 

forces efficiently. This is also what caused the numerical problems that were 

mentioned in the beginning of this section. These results are however valid for a long 

cantilever structure without secondary free edges which are the most common 

cantilever structure in the bridge design community. 

  

6.3.2 Load magnitudes – Varying 

The analyses for the constant load magnitudes for a single moving concentrated force 

illustrated how the plastic rotation develops in the cantilever structure. The load 

combination where a bridge structure was subjected to a constant force above the 

serviceability limit state must be considered as an extreme case. If a bridge structure is 

subjected to such loads, they are likely to be of different magnitudes and applied for 

varying number of load cycles. In order to study how the cantilever structure behaves 
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under such circumstances, it was subjected to two different load combinations, LCA 

and LCB.  

The first load combination, LCA, was defined as a combination of one force of such 

magnitude that it caused significant plastic rotation combined with a force of inferior 

magnitude. The larger of the two forces was applied once and the inferior force was 

applied several times. The forces were applied in such order that the larger force was 

applied before or after the inferior forces, not in between.  

In order to reflect these two load application orders, the load combination was divided 

into two subcategories, LCA1, and LCA2. Load combination LCA1 was defined 

according to Equation (6-11) and is illustrated in Figure 6.23. 

5,21,1   nn FF
 (6-11) 

 

Figure 6.23 Load combination A1, LCA1 

Load combination LCA2 was defined according to Equation (6-12) and is illustrated in 

Figure 6.24. 

1,25n1,F   nF
 

(6-12) 

 

Figure 6.24 Load combination A2, LCA2 

The magnitude of the larger force was set to 165 kN since it caused failure after two 

load cycles. The magnitude of the inferior force was set to a range of 120 kN to 

145 kN. 120 kN was the lower limit since it was the force of the smallest magnitude 

to cause plastic rotation and 145 kN was the force of the smallest magnitude to cause 

failure within 150 load cycles. A force magnitude of 145 kN was also the smallest 

force to cause failure after five load cycles in combination with the larger force. This 

force magnitude was therefore of interest since that timeframe was evaluated. 

As can be seen in Figure 6.25, the development of plastic rotation depends on the load 

history.  
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Figure 6.25 Plastic rotation for varying magnitudes of moving concentrated forces 

for six load cycles. 

It is clear from Figure 6.25 that there is a small, but noticeable, difference in plastic 

rotation after six load cycles between the two different load combinations. The plastic 

rotation was measured after six load cycles and the difference between the two load 

combinations was calculated using Equation (6-13). The difference is shown in 

Figure 6.26. 

 

Figure 6.26 Difference in plastic rotation γθpl.A between load combination A1 and A2, 

shown in percent for different magnitudes of the inferior forces. 
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1.

1.2.

.

Apl

AplApl

Apl



 




 

(6-13) 

The values used in Equation (6-13) are tabulated in Appendix H for the interested 

reader. 

The second load combination, LCB consisted of two constant loads of two different 

magnitudes, but applied in three steps. In this analysis the load F1 was applied two 

times, first with three load cycles and then with two load cycles. In between these load 

applications, a load of greater magnitude F2 was applied once. 

2,23,11   nn FFF
 

(6-14) 

11,22 FFF n    
(6-15) 

 

Figure 6.27 Load combination B, LCB 

The magnitudes of the larger and the smaller forces were the same as in the case of 

the first load combination, LCA and were based on the same background. It can be 

seen in Figure 6.28 that the behaviour of the slab approached the behaviour for the 

case of a single moving concentrated force of 165 kN, which is reasonable.  

 

Figure 6.28 Plastic rotation for varying magnitudes of moving concentrated forces. 
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structure is not as likely to occur as a force of lower magnitude. Therefore it is also 

reasonable to assume that the highest applied force is not likely to occur as the first or 

last load to exceed the serviceability limit state, as assumed in load combination A. 

The most likely load combination would be a range of smaller forces in combination 

with one or a few forces of high magnitudes. However, such a load combination was 

not investigated since it was beyond the timeframe of this Thesis. 

 

6.3.3 Comparison 

In order to determine which of the studied load combinations in Section 6.3.2 is the 

most critical in terms of plastic rotation, these load combinations is compared in 

Figure 6.29. 

 

Figure 6.29 Plastic rotation for varying magnitudes of moving concentrated forces 

for six load cycles. 

It is clear from Figure 6.29 that there is a small, but noticeable, difference in plastic 

rotation after six load cycles between the three different load combinations. The 

plastic rotation was measured for load combination LCA1, LCA2 and LCB after six load 

cycles and the difference between the load combinations was calculated using 

Equation (6-16) and (6-17) for LCA2 and LCB, respectively. The difference is shown in 

Figure 6.30. 
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(6-17) 

The values used in Equation (6-16) and (6-17) are tabulated in Appendix H for the 

interested reader. 
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Figure 6.30 Difference in plastic rotation γθpl between load combination A1 and load 

combination A2 and B, shown in percent for different magnitudes of the 

inferior forces. 

It can be seen in Figure 6.30 that load combination LCB results in the highest plastic 

rotation of the slab after six load cycles for inferior forces of a magnitude greater than 

125 kN. For inferior forces of a magnitude below this value, load combination LCA1 

results in the highest plastic rotation of the slab after six load cycles. These results 

indicate that the most likely load combination of the structure, LCB, for the majority of 

the investigated forces is also the one to cause the highest plastic rotation. 

The result also indicates that a force of great magnitude causes more damage if it is 

applied after a number of forces above the serviceability limit state. It also indicates 

that the force of greater magnitude causes even more damage if it is applied after 

fewer forces above the serviceability limit state than stated above. This means that the 

greater force causes more damage if it is applied after a permanent damage has been 

initiated, but the influence of the force diminishes as the permanent damage of the 

slab increases. 

It should however be noted that the difference between the two load combinations is 

small and the results should therefore be treated with care. 

     

6.3.4 Traditional Superposition approach 

It has been shown in the previous sections that the development of plastic rotation is 

dependent on the load history, which indicates that a superposition method is not 

recommended. The error of a traditional superposition approach is here evaluated for 

the two load combinations LCA and LCB examined in Section 6.3.2 

The results from the superposition approach were obtained by merging results from 

Section 6.3.1 where all the loads were applied on an unloaded cantilever slab. Two or 

more loads series were merged and thus the behaviour of each load series was 

captured. The theory of the superposition approach is illustrated in Figure 6.31.  
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Figure 6.31 The superposition approach used in this Thesis. 

The whole load model was applied according to the superposition approach and not 

each load cycle. Such a superposition approach would not have accounted for the 

decreasing effect that the applied forces have on the plastic rotation as the number of 

load cycles increases and thus resulted in a linear development of the plastic rotation. 

Such an approach is illustrated in Figure 6.32. 

 

Figure 6.32 A superposition approach omitted in this Thesis. 

The development of plastic rotation for LCA1, which is shown in Figure 6.23 is 

extended to 20 load cycles and is shown in Figure 6.33. The results for the different 

load magnitudes from Section 6.3.1 were used in order to obtain a plastic rotation 

development based on a superposition method. This is shown in Figure 6.34.  

 

Figure 6.33 Plastic rotation for varying magnitudes of moving concentrated forces. 
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Figure 6.34 Plastic rotation for varying magnitudes of moving concentrated forces, 

based on the superposition approach. 

It is clear from Figure 6.33 and Figure 6.34 that there is a significant difference 

between the results from the analyses and the results from a superposition approach. 

The plastic rotation was measured after six load cycles and the difference between the 

analyses and the superposition approach was calculated using Equation (6-18). The 

difference is shown in Figure 6.35. 

 

Figure 6.35 Difference in plastic rotation γA1.sup for load combination A1 between 

results from analyses and results from a superposition approach, shown 

in percent for different magnitudes of the inferior forces. 
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(6-18) 

The values used in Equation (6-18) are tabulated in Appendix H. 

The development of plastic rotation for LCB, which was illustrated in Figure 6.28, is 

also shown in Figure 6.36 for comparison purposes. The plastic rotation development 

based on the superposition method is shown in Figure 6.37. The same superposition 

approach that was used for load combination LCA1 was also used in this case.  

 

Figure 6.36 Plastic rotation for varying magnitudes of moving concentrated forces. 

 

Figure 6.37 Plastic rotation for varying magnitudes of moving concentrated forces, 

based on a traditional superposition approach.  

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

 [
m

ra
d

] 
 

Load cycles, n [-] 

F₁=145 kN  F₂=165 kN F₁=140 kN  F₂=165 kN 

F₁=135 kN  F₂=165 kN F₁=130 kN  F₂=165 kN 

F₁=125 kN  F₂=165 kN F₁=120 kN  F₂=165 kN 

θrd  = 23.4 mrad  

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

 [
m

ra
d

] 
 

Load cycles, n [-] 

F₁=145 kN  F₂=165 kN F₁=140 kN  F₂=165 kN 

F₁=135 kN  F₂=165 kN F₁=130 kN  F₂=165 kN 

F₁=125 kN  F₂=165 kN F₁=120 kN  F₂=165 kN 

θrd  = 23.4 mrad  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
91 

It is also from this load combination clear that there is a significant difference 

between the result from the analyses and the results from a superposition approach. 

The plastic rotation was also here measured after six load cycles and the difference 

between the analyses and the superposition approach was calculated using 

Equation (6-19). The difference is shown in Figure 6.38. 
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(6-19) 

The values used in Equation (6-19) are tabulated in Appendix H for the interested 

reader. 

 

Figure 6.38 Difference in plastic rotation γθpl.B.sup for load combination B between 

results from analyses and results from a superposition approach, shown 

in percent for different magnitudes of the inferior forces. 
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Figure 6.39 Difference in plastic rotation γθpl.sup for load combination A1 and B 

between results from an analysis and results from a superposition 

approach shown in percent for different magnitudes of the inferior 

forces. 

It is clear that the superposition approach overestimates the plastic rotation in the 

structure for both load combination LCA and LCB. This behaviour was expected since 

the adaptation of the slab due to repeated loading is not fully captured by the 

traditional superposition approach. The difference in plastic rotation between the 

analyses and the superposition approach is greater for load combination LCB than 

LCA. The reason for this difference can be derived from the fact that the plastic 

rotation from each load is overestimated and load combination B consists of three 

separate loads instead of two separate loads which is the case for load combination A. 
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6.4 Response of two moving forces – Equal magnitudes 

The slab in this analysis was modelled with the same geometry and moment-curvature 

relations as the slab in Section 6.3. 

 

Figure 6.40 Geometry and dimensions of the studied cantilever slab for two 

concentrated forces of equal magnitudes. 

The modelling choices and moment-curvature relation from the analysis of a single 

moving concentrated force was also used in this analysis. The reason for this approach 

was to enable a comparison between the effects of subjecting a cantilever slab to one 

or two concentrated forces. In addition, this approach also enables a comparison of the 

effects of the distance d between a pair of concentrated forces and the influence of 

varying load levels within a pair of concentrated forces. 

The sum of the loads applied on the slab in this analysis differed between the 

distances between the pair of concentrated forces. An increased distance resulted in a 

decreased plastic rotation and additional force was therefore applied to study the 

behaviour of the structure.  The distance between the forces was altered according to 

Equation (6-20) and the influence of this parameter is treated in separate sections. 

 m0.26.12.1d

 

(6-20) 

 

6.4.1 Constant distance, d = 1.2 m 

In the case of a constant distance of d = 1.2 m, the applied forces F1 and F2 varied 

according to the following magnitudes:  

 kN110105100...75706521  FF

 

(6-21) 

The forces F1 and F2 that were applied on the slab ranged from 65 kN to 110 kN based 

on the same background as stated in Section 6.3.1. The total applied load Ftot of the 

forces F1 and F2 is defined in Equation (6-22): 

21 FFFtot 

 

(6-22) 

As in the case of a single moving concentrated force, the analyses were conducted 

with 150 load cycles n for each pair of concentrated forces if failure of the cantilever 
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slab did not occur within this range. The plastic rotation in the centre of the slab for 

different magnitudes of forces is shown in Figure 6.41.  

 

Figure 6.41 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 

As in the case of a single moving concentrated force, the magnitude of the total force 

Ftot have a big influence on the number of load cycles the cantilever slab can sustain 

before the occurrence of failure due to plastic rotation. The number of load cycles to 

failure nu for different magnitudes of the applied forces is shown in Figure 6.42. 

 

Figure 6.42 Number of loading cycles to failure for different magnitudes of a pair of 

moving concentrated forces for d = 1.2 m. 
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As in the case of a single moving concentrated force, the plastic rotation approached a 

stable value where the occurrence of failure was unlikely to occur within the number 

of load cycles studied in this Thesis. This was the case when the total force was below 

the critical force Fcrit which in this case was somewhere between 80 kN and 85 kN. 

The reason for this phenomenon is described in Section 6.3.1. 

 

Figure 6.43 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 
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6.4.2 Constant distance, d = 1.6 m 

In the case of a constant distance of d = 1.6 m, the applied forces F1 and F2 varied 

between the following magnitudes:  

 kN115110105...80757021  FF

 

(6-23) 

The plastic rotation in the centre of the slab for different magnitudes of forces is 

shown in Figure 6.44.  

 

Figure 6.44 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 

 

Figure 6.45 Number of load cycles to failure for different magnitudes of a pair of 

moving concentrated forces with for d = 1.6 m. 
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The critical force Fcrit was in this case somewhere between 90 kN and 95 kN. 

 

Figure 6.46 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 
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6.4.3 Constant distance, d = 2.0 m 

In the case of a constant distance of d = 2.0 m, the applied forces F1 and F2 varied 

between the following magnitudes:  

 kN120115110...90858021  FF

 

(6-24) 

The plastic rotation in the centre of the slab for different magnitudes of forces is 

shown in Figure 6.47.  

 

Figure 6.47 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 

 

Figure 6.48 Number of load cycles to failure for different magnitudes of a pair of 

moving concentrated forces with for d = 2.0 m. 
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The critical force Fcrit was in this case somewhere between 100 kN and 105 kN. 

 

Figure 6.49 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 
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6.4.4 Comparison 

In order to compare the plastic rotation caused by the different loads and load 

magnitudes, the number of load cycles to cause failure nu was compared with the total 

load magnitude Ftot from Equation (6-22) for the different loads applied on the 

cantilever slab. This behaviour is shown in Figure 6.50. 

 

Figure 6.50 Number of load cycles to failure for different loads and load 

magnitudes. 

It is clearly shown in Figure 6.50 that it is advantageous for the cantilever slab, from 

the perspective of plastic rotation, with an increased distance between a pair of 

moving concentrated forces. It is also clearly shown that the case of two concentrated 

forces is advantageous in comparison to the case of one moving concentrated force 

with the same load magnitude. As the concentrated force was separated into two 

forces and the distance between those two increased, the total load magnitude and 

number of load cycles to failure increased. This behaviour corresponds to what was 

expected. 

In order to compare the number of load cycles to cause failure for the different loads 

and load magnitudes, a load magnitude factor γθplu.F was defined. This factor is related 

to the largest single moving concentrated force not cause any plastic rotation to the 

slab Fel. The relative load magnitude factor was defined as: 

el
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nF )(
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(6-25) 

Where    totF  = the total applied force 

elF  = the force of the greatest magnitude not to cause any plastic rotation  

= for a single moving concentrated force, in this case 115 kN 

un  = the number of load cycles to failure for each applied force 
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It is possible, from this relation, to predict the vulnerability of the slab, i.e. how much 

a moving concentrated force can be increased in magnitude before failure due to 

plastic rotation occurs. This relation is shown in Figure 6.51 with the same 

configuration as observed in Figure 6.50.  

 

Figure 6.51 Number of load cycles to failure for a load magnitude factor γθplu.F 

related to the load Fel. 

It can be seen in Figure 6.51 that the moving concentrated force of the highest 

magnitude not to cause any plastic rotation in the structure, could be increased by 

26 % before failure of the cantilever slab occurred within 150 load cycles. If the total 

force was separated into two concentrated forces with a distance of 1.2 m instead, the 

total load could be increased by 47 % before failure of the cantilever slab occurred 

within 150 load cycles. An increase of the distance between the two concentrated 

forces generates an increase in total load magnitude before failure occurs. From the 

behaviour observed in Figure 6.51, it is reasonable to assume that there is a distance d 

between the pair of moving forces such that the cantilever structure experiences the 

force pair as two independent forces. This behaviour was studied in the following 

section.  

 

6.4.5 Influence of distance, d 

It was clearly shown in the previous section that it is advantageous for the cantilever 

structure with an increased distance between the pair of moving concentrated forces. 

In order to evaluate how the distance influences the plastic rotation of the structure, 

the distance was increased with the same increments as in the previous sections, up to 

a distance d = 4.8 m: 

 m8.44.40.46.32.38.24.20.26.12.1d

 

(6-26) 

The same type of analyses as presented in the previous sections was conducted for all 
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plastic rotation to force magnitudes where failure occurred during the first load cycle. 

The results from these analyses are presented in Appendix F and are summarized in 

this section. 

The number of load cycles to cause failure nu was compared with the total load 

magnitude Ftot (defined in Section 6.4.1) which can be seen in Figure 6.52. A load 

magnitude factor γθplu.F was used, as in Section 6.4.4, in order to evaluate the influence 

of d on the total force that can be applied on the slab. This can be seen in Figure 6.53. 

 

Figure 6.52 Number of load cycles to failure for different loads and load 

magnitudes. 

 

Figure 6.53 Number of load cycles to failure for a load magnitude factor γθplu.F 

related to the load Fel. 
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It can be seen in Figure 6.53 which value of the total load magnitude that causes 

failure after one load cycle for each distance. The other extreme case is the largest 

total load magnitude not to cause any plastic rotation to the structure. These extreme 

values and the development of plastic rotation are presented in Appendix F and shown 

in Figure 6.54 below. 

 

Figure 6.54 Relation between total load magnitude Ftot and distance d for forces not 

to cause any plastic rotation and failure after one load cycle.  

As predicted in Section 6.4.4, when the distance reached a certain value, the two 

forces started to behave like two independent forces. When the distance was increased 

above 3.2 m, the total applied force not to cause any plastic rotation remained 

constant. The total force Ftot was in this case 230 kN which yielded that each 

individual force had a magnitude of 115 kN. The magnitude was in this case the same 

(F = 115 kN) as Fel, which was the greatest magnitude of a single moving 

concentrated force not to cause any plastic rotation to the structure. This means that 

the distance exceeded a critical value dcrit where the cantilever structure experienced 

the pair of concentrated forces as two individual forces. It also means that one of the 

forces did not amplify the plastic rotation development of the other force for this 

magnitude.  

If the distance was increased above 3.6 m, the total applied force to cause failure due 

to plastic rotation after one load cycle remained constant. The total force was in this 

case 330 kN which yielded that each individual force had a magnitude of 165 kN. The 

magnitude was in this case the same (F = 165 kN) as the force of the lowest 

magnitude to cause failure for a single moving concentrated force after two load 

cycles. This means that the cantilever slab experienced two load cycles for each 

individual load cycle for a pair of moving concentrated forces with a distance greater 

than 3.6 m. If the distance was increased to 4.8 m, which corresponded to the total 

length of the force application, the plastic rotation development corresponded exactly 
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independent forces. The reason for this behaviour was believed to be the derived from 

the moment distribution that is a result from the plastic behaviour of the slab. When 

the slab was completely elastic, a distance of 3.2 m between the forces was sufficient 

for the slab to experience the force pair as two individual forces. When the slab was 

partly plastic, the distance between the forces was increased to 3.6 m before the slab 

experienced the two forces as two independent forces. This means that the 

redistribution of forces in the cantilever structure is disadvantageous with respect to 

the development of plastic rotation caused by several concentrated forces. 
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6.5 Response of two moving forces – Different magnitudes 

The slab shown in Figure 6.40 was in these analyses subjected to a number of forces 

of different magnitudes in order to investigate the influence of such load 

combinations. In order to investigate the influence of varying load magnitudes within 

the pair of moving concentrated forces, the total applied force Ftot was set to: 

kN17021  FFFtot  
(6-27) 

Where: 

21F F
 

(6-28) 

 kN80706050403020101 F
 

(6-29) 

 kN901001101201301401501602 F
 

(6-30) 

Where F1 was the second force of the force pair to load the slab which can be seen in 

Figure 6.40 and Figure 6.55. The magnitude of the force F2 was, for this load 

application order, always greater than the force F1 according to Equation (6-31) and 

Figure 6.55. 

21 FF   (6-31) 

 

Figure 6.55 The first load application order LAO1 of the studied cantilever slab. 

The plastic rotation caused by the applied force pair was not significantly influenced 

by the load application order, i.e. if the values of F2 were set to the values of F1 and 

vice versa. The study on how the development of plastic rotation was influenced by 

the load application order is presented in Appendix E and the analyses in this section 

follow the first load application order LAO1 which is stated in Equation (6-27) to 

(6-31). 
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6.5.1 Constant distance, d = [1.2 1.6 2.0] m 

The distance d between the force pair applied on the cantilever slab was kept from the 

previous analyses in Section 6.4 and the results from the analyses are shown in 

Figure 6.56 to Figure 6.58: 

 

Figure 6.56 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 1.2 m.  

 

Figure 6.57 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 1.6 m.  
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Figure 6.58 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 2.0 m.  

As expected, and as observed in Section 6.4 it was advantageous for the cantilever 

structure with an increased distance between the moving concentrated forces. It is also 

clear that it was advantageous for the cantilever structure with a more evenly 

distributed force application, i.e. when the two forces approached a mean value.  

From Figure 6.56 to Figure 6.58, it can be seen that: 

 For the distance d = 1.2 m, all investigated load combinations led to failure 

within 14 load cycles or less. 

 For the distance d = 1.6 m, four of the investigated load combinations led to 

failure within 14 load cycles or less.  

 For the distance d = 2.0 m, three of the investigated load combinations led to 

failure within 14 load cycles or less.  

It can be seen in Figure 6.58 that the force pairs with more equal distribution 

approached a state where no plastic rotation occurred for the investigated loads. A 

further increase of the distance between the moving concentrated forces would likely 

yield a significant decrease in the number of load combinations to cause failure due to 

plastic rotation. 

How the plastic rotation developed in the centre of the slab during the first 10 load 

cycles for d = 1.2 m is shown in Figure 6.59. It can be seen that the development of 

plastic rotation decreased when the forces approached a mean value and that it 

approached a stable state when the number of load cycles increased. This corresponds 

to what was observed in Figure 6.56 to Figure 6.58. 
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Figure 6.59 Development of plastic rotation for different load combinations of a pair 

of moving concentrated forces of varying magnitudes for d = 1.2 m.  

It can be seen in Figure 6.59 that the load combinations with a large difference in 

force magnitudes between the two forces led to failure after only a few load cycles. 

The plastic rotation for these loads greatly exceeded the plastic rotation capacity for 

the cross-section but is presented in this figure in order to evaluate how the 

accumulated damage developed in the centre of the cantilever structure. It can be seen 

that the accumulated damage caused by the forces of more equal magnitudes 

approached a stable state more rapidly that the force pair with a larger difference in 

magnitude between the two forces. This can also be observed in Figure 6.56 where the 

distance between the curves decreases as the forces approaches a mean value.   

 

6.5.2 Comparison 

In order to determine how the plastic rotation was influenced by the distance d 

between the moving concentrated forces of varying magnitudes, the different analyses 

are compared below. The plastic rotation obtained from the analyses with d = 1.6 m 

and d = 2.0 m was compared to the plastic rotation with d = 1.2 m according to 

Equation (6-32) and (6-33) and is shown in Figure 6.60 and Figure 6.61. 
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(6-33) 

The plastic rotation difference γθpl was calculated for each load cycle n and each 

distance d and is shown for the first 15 load cycles in the figures below. 
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Figure 6.60 Difference in plastic rotation γθpl.1.6m for different load combinations 

between d = 1.2 and d = 1.6 m. 

 

Figure 6.61 Difference in plastic rotation γθpl.2.0m for different load combinations 

between d = 1.2 m and d = 2.0 m. 
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Where the mean plastic rotation for the two cases was calculated according to: 
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(6-37) 

Where n = 150, which was the total number of load cycles in the conducted analyses. 

The results from these calculations are shown in Figure 6.62. The values derived from 

Equation (6-34) and (6-35) are tabulated in Appendix H for the interested reader. 

 

Figure 6.62 Mean difference in plastic rotation γθpl between a d =1.2 m and, 

d = 1.6 m and d = 2.0 m. 
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6.6 Summation 

This section covers a comparison between the moving concentrated forces presented 

in Section 6.3 to 6.4. A single and a pair of moving concentrated forces are compared 

with static forces of the same magnitudes. As a final part of this section, the results 

presented in Chapter 6 are discusses. 

 

6.6.1 Comparison – Moving forces 

This section covers the investigated forces on the cantilever structure presented in 

Section 6.3 to 6.4 and evaluates the differences and similarities between them. These 

sections have covered the four main load cases: 

 A single moving concentrated force – Constant magnitude 

 A single moving concentrated force – Varying magnitudes 

 Two moving concentrated forces – Equal magnitudes 

 Two moving concentrated forces – Different magnitudes 

The case of two moving concentrated forces of different magnitudes can be seen as an 

intermediate combination of the case of two moving concentrated forces of equal 

magnitudes and a single moving concentrated force of constant magnitudes. The case 

of a single moving concentrated force of constant magnitude can be seen as an 

extreme case of two moving concentrated force of different magnitudes. The other 

extreme case is when the different force magnitudes approach a mean value, which is 

the case of two moving forces of equal magnitudes. This means that the plastic 

rotation obtained by the two moving concentrated forces of different magnitudes 

should be found between the two extreme cases as explained above. This was also the 

case which can be seen in Figure 6.63 to Figure 6.65 where these analyses are 

presented together. 

 

Figure 6.63 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 1.2 m.  
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Figure 6.64 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 1.6 m.  

 

Figure 6.65 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 2.0 m.  
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separate forces, even if the difference was relatively small. The advantageous effect of 

dividing the total force into two separate forces increased with the increased distance 

d which was reasonable. 

These analyses were only conducted for one total force Ftot =170 kN for the two 

moving forces of different magnitudes but the advantageous effect of dividing the 

total force into two separated forces was believed to increase with an increased total 

force. It was also treated in previous sections that a further increase of the distance d 

is advantageous for the cantilever structure.  

 

6.6.2 Comparison – Static vs. moving forces 

It is clear that a moving concentrated force caused significantly more plastic rotation 

to the cantilever structure than what was caused by a static force of the same 

magnitude. It was shown in Section 6.3 to 6.4 that the plastic rotation reached a stable 

state after a number of load cycles. This indicates that a moving concentrated force 

have an upper limit of the amount of plastic rotation it can cause. This upper limit 

may be situated above the plastic rotation capacity of the structure but, as have been 

illustrated in Section 6.3 to 6.4, were in most cases for forces of great magnitudes 

situated below this limit.  

It is also clear that there is a significant difference between the plastic rotation caused 

by static and moving concentrated forces immediately after the first completed load 

cycle. This means that all values of the plastic rotation caused by a moving 

concentrated force must be present within these upper and lower limits as can be seen 

in Figure 6.66. 

 

Figure 6.66 Upper and lower limit of plastic rotation for moving concentrated forces 

In order to compare the moving forces to the static forces, a cumulative factor γθpl.mov 

was defined according to Equation (6-38). The cumulative factor describes the 

relation between the plastic rotation caused by a moving concentrated force and the 

plastic rotation caused by a static force.  

statpl

nmovpl

plmov

.

..




  

 

(6-38) 

In order to evaluate the distribution of this factor, two sub factors γθpl.mov.min and 

γθpl.mov.max was defined. These factors were calculated for all forces that reached a 

stable state (reached its maximum plastic rotation) in the conducted analyses. The 

factors were calculated using Equation (6-39) and (6-40), respectively, which is 

shown in Figure 6.67. 
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Where    s ta tpl.   = the plastic rotation caused by a static force of the same magnitude       

=                         as a moving force 

nmovpl ..  = the plastic rotation caused by a moving force for each load cycle n  

 

It is clear from Figure 6.67 that the plastic rotation caused by a moving concentrated 

force was within the range of 2 to 20 times larger than the plastic rotation caused by a 

static force. It is also clear that an increased distance d between the forces and an 

increased total applied force Ftot yielded plastic rotations closer to what was predicted 

by the static forces. How the cumulative factor developed for a single moving 

concentrated force is shown in Figure 6.68. For the development of the cumulative 

factor for two moving concentrated forces, the reader is referred to Appendix G. 

 

Figure 6.67 Maximum and minimum values of the cumulative factor γθpl.mov for a 

single and a pair of moving concentrated forces. 
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Figure 6.68 Development of the cumulative factor γθpl.mov for a single moving 

concentrated force for 150 load cycles. 

 

6.6.3 Discussion 

It was first discovered in Section 6.3 that the development of plastic rotation in the 

cantilever structure reached a stable state where the influence of the applied force 

decreased as the number of load cycles increased. The behaviour of the slab 

resembled the linear elastic behaviour even though the slab was still in the plastic 

state. This behaviour was then found for all types of load magnitudes, load 

combinations and load application orders studied in this Thesis. When this behaviour 

of the slab was reached differs for all the above stated variables but for a large amount 

of the studied forces, this was found before the plastic rotation capacity was reached. 

It was discovered that a traditional superposition approach of moving concentrated 

forces significantly overestimated the plastic rotation. This overestimation was based 

on the fact that the superposition approach did not account for the decreased effect of 

the applied forces as the number of load cycles increased. This means that the error 

was increased as the number of load series were increased in the superposition 

approach. It was also shown that the error was almost linearly increased with an 

increase of the applied force. 

It was shown in Section 6.2 to 6.5 that there was a significant difference between the 

plastic rotation caused by static and moving concentrated forces. The plastic rotation 

caused by a moving force could be as high as 20 times the plastic rotation caused by a 

static force of the same magnitude. This difference might be greater for forces that 

were not covered in this Thesis. It was shown that this difference decreased as the 

force magnitude increased and also decreased with increased distance d between a 

pair of moving concentrated forces. 
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7 Cumulative plastic rotation – Simply supported 

slab  

The aim of this chapter, as was mentioned in Chapter 6, was to increase the 

understanding of development of accumulated damage in long slabs which are 

subjected to moving concentrated forces of magnitudes below, at or above what is 

predicted by the serviceability limit state as have been described in Section 6.1.1. The 

response of static forces was, as in Chapter 6, studied for comparison purposes and as 

reference results. The response of a single moving concentrated force was thereafter 

studied and then expanded to two moving concentrated forces. The forces were, as in 

Chapter 6, applied with constant and varying magnitudes and the distance between the 

two moving concentrated forces was altered in order to cover a broader spectrum of 

possible load combinations.  

The simply supported one-way slab studied in Chapter 5 was for these analyses 

modelled without a symmetry boundary in the y-direction since such a boundary 

could not reflect the moving forces of interest in this Thesis. The symmetry boundary 

in x-direction was, however, kept due to the restriction of nodes in the student version 

of ADINA. As for the cantilever slab in Chapter 6, numerical problems occurred and 

the measures taken were the same as stated in that chapter. The width of the slab was 

therefore set to 12 m on the same basis and background as stated in Chapter 6. 

The methodology and the results presented in this chapter correspond well to what 

was defined and observed in Chapter 6. Due to this fact, these are in this chapter 

presented in a more compact form and the reader is referred to Chapter 6 for 

comparison and additional information regarding these matters.   

 

Figure 7.1 Geometry and dimensions of the studied simply supported one-way slab. 
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7.1 Methodology 

This section covers the methodology used for the studies related to the development 

of plastic rotation. The background and the practical application of these studies, the 

moment-curvature relations, the FE model and the influence of the torsional stiffness 

are also treated in this section. 

 

7.1.1 Background 

The aim of this study was the same as stated in Section 6.1.1. This study was also 

directed towards load magnitudes below, at or above what is predicted by the 

serviceability limit state. For additional information of the background of this study, 

the reader is referred to Section 6.1.1. 

As observed in Chapter 5, moments higher than predicted by a simplified linear 

elastic analysis occurred when a more refined analysis was conducted. This difference 

was derived from the orthotropic stiffness which was a result from varying 

reinforcement amounts in different directions. This behaviour was also here observed 

for the linear elastic orthotropic case in Figure 5.6 and is also illustrated here in 

Figure 7.2. 

 

Figure 7.2 Linear elastic orthotropic moment distribution. 

 

7.1.2 Moment-curvature relations 

The restrictions and modelling choices made for the cantilever structure in 

Section 6.1.2 generally also applies here and are therefore omitted in this section. For 

the background of the modelling choices the reader is referred to Appendix C.  

The bilinear plastic moment-curvature relation for the slab was here based on the 

elastic response of an isotropic, cracked, simply supported slab subjected to a 

concentrated force of 100 kN at the centre of the slab. This can be compared with the 

force magnitude of 200 kN that was applied on the cantilever structure in Chapter 6. 

The reason for this difference can be derived from the fact that the simply supported 

structure was subjected to the force in the symmetry boundary which yielded a total 

force of 200 kN.  

The elastic part of the moment-curvature relation used for these analyses was the 

moment-curvature relation used for the case Cracked of the simply supported slab in 

SLS, presented in Chapter 5. The elastic part of the moment-curvature relation and the 

corresponding moment distribution in the fixed support is illustrated in Figure 7.3. 
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Figure 7.3 Elastic moment-curvature relation and the corresponding moment 

distribution in the centre of the slab.  

It can here be noted in Figure 7.3 that the moment distribution had a sharp peak in the 

centre of the slab. This in contrast to the moment distribution obtained for the 

cantilever structure. The reason for this discrepancy can be derived from the fact that 

the moment distribution was measured directly below the location of the load 

application in this case. The force was also applied differently in this analysis 

compared to the cantilever structure. This is treated below. 

The force was in this case applied in six nodes instead of a single node, which was the 

case for the cantilever structure in Chapter 6. The reason for this load application can 

be derived from the fact that a load application in a single node is a simplification that 

yielded unrealistic force concentrations and thus unrealistic plastic rotations. Such a 

simplification yielded satisfactory results for the cantilever structure in Chapter 6 

since the plastic rotation was measured a certain distance from the location of the 

force application. For additional information about the load application, the reader is 

referred to Appendix C. 

How the plastic moment Mpl was derived was covered in Section 6.1.2 and is not 

further discussed here. 

To summarize, the bilinear plastic moment-curvature relation used in this section was 

based on: 

 The elastic response of an isotropic, cracked cross-section 

 The plastic moment Mpl, based on the elastic response of the structure   

 The plastic rotation capacity θrd of the cross-section 

The two moment-curvature relations used as input for the analyses in this section is 

illustrated in Figure 7.4 

  

Figure 7.4 Bilinear plastic moment-curvatures used for the analyses in this section. 
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For additional and a more profound description on the modelling choices made for 

these analyses, the reader is referred to Appendix C. The construction of the plastic 

moment and the design of the plastic rotation capacity are also treated in Appendix C. 

 

7.1.3 Finite element model 

How the simply supported one-way slab was modelled for the analyses in this section 

and how the moving forces were applied is illustrated in Figure 7.5. 

 

Figure 7.5 Geometry and dimensions of the studied simply supported slab for a 

single moving concentrated force. 

The finite element models used for the simply supported one-way structure were in 

most cases the same as the cantilever structure in Section 6.1.3. Large parts are 

therefore omitted in this section and the reader is referred to Section 6.1.3 for 

additional information of the FE model. 

The plastic rotation and the development of plastic rotation in the centre of the slab 

were of interest in this study and are therefore presented in this section in the result 

point P1, illustrated in Figure 7.1. When the development of the plastic rotation along 

the centre line of the slab is illustrated in this section, the coordinate x = 0 refer to the 

centre of the slab (due to the symmetry behaviour of the structure).  

Since the plastic rotation in the centre of the symmetry boundary was of interest, the 

point loads were positioned in the line where the plastic rotation was measured. 

Contrary to the cantilever slab where the plastic rotation was measured a certain 

distance from the point load, attention had to be directed to how the point load was 

modelled to yield reasonable results. This was briefly treated in Section 7.1.2 and the 

reader is referred to Appendix C for additional information regarding this matter.  

The plastic rotation was calculated in the same approximate approach as presented in 

Section 6.1.3. The rotation in the first node was also here prescribed by the boundary 

conditions to zero, which influenced the angle of the triangle. The angle α, i.e. the 

plastic rotation, was calculated from the triangle created by the deflected nodes, which 

can be seen in Figure 7.6. 
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Figure 7.6 The approximate approach for calculating the plastic rotation θpl in the 

centre of the symmetry boundary in the simply supported one-way slab. 

The angle α and thus the plastic rotation θpl, was calculated from the deflection in the 

second and third node due to how the ADINA software treats the plastic curvature in 

the FE model. The angle α was dependent on the mesh density since a finer mesh 

provides a better approximation. The orthotropic mesh density described above 

yielded satisfactory results and an increase of the mesh density did not influence the 

results significantly. For additional information regarding how ADINA treats the 

plastic curvature and how the results could have been obtained, the reader is referred 

to Section 6.1.3 and Appendix D. 

 

7.1.4 Torsional stiffness 

The torsional stiffness was for these analyses also set to 1/16 of the elastic stiffness of 

a concrete beam with a width and height of 0.2 m. The choice of torsional stiffness 

was also here believed to be conservative and for additional information about this 

matter, the reader is referred to Section 6.1.4 and Appendix B. 
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7.2 Response of a single and two static forces 

The response and the development of plastic rotation for a single and two static forces 

of varying magnitudes are treated in this section. The aim of this section was to study 

how the simply supported one-way structure behaved under static forces so that the 

development of plastic rotation caused by moving concentrated forces could be 

compared and evaluated. This evaluation is treated in Section 7.6.2.  

The simply supported slab was subjected to single forces F of the following 

magnitudes: 

 kN145140135...656055F
 

(7-1) 

The forces that were applied on the slab had a range of 55 kN, where no plastic 

rotation occurred, and 145 kN which was the force of the smallest magnitude to cause 

failure due to plastic rotation θpl. The forces were applied in the centre of the slab 

which can be seen in Figure 7.11. 

 

Figure 7.7 Geometry and dimensions of the studied simply supported slab subjected 

to a single static concentrated force. 

The slab was also subjected to two concentrated forces F1 and F2 that varied 

according to the following magnitudes: 

 kN959085...50454021  FF

 

(7-2) 

The distance between the two forces was kept from Section 6.2 and was therefore 

altered according to: 

 m0.26.12.1d

 

(7-3) 

The forces that were applied on the slab had a range of 40 kN, where no plastic 

rotation occurred for d = 1.2 m, and 95 kN which was the force of the smallest 

magnitude to cause failure due to plastic rotation for d = 2.0 m. The forces were also 

here applied in the centre of the slab which can be seen in Figure 7.8. 
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Figure 7.8 Geometry and dimensions of the studied simply supported slab subjected 

to a pair of static concentrated forces. 

The results from the analyses are shown in Figure 7.13 where it is clearly shown, as 

for the cantilever structure in Section 6.2, that it was advantageous for the cantilever 

structure with an increased distance between the two concentrated forces.  

 

Figure 7.9 Plastic rotation at the centre of the simply supported slab for different 

magnitudes of static forces. 

As a validation of the model, the simply supported structure was subjected to a single 

static force of 115 kN that were applied over ten load cycles (applied and removed ten 

times). As stated in Section 6.2, a static force should in theory cause a plastic rotation 

that does not develop when the number of load applications increases. This is also 

how the model behaved, as can be seen in Figure 7.10, and it is clear that the model 

was more stable than the cantilever structure in Section 6.2. 
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Figure 7.10 Plastic rotation at the centre of the simply supported slab for a static 

force F=115 kN during ten load cycles. 
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7.3 Response of a single moving force 

The response and the development of accumulated damage, i.e. plastic rotation, for a 

single moving concentrated force of constant and varying magnitudes is treated in this 

section. A comparison between the different load cases and how a superposition 

approach corresponds to the behaviour of the slab from the conducted analyses is also 

treated in this section. The results obtained in these analyses corresponded well to 

those obtained in Section 6.3 for the cantilever structure. The results are therefore 

presented here in a more compact form and the reader is referred to Section 6.3 for 

comparison and additional information regarding the analyses. 

 

Figure 7.11 Geometry and dimensions of the studied simply supported slab for a 

single moving concentrated force. 

 

7.3.1 Load magnitudes – Constant 

The slab in Figure 7.11 was exposed to a range of moving concentrated forces F of 

different magnitudes: 

 kN125120115...656055F
 

(7-4) 

As can be seen in Figure 7.12, a high load magnitude led to failure in a small number 

of load cycles while a low load magnitude led to failure with a higher number of load 

cycles. This behaviour corresponded to the expected behaviour of the structure and 

what was observed in Section 6.3. 

The simply supported slab was also subjected to 150 load cycles n for each load 

magnitude F if failure of the structure did not occur within that range.  

Forces with a magnitude ranging from 110 kN to 125 kN reached failure in two or 

less load cycles which is shown in Figure 7.13 for scale purposes.  
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Figure 7.12 Plastic rotation for different magnitudes of moving concentrated forces. 

 

 

Figure 7.13 Plastic rotation for different magnitudes of moving concentrated forces. 

It is also here clear that the magnitude of the applied force F had a substantial 

influence on the number of load cycles the simply supported slab could sustain before 

the occurrence of failure due to plastic rotation. The number of load cycles to failure 

nu for different magnitudes of the total force is shown in Figure 7.14. 
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Figure 7.14 Number of load cycles to failure for different magnitudes of moving 

concentrated forces. 

As in the case of the cantilever structure, plastic rotation for a certain load magnitude 

was obtained during the early load cycles while an increased number of load cycles 

approached a stable value of the plastic rotation. The plastic rotation approached a 

stable state where the occurrence of failure was unlikely to take place within a number 

of load cycles that could be analysed in this Thesis.  

The critical force Fcrit was in the case of a single static moving concentrated force 

somewhere between 80 kN and 85 kN. This behaviour can be seen in Figure 7.15. 

 

Figure 7.15 Plastic rotation for different magnitudes of moving concentrated forces. 
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The reason for the phenomenon shown in Figure 7.15 is the same as described in 

Section 6.3.1 for the cantilever structure. 

The theory shown in Figure 6.21 in Section 6.3.1 was investigated for a moving 

concentrated force with a magnitude of 70 kN for an increasing number of load 

cycles. The plastic rotation along the centre of the slab is shown in Figure 7.16 where 

it is clearly visible that the simply supported slab approached a linear elastic 

behaviour with an increased number of load cycles. As for the cantilever slab, it can 

be seen that the plastic rotation did not reach its maximum in the centre of the slab 

during the early load cycles. It is also clear that the simply supported structure 

demanded a greater number of load cycles before the maximum plastic rotation was 

found in the centre of the slab. The reason for this was assumed to be derived from 

how the forces were applied and the reason for the overall behaviour can be found in 

Section 6.3.1. 

 

Figure 7.16 Development of plastic rotation θpl along the centre line for a load 

magnitude of 70 kN. 

 

7.3.2 Load magnitudes – Varying 

The analyses for the constant load magnitudes for a single moving concentrated force 

illustrated how the plastic rotation developed in the simply supported structure. As 

described in Section 6.3.2, the case where a bridge structure is subjected to a constant 

force above the serviceability limit state must be considered as an extreme case. The 

simply supported structure was therefore subjected to two different load 

combinations, LCA and LCB. The same approach and notations used in the case of the 

cantilever structure in Section 6.3.2 was used for these analyses. 

The load combinations and how these are defined was discussed in Section 6.3.2 and 

are here presented without further discussion as a support for the results presented 

below. Load combination LCA1 is here again defined in Equation (7-5) and is 

illustrated in Figure 7.17. Load combination LCA2 is here again defined in 

Equation (7-6) and is illustrated in Figure 7.18. 
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5,21,1   nn FF
 (7-5) 

 

Figure 7.17 Load combination A1, LCA1 

1,25n1,F   nF
 

(7-6) 

 

Figure 7.18 Load combination A2, LCA2 

The magnitude of the larger force was set to 110 kN and the magnitude of the inferior 

force was set to a range of 60 kN to 90 kN. The background of the chosen range of the 

load magnitudes for the load combinations was treated in Section 6.3.2. 

As can be seen in Figure 7.19, and which have been observed for the cantilever 

structure, the development of plastic rotation is dependent on the load history. 

 

Figure 7.19 Plastic rotation for varying magnitudes of moving concentrated forces 

for six load cycles. 
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rotation was also here measured after six load cycles the difference was calculated 

according to Equation (6-13), defined in Section 6.3.2. The difference is shown in in 

Figure 7.20 and the reader is referred to Appendix H for tabulated values. 

 

Figure 7.20 Difference in plastic rotation γθpl.A between load combination A1 and A2, 

shown in percent for different magnitudes of the inferior forces. 

The second load combination, LCB consisted of two constant loads of two different 

magnitudes, but applied in three steps. This load combination was also defined and 

discussed in Section 6.3.2 and are here presented without further discussion as a 

support for the results presented below. 
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Figure 7.21 Load combination B, LCB 
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Figure 7.22 Plastic rotation for varying magnitudes of moving concentrated forces 

for six load cycles.  

 

7.3.3 Comparison 

In order to determine the most critical load combination with respect to plastic 

rotation that was studied in Section 7.3.2, these are compared in Figure 7.23. The 

comparison conducted in this section corresponds to the comparisons made in 

Section 6.3.3 and the reader is thus referred to that section for equations and 

definitions.  

 

Figure 7.23 Plastic rotation for varying magnitudes of moving concentrated forces 

for six load cycles.  
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It is clear from Figure 7.23 that there is a small, but noticeable, difference in plastic 

rotation after six load cycles between the three different load combinations. The 

plastic rotation was measured for load combination LCA1, LCA2 and LCB after six load 

cycles and the difference was calculated according to Equation (6-16) and (6-17), 

defined in Section 6.3.3. The difference is shown in in Figure 7.24 and the reader is 

referred to Appendix H for tabulated values. 

 

Figure 7.24 Difference in plastic rotation γθpl between load combination A1, and load 

combination A2 and B, shown in percent for different magnitudes of the 

inferior forces. 

It can be seen in Figure 7.24 that load combination LCB resulted in the highest plastic 

rotation of the slab after six load cycles for inferior forces of a magnitude greater than 

65 kN. For inferior forces of a magnitude below this value, load combination LCA2 

yielded the highest plastic rotation of the slab after six load cycles. These results 

indicate that the most likely load combination of the structure, LCB, for the majority of 

the investigated forces, was the one to cause the highest plastic rotation. This was also 

observed for the cantilever structure in Section 6.3.3. 

It should also here be noted that the difference between the two load combinations is 

small and the results should therefore be treated with care. 

 

7.3.4 Traditional superposition approach 

As for the cantilever structure, it was clearly shown that the development of plastic 

rotation is dependent on the load history which indicates that a traditional 

superposition method is not recommended. The error of a superposition approach was 

here evaluated for the two load combinations LCA and LCB. The result from the 

superposition approach were obtained by merging results from Section 7.3.1 where all 

the loads were applied on an unloaded, simply supported slab. For the background 

theory of the superposition approach used in this section, the reader is referred to 

Section 6.3.4. 
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The development of plastic rotation for LCA1, which was shown in Figure 7.19, was 

extended to 20 load cycles and is shown in Figure 7.25. The results for the different 

load magnitudes from Section 7.3.1 were used in order to obtain a plastic rotation 

development based on a superposition method. This is shown in Figure 7.26. 

 

Figure 7.25 Plastic rotation for load combination LCA1. 

 

Figure 7.26 Plastic rotation for load combination LCA1, based on a traditional 

superposition approach. 

It is clear from Figure 7.25 and Figure 7.26 that there is a significant difference 

between the result from the analyses and the results from a superposition approach. 

The plastic rotation was measured after six load cycles and the difference was 

calculated according to Equation (6-18), defined in Section 6.3.4. The difference is 

shown in in Figure 7.27 and the reader is referred to Appendix H for tabulated values. 
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Figure 7.27 Difference in plastic rotation γθpl.A1.sup for load application A1 between 

results from an analysis and results from a superposition approach, 

shown in percent for different magnitudes of the inferior forces. 

As can be seen in Figure 7.27, the value obtained for F = 75 kN exhibited a deviant 

behaviour. The analyses were thoroughly examined but no indication of an error was 

discovered. This value was however assumed to be amiss which influenced the results 

illustrated in Figure 7.30 and Figure 7.31.  

The development of plastic rotation for LCB, which is shown in Figure 7.22, is also 

shown in Figure 7.28 for comparison purposes. The plastic rotation development 

based on the superposition method is shown in Figure 7.29. The same superposition 

approach that was used for the load combination LCA1 was also used in this case.  

 

Figure 7.28 Plastic rotation for load combination LCB. 
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Figure 7.29 Plastic rotation for load combination LCB, based on a traditional 

superposition approach. 

It is clear from Figure 7.28 and Figure 7.29 that there is a significant difference 

between the result from the analyses and the results from a superposition approach. 

The plastic rotation was measured after six load cycles and the difference was 

calculated according to Equation (6-19), defined in Section 6.3.4. The difference is 

shown in Figure 7.30 and the reader is referred to Appendix H for tabulated values. 

  

Figure 7.30 Difference in plastic rotation γθpl.B.sup after six load cycles for load 

combination B between results from an analysis and results from a 

superposition approach. 
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If Figure 7.27 and Figure 7.30 are combined, the difference in percentage between the 

analyses and the superposition approach for load combination LCA and LCB can be 

shown in Figure 7.31. 

 

Figure 7.31 Difference in plastic rotation γθpl.sup for load combination A1 and B 

between results from an analysis and results from a superposition 

approach, shown in percent for different magnitudes of the inferior 

forces. 

It is clear that the superposition approach overestimated the plastic rotation in the 

structure for both load combination LCA and LCB. This was also shown for the 

cantilever structure in Section 6.3.4 and was expected since the adaptation of the slab 

due to repeated loading was not fully captured by the superposition approach. The 

difference in plastic rotation between the analyses and the superposition approach was 

greater for load combination LCB for larger loads and for LCA for loads of smaller 

magnitudes.  

In the case of the cantilever structure in Section 6.3.4, load combination LCB yielded a 

larger difference in plastic rotation than load combination LCA. The reason for the 

difference was believed to be derived from the fact that the plastic rotation from each 

load was overestimated and load combination B consisted of three separate loads 

instead of two separate loads which was the case for load combination A. This was 

obviously not the case for all magnitudes of the inferior forces for the simply 

supported structure. It can however be seen that the difference increased with an 

increased value of the inferior force which was the case for the cantilever structure. 
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7.4 Response of two moving forces – Equal magnitudes 

The slab in this analysis was modelled with the same geometry and moment-curvature 

relations as the slab in Section 7.3. The results obtained in this section corresponded 

well to those obtained in Section 6.4 for the cantilever structure. The results are 

therefore presented here in a more compact form and the reader is referred to 

Section 6.4 for comparison and additional information regarding the analyses. 

 

Figure 7.32 Geometry and dimensions of the studied simply supported slab for two 

concentrated forces. 

The modelling choices and moment-curvature relation from the analysis of a single 

static moving concentrated force was also used in this analysis.  

The sum of the loads applied on the slab in this analysis differed between the 

distances d between the pair of concentrated forces. The distance between the forces 

was altered according to Equation (7-9) and the influence of this parameter is treated 

in Section 7.4.1 to 7.4.3. 

 m0.26.12.1d

 

(7-9) 

 

7.4.1 Constant distance, d = 1.2 m 

In the case of a constant distance of d = 1.2 m, the applied forces F1 and F2 varied 

according to the following magnitudes:  

 kN757065...50454021  FF

 

(7-10) 

Where: 

21 FFFtot 

 

(7-11) 

As in the case of a single moving concentrated force, the analyses were conducted 

with 150 load cycles n for each pair of concentrated forces if failure of the simply 

supported slab did not occur within this range. The plastic rotation in the centre of the 

slab for different magnitudes of forces is shown in Figure 7.33. 
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Figure 7.33 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 

The number of load cycles to failure nu for different magnitudes of the applied forces 

is shown in Figure 7.34. 

 

Figure 7.34 Number of load cycles to failure for different magnitudes of a pair of 

moving concentrated forces for d = 1.2 m. 

As in the case of a single moving concentrated force, the plastic rotation approached a 

stable value where the occurrence of failure was unlikely to occur within the number 

of load cycles studied in this Thesis. This was the case when the total force was below 

the critical force Fcrit which in this case was somewhere between 55 kN and 60 kN. 

The reason for this phenomenon was described in Section 6.3.1. 
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Figure 7.35 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces 
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7.4.2 Constant distance, d = 1.6 m 

In the case of a constant distance of d = 1.6 m, the applied forces F1 and F2 varied 

according to the following magnitudes:  

 kN807570...55504521  FF

 

(7-12) 

The plastic rotation in the centre of the slab for different magnitudes of forces is 

shown in Figure 7.36. 

 

Figure 7.36 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 

 

Figure 7.37 Number of load cycles to failure for different magnitudes of a pair of 

moving concentrated forces for d = 1.6 m. 
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The critical force Fcrit was in this case somewhere between 60 kN and 65 kN. 

 

Figure 7.38 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 
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7.4.3 Constant distance, d = 2.0 m 

In the case of a constant distance of d = 2.0 m, the applied forces F1 and F2 varied 

according to the following magnitudes:  

 kN858075...55504521  FF

 

(7-13) 

The plastic rotation in the centre of the slab for different magnitudes of forces is 

shown in Figure 7.41 

 

Figure 7.39 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 

 

Figure 7.40 Number of load cycles to failure for different magnitudes of a pair of 

moving concentrated forces for d = 2.0 m. 
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The critical force Fcrit was in this case somewhere between 65 kN and 70 kN. 

 

Figure 7.41 Plastic rotation for different magnitudes of a pair of moving 

concentrated forces. 
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7.4.4 Comparison 

In order to compare the plastic rotation caused by the different loads and load 

magnitudes, the number of load cycles to cause failure nu was compared with the total 

load magnitude Ftot from Equation (7-11) for the different loads applied on the simply 

supported slab. This behaviour is shown in Figure 7.42. The methodology used in this 

section was kept from Section 6.4.4 which the reader is referred to for comparison and 

additional information. 

 

Figure 7.42 Number of load cycles to failure for different loads and load 

magnitudes. 

It is clearly shown in Figure 7.42 that was is advantageous for the simply supported 

slab, from the perspective of plastic rotation, with an increased distance between a 

pair of concentrated forces. It is also clearly shown that the case of two concentrated 

forces was advantageous in comparison to the case of a single moving concentrated 

force with the same load magnitude. As the concentrated force was separated into two 

forces and the distance between those two increased, the total load magnitude and 

number of load cycles to failure increased. 

In order to compare the number of load cycles to cause failure for the different loads 

and load magnitudes, a load magnitude factor γθplu.F was defined as in Section 6.4.4: 

el

utot

Fplu
F

nF )(
. 

 

(7-14) 

Where    totF  = the total applied force 

elF  = the force of greatest magnitude not to cause any plastic rotation for a                        

= single moving concentrated force, in this case 55 kN 

un  = the number of load cycles to failure for each applied force 
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It was possible, from this relation, to predict the vulnerability of the slab, i.e. how 

much the moving concentrated forces could be increased in magnitude before failure 

due to plastic rotation occurs. This relation is shown in Figure 7.43. 

 

Figure 7.43 Number of load cycles to failure for a load magnitude factor γθplu.F 

related to the load Fel. 

It can be seen in Figure 7.43 that the moving concentrated force of the highest 

magnitude not to cause any plastic rotation in the structure could be increased by 

63 % before failure of the simply supported slab occurred within 150 load cycles. If 

the total force was separated into two concentrated forces with a distance of 1.2 m 

instead, the total applied load could be increased by 118 % before failure of the 

simply supported slab occurred within 150 load cycles. An increase of the distance 

between the two concentrated forces generated an increase in total load magnitude 

before failure occurred.  

As in the case of the cantilever structure in Section 7.4, it is reasonable to assume that 

there is a distance d between the pair of moving concentrated forces such that the 

simply supported structure experiences the force pair as two single forces. This 

behaviour was not studied for this structure due to the limited timeframe of this 

Thesis. It is however reasonable to assume that the smallest distance dcrit for the slab 

to experience the force pair as two single forces is smaller than the critical distance for 

the cantilever structure. This can be derived from Figure 7.43 where it is clearly 

shown that the applied forces can be significantly more increased that the forces for 

the cantilever structure and thus have an advantageous distribution of the plastic 

rotation.    
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7.5 Response of two moving forces – Different magnitudes 

The slab shown in Figure 7.32 was in this analysis subjected to a number of forces F 

of different magnitudes in order to study the influence of such load combinations. The 

methodology used in this section was kept from Section 6.5 and is therefore presented 

here in a more compact form. In order to study the influence of varying load 

magnitudes within the pair of moving concentrated forces, the total applied force Ftot 

was set to: 

kN12021  FFFtot  
(7-15) 

Where: 

21 FF 
 

(7-16) 

 kN50403020101 F
 

(7-17) 

 kN7080901001102 F
 

(7-18) 

Where F1 was the second force of the force pair to load the slab which can be seen in 

Figure 7.32. The magnitude of the force F2 was, for this load application order, always 

greater than the force F1 according to Equation (7-19) and Figure 7.44 

21 FF   (7-19) 

 

Figure 7.44 The first load application order LAO1 of the studied slab. 

The plastic rotation caused by the applied force pair was not significantly influenced 

by the load application order. A study of this influence is treated in Appendix E and 

the analyses in this section follow the first load application order, LAO1, which is 

stated in Equation (7-15) to (7-19).  
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7.5.1 Constant distance, d = [1.2 1.6 2.0] m 

The distance d between the force pair applied on the cantilever slab was kept from the 

previous analyses in Section 7.4 and the results from the analyses are shown in 

Figure 7.45 to Figure 7.47: 

 

Figure 7.45 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 1.2 m.  

 

Figure 7.46 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 1.6 m. 
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Figure 7.47 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d = 2.0 m. 

As expected, and as observed in Section 7.4, it was advantageous for the simply 

supported structure with an increased distance between the moving concentrated 

forces. It is also clear that it was advantageous for the simply supported structure with 

a more evenly distributed force application. 

From Figure 7.45 to Figure 7.47, it can be seen that: 

 For the distance d = 1.2 m, all investigated load combinations led to failure 

within 14 load cycles or less. 

 For the distance d = 1.6 m, four of the investigated load combinations led to 

failure within 14 load cycles or less.  

 For the distance d = 2.0 m, three of the investigated load combinations led to 

failure within 14 load cycles or less.  

How the plastic rotation developed in the centre of the slab during the first 10 load 

cycles for d = 1.2 m is illustrated in Figure 7.48. 

It can be seen in Figure 7.48 that the load combinations with a large difference in 

force magnitudes between the two forces led to failure during a few load cycles. The 

plastic rotation for these loads greatly exceeded the plastic rotation capacity for the 

cross-section but is presented here in order to evaluate how the accumulated damage 

developed in the centre of the simply supported structure. It can be seen that the 

accumulated damage for the forces of more equal magnitudes approached a stable 

state more rapidly than the force pair with a bigger difference in magnitude between 

the two forces. This was also observed in Figure 7.45 where the distance between the 

curves decreased as the forces approached a mean value.   
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Figure 7.48 Development of plastic rotation for different load combinations of a pair 

of moving concentrated forces of varying magnitudes for d = 1.2 m.  

7.5.2 Comparison 

In order to determine how the plastic rotation was influenced by the distance d 

between the moving forces of varying magnitudes, the different analyses were 

compared below. The plastic rotation obtained from the analyses with d = 1.6 m and 

d = 2.0 m was compared to the plastic rotation with d = 1.2 m according to 

Equation (6-32) and (6-33), defined in Section 6.5.2. The difference is shown in 

Figure 7.49 and Figure 7.50 and the reader is referred to Appendix H for tabulated 

values. 

 

Figure 7.49 Difference in plastic rotation γθpl.1.6m for different load combinations 

between d =1.2 m and d = 1.6 m. 
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Figure 7.50 Difference in plastic rotation γθpl.2.0m for different load combinations 

between d = 1.2 m and d = 2.0 m. 

It was here observed, as in Section 6.5.2 that the difference in plastic rotation was 

almost constant for each separate load combination and distance after a few load 

cycles. The mean plastic rotation difference was therefore of interest and defined as in 

Section 6.5.2. The mean plastic rotation difference was calculated according to 

Equation (6-34) to (6-37), presented in Section 6.5.2. The difference is shown in 

Figure 7.51 and the reader is referred to Appendix H for tabulated values. 

 

Figure 7.51 Mean difference in plastic rotation γθpl between d = 1.2 m and, 

d = 1.6 m and d = 2.0 m. 
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difference between the two forces F1 and F2. This behaviour was expected since the 

distance between a force of a great magnitude and a force of a small magnitude should 

not influence the accumulated damage to a great extent. When both forces are of a 

relative high magnitude, the distance should influence the accumulated damage to a 

greater extent, which was the case.  
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7.6 Summation 

This section covers a comparison between the moving concentrated forces presented 

in Section 7.3 to 7.5. A single and a pair of moving concentrated forces are compared 

with static forces of the same magnitudes. As a final part of this section, the results 

presented in Chapter 7 are discussed. 

 

7.6.1 Comparison – Moving forces 

This section covers the investigated forces on the simply supported structure 

presented in the Section 7.3 to 7.5 and evaluates the differences and similarities 

between them. These sections have covered the two main load cases: 

 A single moving concentrated force – Constant magnitude 

 A single moving concentrated force – Varying magnitudes 

 Two moving concentrated forces – Equal magnitudes 

 Two moving concentrated forces – Different magnitudes 

As discussed in Section 6.6.1, the results from the pair of moving concentrated forces 

of different magnitudes should yield plastic rotation greater than what is caused by a 

pair of moving forces of equal magnitudes and less that what is caused by a single 

moving force. This can be seen in Figure 7.52 to Figure 7.54 where these analyses are 

presented together. 

 

Figure 7.52 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d=1.2 m. 
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Figure 7.53 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d=1.6 m.  

 

Figure 7.54 Plastic rotation for different load combinations of a pair of moving 

concentrated forces of varying magnitudes for d=2.0 m.  

It can be seen in Figure 7.52 to Figure 7.54 that the results where F1=F2 = 60 kN 

yielded higher plastic rotation than the case where F1 = 50 kN and F2 = 70 kN during 

the first load cycles. However, the accumulated damage caused by the load 

combination of two concentrated forces of different magnitudes was thereafter greater 

than the case where F1=F2 = 60 kN. The results indicates that the two equal forces 

were more critical to the development of the plastic rotation during the early load 

cycles and that the simply supported slab thereafter adapted to the load magnitude 

quicker than in the case of two different forces. The effect of the larger force 
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(F2 = 70 kN) was in this case decisive for the development of the plastic rotation 

which caused this load combination to develop more plastic rotation after a few load 

cycles than the case of two equal forces. 

The plastic rotation obtained by F= 120 kN was slightly higher than the case where 

F1 = 10 kN and F2 = 110 kN for all distances d.  

These analyses were only conducted for one total force Ftot = 120 kN for the two 

moving concentrated forces of different magnitudes but the advantageous effect of 

separating the total force into two separated forces are believed to increase with an 

increased total force. 

 

7.6.2 Comparison – Static vs. moving forces 

As in the case of the cantilever structure, it is clear that a moving concentrated force 

causes significantly more plastic rotation than what is caused by a static force of the 

same magnitude. The development factor used for the cantilever structure in 

Section 6.6.2 was here used in the same way and based on the same observations.  

As for the cantilever structure, the distribution of the development factor γθpl.mov was 

divided into two sub factors γθpl.mov.min and γθpl.mov.max. These factors represent the 

minimum and maximum difference in plastic rotation between static and moving 

forces of the same magnitudes. For the definition of these factors, the reader is 

referred to Section 6.6.2. 

The development factors were also here calculated for all forces that reached a stable 

state (reached its maximum plastic rotation) in the conducted analyses and the results 

is shown in Figure 7.55. 

 

Figure 7.55 Maximum and minimum values of the cumulative factor γθpl.mov for a 

single and a pair of moving concentrated forces. 
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forces and an increased total applied force Ftot yielded plastic rotations closer to what 

was predicted by static forces. How the cumulative factor developed for a single 

moving concentrated force is shown in Figure 7.56. For the development of the 

cumulative factor for two moving concentrated forces, the reader is referred to 

Appendix G. 

 

Figure 7.56 Development of the cumulative factor γθpl.mov for a single moving 

concentrated force. 

 

7.6.3 Discussion 

In general, the results presented in Chapter 7 follow the same pattern as in Chapter 6 

and are here briefly discussed. For a more detailed discussion and for additional 

information the reader is referred to Section 6.6.3.   

The simply supported one-way structure reached a stable state, with respect to the 

plastic rotation development, when the number of load cycles n was increased. 

A traditional superposition approach of moving concentrated forces significantly 

overestimated the plastic rotation. The magnitude of the overestimation corresponded 

well to what was obtained from the cantilever structure, but with a slightly different 

behaviour. The difference for the cantilever structure indicated a linear behaviour 

while the difference seemed to diminish as the load magnitude increased for the 

simply supported structure. 

It was also for the simply supported structure shown that there was a significant 

difference between the plastic rotation caused by static and moving concentrated 

forces. The plastic rotation caused by a moving force could be as high as 30 times the 

plastic rotation caused by a static force of the same magnitude. It was also for this 

structure shown that this difference decreased as the force magnitude increased and 

also decreased with increased distance d between a pair of moving concentrated 

forces. 

  

0

5

10

15

20

25

30

0 25 50 75 100 125 150

C
u

m
u

la
ti

v
e 

fa
ct

o
r,

 γ
θ

p
l.

m
o
v
  [

-]
  

Load cycles, n [-] 

F=105 kN F=100 kN
F=95 kN F=90 kN
F=85 kN F=80 kN
F=75 kN F=70 kN
F=65 kN F=60 kN



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
156 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
157 

8 Evaluation and discussion of results 

This chapter covers the evaluation and discussion of the obtained results, presented in 

this Thesis. Section 8.1 covers the results from Chapter 4 and 5, focused on the 

moment distribution in the serviceability limit state for slabs subjected to static 

concentrated forces. Section 8.2 covers the results from Chapter 6 and 7, focused on 

the development of cumulative plastic rotation θpl in slabs subjected to moving 

concentrated static forces.  

 

8.1 Moment distribution in SLS 

For studies related to moment distribution in SLS, several cases were studied which 

were intended to represent different scenarios which may appear in a bridge structure. 

The different scenarios included a variety of stiffness in different directions due to 

varying reinforcement amounts or normal stresses in those directions. The non-linear 

analyses were divided into three different categories, namely Uncracked, Neutral and 

Cracked. The names of the three categories imply on the state and corresponding 

stiffness in the longitudinal direction of the slab, i.e. the x-direction in the figures 

presented in this section. The variety of stiffness may be derived from the global 

bending moment for a beam bridge structure where, for example, a positive global 

moment compresses the upper flange of the cross-section. Further, two different levels 

of the cracking moment were chosen. See Section 4.1 for the methodology used.  

Two different structures were studied, a cantilever slab and a simply supported one-

way slab. Both structures were studied with a single concentrated force and two 

concentrated forces, see Figure 8.1. 

 

Figure 8.1 The studied structures and load applications; (a) cantilever slab, single 

force (b) cantilever slab, two forces (c) simply supported slab, single 

force (d) simply supported slab, two forces 

In this section, a summary of the maximum moments obtained from the analyses is 

made for easier comparison. Further, the responses of the structures are investigated 

with the help of contour plots which display in which branch of the trilinear moment-

curvature relation the beam elements are situated. Finally, the results are compared to 

the recommendations in Pacoste et al. (2012).  
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8.1.1 Maximum moment 

The maximum moments obtained from the analyses were of most interest and the 

results are therefore summarized in column graphs for easier comparison; see 

Figure 8.2 to Figure 8.5. The values are expressed as a factor of the isotropic linear 

solution obtained from the beam grillage model. 

 
Figure 8.2 Maximum moments; cantilever slab, single concentrated force. 

 

 
Figure 8.3 Maximum moments; cantilever slab, two concentrated forces. 

 

 
Figure 8.4 Maximum moments; simply supported one-way slab, single concentrated 

force. 
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Figure 8.5 Maximum moments; simply supported one-way slab, two concentrated 

forces. 

It was observed that for all different cases, the orthotropic linear solution was 

conservative with respect to the non-linear solutions. This is logical due to the fact 

that the positive influence from uncracked sections was ignored. In the cases 

Uncracked and Cracked, the response in the x-direction was linear, which is a reason 

why the non-linear solutions were more similar to the orthotropic linear solutions than 

for the case Neutral.  

In the case Uncracked, it is shown that the maximum moment was decreased by about 

20 to 25 % for the stiffness proportion Ex=5Ey, which is a reasonable stiffness 

proportion between uncracked and cracked reinforced concrete. The case Uncracked 

was intended to represent a region of a bridge structure which is uncracked in the 

longitudnal directions due to global forces, see Figure 4.3. This region may be quite 

large depending on the structure, which means that there could be a significant gain in 

taking this stiffness proportion into account, even with a linear orthotropic model. 

The non-linear solutions for the case Neutral are very similar, independent on stiffness 

proportions. This is most likely due to the fact that uncracked parts of the structure 

dominates the behaviour, and would mean that the solution would tend to approach 

the orthotropic linear solution if the structure was already cracked from an earlier 

applied load. The non-linear solutions could thus be too liberal for design of a bridge, 

where moving loads may cause cracking along an extensive part of the structure, 

which also applies for the case Cracked. It was also shown in Section 5.2.3, that if the 

load was of a higher magnitude in relation to the cracking moment, the solutions 

would be more affected by the stiffness proportions.  

For the cases Neutral and Cracked, both main directions had the stiffness of cracked 

reinforced concrete when the load was applied. The stiffness proportion was thus a 

result of varying reinforcement amounts in the two directions. Unlike the case 

Uncracked, where one direction had the stiffness of uncracked concrete throughout 

the analysis, the range of stiffness proportion was smaller. This is why only a range of 

stiffness proportion from Ex=0.5Ey to Ex=2Ey were chosen. The orthotropic linear 

solutions show a variation of about 10 to 15 % of the maximum moment compared to 

the isotropic linear solution. This means that the actual moment in the slab could be 

underestimated by an isotropic linear elastic analysis. Even though the non-linear 

analyses show a lower moment than the isotropic solution for the majority of cases, 

the solution could still be too liberal if the structure is already cracked due to earlier 

loading as previously mentioned.  
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8.1.2 Contour plots 

In order to investigate and interpret the results, the curvature in the beam elements of 

the finite element model was measured and illustrated as contour plots. The plots 

follow the orientation presented in Figure 8.1. Each element was given a colour 

depending on which branch of the moment-curvature relation the beam element was 

situated in, see Figure 8.6. The plots presented in this section were based on the 

results from cases with the chosen magnitude of the cracking moment Mcr=Mlin /3. 

 

Figure 8.6 Colour distinction for contour plots 

 

8.1.2.1 Case Uncracked 

The contour plots from the case Uncracked for a single concentrated force are shown 

in Figure 8.7. Note that, since all elements in the x-direction had an uncracked 

stiffness, only elements that were orientated in the y-direction are plotted. 

Cantilever slab Simply supported one-way slab 

 
Ex = 2Ey 

 
Ex = 5Ey 

 
Ex = 10Ey 

Figure 8.7 Contour plot for the case Uncracked with a single concentrated force. 

Beam elements orientated in the y-direction. 

In the case Uncracked, the stiffness in the x-direction was locked to the stiffness of 

uncracked concrete. This means that, as the stiffness factor α = Ex / Ey increased, the 
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y-direction got weaker. The plots show that, as the y-direction got weaker, additional 

elements along the length of the slab were activated. 

 

8.1.2.2 Case Neutral 

As seen in Section 8.1.1, the maximum moments for the case Neutral were similar, 

independent on stiffness proportions. The contour plots are divided into beam 

elements in x- and y-direction. Cracking along each main direction can then be 

observed. The contour plots for the cantilever slab from the case Neutral are presented 

in Figure 8.8. 

x-direction y-direction 

 
Ex = 0.5Ey 

 
Ex = Ey 

 
Ex = 2Ey 

Figure 8.8 Contour plot for the case Neutral, cantilever slab with a single 

concentrated force. 

The results show that most cracking occurred in the y-direction along the fixed edge 

and that a large part of the structure close to the applied load reached the state II 

stiffness. In the x-direction, only elements directly under the concentrated force 

reached a state II stiffness. Note that the cracks under the applied load were bottom 

cracks, while the cracks to the right of the applied load were top cracks. This explains 

the uncracked area in between, since it is an area in which the moment changes from 

positive to negative. This means that for a moving load, there will be both bottom and 

top cracks along the entire structure. As discussed in Section 8.1.1, the non-linear 

solution can thus be too liberal if the structure is already cracked due to earlier 

loading.  

Contrary to the moment distribution, the curvature contour plot show a distinct 

difference between the three different stiffness proportions. Namely, that as the x-

direction increased in stiffness and thus attracted additional loads which resulted in a 

larger area which reached the state II stiffness. 
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8.1.2.3 Case Cracked 

In the case Cracked, the x-direction had a linear moment-curvature relation which 

represents the stiffness of cracked concrete with varying reinforcement amounts. 

Since the relation was linear, all elements orientated in the x-direction had the same 

stiffness. In Figure 8.9, the contour plots for the case Cracked with a single 

concentrated force are presented. Only beam elements orientated in the y-direction is 

displayed. 

Cantilever slab Simply supported one-way slab 

 
Ex = 0.5Ey 

 
Ex = Ey 

 
Ex = 2Ey 

Figure 8.9 Contour plot for the case Cracked with a single concentrated force. 

Beam elements orientated in the y-direction. 

As in the case Uncracked, the extent of the cracked regions were increased as the y-

direction became weaker in proportion to the x-direction. It is however not as clear as 

in the case Uncracked. The reason is most likely due to the larger range of stiffness 

proportions in the case Uncracked. 
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8.1.3 Effective moment distribution width 

An objective of this Thesis was to evaluate the recommendations given in Pacoste et 

al. (2012), see Section 3.4.2. In Pacoste, the recommendations are stated in terms of 

effective moment distribution width weff, which can be computed as: 

max,

.

y

toty

eff
m

M
w   (8-1) 

Where:  
effw  = effective width for moment distribution 

  
totyM .

 = total moment in y-direction 

  
max,ym  = maximum moment my measured in analysis 

 

The distribution width weff from the linear solutions in Chapter 4 and 5 are presented 

in Figure 8.10. Note that no scenarios in this study include values of the stiffness 

factor α below 0.5. A value of, for example α = 0.1, would mean that the slab had an 

uncracked stiffness in the y-direction, while it had a cracked stiffness in the x-

direction. This could be accomplished by prestressing the concrete in the y-direction. 

However, this scenario was not discussed in this Thesis. 

 

Figure 8.10 Effective moment distribution width from linear elastic orthotropic 

cases. 

The moment distribution widths for the trilinear solutions were omitted since the 

orthotropic linear solutions describe the trilinear solutions fairly well for the majority 

of cases. Also, with respect to the maximum moment from the trilinear solutions, the 

linear orthotropic solution is conservative.  

The recommended values of the moment distribution width were calculated from 

simple relations stated in Section 3.4.2. The relations include the thickness of the slab 
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the slab affects is the torsional stiffness which was chosen conservatively, see 

Section 4.1.3.  

The relations also include the width of the applied load. For the cantilever slab, the 

concentrated force was modelled as a point load acting on a single node. However, for 

the simply supported slab the load was spread over an area of 0.4 x 0.4 m
2
, which was 

chosen according to the load model described in Section 5.1. Therefore, when 

calculating the recommended value, b = 0.4 m was chosen. No surfacing material 

were discussed and was chosen to t = 0 m. 

For the cantilever slab subjected to a single concentrated force, the recommended 

distribution width was calculated as: 

m800402022 ...tbhweff   (8-2) 

For the cantilever slab subjected to two concentrated forces, the recommended 

distribution width was calculated as: 

m0204020260222 ....tbhxw Reff   (8-3) 

For the simply supported one-way slab subjected to a single concentrated force, the 

recommended distribution width was chosen according to: 
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The case with several concentrated forces was not treated in Pacoste et al. (2012) for 

simply supported one-way slabs. However, following the methodology used for 

cantilever slabs, the recommended distribution width was chosen according to: 
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m1.84m52.1  effw  (8-9) 

A minimum value was however calculated for a single force as: 

m80402022min ...bhweff.   (8-10) 

And for two forces as: 

m024020260222min ....bhxw Reff.   (8-11) 
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The recommended values were well below the calculated values presented in 

Figure 8.10. It should be noted that a low value of the torsional stiffness of the beam 

elements was chosen in the analyses, which was believed to be conservative, see 

Section 4.1.3. If a larger torsional stiffness would be chosen, the results would display 

a better distribution of the forces which means that the effective distribution width 

would increase even more. 

If the thickness of the slab was set to 0.4 m, instead of the chosen 0.2 m, the 

recommended values would increase, see Table 8.1. 

Table 8.1 Recommended values of moment distribution width according to 

Pacoste et al. using a slab thickness of 0.4 m.  

Cantilever slab, single force m2.1effw  

Cantilever slab, two forces m4.2effw  

Simply supported slab, single force m2.1effw  

Simply supported slab, two forces m4.2effw  

Table 8.1 shows that the recommendations were conservative for the studies made, 

even with a slab thickness of 0.4 m. It should be noted that with an increased height, 

the torsional stiffness would have increased and thus resulted in a wider distribution 

of the forces. For easier comparison, both the calculated and the recommended values 

are shown in Figure 8.11. 

 

Figure 8.11 Effective moment distribution width from linear elastic orthotropic cases 

combined with the recommended values from Pacoste et al. 
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8.2 Cumulative plastic rotation 

This section covers the evaluation and discussion from the results obtained in 

Chapter 6 and 7. The development of cumulative plastic rotation was studied for a 

cantilever and a simply supported one-way concrete slab, illustrated in Figure 8.12. 

The plastic rotations are for some analyses in this section significantly higher than the 

defined plastic rotation capacity θrd used in this Thesis and are also significantly 

higher than plastic rotations that can be expected in real structures. These values are 

however presented and used due to comparison purposes. 

 

Figure 8.12 The studied structures and load applications; (a) cantilever slab, single 

moving force (b) cantilever slab, two moving forces (c) simply supported 

slab, single moving force (d) simply supported slab, two moving  forces 

The development of plastic rotation was studied for the following four main load 

combinations: 

 A single moving concentrated force – Constant magnitude 

 A single moving concentrated force – Varying magnitudes  

 Two moving concentrated forces – Equal magnitudes (F1 = F2) 

 Two moving concentrated forces – Different magnitudes (F1 ≠ F2) 

Where the following parameters was altered: 

 Load magnitudes, F, for all forces 

 Load application order, LAO, of all forces 

 Distance, d, between the two moving concentrated forces 

 

8.2.1 Plastic rotation development – Moving forces 

The development of plastic rotation for the load combinations presented above is 

illustrated for the cantilever and the simply supported structure in Figure 8.13 and 

Figure 8.14, respectively. It can be seen that the plastic rotation approached a stable 

state for both structures when the number of load cycles were increased. This means 

that a load that causes accumulated damage to the structures becomes less significant 

as the number of load cycles increases. This phenomenon was discovered for all the 

studied load combinations and load applications in this Thesis. 

The single force could, for both structures, not be studied for the same amount of load 

cycles as the load combination consisting of two forces since the analyses were too 

unstable for such a high degree of plastic rotation. The values were instead estimated 

by the superposition approach in Section 8.2.4, proposed for further studies. 
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Figure 8.13 Development of plastic rotation θpl, for the first 19 load cycles for 

different load combinations. Cantilever structure. 

 

Figure 8.14 Development of plastic rotation θpl, for the first 19 load cycles for 

different load combinations. Simply supported one-way structure. 

It can be seen in Figure 8.13 and Figure 8.14, that a single moving concentrated force 

was the most critical for the structures with respect to the development of plastic 

rotation. If the single force was separated into two forces where one was significantly 

larger than the other, the damage done to the structure decreased. The damage further 

decreased if the two forces of different magnitudes approached an equal force 

distribution. The damage done to the structure was, for all cases, decreased if the 

distance between the two forces increased. This behaviour was expected. The 

adaptation to the damage, and thus the decreased influence of the applied forces, was 

however not anticipated. 

As have been noted above, the distance d between the force pair was essential to the 

development of accumulated damage in the structure. A plastic rotation factor γθpl, 

defined as a relation of the plastic rotation caused by a single moving force and two 

moving forces of the same total magnitude, is illustrated in Figure 8.15 and 

Figure 8.16. 
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Figure 8.15 Plastic rotation factor γθpl. Cantilever structure. 

 

 
Figure 8.16 Plastic rotation factor γθpl. Simply supported structure. 

It can be seen in Figure 8.15 and Figure 8.16 that the plastic rotation caused by a pair 

of moving concentrated forces merely constituted a smaller proportion of what was 

caused by a single moving force of the same total magnitude. 

If the distance between the two forces was increased enough, the structure 

experienced the force pair as two single forces. This can be seen in Figure 8.17 where 

the total load magnitude Ftot (the sum of the force pair), not to cause any plastic 

rotation or failure due to plastic rotation after one load cycle, is illustrated for an 

increased distance d. 
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Figure 8.17 Total load magnitude Ftot for different distances between the moving 

concentrated forces of equal magnitudes. Cantilever structure. 

The study of the influence of the distance between the pair of moving concentrated 

forces were only conducted on the cantilever structure but it is reasonable to assume 

that the simply supported structure exhibit a similar behaviour. 

 

8.2.2 Plastic rotation development – Static vs. moving forces 

In traditional analysis and design, static forces are most commonly used. The subject 

of comparing the plastic rotation caused by static and moving forces was therefore of 

interest. In order to compare these two types of forces, a cumulative factor γ.θpl.mov was 

defined. This factor represents the difference between the plastic rotation caused by a 

moving force and the plastic rotation caused by a static force of the same magnitude.  

As have been observed Chapter 6, 7 and partly in Section 8.2.1, the development of 

plastic rotation reaches a stable state where the plastic rotation in the structure did not 

increase with an increased number of load cycles. This means that there is an upper 

and lower limit of plastic rotation caused by a moving force and thus an upper and 

lower limit of the cumulative factor, here denoted as γθpl.mov.max and γθpl.mov.min. The 

lower limit was set to the plastic rotation after the first load cycle and the upper limit 

was set to the plastic rotation after load cycle number 150. The analyses could not be 

conducted for 150 load cycles for all load magnitudes due to the unstable nature of the 

FE models at such a high degree of plastic rotation. The analyses conducted are 

presented in Figure 8.18 and Figure 8.19.  
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Figure 8.18 Cumulative factors. Cantilever structure. 

 

Figure 8.19 Cumulative factors. Simply supported structure. 

From Figure 8.18 and Figure 8.19, it can be seen that the upper limit of the cumulative 

factor decreases with increased load magnitude and increased distance d between the 

pair of moving concentrated forces. The lower limit of the cumulative factor behaves 

similarly but to a lesser extent and exhibits a more stable behaviour. This behaviour 

applies for both structures studied in this Thesis. Two crucial observations can be 

made from these results: 

 Static forces yielded plastic rotations closer to what was obtained from moving 

forces when the magnitude was increased and the distance between the 

moving concentrated forces were increased. 

 The moving forces caused plastic rotation that was 1.5 to 30 times greater than 

what was caused by static forces of the same magnitudes. 

It is also crucial to observe that the maximum value of the lower limit values was in 
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which is reasonable to assume, can cause plastic rotations four times greater than a 

static force of the same magnitude. This indicates that the load application (static or 

moving) is vital when estimating the structural response and the corresponding 

damage. 

 

8.2.3 Traditional superposition approach 

It was observed in Section 8.2.1 that the load history was of great importance for the 

case of cumulative damage for both structures. It was therefore essential to study if a 

traditional superposition approach could be utilized when estimating future damage 

on a structure where a damaging process has been initiated. The superposition 

approach used in this Thesis is illustrated in Figure 8.20. 

 

Figure 8.20 The superposition approach used in this Thesis. 

In order to study if a superposition approach is a valid method for the development of 

plastic rotation; the structures were subjected to the three following load combinations 

of single forces: 

LCA1: One large force (n = 1) followed by one smaller force (n = 5) 

LCA2: One small force (n = 5) followed by one large force (n = 1) 

LCB: One small force (n = 3) followed by one large force (n = 1) followed by one 

small force (n = 2) 

Where n was the number of load cycles for each applied force F. 

It can be seen in Figure 8.21 and Figure 8.22 that a traditional superposition approach 

greatly overestimated the plastic rotation. The figures illustrate the plastic rotation 

after six load cycles for the load combinations stated above. There is a slight 

difference between the plastic rotations caused by these combinations and it can be 

seen that it was advantageous for the structure to be subjected to the larger force when 

the accumulated damage was small.  

The worst case was not the opposite of this, i.e. to apply the larger force when the 

accumulated damage in the structure was large. The most disadvantageous load 

combination was to apply a large force right after a damaging process had been 

initiated. This means that the most advantageous and disadvantageous load 

combinations were separated by only one force that caused plastic rotation. 

It should however be noted that the difference is small and these results should 

therefore be treated with care. 
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Figure 8.21 Plastic rotation θpl after six load cycles. Cantilever structure. 

 

Figure 8.22 Plastic rotation θpl after six load cycles. Simply supported structure. 

 

8.2.4 Proposed superposition approach 

It has been illustrated in Section 8.2.3 that a traditional superposition approach is not 

recommended (or even valid) for the development of plastic rotation. It was however 

discovered that an alternative superposition approach could be utilized in order to 

predict the development of future damages. This superposition approach is based on 

the plastic rotation obtained after the first load cycle and it is possible, from this value, 

to predict the future development of plastic rotation in the structures studied in this 

Thesis. This discovery was made in the final stage of this Thesis and was therefore 

not thoroughly studied. The aim of this section is therefore to provide fundamental 

knowledge of this superposition approach in order to initiate further studies within the 

subject.  
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As stated above, the proposed superposition approach was based on the plastic 

rotation caused by the first load cycle which is illustrated in Figure 8.23.  

 

Figure 8.23 Proposed superposition approach. 

For each load cycle n of a single and two moving concentrated forces of varying and 

equal magnitudes, a development factor γD.θpl.n was defined according to 

Equation (8-14): 
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(8-15) 

Where nF was defined as the number of load magnitudes, and thus analyses, that were 

conducted for 150 load cycles (a stable state of the plastic rotation was defined at 

n = 150). These mean development factors were used in order to predict the plastic 

rotation development of a range of single moving forces. This development is 

illustrated for the cantilever (nF = 9, 120-160 kN) and the simply supported structure 

(nF = 10, 60-105 kN) in Figure 8.24 and Figure 8.25, respectively.    
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Figure 8.24 Plastic rotation development for the results obtained from analyses (A) 

and the proposed superposition (S) approach. Cantilever structure. 

 

Figure 8.25 Plastic rotation development for the results obtained from analyses (A) 

and the proposed superposition (S) approach. Simply supported 

structure. 

It can be seen in Figure 8.24 and Figure 8.25 that the results from the proposed 

superposition approach corresponds rather well to the results obtained from the 

analyses. This is reasonable since the mean development factor was merely a mean 

value of the development of the presented forces. The mean factor was, however, of 

great interest since it indicates that there is one factor for each load cycle from where 

it is possible to predict the plastic rotation development for a range of force 

magnitudes. In other words; if the development factor is defined for a small number of 
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magnitudes, it is possible to predict the plastic rotation caused by forces of inferior or 

greater magnitudes. The factor is however case specific and therefore has to be 

evaluated for each load combination and application. The development factor is 

illustrated in Figure 8.26 and Figure 8.27 for a single force of constant magnitude and 

two concentrated forces of equal and different magnitudes.  

 

Figure 8.26 Mean plastic development factor. Cantilever structure. 

 

Figure 8.27 Mean plastic development factor. Simply supported structure. 

As can be seen in Figure 8.26 and Figure 8.27, the development factor differs between 

the two studied structures. 
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and load magnitudes, it should be possible to normalize the development factors to a 

relatively narrow spectrum. Consequently, it may, from such a spectrum of 

development factors, be possible to predict the plastic rotation for a large number of 

ordinary bridge structures and load combinations to a satisfactory extent. Hence, this 

development could accordingly be related to the cumulative factors, as presented and 

discussed in Section 8.2.2, and thus be related to static forces of equal magnitudes. In 

summation; this approach could be used to estimate the plastic rotation development 

for moving forces, based on the plastic rotation caused by a single static force. This 

would be advantageous since static forces are less time consuming and cumbersome 

than moving forces and thus convenient for conventional bridge design analysis. This 

approach is illustrated in Figure 8.28. 

 

Figure 8.28 Illustration of how the proposed superposition approach can be 

developed and used. 

It can be concluded that no development factors have been presented for forces of 

varying magnitudes which is the most probable load combination on a bridge 

structure. It is however believed to be possible, from the superposition approach 

proposed in this Thesis, to relate a development factor to an existing damage θpl and 

the plastic rotation capacity θrd. Consequently, it should, from such a relation, be 

possible to estimate future damages caused by forces of varying magnitudes and thus 

cover a wide spectrum of possible load combinations that are of interest in the bridge 

design community. 
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8.3 Shear force distribution 

The shear force distribution has not been discussed in this Thesis, but is presented for 

the interested reader in Appendix I for the studies related to moment distribution in 

SLS. However, some unexpected irregularities were discovered in the shear force 

distributions and are therefore pointed out in this section. One such irregularity is that 

for the linear elastic analyses, with a single concentrated force positioned in the center 

of the slab, the maximum shear force was not obtained in the center, where the 

maximum moment is positioned. The shear force distributions for the cantilever slab 

in the linear elastic case are presented in Figure 8.29a. Further, unexpected local peak 

values were obtained in the non-linear analyses. These peaks are positioned at 

locations where the moment-curvature relations in the beam elements are in, or close 

to the horizontal part of the trilinear relation, see Figure 8.29b. 

  

(a) (b) 

Figure 8.29 Shear force distribution, cantilever slab with a single force. (a) Linear 

elastic case (b) Case Uncracked Ex = 2Ey 

The shift in position of the maximum shear force in the linear elastic case seems to be 

a product of the beam grillage model, and is not obtained in a corresponding shell 

element model. It was shown in this Thesis that the torsional stiffness of the beam 

elements had a significant influence on the structural response of a beam grillage 

model. The effect discussed above is present even for an elastic (uncracked) torsional 

stiffness, but is magnified with lowered torsional stiffness. The peak values shown in 

Figure 8.29b was not obtained in Lim (2013) for similar analyses. This is most 

probably due to the fact that an elastic (uncracked) torsional stiffness was utilized in 

the beam elements. 

The majority of results in this Thesis are based on bending action, which is believed 

to be more accurately described by the beam grillage model than the shear force 

distribution. However, the effects described above should be further studied in order 

to verify the use of a beam grillage model for non-linear analysis. 
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9 Concluding remarks 

The conclusions derived in this Thesis and proposals for further studies within the 

field are presented in this chapter. 

 

9.1 Conclusions 

This Thesis studied the response of reinforced concrete slabs subjected to 

concentrated forces. Two main aspects were studied, namely moment distribution in 

the serviceability limit state and cumulative plastic rotation where the latter arises 

from cyclic moving forces. 

A beam grillage model in liaison with multi-linear moment-curvature relations that 

defined the material response was utilized. However, difficulties arose regarding the 

choice of the torsional stiffness and how it should be implemented in such an analysis. 

A parametric study performed in this Thesis showed that the torsional stiffness has a 

significant effect on the structural response in a beam grillage model. Further, 

unexpected irregularities were discovered in the shear force distribution when 

utilizing a beam grillage model.  

Studies related to moment distribution in SLS showed that results from a linear 

orthotropic model correspond to those obtained from a multi-linear model. A model 

which takes uncracked parts of the structure into account, only display a marginally 

lower maximum moment. However, an orthotropic stiffness which may arise from 

varying normal stresses in the two main directions of a slab was shown to have a 

significant effect on the moment distribution. Results indicated that the maximum 

moment could be reduced by approximately 20-25 %, if the transverse direction of the 

slab had the stiffness of uncracked concrete, while the studied direction had a stiffness 

of cracked reinforced concrete. Further, the recommendations given for moment 

redistribution in Pacoste et al. (2012) were shown to be conservative for the studied 

cases. However, it is difficult to predict to what extent the recommendations are 

conservative due to the difficulties in estimating the torsional stiffness of the beam 

elements used in the model. 

Studies related to cumulative plastic rotation demonstrated that the structures studied 

in this Thesis adapted to the accumulated damages and was stabilized; i.e. the 

influence of the applied forces decreased with an increased number of load cycles. 

Studies showed that there was a significant difference between the plastic rotation 

caused by static and moving concentrated forces. Due to this significant difference, it 

is recommended to treat static forces that may cause plastic rotation, such as heavy 

industrial transportation, with caution. It was shown in this Thesis that the maximum 

moment may be underestimated due to simplifications in the linear elastic analysis. 

This underestimation may cause unintended plastic rotation to occur, even for design 

loads. This further stresses the importance of a cautious approach when authorizing 

permits for heavy transportation that is generally not allowed on the structure.   

Results obtained in this Thesis indicate that a traditional superposition approach of 

load combinations greatly overestimates the plastic rotation development. An 

alternative superposition approach, based on the plastic rotation after the first load 

cycle, was therefore proposed in this Thesis. This approach requires further studies in 

order to expand the method to a broad spectrum of load combinations and structures 

which may be of great interest for the bridge design community. 
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9.2 Further studies 

A beam grillage model in liaison with linear moment-curvature relations that defines 

the material response is a common approach in FE analysis today. However, there 

seems to be a limited amount of documented studies of the behaviour of such a model 

in liaison with non-linear moment-curvature relations. Consequently, further studies 

within the field are essential in order to validate the method. The method described 

could be a powerful tool for non-linear analysis due to its simplicity and numerical 

stability. 

The torsional stiffness of the beam elements in the grillage model was shown to have 

a significant influence of the structural response. Since difficulties arose regarding 

how to treat this problem it is proposed to further study the influence of torsional 

stiffness in reinforced concrete slabs and how it can be treated in a grillage model.  

The shear force distribution was not discussed in this Thesis. However, some 

irregularities were discovered in the solutions. These irregularities should also be 

further studied in order to verify the use of a beam grillage model. 

The studies of plastic rotation development were directed towards the bearing 

capacity of structures and showed that the plastic rotation accumulates for cyclic 

loads. Furthermore, it is of interest to study how this type of loading correlates to a 

reduced service life of the structure, due to the induced damage. Consequently, it 

ought to be of great societal interest to quantify the actual cost, based on the reduced 

service life of the structure, of authorizing heavy transportation.  

The proposed superposition approach for moving cyclic load was just briefly studied 

in this Thesis. A study conducted on additional structures with varying geometries, 

load combinations and load magnitudes could yield further knowledge on how to 

estimate the plastic rotation development based on static forces.    
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Appendix A Modelling Choices 

This chapter covers the modelling choices that were made concerning mesh densities, 

beam widths for the beam grillage models etc. Since one aim of this Thesis is to study 

the moment distribution and redistribution in SLS, most modelling choices were 

based on moment distribution. 

 

A.1 Cantilever slab 

This section covers the chosen mesh densities for both the shell element model and 

the beam grillage model. 

 

A.1.1 Shell element model 

For the shell element model, mesh sizes of 0.1, 0.2 and 0.4 m were studied. The 

moment distributions along the fixed edge are shown in Figure A.1. The shell model 

was only used for a linear isotropic elastic analysis. A modulus of elasticity 

E = 33 GPa was used as input. 

 

Figure A.1 Moment distribution along the fixed edge, shell element model. 

It was concluded that the model with 0.2 m mesh size yielded satisfying results and 

was, due to the converged behaviour, chosen for further analysis. 

 

A.1.2 Beam grillage model 

In order to determine an appropriate beam grillage model, beam widths of 0.1, 0.2 and 

0.4 m were compared to the shell element model. It should here be noted that the 

mesh size of the beams was set to the width of the beam elements so that nodes were 

positioned at the intersection between two beams. For linear elastic analysis, there 

was no difference in the results obtained for beams with smaller mesh size, i.e. 
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additional nodes between the intersections. The analysis was isotropic and a modulus 

of elasticity E = 33 GPa was used as input. The beam elements were modelled with a 

linear elastic material and a rectangular cross-section in ADINA, which means that 

ADINA calculated the torsional stiffness of the beam element from the modulus of 

elasticity and the geometry of the cross-section. A comparison of the moment 

distribution between the beam grillage models and the shell element model is shown 

in Figure A.2. 

 

Figure A.2 Comparison between shell element model and beam grillage models 

with varying beam widths. 

The maximum moment was of most interest in this Thesis and it was believed that the 

shell element model yielded the most reasonable results for a linear elastic analysis. 

Therefore, the model that corresponded best with the shell element model, comparing 

the maximum moments, was chosen for further analysis. It was concluded that the 

beam grillage model with beam width 0.2 m yielded satisfying results in the isotropic 

linear elastic case. Therefore, a beam grillage model with a beam width of 0.2 m was 

chosen for further analysis. The difference between the obtained results can be 

derived from the influence of the torsional stiffness which is studied in Appendix B. 

The choice of 0.2 m beam width was also made in Lim (2013) for similar studies. 

 

 

 

 

 

 

 

 

 

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

M
o

m
en

t,
 m

y 
[k

N
m

/m
] 

 

Coordinate, x [m] 

Beam grillage model, beam width 0.1 m

Beam grillage model, beam width 0.2 m

Beam grillage model, beam width 0.4 m

Shell element model



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
185 

A.2 Simply supported slab 

This section covers the chosen mesh densities and load application for the simply 

supported one-way slab. 

 

A.2.1 Shell element model 

For the shell element model, mesh sizes of 0.1 and 0.2 m were studied. The moment 

distributions for both cases are shown in Figure A.3. The shell model was only used 

for linear elastic analysis. The analysis was isotropic and a modulus of elasticity 

E = 33 GPa was used as input. 

 

Figure A.3 Moment distribution along the centre of the slab, shell element model. 

It was concluded that the model with 0.2 m mesh size yielded satisfying results and 

was, due to the converged behaviour, chosen for further analysis. 

 

A.2.2 Beam grillage model 

In order to determine an appropriate beam grillage model, beam widths of 0.1 and 

0.2 m were compared with the shell element model. Models of greater widths were 

not of interest due to the load application, where the concentrated force was 

distributed over an area of 0.2 x 0.2 m
2
 in the double-symmetric model. It should here 

be noted that the mesh size of the beams were equal to the width of the beams so that 

the nodes were positioned at the intersection between two beam elements. The 

analysis was isotropic and a modulus of elasticity E = 33 GPa was used as input. The 

beam elements were modelled with a material and cross-section in ADINA, which 

means that ADINA calculated the torsional stiffness of the beam element from the 

modulus of elasticity and the geometry of the cross-section. A comparison of moment 

distribution between the beam grillage model and the shell element model is shown in 

Figure A.4. 
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Figure A.4 Comparison between shell element model and beam grillage models 

with varying beam widths. 

The maximum moment is of most interest in this Thesis. And it is believed that the 

shell element model yields the most reasonable results for a linear elastic analysis. 

Therefore, the model that corresponded best with the shell element model, comparing 

the maximum moments, was chosen for further analysis. It was concluded that the 

beam grillage model with beam width 0.2 m yielded satisfying results in the isotropic 

linear elastic case. Therefore, a beam grillage model with a beam width of 0.2 m was 

chosen for further analysis. The difference between the obtained results can, as in the 

case of the cantilever structure, be derived from the influence of the torsional stiffness 

which is studied in Appendix B. 

 

A.2.3 Influence of load model 

For the cantilever slab, the load model did not affect the moment distribution to a 

noticeable extent. This, because the moment was measured a certain distance from the 

applied load. However, for the case of the simply supported slab, the moment was 

measured in a line that crossed the applied load. It was therefore important to choose 

an appropriate load model that yields reasonable results.  

The shell element model was modelled with a pressure load which is intuitively the 

most reasonable way to model a concentrated force coming from a tire of a vehicle. 

However, this was not possible when utilizing beam elements. A study was therefore 

conducted in order to investigate the response from different load models on the beam 

grillage model, see Figure A.5. 
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Figure A.5 Load models; (a) grid of line loads, (b) two crossing line loads, (c) point 

loads acting on several adjacent nodes. 

Again, the shell element model was used to compare the three different load models, 

see Figure A.6. 

 

Figure A.6 Comparison of load models. 

It was concluded that the shape of the moment distribution from the load model with 

several adjacent point loads corresponded to the shell element model to the greatest 

extent. Even though the maximum moment obtained from two crossing line loads 

were the best fit, the shape was assumed to be unrealistic. The shape probably 

originated from torsional rigidity errors in the half beam, positioned in the symmetry 

boundary line. The model with several adjacent point loads also had the advantage of 

yielding the same total moment as that of a pressure load. The total moment from two 

crossing line loads was larger due to the fact that additional load was concentrated in 

the middle of the slab. Therefore, the load model with four point loads was chosen for 

further analysis. 
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Appendix B Torsional stiffness in beam grillage 

models 

This chapter covers the study of the influence of torsional stiffness on beam elements 

in a beam grillage model. The first section covers the influence of torsional stiffness 

on moment distribution in SLS. The second section covers the influence of torsional 

stiffness on plastic rotation development. 

Difficulties arose regarding the torsional stiffness when the slabs, presented in this 

Thesis, were modelled with beam grillage models. The main difficulty was to design 

the torsional stiffness that was to be used for input values for the beam elements. In 

Appendix A, it was shown that the beam grillage model, where the widths of the 

beams were equal to the height of the slab, gave results similar to the linear elastic 

shell element model. However, since the non-linear behaviour was of interest in this 

Thesis, multilinear moment-curvature relations were used in order to capture the 

material response of the structures. The moment-curvature relations were calculated 

analytically for an equivalent beam with a width equal to the distance between the 

beam elements, which was believed to be an acceptable approximation. However, the 

torsional stiffness of slabs is more complicated, and the difference between a grillage 

model and a plate is more pronounced. It was therefore motivated to perform a 

parametric study of the influence of the torsional stiffness of the beam elements in the 

beam grillage model. 

For the studies in this section, different magnitudes of the torsional stiffness of the 

beam elements were chosen. The elastic stiffness, i.e. the stiffness based on the 

modulus of elasticity and the gross geometry of the cross-section was chosen as 

reference. A factor 1/8, 1/16 and 0 of the elastic stiffness was thereafter studied. 
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B.1 Moment distribution in SLS 

The study directed towards moment distribution in SLS was performed on the 

cantilever slab in Chapter 4 and the moment-curvature model was utilized in both 

main directions of the structure. Both difference in moment distribution and plastic 

rotation was here of interest. 

Linear moment-curvature relations were used which was based on a reference 

stiffness of 0.5 % reinforcement amount, see Section 4.1.1. A concentrated force of 

the magnitude F = 200 kN was applied, see Figure 4.6. The results from the study 

with varying torsional stiffness are presented in Figure B.1. 

 

Figure B.1 Moment distribution with varying torsional stiffness for the cantilever 

slab. 

As can be seen in Figure B.1, the moment distribution was significantly influenced by 

the torsional stiffness of the beam elements. The maximum moment was 

approximately 50 % greater for the case with no torsional stiffness compared to the 

elastic stiffness. It should here be noted that the real torsional stiffness of a slab is not 

linear, which has been assumed in this study, and will change with increased cracking.  

The influence of the torsional stiffness when analysing plastic rotation in a slab with 

the help of beam grillage models was also studied. In Lim (2013), an elastic torsional 

stiffness was used throughout the Thesis, even for elements which was in the post-

cracking state. Both bilinear and trilinear moment-curvature relations were used in the 

study, and the cantilever slab was of equal dimensions as the one studied here. Also, 

the applied load was of equal magnitude, i.e. F = 200 kN. Similar to the case in Lim, 

the plastic moment capacity for each beam element was chosen to 60 % of the 

maximum moment, measured in the linear elastic case with elastic torsional stiffness. 

For the trilinear case, the cracking moment was chosen to Mcr=Mlin /3. The stiffness in 

state II was chosen to the reference value based on a reinforcement amount of 0.5 %, 

see Section 4.1.1. The results from the study are presented in Figure B.2. 
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Figure B.2 Plastic rotation with varying torsional stiffness. 

The results indicate only a small difference between the bilinear and trilinear cases. 

For the elastic torsional stiffness, results similar to the ones presented by Lim were 

obtained. Note that a different state II stiffness was used in this study compared to 

Lim, which can explain the small deviation between the results. However, the study 

shows that with decreasing torsional stiffness, the plastic rotation is considerably 

increased. The case with zero torsional stiffness became too numerically unstable and 

the analysis was aborted. 

This study shows that great care should be taken when the torsional stiffness is 

chosen. An elastic torsional stiffness will most likely yield results which are not 

conservative in the post-cracking state, while zero torsional stiffness probably is too 

conservative and will yield unrealistic deformations, since the stiffness of the slab is 

greatly reduced. 
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B.2 Cumulative plastic rotation 

The study directed towards cumulative plastic rotation was performed on the 

cantilever slab in Chapter 6 and the moment-curvature model was also here utilized in 

both main directions of the structure. Since the study was performed for cumulative 

plastic rotation, only the results from a completely unloaded slab (i.e. between each 

completed load cycle) were of interest and the moment distribution was therefore 

omitted in this section. A study of the plastic rotation obtained from a single static 

force was also conducted for comparison purposes. 

As in Section B.1, the linear moment-curvature relations were used with the same 

reference stiffness, see Section 4.1.1. Concentrated forces of the magnitudes 

F = 135 kN and F = 150 kN was applied on the cantilever structure. The smaller force 

yielded no plastic rotation for an elastic torsional stiffness and a factor of 1/8 of the 

elastic stiffness. The case with zero torsional stiffness was also here aborted due to the 

unstable behaviour of the structure. The applied force was therefore increased to 

150 kN and the results from the study are shown for a torsional stiffness of 1/8 and 

1/16 of the elastic stiffness in Figure B.3 and Figure B.4, respectively. The elastic 

torsional stiffness did not yield any plastic rotation and the case with zero torsional 

stiffness was also here aborted on the same basis as stated above.  

As can be seen in Figure B.3 and Figure B.4, the plastic rotation was significantly 

influenced by the torsional stiffness of the beam elements. It can also be seen that the 

plastic rotation did not develop over the total length of the structure which can be 

derived from how the forces were applied, see Chapter 6. As have been stated in 

Section 6.3.1, the structure adapted to the applied forces and thus appeared to behave 

linear elastically. The structure was, in fact, in the plastic state and approached a 

stable state where the development of plastic rotation did not increase significantly for 

additional load cycles. The maximum plastic rotation, for the case of 1/16 of the 

elastic stiffness, was for all load cycles 140 to 170 % greater than what was obtained 

for 1/8 of the elastic stiffness.  

 

Figure B.3 Plastic rotation development for a torsional stiffness factor of 1/8. 
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Figure B.4 Plastic rotation development for a torsional stiffness factor of 1/16. 

The results from the analysis for a single static force are shown in Figure B.5. In 

accordance with the results presented in Figure B.3 and Figure B.4, the torsional 

stiffness was also for static forces of significant importance. The difference in plastic 

rotation between the static forces was roughly 150 % which corresponded well to 

what was observed for the moving concentrated forces. 

 

Figure B.5 Plastic rotation for a static concentrated force. 
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greater for a single moving force than for a single static force. This means that the 
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stiffness, the difference ranged from 130 to 1100 % for the same spectrum of load 

cycles. This behaviour was also observed in Section 6.6.2 where the difference 

decreased with increased load magnitude of the applied force. 

It was from this study concluded that the torsional stiffness influences the plastic 

rotation and the development of plastic rotation to a significant extent. The influence 

was for the studied load magnitudes not increased as the number of load cycles 

increased for the moving concentrated forces. However, due to the large difference in 

the obtained plastic rotation, the torsional stiffness was also for these analyses chosen 

to 1/16 of the elastic stiffness. This stiffness was believed to be conservative and was 

utilized throughout the Thesis. 
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Appendix C Moment-curvature relations 

This chapter covers the moment-curvature relations used for the analyses in Chapter 4 

to 7 and how these were derived. The first section covers the moment-curvature 

relations used for the moment distribution in SLS while the second section covers the 

moment-curvature relations used for the analyses of plastic rotation development. 

 

C.1 Moment distribution in SLS 

The moment-curvature relations used in the Chapter 4 and 5, regarding moment 

distribution in the service state, are presented in this section. For the methodology 

behind the construction of these relations, the reader is referred to Section 4.1. 

Due to numerical stability reasons, a slight inclination was chosen for the second 

branch of the trilinear relations, such that M2 = 1.05Mcr. Where M2 is the moment at 

the intersection between the second and third line. Tests showed that this inclination 

did not affect the results to a significant extent.  

 

C.1.1 Linear elastic analyses 

For linear elastic analysis, the moment-curvature relation is equal for both the 

cantilever slab and the simply supported slab. The stiffness of an uncracked concrete 

section with a height and width of 0.2 m was used as a reference. The reference 

stiffness was used in both directions for the case Ex = Ey, and kept constant in the y-

direction while the stiffness in the x-direction varied, as presented in Figure C.1. The 

relations are presented both in a figures and in the form of tabulated values, where 

linear interpolation can be utilized for intermediate values. 

 

Figure C.1 Moment-curvature relations in the x-direction for linear elastic 

analyses. 
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C.1.2 Case Uncracked 

The moment-curvature relations for the case Uncracked are presented in this section. 

The stiffness in the x-direction was kept constant as the stiffness of an uncracked 

concrete section with a height and width of 0.2 m. Since two levels of the cracking 

moment Mcr was chosen as factors of the maximum moment in the linear solution, the 

relations are different for the cantilever slab and the simply supported slab, and also 

for a single force and two forces. The relations are presented as graphs in Figure C.2 

to Figure C.5, and as tabulated values in Table C.1 and Table C.2. 

 

Figure C.2 Moment-curvature relations for the cantilever slab with a single 

concentrated force, case Uncracked. (a) Mcr = Mlin /3, (b) Mcr = Mlin /2 
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Figure C.4 Moment-curvature relations for the simply supported one-way slab with 

a single concentrated force, case Uncracked. (a) Mcr = Mlin /3, 

(b) Mcr = Mlin /2 

 

 

Figure C.5 Moment-curvature relations for the simply supported one-way slab with 

two concentrated forces, case Uncracked. (a) Mcr = Mlin /3, 

(b) Mcr = Mlin /2 
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Table C.1 Moment-curvature relations used in the x-directions, case Uncracked. 

 

 

Table C.2 Moment-curvature relations used in the y-directions, case Uncracked. 
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C.1.3 Case Neutral 

The moment-curvature relations for the case Neutral are presented in this section. The 

stiffness in state II was kept constant in the y-direction for the different stiffness 

proportions, while the stiffness in state II varied with the stiffness factor α in the x-

direction. However, the level of the cracking moment Mcr varied for both directions. 

The relations are presented as graphs in Figure C.6 to Figure C.9, and as tabulated 

values in Table C.3 and Table C.4. 

 

Figure C.6 Moment-curvature relations for the cantilever slab with a single 

concentrated force, case Neutral. (a) Mcr = Mlin /3, (b) Mcr = Mlin /2 

 

 

Figure C.7 Moment-curvature relations for the cantilever slab with two 

concentrated forces, case Neutral. (a) Mcr = Mlin /3, (b) Mcr = Mlin /2 
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Figure C.8 Moment-curvature relations for the simply supported one-way slab with 

a single concentrated force, case Neutral. (a) Mcr = Mlin /3, 

(b) Mcr = Mlin /2 

 

 

Figure C.9 Moment-curvature relations for the simply supported one-way slab with 

two concentrated forces, case Neutral. (a) Mcr = Mlin /3, (b) Mcr = Mlin /2 
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Table C.3 Moment-curvature relations used in the x-directions, case Neutral. 

 

 

Table C.4 Moment-curvature relations used in the y-directions, case Neutral. 
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C.1.4 Case Cracked 

The moment-curvature relations for the case Cracked are presented in this section. 

The stiffness in state II was kept constant in the y-direction for the different stiffness 

proportions, while the stiffness in state II varied with the stiffness factor α in the x-

direction. The relation in the x-direction is linear which was meant to represent a 

cracked stiffness before the load is applied, while the slab is uncracking from start in 

the y-direction. The relations are presented as graphs in Figure C.10 to Figure C.13, 

and as tabulated values in Table C.5 and Table C.6. 

 

Figure C.10 Moment-curvature relations for the cantilever slab with a single 

concentrated force, case Cracked. (a) Mcr = Mlin /3, (b) Mcr = Mlin /2 

 

 

Figure C.11 Moment-curvature relations for the cantilever slab with two 

concentrated forces, case Cracked. (a) Mcr = Mlin /3, (b) Mcr = Mlin /2 
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Figure C.12 Moment-curvature relations for the simply supported one-way slab with 

a single concentrated force, case Cracked. (a) Mcr = Mlin /3, 

(b) Mcr = Mlin /2 

 

 

Figure C.13 Moment-curvature relations for the simply supported one-way slab with 

two concentrated force, case Cracked. (a) Mcr = Mlin /3, (b) Mcr = Mlin /2 
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Table C.5 Moment-curvature relations used in the x-directions, case Cracked. 

 

 

Table C.6 Moment-curvature relations used in the y-directions, case Cracked. 
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C.2 Cumulative plastic rotation 

This section covers the bilinear moment-curvature relations that were used for the 

cumulative plastic rotation analyses. The modelling choices, limitations in ADINA, 

the plastic rotation capacity θrd and how the moment-curvature relation was derived 

are also treated in this section.  

 

C.2.1 Modelling choices 

The trilinear elastic model used in Chapter 4 and 5 could not be adapted to a plastic 

analysis. The plastic analysis provided in ADINA does not allow the stiffness of a 

material in a phase to be higher than the previous phase, i.e. the derivative of the 

moment-curvature functions must decrease as the curvature increases, ADINA (2012). 

When unloaded, the inclination of the unloading curve is equal to the inclination of 

the first defined curve in the moment-curvature relation. How this applies 

geometrically is illustrated in Figure C.14.  

 

Figure C.14 Moment-curvature input for ADINA with the unloading response as a 

dashed line for: (a) moment-curvature relation allowed by ADINA, and 

(b) moment-curvature relation declined by ADINA. 

Since the trilinear elastic part of the model in Figure C.14b could not be adapted to a 

quadlinear plastic analysis, a bilinear moment-curvature relation was used instead. 

This simplification of the moment-curvature relation is illustrated in Figure C.15.  

 

Figure C.15 Moment-curvature relations for (a) a quadlinear plastic analysis, and 

(b) a bilinear plastic analysis. 

The moment-curvature relation used for the plastic analyses in this report was 

constructed from the bilinear plastic model in Figure C.15b and the plastic rotation 

capacity θrd, treated in Appendix C.2.2.  



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
206 

As an alternative to the chosen moment-curvature relation, a quadlinear model that 

includes the effect of tension stiffening, as can be seen in Figure C.16 could have been 

used. However, this model was omitted due to the two main reasons stated below: 

 The tension stiffening effect was believed to be small in these analyses. 

 The unloading curve was believed to be better represented by a state II model 

than a state I model. 

The tension stiffening effect was believed to be small since the analyses mainly 

focused on cumulative damage in the structure. With up to 150 load cycles n, the 

overall effect of tension stiffening would decrease with each completed load cycle. As 

an effect of the curve shown in Figure C.16, the unloading curve would have a much 

steeper inclination than obtained by the moment-curvature relation in Figure C.15b.  

Since one aim of this Thesis is to study cumulative damage, the state II model was 

believed to represent the true unloading curve to a greater extent than the state I 

model. Since large plastic rotations were to be studied, an increased number of beam 

elements in the beam grillage model would reach the yield state (state III). It is 

therefore safe to assume that the investigated sections in a real structure would 

experience high stresses and therefore behave more like a fully cracked, than an 

uncracked, section when unloaded. 

 

Figure C.16 Trilinear plastic moment-curvature relation including the effect of 

tension stiffening. 

 

C.2.2 Plastic rotation capacity 

The plastic rotation capacity θrd of a cross-section is a function of the geometry of the 

cross-section b, the reinforcement amount As, the concrete strength class fck and 

reinforcing steel class and strength fyd. The cantilever slab and the simply supported 

slab do not differ in the above stated input data and therefore have the same 

sustainability towards accumulated damage. Due to this fact, both structures are 

treated together below. The theory of the plastic rotation capacity of a cross-section 

and how it is determined in Eurocode 2, CEN (2004) is treated in Section 2.2.6. 

The total amount of reinforcement was set to 0.5 % which is treated in Section 4.1.1 

and yielded: 

26

s m1010002.01005.0005.0A  cA

 

(C-1) 

Concrete C30/37 and reinforcing steel B500B yielded: 
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Where: 
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From Figure C.17, with xu/d = 0.164, Class B steel and concrete strength class 

C30/37, θpl,d was obtained as: 

rad1013 3

,

dpl  (C-8) 

 

Figure C.17 Plastic rotation capacity for reinforcement class B and C.  

The shear slenderness λ was determined according to: 
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The plastic rotation capacity of the cross-section was determined according to: 

rad1044.23101380.1 33

,

  dplrd k  
 (C-11) 

The plastic rotation capacity θrd = 23.44 mrad was used throughout this Thesis. 

 

C.2.3 Cantilever slab – A single moving concentrated force 

The plastic bilinear moment-curvature relation for the cantilever slab subjected to a 

single moving force of constant and varying load magnitudes was established from 

the linear elastic behaviour of an isotropic, cracked slab. The cantilever structure was 

subjected to a force F = 200 kN in the centre of the primary free edge, as can be seen 

in Figure C.18.  

 

Figure C.18 Geometry and location of the applied force of the studied cantilever 

slab. 

The width of the slab was chosen to 12 m in order to avoid numerical problems that 

were obtained with a slab with an 8 m width. For the shorter slab, disturbances of the 

slab occurred near the free edges and a wider slab was therefore chosen since the 

scope of this Thesis is to investigate the behaviour of a long slab. This is further 

treated in Section 6.1.3. 

The load model consisted of one concentrated static force, applied in a single node 

using a total of 500 time steps, which gives a load increment of 2.5 kN per time step. 

The moment-curvature relation used for this analysis was the isotropic, cracked 

stiffness used in Chapter 4 and 5, which can be seen in Figure C.19. 
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Figure C.19 Elastic moment-curvature for an isotropic, cracked cross-section, used 

in order to establish the bilinear plastic moment-curvature relation.  

From the load application, the moment distribution along the fixed edge was obtained 

which is shown in Figure C.20. 

 

Figure C.20 Moment distribution for the studied slab with an applied concentrated 

force of 200 kN. 

The maximum moment from the isotropic, cracked analysis was used in order to 

establish the yield moment for the bilinear plastic analysis where: 

kNm/m1.104elm  (C-12) 
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The plastic moment mpl was chosen to 60% of the maximum elastic moment mel which 

yields: 

kNm/m46.621.1046.0 plm  (C-13) 

In order to obtain the plastic moment for each beam in the beam grillage model in this 

analysis, the plastic moment mpl was multiplied by the beam width according to: 

kNm49.122.046.62  bmM plpl
 (C-14) 

The choice of the plastic moment mpl was based on a recommendation by Pacoste et 

al. (2012) where the following limits for redistribution of reinforcement moments 

were proposed: 

elasticplasticelastic MMM 6.0  (C-15) 

Failure of the cantilever slab was defined as in Appendix C.2.2 where the plastic 

rotation capacity θrd was determined for a cross-section with a reinforcement amount 

of 0.5 % where: 

mrad44.23rd  (C-16) 

The bilinear moment-curvature relation used in this analysis is based on a 

combination of the elastic response of a cracked cross-section mel, the plastic moment 

mpl described in Equation (C-13) and the failure due to plastic rotation, defined as the 

plastic rotation capacity θrd described in Equation (C-16). The bilinear moment-

curvature relation from the above stated input was combined and is shown in 

Figure C.21. 

 

Figure C.21 Bilinear plastic moment-curvature relation for the studied cantilever 

slab. Valid for the majority of the beams in the beam grillage model. 
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The above stated moment-curvature relation applies for the majority of the beams in 

the beam grillage model. As can be seen in Equation (C-13), the moment-curvature 

relation applies for beams with a width of 0.2 m. As have been stated in Section 6.1.3, 

the beam grillage models were modelled with beams of half the width in the 

boundaries. This yields moment-curvature relations for these beams with the same 

elastic response and plastic rotation capacity but with a plastic moment mpl that is 

50 % of a full cross-section. The moment-curvature relation for the beams in the 

boundaries is shown in Figure C.22. 

 

Figure C.22 Bilinear plastic moment-curvature relation for the studied cantilever 

slab. Valid for beams in the boundaries in the beam grillage model. 

 

C.2.4 Cantilever slab – Two moving concentrated forces 

The plastic bilinear moment-curvature relation for the cantilever slab subjected to a 

single moving force of constant and varying magnitudes was also used for these 

analyses. There are mainly two reasons for this choice of moment-curvature relation: 

 Comparison purposes between a single and two moving concentrated forces. 

 Comparison purposes within the two moving concentrated forces. 

If a moment-curvature relation were to be constructed for two moving concentrated 

forces, no comparison between this load case and the load case for a single moving 

concentrated force could have been made. Since one aim of this Thesis is to study 

how long slabs behave for cumulative damage, it was essential to make comparisons 

between different load cases. The aim of this Thesis is also to investigate how the 

cumulative damage is affected by the distance d between the two moving 

concentrated forces. With individual moment-curvature relations for each distance, a 

comparison study between these would be less obvious.  
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C.2.5 Simply supported slab – A single moving concentrated force 

The plastic bilinear moment-curvature relation for the simply supported one-way slab 

subjected to a single moving concentrated force of constant and varying load 

magnitudes was established from the linear elastic behaviour of an isotropic, cracked 

slab. The cantilever structure was subjected to a total force F = 200 kN in the centre 

of the slab, as in the case of the cantilever structure. Due to the symmetry boundary, 

the total applied force Ftot in the analysis was set to 100 kN, as can be seen in Figure 

C.23. 

 

Figure C.23 Geometry and location of the applied force of the studied simply 

supported one-way slab. 

As in the case of the cantilever structure, the width of the slab was chosen to 12 m in 

order to avoid numerical problems.  

The load model used can be seen in Figure C.24 which consists of six concentrated 

static forces that were applied using a total of 500 time steps, which gave a load 

increment of 1.25 kN per time step. The six concentrated forces represented one 

concentrated force, applied over a surface of 0.4 x 0.4 m
2
.
 
Due to the symmetry 

boundary, this area was set to 0.4 x 02 m
2
.  

  

Figure C.24 Load model and force distribution used for beam grillage model. 

Since the six concentrated forces represented a surface load, applied on a beam 

grillage model, the forces corresponds to the force contributions from the represented 

areas. Due to this load interpretation, the two mid-forces received force contributions 

from two areas and were therefore greater than the remaining forces. How the forces 

were applied on the beam grillage model can be seen in the Figure C.24. 

The total number of force contributions was eight, four from each surface, which was 

distributed over six forces. This gave the following force relations: 

8
6431

totF
FFFF   (C-17) 

8
252

totF
FF 

 
(C-18) 
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The moment-curvature relation used for this analysis was the cracked stiffness used in 

Chapter 4 and 5, which can be seen in Figure C.25. 

 

Figure C.25 Elastic moment-curvature for a cracked cross-section, used in order to 

establish the bilinear plastic moment-curvature relation.  

From the load application, the moment distribution along the mid-section of the slab 

was established which is shown in Figure C.26. The peak moment was more distinct 

than in the case of the cantilever slab. The reason for this can be derived from the fact 

that the moment distribution was measured in the same line as where the forces were 

applied. 

 

Figure C.26 Moment distribution for the studied slab with an applied concentrated 

force of 100 kN. 
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The maximum moment from the isotropic, cracked analysis was used in order to 

establish the yield moment for the bilinear plastic analysis. The procedure was the 

same as stated for the cantilever structure in Appendix C.2.3 and is here presented in a 

simplified and more compact form: 

kNm/m75.60elm  (C-19) 

kNm/m45.361.75.606.0 plm  (C-20) 

kNm29.72.045.36  bmM plpl
 (C-21) 

Failure of the simply supported slab was also here defined as in Appendix C.2.2 

where the plastic rotation capacity θrd was determined for a cross-section with a 

reinforcement amount of 0.5% where: 

mrad44.23rd  (C-22) 

The bilinear moment-curvature relation used in this analysis was, as in the case of the 

cantilever structure, based on a combination of the elastic response of a cracked cross-

section mel, the plastic moment mpl described in Equation (C-20) and the failure due to 

plastic rotation, defined as the plastic rotation capacity θrd, described in 

Equation (C-22). The bilinear moment-curvature relation from the above stated input 

was combined and is shown in Figure C.27. 

 

Figure C.27 Bilinear plastic moment-curvature relation for the studied cantilever 

slab. Valid for the majority of the beams in the beam grillage model. 

The above stated moment-curvature relation applies for the majority of the beams in 

the beam grillage model. As in the case of the cantilever structure, the moment-

curvature relation presented in Figure C.27 does not apply for beams in the 

boundaries. The moment-curvature model for these beams in the beam grillage model 

is presented in Figure C.28. 
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Figure C.28 Bilinear plastic moment-curvature relation for the studied cantilever 

slab. Valid for the beams in the boundaries and the symmetry 

boundaries in the beam grillage model.  

 

C.2.6 Simply supported slab – Two moving concentrated forces 

The plastic bilinear moment-curvature relation for the simply supported one-way slab 

subjected to a single moving force of constant and varying magnitudes was also used 

for these analyses. The reasons for this choice were the same as stated in 

Appendix C.2.4 for the cantilever structure: 

 Comparison purposes between a single and two moving concentrated forces. 

 Comparison purposes within the two moving concentrated forces. 
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Appendix D Approximation of plastic rotation 

This chapter covers the approximate approach that was used in this Thesis to measure 

plastic rotation in the cantilever and simply supported structure. This chapter also 

covers how this approximate approach differs from the results obtained from the 

option provided by ADINA. 

 

D.1 Background of the approximation 

ADINA provides an option for obtaining the plastic curvature in the integration points 

over the elements. If the plastic curvature is summarized over the element length, the 

plastic rotation in the structure is obtained. The results from the option provided from 

ADINA is, however rather cumbersome when exporting the obtained data for external 

analysis. As an alternative to obtaining the plastic curvature and thus the plastic 

rotation directly from ADINA, deflections in the nodes can be measured and an angle 

α created by these nodes can be determined. If the angle α is measured after each load 

cycle is completed, i.e. when the cantilever slab is completely unloaded, it represents 

the plastic rotation θpl accumulated during that load cycle. This method is the 

approximate approach used throughout this Thesis that is further examined below. 

Since the approximate approach is dependent on the distance between the nodes in 

order to calculate the plastic rotation, the mesh densities influence the results. The 

mesh density for the two structures was set so that the element length was 0.2 m for 

the majority of the elements in the structures. The mesh density was however 

increased so that the element length was 0.05 m where the plastic rotation was 

calculated.  The choice was based on the observations made by Lim (2013) and a 

parametric study was performed in this Thesis indicated that the choice was 

reasonable and yielded satisfying results. This decreased element length was therefore 

used at the cantilever support and in the centre of the simply supported structure, see 

Figure D.1 and Figure D.5 

The influence of further increased mesh densities did not yield results that differed 

significantly from the ones obtained from the above stated mesh used in this Thesis. 

The above stated mesh was therefore evaluated as satisfactory for the analyses 

conducted in this Thesis. 

 

D.2 Cantilever slab 

 

Figure D.1 Deflected shape and mesh density for the cantilever structure 

The approximate approach to determine the plastic rotation was to measure the 

deflection in the second and third node, u2 and u3 after each completed load cycle.  
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32 uuu   (D-1) 

The angle α, i.e. the plastic rotation, was calculated from the triangle created by the 

deflected nodes. 

)tan(
elel

u
  (D-2) 

Where lele = 0.050 m, which is the length of each element at the fixed support, see 

Figure D.1. 

 

Figure D.2 Geometrical interpretation of the plastic rotation for the cantilever 

structure. 

The rotation in the first node u1 was prescribed to zero by the boundary conditions 

which influenced the angle of the triangle and thus results in an approximation. The 

approximation is shown in Figure D.3. 

 

Figure D.3 Approximation of the plastic rotation for the cantilever structure. 

The background for calculating the angle based on the deflection in the second and 

third node was derived from how ADINA treats plastic curvature in beam elements. 

The reader is referred to Section 6.1.3 for additional information on this matter. 

In order to evaluate the influence of the above stated approximation, the cantilever 

structure in Chapter 6 was subjected to a single moving concentrated force of the 

following magnitudes: 

 kN165160155150145140F
 

(D-3) 

This range of force magnitudes covered the largest force not to cause failure within 

150 load cycles to the smallest force to cause failure after two load cycles. The result 

from the approximation was used throughout this Thesis and is shown in Figure 6.17. 

The analyses for the different forces were conducted for 150 load cycles if failure of 

the structure did not occur within that range. The plastic rotation obtained by the 

option provided by ADINA and the approximation stated above is shown in 

Figure D.4. 
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Figure D.4 Plastic rotation for different magnitudes of moving concentrated forces. 

As can be seen in Figure D.4, the approximate approach yields satisfactory results for 

the development of plastic rotation for a single moving force on the cantilever 

structure. It was from these results concluded that the approximate approach was 

satisfactory for the load cantilever structure and combinations studied in this Thesis. 
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D.3 Simply supported slab 

 

Figure D.5 Deflected shape and mesh density for the simply supported one-way 

structure. 

The approximate approach to determine the plastic rotation was to measure the 

deflection in the second and third node, u2 and u3 after each completed load cycle.  

23 uuu   (D-4) 

The angle α, i.e. the plastic rotation, was calculated from the triangle created by the 

deflected nodes. 

)tan(
elel

u
  (D-5) 

Where lele = 0.050 m, which is the length of each element in the centre of the slab. 

 

 

Figure D.6 Geometrical interpretation of the plastic rotation for the simply 

supported one-way structure. 

The rotation in the first node u1 was also here prescribed to zero by the boundary 

conditions which influenced the angle of the triangle and thus results in an 

approximation. The approximation is shown in Figure D.7. 

 

Figure D.7 Approximation of the plastic rotation for the simply supported one-way 

structure. 
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In order to evaluate the influence of the above stated approximation, the simply 

supported structure in Chapter 7 was subjected to a single moving concentrated force 

of the following magnitudes: 

 kN11010510095908580F
 

(D-6) 

The background for the range of forces was covered in Appendix D.2. The results 

from the approximation were used throughout this Thesis and are shown in 

Figure 7.12. 

The analyses for the different forces were also here conducted for 150 load cycles if 

failure of the structure did not occur within that range. The plastic rotation obtained 

by the option provided by ADINA and the approximation stated above is shown in 

Figure D.8. 

 

Figure D.8 Plastic rotation for different magnitudes of moving concentrated forces. 

It can also here be seen that the approximation yields satisfactory results which 

motivates the use of the approximation for the simply supported structure in this 

Thesis. 
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Appendix E Load application order 

This chapter covers the load application order of a pair of moving concentrated forces 

with a constant distance d = 1.2 m and how this influenced the plastic rotation in a 

cantilever and a simply supported one-way structure. This chapter also covers the 

difference in plastic rotation between these load application orders which served as a 

foundation for the load application order used for the analyses in this Thesis. 

The load application order is in this Thesis defined as the order of how two forces of 

different magnitudes are applied on the structure. There are in this case two possible 

load application orders, here denoted LAO1 and LAO2, where the first force was 

greater than the second and vice versa. Equation (E-1) and (E-2) defines the first and 

second load application order respectively and these are also illustrated in Figure E.1 

and Figure E.2 respectively. 

21 FF   (E-1) 

 

Figure E.1 Force layout for the first load application order, LAO1 

21 FF   (E-2) 

 

Figure E.2 Force layout for the second load application order, LAO2 
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E.1 Cantilever slab 

The load application order, i.e. how a pair of moving concentrated forces are applied 

and how this influences the development of the plastic rotation in the cantilever 

structure is here evaluated. The study was conducted on the cantilever structure 

presented in Section 6.5 for a pair of moving concentrated forces of different 

magnitudes. 

The total applied force Ftot was kept constant so that: 

kN17021  FFFtot
 (E-3) 

Where: 

21 FF   (E-4) 

Where the first load application order LAO1 had the following force layout: 

 kN80706050403020101 F  (E-5) 

 kN901001101201301401501602 F  (E-6) 

The second load application order LAO2 had the following force layout: 

 kN901001101201301401501601 F  (E-7) 

 kN80706050403020102 F  (E-8) 

The two different load application orders are treated and compared in Appendix E.1.1 

to E.1.3. 
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E.1.1 Load application order LAO1, F1 < F2 

The plastic rotation is shown in Figure E.3 and the development of the plastic rotation 

during the first ten load cycles is illustrated in Figure E.4. 

 

Figure E.3 Plastic rotation for different load combinations for the first load 

application order LAO1. 

 

Figure E.4 Development of plastic rotation for different load combinations for the 

first load application order LAO1. 
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E.1.2 Load application order LAO2, F1 > F2 

The plastic rotation in the centre of the slab can is shown in Figure E.5 and the 

development of the plastic rotation during the first ten load cycles is illustrated in 

Figure E.6. 

 

Figure E.5 Plastic rotation for different load combinations for the first load 

application order LAO2. 

 

Figure E.6 Development of plastic rotation for different load combinations for the 

first load application order LAO2. 
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E.1.3 Comparison of load application orders 

The two load application orders are here compared in order to evaluate the influence it 

has on the development of plastic rotation. As can be seen in Figure E.7, the load 

application order has a small influence on the plastic rotation development of the 

structure. It is clear that the greatest difference in plastic rotation arises after the first 

load cycle for the load combinations with the greatest load magnitude differences. 

 

Figure E.7 Development of plastic rotation for different load combinations for the 

first and second load application order for the first five load cycles.  

The difference in plastic rotation γθpl.LAO between the two load application orders was 

calculated according to Equation (E-9):  

1.

1.2.

.

LAOpl

LAOplLAOpl

LAOpl



 




 

(E-9) 

The result from Equation (E-9) is shown in Figure E.8 where it is clearly illustrated 

that there is no obvious connection between the load application order and the 

development of plastic rotation.  

If, however, only load cycle number seven to ten is shown, a clearer pattern arises as 

can be seen in Figure E.9 and a tendency of convergence arises. It appears from this 

figure that LAO1 is advantageous for the structure when the load magnitude difference 

is significant to intermediate. As the load magnitude difference decreases, the 

difference of the plastic rotation from the two load application orders also decreases. 

This behaviour is natural since the difference between the force magnitudes are small 

and the load application order should therefore not be significant. 
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Figure E.8 Difference in plastic rotation γLAO for the first ten load cycles between 

the results from LAO1 and LAO2 for the first ten load cycles. 

 

Figure E.9 Difference in plastic rotation γLAO for the first ten load cycles between 

the results from LAO1 and LAO2 for load cycle seven to ten. 

The second load application order LAO2 causes greater plastic rotation for the majority 

of the studied load combinations and load cycles. It should here be noted that the 

difference is small and a bit unstable. The load application order used in this Thesis 

was chosen to LAO1.    
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E.2 Simply supported slab 

The load application order and how this influenced the development of the plastic 

rotation in the simply supported structure is here evaluated. The study was conducted 

on the simply supported structure in Chapter 7 for a pair of moving concentrated 

forces of different magnitudes. 

The total applied force Ftot was also here kept constant so that: 

kN12021  FFFtot
 (E-10) 

Where: 

21 FF   (E-11) 

Where the first load application order LAO1 had the following force layout: 

 kN50403020101 F  (E-12) 

 kN7080901001102 F  (E-13) 

The second load application order LAO2 had the following force layout: 

 kN7080901001101 F  (E-14) 

 kN50403020102 F  (E-15) 

The two different load application orders are treated and compared in Appendix E.2.1 

to E.2.3 
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E.2.1 Load application order LAO1, F1 < F2 

The plastic rotation is shown in Figure E.10 and the development of the plastic 

rotation during the first ten load cycles is illustrated in Figure E.11. 

 

Figure E.10 Plastic rotation for the first load application order, LAO1. 

 

Figure E.11 Development of plastic rotation for the first load application order, 

LAO1. 

 

 

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

  
[m

ra
d

] 
 

Load cycles, n [-] 

F₁=10 F₂=110 kN 

F₁=20 F₂=100 kN 

F₁=30 F₂=90 kN 

F₁=40 F₂=80 kN 

F₁=50 F₂=70 kN 

θrd  =23.4 mrad 

0

10

20

30

40

50

60

70

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

  
[m

ra
d

] 
 

Load magnitude, F1|F2  [kN]  

1 Load cycle 2 Load cycles

3 Load cycles 4 Load cycles

5 Load cycles 6 Load cycles

7 Load cycles 8 Load cycles

9 Load cycles 10 Load cycles

10|110                      20|100                      30|90                        40|80                     50|70    

θrd  =23.4 mrad 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
231 

E.2.2 Load application order LAO2, F1 > F2 

The plastic rotation is shown in Figure E.12 and the development of the plastic 

rotation during the first ten load cycles is illustrated in Figure E.13. 

 

Figure E.12 Plastic rotation for the second load application order, LAO2. 

 

Figure E.13 Development of plastic rotation for the second load application order, 

LAO2. 
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E.2.3 Comparison of load application orders 

The two load application orders are here compared in order to evaluate the influence it 

had on the development of plastic rotation. As can be seen in Figure E.14, the load 

application order has a noticeable influence on the plastic rotation development of the 

structure. It is clear that the greatest difference in plastic rotation arises after the first 

load cycle for the load combinations with intermediate load magnitude differences. 

 

Figure E.14 Development of plastic rotation for different load combinations for the 

first and second load application order for the first five load cycles. 

The difference in plastic rotation γθpl.LAO between the two load application orders was 

calculated according to Equation (E-16):  

1.

1.2.

.

LAOpl

LAOplLAOpl

LAOpl



 




 

(E-16) 

The result from Equation (E-16) is shown in Figure E.15 where it is clearly shown 

that the difference in plastic rotation between the two load application orders is 

diminished as the number of load cycles is increased. It can be seen in the figure that 

LAO1 is advantageous for the structure for all investigated load combinations. The 

difference in plastic rotation seems to reach a stable state after a few load cycles 

where the difference is slightly bigger for larger differences between the force 

magnitudes. The second load application order LAO2 causes greater plastic rotation for 

all investigated load combinations and load cycles.  

The load application LAO1 was however chosen for the analyses presented in this 

Thesis due to comparison purposes to the cantilever structure.    
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Figure E.15 Difference in plastic rotation γLAO for the first ten load cycles between 

the results from LAO1 and LAO2 for the first ten load cycles. 

  

0

5

10

15

20

25

30

35

40

45

50

P
la

st
ic

 r
o

ta
ti

o
n

 d
if

fe
r
en

ce
, 
γ θ

p
l.

L
A

O
  
 [

%
] 

 

Load magnitude, F1|F2 and F2|F1  [kN]  

1 Load cycle 2 Load cycles

3 Load cycles 4 Load cycles

5 Load cycles 6 Load cycles

7 Load cycles 8 Load cycles

9 Load cycles 10 Load cycles

10|110                      20|100                      30|90                        40|80                     50|70    



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
234 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
235 

Appendix F Influence of distance, d 

This chapter covers the study conducted on the cantilever structure in Section 6.4.5 

where the influence of the distance d between a pair of moving concentrated forces 

was evaluated. The results presented in this chapter is not discussed to a great extent 

but are presented for the interested reader.  

In order to evaluate how the distance influenced the plastic rotation of the structure, 

the distance between the pair of moving concentrated forces was altered according to: 

 m8.44.40.46.32.38.24.20.26.12.1d

 

(F-1) 

The cantilever structure was subjected to forces from 65 kN to 165 kN according to 

the following magnitudes: 

 kN165160155...75706521  FF

 

(F-2) 

The total applied load Ftot of the forces F1 and F2 is defined in Equation (F-3): 

21 FFFtot 

 

(F-3) 

 

Figure F.1 Geometry and dimensions of the studied cantilever slab for two 

concentrated forces of equal magnitudes. 

The analyses were conducted for 150 load cycles n for each pair of concentrated 

forces if failure of the cantilever slab did not occur within this range. The plastic 

rotation in the centre of the slab for different magnitudes of forces and distances 

between the forces is shown in Figure F.2 to Figure F.21. 
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Figure F.2 Plastic rotation in the centre of the cantilever slab for d = 1.2 m. 

 

 

Figure F.3 Plastic rotation in the centre of the cantilever slab for d = 1.2 m. 

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

  
[m

ra
d

] 
 

Load cycles, n [-] 

F₁=F₂=110 kN F₁=F₂=105 kN 

F₁=F₂=100 kN F₁=F₂=95 kN 

F₁=F₂=90 kN F₁=F₂=85 kN 

F₁=F₂=80 kN 

0

5

10

15

20

25

0 25 50 75 100 125 150

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

  
[m

ra
d

] 
 

Load cycles, n [-] 

F₁=F₂=80 kN 

F₁=F₂=75 kN 

F₁=F₂=70 kN 

F₁=F₂=65 kN 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
237 

 

Figure F.4 Plastic rotation in the centre of the cantilever slab for d = 1.6 m.  

 

Figure F.5 Plastic rotation in the centre of the cantilever slab for d = 1.6 m. 
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Figure F.6 Plastic rotation in the centre of the cantilever slab for d = 2.0 m. 

 

Figure F.7 Plastic rotation in the centre of the cantilever slab for d = 2.0 m. 
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Figure F.8 Plastic rotation in the centre of the cantilever slab for d = 2.4 m. 

 

Figure F.9 Plastic rotation in the centre of the cantilever slab for d = 2.4 m. 
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Figure F.10 Plastic rotation in the centre of the cantilever slab for d = 2.8 m. 

 

Figure F.11 Plastic rotation in the centre of the cantilever slab for d = 2.8 m. 
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Figure F.12 Plastic rotation in the centre of the cantilever slab for d = 3.2 m. 

 

Figure F.13 Plastic rotation in the centre of the cantilever slab for d = 3.2 m. 
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Figure F.14 Plastic rotation in the centre of the cantilever slab for d = 3.6 m. 

 

Figure F.15 Plastic rotation in the centre of the cantilever slab for d = 3.6 m. 
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Figure F.16 Plastic rotation in the centre of the cantilever slab for d = 4.0 m. 

 

Figure F.17 Plastic rotation in the centre of the cantilever slab for d = 4.0 m. 
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Figure F.18 Plastic rotation in the centre of the cantilever slab for d = 4.4 m. 

 

Figure F.19 Plastic rotation in the centre of the cantilever slab for d = 4.4 m. 

0

5

10

15

20

25

30

35

0 5 10 15 20 25

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

  
[m

ra
d

] 
 

Load cycles, n [-] 

F₁=F₂=165 kN F₁=F₂=160 kN 

F₁=F₂=155 kN F₁=F₂=150 kN 

F₁=F₂=145 kN F₁=F₂=140 kN 

0

5

10

15

20

25

30

35

0 25 50 75 100 125 150

P
la

st
ic

 r
o

ta
ti

o
n

, 
θ

p
l 

  
[m

ra
d

] 
 

Load cycles, n [-] 

F₁=F₂=140 kN F₁=F₂=135 kN 

F₁=F₂=130 kN F₁=F₂=125 kN 

F₁=F₂=120 kN F₁=F₂=115 kN 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 
245 

 

Figure F.20 Plastic rotation in the centre of the cantilever slab for d = 4.8 m. 

 

Figure F.21 Plastic rotation in the centre of the cantilever slab for d = 4.8 m. 
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to cause any plastic rotation, is also summarized in this table. These extreme values 

are shown in Figure F.22. 

Table F.1 Number of load cycles to failure nu for different values of the total 

applied force and distance. 

 Distance d 

 kNtotF  1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 3.6 4.0 

130 ∞          

135 -          

140 - ∞         

145 - -         

150 - -         

155 - -         

160 - - ∞        

165 - - -        

170 15 - -        

180 4 - - ∞       

190 3 7 - -       

200 2 3 - -       

210 2 2 7 - ∞      

220 1 2 3 - -      

230  1 2 - - ∞ ∞ ∞ ∞ ∞ 

240   1 3 - - - - - - 

250    2 - - - - - - 

260    1 23 - - - - - 

270     2 - - - - - 

280     1 10 - - - - 

290      2 6 6 6 6 

300      1 3 3 3 3 

310       3 2 2 2 

320       2 2 2 2 

330       1 1 1 1 
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Figure F.22 Relation between total load magnitude Ftot and distance d for forces not 

to cause any plastic rotation and failure after one load cycle. 
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Appendix G Comparison – Static vs. moving forces 

This chapter covers the cumulative factor γθpl.mov for a single static and a pair of 

concentrated forces of different magnitudes. The results from these analyses are in 

this chapter presented for the cantilever and the simply supported one-way structure. 

The results are not discussed but are just presented for the interested reader.  

As described in Section 6.6.2 in 7.6.2, the difference between static and moving 

concentrated forces was of interest. The distance d between the pair of moving 

concentrated forces varied according to Equation (G-1): 

 m0.26.12.1d

 

(G-1) 

The cumulative factor was defined as the relation between the plastic rotation caused 

by a moving concentrated force and a static force of the same magnitude. This relation 

is stated in Equation (G-2): 

statpl

nmovpl

plmov

.

..




  

 

(G-2) 

 

G.1.1 Cantilever slab 

 

Figure G.1 Development of the cumulative factor γθpl.mov for a single moving 

concentrated force. 
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Figure G.2 Development of the cumulative factor γθpl.mov for two moving 

concentrated forces with d = 1.2 m. 

 

Figure G.3 Development of the cumulative factor γθpl.mov for two moving 

concentrated forces with d = 1.6 m. 
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Figure G.4 Development of the cumulative factor γθpl.mov for two moving 

concentrated forces with d = 2.0 m. 

 

G.1.2 Simply supported slab 

 

Figure G.5 Development of the cumulative factor γθpl.mov for a single moving 

concentrated force. 
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Figure G.6 Development of the cumulative factor γθpl.mov for two moving 

concentrated forces with d = 1.2 m. 

 

Figure G.7 Development of the cumulative factor γθpl.mov for two moving 

concentrated forces with d = 1.6 m. 
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Figure G.8 Development of the cumulative factor γθpl.mov for two moving 

concentrated forces with d = 2.0 m. 
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Appendix H Tabulated values 

This Chapter covers tabulated values to the comparison studies conducted in 

Chapter 6 and 7. The values presented in the tables in Section H.1 and H.2 was used 

to construct the figures in Chapter 6 and 7. The values should here be seen as 

additional information for the interested reader and is not commented and discussed to 

a great extent. The figures and equations in Section H.1 and H.2 are the same as 

illustrated and defined in Chapter 6 and 7 and are here presented as a help and for 

orientation purposes for the reader. 

 

H.1 Cantilever slab 

This section covers the tabulated values to the comparison studies conducted in 

Chapter 6. 

H.1.1 Load magnitudes – Varying 

Figure H.1 consists of Figure 6.25 and Figure 6.26. 

 

Figure H.1 Plastic rotation development and difference in plastic rotation γθpl.A 

between load combination A1 and A2. 
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125 14.24 14.15 -0.7 

130 15.89 16.01 0.8 

135 18.01 18.41 2.2 

140 20.66 21.33 3.1 
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H.1.2 Comparison of single forces – Varying 

Figure H.2 consists of Figure 6.29 and Figure 6.30. 

  

Figure H.2 Plastic rotation development and difference in plastic rotation γθpl.A 

between load combination A1 and load combination A2 and B. 
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Table H.2 Plastic rotation θpl and difference in plastic rotation γθpl after six load 

cycles for a single moving concentrated force of varying magnitudes. 

 kNF   mrad1.Apl   mrad2.Apl   mrad.Bpl   %.Apl   %.Bpl  

120 13.40 13.07 13.08 -2.5 -2.5 

125 14.24 14.15 14.20 -0.7 -0.2 

130 15.89 16.01 16.17 0.8 1.7 

135 18.01 18.41 18.65 2.2 3.4 

140 20.66 21.33 21.52 3.1 4.0 

145 23.89 24.67 24.86 3.2 3.9 
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H.1.3 Traditional superposition approach 

Figure H.3 consists of Figure 6.33 and Figure 6.34. 

  

Figure H.3 Plastic rotation development from analyses and a traditional 

superposition approach. Load combination A1. 
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Table H.3 Plastic rotation and difference in plastic rotation γθpl.A1.sup after six load 

cycles for a single moving concentrated force of varying magnitudes 

 kNF   mrad.1. anaApl   mradsup.1.Apl   %sup..Apl  

120 13.39 13.45 0.4 

125 14.24 15.57 9.4 

130 15.89 18.78 18.3 

135 18.01 22.68 25.9 

140 20.66 27.08 31.1 

145 23.89 32.06 34.2 

Figure H.4 is a miniature of Figure 6.35. 

 

Figure H.4 Difference in plastic rotation γθpl.A1.sup for load combination A1 between 

the results from an analysis and a traditional superposition approach. 
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Figure H.5 consists of Figure 6.36 and Figure 6.37. 

 

Figure H.5 Plastic rotation development from analyses and a traditional 

superposition approach. Load combination B. 
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Table H.4 Plastic rotation and difference in plastic rotation γθpl.B.sup after six load 

cycles for a single moving concentrated force on a cantilever slab. 

 kNF   mrad.. anaBpl   mradsup..Bpl   %sup..Bpl  

120 13.08 13.45 2.8 

125 14.20 15.75 10.9 

130 16.17 19.43 20.2 

135 18.65 24.15 29.5 

140 21.52 29.65 37.8 

145 24.86 39.91 44.9 

Figure H.6 consists of Figure 6.38 and Figure 6.39. 

 

Figure H.6 Difference in plastic rotation γθpl.B1.sup for load combination B between 

the results from an analysis and a traditional superposition approach. 

The right figure is a combination of load combination A1 and B. 
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H.1.4 Comparison of two forces – Varying 
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(H-7) 

Figure H.7 consists of Figure 6.60 and Figure 6.61. 

  

Figure H.7 Difference in plastic rotation γθpl.1.6m and γθpl.2.0m for a pair of moving 

forces of different magnitudes.  

mpl

mplmpl

mpl

2.1.

2.1.6.1.

6.1.



 




 

(H-8) 

mpl

mplmpl

mpl

2.1.

2.1.0.2.

0.2.



 




 

(H-9) 

Where: 

n

n

mpl

mpl


 0

6.1.

6.1.





 

(H-10) 

n

n

mpl

mpl


 0

0.2.

0.2.





 

(H-11) 

Table H.5 Mean plastic rotation difference for all load combinations and load 

cycles for a pair of moving concentrated forces of varying magnitudes. 

 kN1F   %6.1. mpl   %0.2. mpl  

10 -5.5 -4.7 

20 -11.8 -10.8 

30 -19.6 -19.9 
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40 -28.2 -32.9 

50 -36.9 -48.8 

60 -44.0 -64.5 

70 -49.2 -77.5 

80 -52.1 -85.9 

Figure H.8 is a miniature of Figure 6.62. 

 

Figure H.8 Mean difference in plastic rotation between a distance of 1.2 m and, 

1.6 m and 2.0 m. 
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H.2 Simply supported slab 

This section covers the tabulated values to the comparison studies conducted in 

Chapter 7 

 

H.2.1 Load magnitudes – Varying 

Figure H.9 consists of Figure 7.19 and Figure 7.20. 

 

Figure H.9 Plastic rotation development and difference in plastic rotation γθpl.A 

between load combination A1 and A2. 
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Table H.6 Plastic rotation θpl.A and difference in plastic rotation γθpl.A after six load 

cycles for a single moving concentrated force of varying magnitudes. 

 kN2F   mrad1.Apl   mrad2.Apl   %.Apl  

60 14.40 14.45 0.4 

65 14.80 15.24 3.0 

70 16.08 16.59 3.2 

75 17.93 18.58 3.6 

80 20.31 21.12 4.0 

85 23.20 24.27 4.6 

90 26.65 27.94 4.9 
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H.2.2 Comparison of single forces – Varying 

Figure H.10 consists of Figure 7.23 and Figure 7.24. 

  

Figure H.10 Plastic rotation development and difference in plastic rotation γθpl.A 

between load combination A1 and load combination A2 and B. 
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Table H.7 Plastic rotation and difference in plastic rotation γθpl after six load 

cycles for a single moving concentrated force of varying magnitudes. 

 kNF   mrad1.Apl   mrad2.Apl   mrad.Bpl   %.Apl   %.Bpl  

60 14.40 14.45 14.43 0.3 0.3 

65 14.80 15.24 15.17 3.0 2.5 

70 16.08 16.59 16.72 3.2 4.0 

75 17.93 18.58 18.84 3.6 5.1 

80 20.31 21.12 21.54 4.0 6.1 

85 23.20 24.27 24.69 4.6 6.4 

90 26.65 27.95 28.38 4.9 6.5 
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H.2.3 Traditional superposition approach 

Figure H.11 consists of Figure 7.25 and Figure 7.26. 

  

Figure H.11 Plastic rotation development from analyses and a traditional 

superposition approach. Load combination A1. 
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Table H.8 Plastic rotation and difference in plastic rotation γθpl.A1.sup after six load 

cycles for a single moving concentrated force of varying magnitudes 

 kNF   mrad.1. anaApl   mradsup.1.Apl   %sup.1.Apl  

60 14.39 14.52 0.9 

65 14.80 16.23 9.6 

70 16.08 18.69 16.3 

75 17.93 21.28 18.7 

80 20.31 25.87 27.4 

85 23.20 30.55 31.7 

90 26.65 35.83 34.4 

Figure H.12 is a miniature of Figure 7.27 

 

Figure H.12 Difference in plastic rotation γθpl.A1.sup for load combination A1 between 

the results from an analysis and a traditional superposition approach. 
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Figure H.13 consists of Figure 7.28 and Figure 7.29. 

 

Figure H.13 Plastic rotation development from analyses and a traditional 

superposition approach. Load combination B. 
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Table H.9 Plastic rotation and difference in plastic rotation γθpl.B.sup after six load 

cycles for a single moving concentrated force of varying magnitudes. 

 kNF   mrad.. anaBpl   mradsup..Bpl   %sup..Bpl  

60 14.43 14.52 0.6 

65 15.17 16.30 7.5 

70 16.72 19.08 14.1 

75 18.84 22.63 20.1 

80 21.54 28.17 30.8 

85 24.69 33.99 37.7 

90 28.38 40.52 42.8 

 Figure H.14 consists of Figure 7.30 and Figure 7.31. 

  

Figure H.14 Difference in plastic rotation γθpl.B1.sup for load combination B between 

the results from an analysis and a traditional superposition approach. 

The right figure is a combination of load combination A1 and B. 
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H.2.4 Comparison of two forces – Varying 
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Figure H.15 consists of Figure 7.49 and Figure 7.50.  

 

Figure H.15 Difference in plastic rotation γθpl.1.6m and γθpl.2.0m for a pair of moving 

forces of different magnitudes. 
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Table H.10 Mean plastic rotation difference for all load combinations and load 

cycles for a pair of moving concentrated forces of varying magnitudes. 

 kN1F   %6.1. mpl   %0.2. mpl  

10 -3.55 -6.1 

20 -8.22 -13.9 

30 -14.67 -24.2 
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40 -25.42 -39.9 

50 -35.99 -59.0 

Figure H.16 is a miniature of Figure 7.51 

 

Figure H.16 Mean difference in plastic rotation between a distance of 1.2 m and, 

1.6 m and 2.0 m. 
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Appendix I Shear force distribution 

The shear force distributions from the chapters concerning moment distribution in 

SLS are presented here; see Table I.1 to Table I.4. The results are not discussed but 

are shown for the interested reader. The results are presented in the same order as the 

moment distributions. 

 

Table I.1 Cantilever slab, single concentrated force. 

  

Linear elastic Uncracked, Ex = 2Ey 

  

Uncracked, Ex = 5Ey Uncracked, Ex = 10Ey 

  

Neutral, Ex = 0.5Ey Neutral, Ex = Ey 
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Neutral, Ex = 2Ey Cracked, Ex = 0.5Ey 

  

Cracked, Ex = Ey Cracked, Ex = 2Ey 

 

 

Table I.2 Cantilever slab, two concentrated forces. 

  

Linear elastic Uncracked, Ex = 2Ey 
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Uncracked, Ex = 5Ey Uncracked, Ex = 10Ey 

  

Neutral, Ex = 0.5Ey Neutral, Ex = Ey 

  

Neutral, Ex = 2Ey Cracked, Ex = 0.5Ey 

  

Cracked, Ex = Ey Cracked, Ex = 2Ey 
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Table I.3 Simply supported slab, single concentrated force. 

  

Linear elastic Uncracked, Ex = 2Ey 

  

Uncracked, Ex = 5Ey Uncracked, Ex = 10Ey 

  

Neutral, Ex = 0.5Ey Neutral, Ex = Ey 

  

Neutral, Ex = 2Ey Cracked, Ex = 0.5Ey 
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Cracked, Ex = Ey Cracked, Ex = 2Ey 

 

 

Table I.4 Simply supported slab, two concentrated forces. 

  

Linear elastic Uncracked, Ex = 2Ey 
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Neutral, Ex = 0.5Ey Neutral, Ex = Ey 

  

Neutral, Ex = 2Ey Cracked, Ex = 0.5Ey 

  

Cracked, Ex = Ey Cracked, Ex = 2Ey 
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Appendix J Input files for ADINA 

The input files (.in-files) used for the ADINA software in this Thesis is presented in 

this chapter for the two following examples: 

 Moment distribution in SLS - Simply supported slab 

o A single static force F = 125 kN 

o Case uncracked 

o Mcr = Mlin / 3 

o Ex = 5Ey 

 Cumulative plastic rotation - Cantilever slab 

o A single moving concentrated force F = 120 kN 

o 150 load cycles n 

o Orthotropic mesh 

For additional input data and the results obtained from the two analyses presented 

above, the reader is referred to Appendix C, and Chapter 5 and 6 respectively. Due to 

the great number of time functions and load applications used for the analysis of 

cumulative plastic rotation, these have been significantly shortened. 

 

J.1 Moment distribution – Simply supported slab 
****************************************************** 

******************************************************

********************** ANALYSIS ********************* 

****************************************************** 

****************************************************** 

 

*--- ADINA: AUI version 8.9.2 ---* 

DATABASE NEW SAVE=NO PROMPT=NO 

FEPROGRAM ADINA 

CONTROL FILEVERSION=V89 

 

AUTOMATIC TIME-STEPPING MAXSUBD=10 

ACCURACY=NO, 

     DISTOL=0.00100000000000000 DTMAX=3.00000000000000, 

     RESTORE=AUTOMATIC RESPS=NO 

RESFAC=0.000100000000000000, 

     DIVFAC=2.00000000000000 LSMASSF=1.00000000000000 

 

MASTER ANALYSIS=STATIC MODEX=EXECUTE 

TSTART=0.00000000000000 IDOF=0, 

     OVALIZAT=NONE FLUIDPOT=AUTOMATIC 

CYCLICPA=1 IPOSIT=STOP, 

     REACTION=YES INITIALS=NO FSINTERA=NO 

IRINT=DEFAULT CMASS=NO, 

     SHELLNDO=AUTOMATIC AUTOMATI=ATS 

SOLVER=SPARSE, 

     CONTACT-=CONSTRAINT-FUNCTION 

TRELEASE=0.00000000000000, 

     RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-

PEN=NO SINGULAR=YES, 

     STIFFNES=0.000100000000000000 MAP-OUTP=NONE 

MAP-FORM=NO, 

     NODAL-DE='' POROUS-C=NO ADAPTIVE=0 ZOOM-

LAB=1 AXIS-CYC=0, 

     PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO 

STABILIZ=NO, 

     STABFACT=1.00000000000000E-10 RESULTS=PORTHOLE 

FEFCORR=NO, 

     BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO 

DEGEN=YES TMC-MODE=NO, 

     ENSIGHT-=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO 

ESINTERA=NO, 

     OP2GEOM=NO 

 

 

 

 

 

 

 

****************************************************** 

******************************************************

***************** TIMEFUNCTIONS ******************** 

****************************************************** 

****************************************************** 

 

*** TIME STEP & FUNCTION *** 

TIMESTEP NAME=DEFAULT 

@CLEAR 

500 1 

@ 

 

TIMEFUNCTION NAME=1 

@CLEAR 

0       0 

500     1 

@ 

 

****************************************************** 

******************************************************

********************* GEOMETRY ******************** 

****************************************************** 

****************************************************** 

 

********************** NODES ************************ 

 

COORDINATES POINT SYSTEM=0 

*** POINTS ON X AXIS *** 

1 0.00 0.00 0.00 0 

2 0.20 0.00 0.00 0 

3 0.40 0.00 0.00 0 

4 0.60 0.00 0.00 0 

5 0.80 0.00 0.00 0 

6 1.00 0.00 0.00 0 

7 1.20 0.00 0.00 0 

8 1.40 0.00 0.00 0 

9 1.60 0.00 0.00 0 

10 1.80 0.00 0.00 0 

11 2.00 0.00 0.00 0 

12 2.20 0.00 0.00 0 

13 2.40 0.00 0.00 0 

14 2.60 0.00 0.00 0 

15 2.80 0.00 0.00 0 

16 3.00 0.00 0.00 0 

17 3.20 0.00 0.00 0 

18 3.40 0.00 0.00 0 

19 3.60 0.00 0.00 0 

20 3.80 0.00 0.00 0 

21 4.00 0.00 0.00 0 
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*** POINTS ON Y=1.4 *** 

101 0.00 1.40 0.00 0 

102 0.20 1.40 0.00 0 

103 0.40 1.40 0.00 0 

104 0.60 1.40 0.00 0 

105 0.80 1.40 0.00 0 

106 1.00 1.40 0.00 0 

107 1.20 1.40 0.00 0 

108 1.40 1.40 0.00 0 

109 1.60 1.40 0.00 0 

110 1.80 1.40 0.00 0 

111 2.00 1.40 0.00 0 

112 2.20 1.40 0.00 0 

113 2.40 1.40 0.00 0 

114 2.60 1.40 0.00 0 

115 2.80 1.40 0.00 0 

116 3.00 1.40 0.00 0 

117 3.20 1.40 0.00 0 

118 3.40 1.40 0.00 0 

119 3.60 1.40 0.00 0 

120 3.80 1.40 0.00 0 

121 4.00 1.40 0.00 0 

 

*** POINTS ON Y=1.6 *** 

151 0.00 1.60 0.00 0 

152 0.20 1.60 0.00 0 

153 0.40 1.60 0.00 0 

154 0.60 1.60 0.00 0 

155 0.80 1.60 0.00 0 

156 1.00 1.60 0.00 0 

157 1.20 1.60 0.00 0 

158 1.40 1.60 0.00 0 

159 1.60 1.60 0.00 0 

160 1.80 1.60 0.00 0 

161 2.00 1.60 0.00 0 

162 2.20 1.60 0.00 0 

163 2.40 1.60 0.00 0 

164 2.60 1.60 0.00 0 

165 2.80 1.60 0.00 0 

166 3.00 1.60 0.00 0 

167 3.20 1.60 0.00 0 

168 3.40 1.60 0.00 0 

169 3.60 1.60 0.00 0 

170 3.80 1.60 0.00 0 

171 4.00 1.60 0.00 0 

 

*** POINTS ON Y AXIS *** 

201 0.00 0.20 0.00 0 

202 0.00 0.40 0.00 0 

203 0.00 0.60 0.00 0 

204 0.00 0.80 0.00 0 

205 0.00 1.00 0.00 0 

206 0.00 1.20 0.00 0 

 

*** POINTS ON X=4 *** 

301 4.00 0.20 0.00 0 

302 4.00 0.40 0.00 0 

303 4.00 0.60 0.00 0 

304 4.00 0.80 0.00 0 

305 4.00 1.00 0.00 0 

306 4.00 1.20 0.00 0 

 

*** AUXILLARY POINTS *** 

1001 -0.20 -0.20 0.00 0 

@ 

 

 

*********************** LINES ************************ 

 

*** LINES IN Y-DIRECTION *** 

LINE STRAIGHT NAME=1 P1=1 P2=101 

LINE STRAIGHT NAME=2 P1=2 P2=102 

LINE STRAIGHT NAME=3 P1=3 P2=103 

LINE STRAIGHT NAME=4 P1=4 P2=104 

LINE STRAIGHT NAME=5 P1=5 P2=105 

LINE STRAIGHT NAME=6 P1=6 P2=106 

LINE STRAIGHT NAME=7 P1=7 P2=107 

LINE STRAIGHT NAME=8 P1=8 P2=108 

LINE STRAIGHT NAME=9 P1=9 P2=109 

LINE STRAIGHT NAME=10 P1=10 P2=110 

LINE STRAIGHT NAME=11 P1=11 P2=111 

LINE STRAIGHT NAME=12 P1=12 P2=112 

LINE STRAIGHT NAME=13 P1=13 P2=113 

LINE STRAIGHT NAME=14 P1=14 P2=114 

LINE STRAIGHT NAME=15 P1=15 P2=115 

LINE STRAIGHT NAME=16 P1=16 P2=116 

LINE STRAIGHT NAME=17 P1=17 P2=117 

LINE STRAIGHT NAME=18 P1=18 P2=118 

LINE STRAIGHT NAME=19 P1=19 P2=119 

LINE STRAIGHT NAME=20 P1=20 P2=120 

LINE STRAIGHT NAME=21 P1=21 P2=121 

 

LINE STRAIGHT NAME=51 P1=101 P2=151 

LINE STRAIGHT NAME=52 P1=102 P2=152 

LINE STRAIGHT NAME=53 P1=103 P2=153 

LINE STRAIGHT NAME=54 P1=104 P2=154 

LINE STRAIGHT NAME=55 P1=105 P2=155 

LINE STRAIGHT NAME=56 P1=106 P2=156 

LINE STRAIGHT NAME=57 P1=107 P2=157 

LINE STRAIGHT NAME=58 P1=108 P2=158 

LINE STRAIGHT NAME=59 P1=109 P2=159 

LINE STRAIGHT NAME=60 P1=110 P2=160 

LINE STRAIGHT NAME=61 P1=111 P2=161 

LINE STRAIGHT NAME=62 P1=112 P2=162 

LINE STRAIGHT NAME=63 P1=113 P2=163 

LINE STRAIGHT NAME=64 P1=114 P2=164 

LINE STRAIGHT NAME=65 P1=115 P2=165 

LINE STRAIGHT NAME=66 P1=116 P2=166 

LINE STRAIGHT NAME=67 P1=117 P2=167 

LINE STRAIGHT NAME=68 P1=118 P2=168 

LINE STRAIGHT NAME=69 P1=119 P2=169 

LINE STRAIGHT NAME=70 P1=120 P2=170 

LINE STRAIGHT NAME=71 P1=121 P2=171 

 

*** LINES IN X-DIRECTION *** 

LINE STRAIGHT NAME=201 P1=1 P2=21 

LINE STRAIGHT NAME=202 P1=201 P2=301 

LINE STRAIGHT NAME=203 P1=202 P2=302 

LINE STRAIGHT NAME=204 P1=203 P2=303 

LINE STRAIGHT NAME=205 P1=204 P2=304 

LINE STRAIGHT NAME=206 P1=205 P2=305 

LINE STRAIGHT NAME=207 P1=206 P2=306 

 

LINE STRAIGHT NAME=210 P1=151 P2=152 

LINE STRAIGHT NAME=211 P1=152 P2=153 

LINE STRAIGHT NAME=212 P1=153 P2=154 

LINE STRAIGHT NAME=213 P1=154 P2=155 

LINE STRAIGHT NAME=214 P1=155 P2=156 

LINE STRAIGHT NAME=215 P1=156 P2=157 

LINE STRAIGHT NAME=216 P1=157 P2=158 

LINE STRAIGHT NAME=217 P1=158 P2=159 

LINE STRAIGHT NAME=218 P1=159 P2=160 

LINE STRAIGHT NAME=219 P1=160 P2=161 

LINE STRAIGHT NAME=220 P1=161 P2=162 

LINE STRAIGHT NAME=221 P1=162 P2=163 

LINE STRAIGHT NAME=222 P1=163 P2=164 

LINE STRAIGHT NAME=223 P1=164 P2=165 

LINE STRAIGHT NAME=224 P1=165 P2=166 

LINE STRAIGHT NAME=225 P1=166 P2=167 

LINE STRAIGHT NAME=226 P1=167 P2=168 

LINE STRAIGHT NAME=227 P1=168 P2=169 

LINE STRAIGHT NAME=228 P1=169 P2=170 

LINE STRAIGHT NAME=229 P1=170 P2=171 

 

LINE STRAIGHT NAME=250 P1=101 P2=102 

LINE STRAIGHT NAME=251 P1=102 P2=103 

LINE STRAIGHT NAME=252 P1=103 P2=104 

LINE STRAIGHT NAME=253 P1=104 P2=105 

LINE STRAIGHT NAME=254 P1=105 P2=106 

LINE STRAIGHT NAME=255 P1=106 P2=107 

LINE STRAIGHT NAME=256 P1=107 P2=108 

LINE STRAIGHT NAME=257 P1=108 P2=109 

LINE STRAIGHT NAME=258 P1=109 P2=110 

LINE STRAIGHT NAME=259 P1=110 P2=111 

LINE STRAIGHT NAME=260 P1=111 P2=112 

LINE STRAIGHT NAME=261 P1=112 P2=113 

LINE STRAIGHT NAME=262 P1=113 P2=114 

LINE STRAIGHT NAME=263 P1=114 P2=115 

LINE STRAIGHT NAME=264 P1=115 P2=116 

LINE STRAIGHT NAME=265 P1=116 P2=117 

LINE STRAIGHT NAME=266 P1=117 P2=118 

LINE STRAIGHT NAME=267 P1=118 P2=119 

LINE STRAIGHT NAME=268 P1=119 P2=120 

LINE STRAIGHT NAME=269 P1=120 P2=121 
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****************************************************** 

******************************************************

********* MOMENT-CURVATURE RELATIONS ********** 

****************************************************** 

****************************************************** 

 

*** GROUP 1: Used for beams in X-direction*** 

TWIST-MOMENT NAME=1 

@CLEAR 

0            0 

0.043        10000 

@ 

 

MOMENT-TWIST NAME=1 

@CLEAR 

0              1 

1E6            1 

@ 

 

*** Bending moment, S-direction 

CURVATURE-MO NAME=2 

@CLEAR 

0.00227          10000 

0.00454          20000 

@ 

 

MOMENT-CURVA NAME=2 

@CLEAR 

0             2 

1E6           2 

@ 

 

*** Bending moment, T-direction 

CURVATURE-MO NAME=3 

@CLEAR 

0.00227          10000 

0.00454          20000 

@ 

 

MOMENT-CURVA NAME=3 

@CLEAR 

0             3 

1E6           3 

@ 

 

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=1 

RIGIDITY=1, 

     MOMENT-R=1 MOMENT-S=2 MOMENT-T=3 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ALPHA=0 

 

*** GROUP 2: Used for beams in Y-direction *** 

TWIST-MOMENT NAME=4 

@CLEAR 

0            0 

0.043        10000 

@ 

 

MOMENT-TWIST NAME=4 

@CLEAR 

0             4 

1E6          4 

@ 

 

*** Bending moment, S-direction 

CURVATURE-MO NAME=5 

@CLEAR 

-0.02275 -20000 

-0.00400 -3518 

-0.00076 -3350 

0 0 

0.00076 3350 

0.00400 3518 

0.02275 20000 

 

@ 

 

MOMENT-CURVA NAME=5 

@CLEAR 

0            5 

1E6           5 

@ 

 

 

 

*** Bending moment, T-direction 

CURVATURE-MO NAME=6 

@CLEAR 

0.00227          10000 

0.00454          20000 

@ 

 

MOMENT-CURVA NAME=6 

@CLEAR 

0             6 

1E6           6 

@ 

 

 

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=2 

RIGIDITY=1, 

     MOMENT-R=4 MOMENT-S=5 MOMENT-T=6 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ALPHA=0 

 

*** GROUP 3: Used for beam along X-axis in symmetry line *** 

TWIST-MOMENT NAME=7 

@CLEAR 

0            0 

0.215        10000 

@ 

 

MOMENT-TWIST NAME=7 

@CLEAR 

0             7 

1E6           7 

@ 

 

*** Bending moment, S-direction 

CURVATURE-MO NAME=8 

@CLEAR 

0.00454          10000 

0.00908          20000 

@ 

 

MOMENT-CURVA NAME=8 

@CLEAR 

0             8 

1E6           8 

@ 

 

*** Bending moment, T-direction 

CURVATURE-MO NAME=9 

@CLEAR 

0.00454          10000 

0.00908          20000 

@ 

 

MOMENT-CURVA NAME=9 

@CLEAR 

0             9 

1E6          9 

@ 

 

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=3 

RIGIDITY=1, 

     MOMENT-R=7 MOMENT-S=8 MOMENT-T=9 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ALPHA=0 

 

*** GROUP 4: Used for beam along Y-axis in symmetry line *** 

TWIST-MOMENT NAME=10 

@CLEAR 

0            0 

0.215        10000 

@ 

 

MOMENT-TWIST NAME=10 

@CLEAR 

0             10 

1E6           10 

@ 
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*** Bending moment, S-direction 

CURVATURE-MO NAME=11 

@CLEAR 

-0.045500 -20000 

-0.004002 -1759 

-0.000761 -1675 

0 0 

0.000761 1675 

0.004002 1759 

0.045500 20000 

 

@ 

 

MOMENT-CURVA NAME=11 

@CLEAR 

0             11 

1E6           11 

@ 

 

*** Bending moment, T-direction 

CURVATURE-MO NAME=12 

@CLEAR 

0.00454          10000 

0.00908          20000 

@ 

 

MOMENT-CURVA NAME=12 

@CLEAR 

0             12 

1E6           12 

@ 

 

*********** MOMENT-CURVATURE GROUPS ************ 

 

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=4 

RIGIDITY=1, 

     MOMENT-R=10 MOMENT-S=11 MOMENT-T=12 

DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ALPHA=0 

 

*** ELEMENT GROUPS *** 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=1 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=1 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=1 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

EGROUP BEAM NAME=2 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=2 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

 

 

 

 

 

 

 

 

 

 

EGROUP BEAM NAME=3 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=3 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

EGROUP BEAM NAME=4 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=4 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

****************************************************** 

******************************************************

********************** MESHING ********************** 

****************************************************** 

****************************************************** 

 

****************** MESH DENSITY ******************** 

 

SUBDIVIDE MODEL MODE=LENGTH 

SIZE=0.200000000000000 NDIV=1, 

     PROGRESS=GEOMETRIC MINCUR=1 

 

GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL 

NCTOLERA=1.00000000000000E-05, 

     SUBSTRUC=0 GROUP=1 MIDNODES=CURVED 

XO=0.00000000000000, 

     YO=0.00000000000000 ZO=0.00000000000000 

XYZOSYST=SKEW 

@CLEAR 

201 

TO 

207 

250 

TO 

269 

@ 

 

******************** MESH GROUPING **************** 

 

GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL 

NCTOLERA=1.00000000000000E-05, 

     SUBSTRUC=0 GROUP=2 MIDNODES=CURVED 

XO=0.00000000000000, 

     YO=0.00000000000000 ZO=0.00000000000000 

XYZOSYST=SKEW 

@CLEAR 

2 

TO 

21 

52 

TO 

71 

@ 

 

GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL 

NCTOLERA=1.00000000000000E-05, 

     SUBSTRUC=0 GROUP=3 MIDNODES=CURVED 

XO=0.00000000000000, 

     YO=0.00000000000000 ZO=0.00000000000000 

XYZOSYST=SKEW 

210 

TO 

229 

@ 
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GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL 

NCTOLERA=1.00000000000000E-05, 

     SUBSTRUC=0 GROUP=4 MIDNODES=CURVED 

XO=0.00000000000000, 

     YO=0.00000000000000 ZO=0.00000000000000 

XYZOSYST=SKEW 

@CLEAR 

1 

51 

@ 

 

****************************************************** 

******************************************************

************** BOUNDARY CONDITIONS  ************** 

****************************************************** 

****************************************************** 

 

FIXITY NAME=ROLLER 

@CLEAR 

 'Z-TRANSLATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=XSYMM 

@CLEAR 

 'Y-TRANSLATION' 

 'X-ROTATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=YSYMM 

@CLEAR 

 'X-TRANSLATION' 

 'Y-ROTATION' 

 'OVALIZATION' 

@ 

 

FIXITY NAME=ORIGO 

@CLEAR 

 'X-TRANSLATION' 

 'Z-TRANSLATION' 

 'Y-ROTATION' 

 'OVALIZATION' 

@ 

 

 

 

 

 

 

FIXITY NAME=XYSYMM 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'OVALIZATION' 

@ 

 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

2   'ROLLER' 

TO 

21  'ROLLER' 

 

152 'XSYMM' 

TO 

171 'XSYMM' 

 

201 'YSYMM' 

TO 

206 'YSYMM' 

101 'YSYMM' 

 

1   'ORIGO' 

151 'XYSYMM' 

@ 

 

****************************************************** 

******************************************************

***************** LOAD APPLICATION ***************** 

****************************************************** 

****************************************************** 

LOAD FORCE NAME=1 MAGNITUD=12500.00 FX=0.00, 

FY=0.00 FZ=-1.00 

 

APPLY-LOAD BODY=0 

@CLEAR 

1  'FORCE' 1  'POINT' 101 0 1 0.00 0 -1 0 0 0  'NO', 0.00 0.00 1 0  

'MID' 

2  'FORCE' 1  'POINT' 102 0 1 0.00 0 -1 0 0 0  'NO', 0.00 0.00 1 0  

'MID' 

3  'FORCE' 1  'POINT' 151 0 1 0.00 0 -1 0 0 0  'NO', 0.00 0.00 1 0  

'MID' 

4  'FORCE' 1  'POINT' 152 0 1 0.00 0 -1 0 0 0  'NO', 0.00 0.00 1 0  

'MID' 

@ 

 

*********************** END ************************** 

 

J.2 Cumulative plastic rotation – Cantilever slab 
DATABASE NEW SAVE=NO PROMPT=NO 

FEPROGRAM ADINA 

CONTROL FILEVERSION=V89 

 

****************************************************** 

******************************************************

********************* GEOMETRY ******************** 

****************************************************** 

****************************************************** 

 

COORDINATES POINT SYSTEM=0 

@CLEAR 

 

********************** NODES ************************ 

 

*** Line L5 

1 0 0 0 0 

2 0.2 0 0 0 

3 0.4 0 0 0 

4 0.6 0 0 0 

5 0.8 0 0 0 

6 1 0 0 0 

7 1.2 0 0 0 

8 1.4 0 0 0 

9 1.6 0 0 0 

10 1.8 0 0 0 

11 2 0 0 0 

12 2.2 0 0 0 

13 2.4 0 0 0 

14 2.6 0 0 0 

15 2.8 0 0 0 

16 3 0 0 0 

17 3.2 0 0 0 

18 3.4 0 0 0 

19 3.6 0 0 0 

20 3.8 0 0 0 

21 4 0 0 0 

22 4.2 0 0 0 

23 4.4 0 0 0 

24 4.6 0 0 0 

25 4.8 0 0 0 

26 5.0 0 0 0 

27 5.2 0 0 0 

28 5.4 0 0 0 

29 5.6 0 0 0 

30 5.8 0 0 0 

31 6.0 0 0 0 

32 6.2 0 0 0 

33 6.4 0 0 0 

34 6.6 0 0 0 

35 6.8 0 0 0 

36 7.0 0 0 0 

37 7.2 0 0 0 

38 7.4 0 0 0 

39 7.6 0 0 0 

40 7.8 0 0 0 

41 8.0 0 0 0 

42 8.2 0 0 0 

43 8.4 0 0 0 

44 8.6 0 0 0 

45 8.8 0 0 0 

46 9.0 0 0 0 
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47 9.2 0 0 0 

48 9.4 0 0 0 

49 9.6 0 0 0 

50 9.8 0 0 0 

51 10.0 0 0 0 

52 10.2 0 0 0 

53 10.4 0 0 0 

54 10.6 0 0 0 

55 10.8 0 0 0 

56 11.0 0 0 0 

57 11.2 0 0 0 

58 11.4 0 0 0 

59 11.6 0 0 0 

60 11.8 0 0 0 

61 12.0 0 0 0 

 

*** Free edge, x=12  

62 12.0 0.2 0 0 

63 12.0 0.4 0 0 

64 12.0 0.6 0 0 

65 12.0 0.8 0 0 

66 12.0 1.0 0 0 

67 12.0 1.2 0 0 

68 12.0 1.4 0 0 

69 12.0 1.6 0 0 

 

*** Line L3 

70 11.8 1.6 0 0 

71 11.6 1.6 0 0 

72 11.4 1.6 0 0 

73 11.2 1.6 0 0 

74 11.0 1.6 0 0 

75 10.8 1.6 0 0 

76 10.6 1.6 0 0 

77 10.4 1.6 0 0 

78 10.2 1.6 0 0 

79 10.0 1.6 0 0 

80 9.8 1.6 0 0 

81 9.6 1.6 0 0 

82 9.4 1.6 0 0 

83 9.2 1.6 0 0 

84 9.0 1.6 0 0 

85 8.8 1.6 0 0 

86 8.6 1.6 0 0 

87 8.4 1.6 0 0 

88 8.2 1.6 0 0 

89 8.0 1.6 0 0 

90 7.8 1.6 0 0 

91 7.6 1.6 0 0 

92 7.4 1.6 0 0 

93 7.2 1.6 0 0 

94 7.0 1.6 0 0 

95 6.8 1.6 0 0 

96 6.6 1.6 0 0 

97 6.4 1.6 0 0 

98 6.2 1.6 0 0 

99 6.0 1.6 0 0 

100 5.8 1.6 0 0 

101 5.6 1.6 0 0 

102 5.4 1.6 0 0 

103 5.2 1.6 0 0 

104 5.0 1.6 0 0 

105 4.8 1.6 0 0 

106 4.6 1.6 0 0 

107 4.4 1.6 0 0 

108 4.2 1.6 0 0 

109 4 1.6 0 0 

110 3.8 1.6 0 0 

111 3.6 1.6 0 0 

112 3.4 1.6 0 0 

113 3.2 1.6 0 0 

114 3 1.6 0 0 

115 2.8 1.6 0 0 

116 2.6 1.6 0 0 

117 2.4 1.6 0 0 

118 2.2 1.6 0 0 

119 2 1.6 0 0 

120 1.8 1.6 0 0 

121 1.6 1.6 0 0 

122 1.4 1.6 0 0 

123 1.2 1.6 0 0 

124 1 1.6 0 0 

125 0.8 1.6 0 0 

126 0.6 1.6 0 0 

127 0.4 1.6 0 0 

128 0.2 1.6 0 0 

129 0 1.6 0 0 

 

*** Free edge, x=0 

130 0.0 1.4 0 0 

131 0.0 1.2 0 0 

132 0.0 1.0 0 0 

133 0.0 0.8 0 0 

134 0.0 0.6 0 0 

135 0.0 0.4 0 0 

136 0.0 0.2 0 0 

 

*** Line for finer mesh at the fixed support 

200 0.2 0.2 0 0 

201 0.4 0.2 0 0 

202 0.6 0.2 0 0 

203 0.8 0.2 0 0 

204 1 0.2 0 0 

205 1.2 0.2 0 0 

206 1.4 0.2 0 0 

207 1.6 0.2 0 0 

208 1.8 0.2 0 0 

209 2 0.2 0 0 

210 2.2 0.2 0 0 

211 2.4 0.2 0 0 

212 2.6 0.2 0 0 

213 2.8 0.2 0 0 

214 3 0.2 0 0 

215 3.2 0.2 0 0 

216 3.4 0.2 0 0 

217 3.6 0.2 0 0 

218 3.8 0.2 0 0 

219 4 0.2 0 0 

220 4.2 0.2 0 0 

221 4.4 0.2 0 0 

222 4.6 0.2 0 0 

223 4.8 0.2 0 0 

224 5.0 0.2 0 0 

225 5.2 0.2 0 0 

226 5.4 0.2 0 0 

227 5.6 0.2 0 0 

228 5.8 0.2 0 0 

229 6.0 0.2 0 0 

230 6.2 0.2 0 0 

231 6.4 0.2 0 0 

232 6.6 0.2 0 0 

233 6.8 0.2 0 0 

234 7.0 0.2 0 0 

235 7.2 0.2 0 0 

236 7.4 0.2 0 0 

237 7.6 0.2 0 0 

238 7.8 0.2 0 0 

239 8.0 0.2 0 0 

240 8.2 0.2 0 0 

241 8.4 0.2 0 0 

242 8.6 0.2 0 0 

243 8.8 0.2 0 0 

244 9.0 0.2 0 0 

245 9.2 0.2 0 0 

246 9.4 0.2 0 0 

247 9.6 0.2 0 0 

248 9.8 0.2 0 0 

249 10.0 0.2 0 0 

250 10.2 0.2 0 0 

251 10.4 0.2 0 0 

252 10.6 0.2 0 0 

253 10.8 0.2 0 0 

254 11.0 0.2 0 0 

255 11.2 0.2 0 0 

256 11.4 0.2 0 0 

257 11.6 0.2 0 0 

258 11.8 0.2 0 0 

 

*** AUX point 

1000 12.2 1.8 0 0 

 

*********************** LINES ************************ 

 

*** Lines as boundaries 

LINE STRAIGHT NAME=1  P1=1 P2=61 

LINE STRAIGHT NAME=2  P1=61 P2=62 

LINE STRAIGHT NAME=3  P1=129 P2=69 

LINE STRAIGHT NAME=4  P1=1 P2=136 

LINE STRAIGHT NAME=501  P1=62 P2=69 

LINE STRAIGHT NAME=502  P1=136 P2=129 
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*** Lines in y-direction 

LINE STRAIGHT NAME=5  P1=2 P2=200 

LINE STRAIGHT NAME=6  P1=3 P2=201 

LINE STRAIGHT NAME=7 P1=4 P2=202 

LINE STRAIGHT NAME=8 P1=5 P2=203 

LINE STRAIGHT NAME=9 P1=6 P2=204 

LINE STRAIGHT NAME=10 P1=7 P2=205 

LINE STRAIGHT NAME=11 P1=8 P2=206 

LINE STRAIGHT NAME=12 P1=9 P2=207 

LINE STRAIGHT NAME=13 P1=10 P2=208 

LINE STRAIGHT NAME=14 P1=11 P2=209 

LINE STRAIGHT NAME=15 P1=12 P2=210 

LINE STRAIGHT NAME=16 P1=13 P2=211 

LINE STRAIGHT NAME=17 P1=14 P2=212 

LINE STRAIGHT NAME=18 P1=15 P2=213 

LINE STRAIGHT NAME=19 P1=16 P2=214 

LINE STRAIGHT NAME=20 P1=17 P2=215 

LINE STRAIGHT NAME=21 P1=18 P2=216 

LINE STRAIGHT NAME=22 P1=19 P2=217 

LINE STRAIGHT NAME=23 P1=20 P2=218 

LINE STRAIGHT NAME=24 P1=21 P2=219 

LINE STRAIGHT NAME=25 P1=22 P2=220 

LINE STRAIGHT NAME=26 P1=23 P2=221 

LINE STRAIGHT NAME=27 P1=24 P2=222 

LINE STRAIGHT NAME=28 P1=25 P2=223 

LINE STRAIGHT NAME=29 P1=26 P2=224 

LINE STRAIGHT NAME=30 P1=27 P2=225 

LINE STRAIGHT NAME=31 P1=28 P2=226 

LINE STRAIGHT NAME=32 P1=29 P2=227 

LINE STRAIGHT NAME=33 P1=30 P2=228 

LINE STRAIGHT NAME=34 P1=31 P2=229 

LINE STRAIGHT NAME=35 P1=32 P2=230 

LINE STRAIGHT NAME=36 P1=33 P2=231 

LINE STRAIGHT NAME=37 P1=34 P2=232 

LINE STRAIGHT NAME=38 P1=35 P2=233 

LINE STRAIGHT NAME=39 P1=36 P2=234 

LINE STRAIGHT NAME=40 P1=37 P2=235 

LINE STRAIGHT NAME=41 P1=38 P2=236 

LINE STRAIGHT NAME=42 P1=39 P2=237 

LINE STRAIGHT NAME=43 P1=40 P2=238 

LINE STRAIGHT NAME=44 P1=41 P2=239 

LINE STRAIGHT NAME=45 P1=42 P2=240 

LINE STRAIGHT NAME=46 P1=43 P2=241 

LINE STRAIGHT NAME=47 P1=44 P2=242 

LINE STRAIGHT NAME=48 P1=45 P2=243 

LINE STRAIGHT NAME=49 P1=46 P2=244 

LINE STRAIGHT NAME=50 P1=47 P2=245 

LINE STRAIGHT NAME=51 P1=48 P2=246 

LINE STRAIGHT NAME=52 P1=49 P2=247 

LINE STRAIGHT NAME=53 P1=50 P2=248 

LINE STRAIGHT NAME=54 P1=51 P2=249 

LINE STRAIGHT NAME=55 P1=52 P2=250 

LINE STRAIGHT NAME=56 P1=53 P2=251 

LINE STRAIGHT NAME=57 P1=54 P2=252 

LINE STRAIGHT NAME=58 P1=55 P2=253 

LINE STRAIGHT NAME=59 P1=56 P2=254 

LINE STRAIGHT NAME=60 P1=57 P2=255 

LINE STRAIGHT NAME=61 P1=58 P2=256 

LINE STRAIGHT NAME=62 P1=59 P2=257 

LINE STRAIGHT NAME=63 P1=60 P2=258 

 

*** Lines for finer mesh 

LINE STRAIGHT NAME=100 P1=200 P2=128 

LINE STRAIGHT NAME=101 P1=201 P2=127 

LINE STRAIGHT NAME=102 P1=202 P2=126 

LINE STRAIGHT NAME=103 P1=203 P2=125 

LINE STRAIGHT NAME=104 P1=204 P2=124 

LINE STRAIGHT NAME=105 P1=205 P2=123 

LINE STRAIGHT NAME=106 P1=206 P2=122 

LINE STRAIGHT NAME=107 P1=207 P2=121 

LINE STRAIGHT NAME=108 P1=208 P2=120 

LINE STRAIGHT NAME=109 P1=209 P2=119 

LINE STRAIGHT NAME=110 P1=210 P2=118 

LINE STRAIGHT NAME=111 P1=211 P2=117 

LINE STRAIGHT NAME=112 P1=212 P2=116 

LINE STRAIGHT NAME=113 P1=213 P2=115 

LINE STRAIGHT NAME=114 P1=214 P2=114 

LINE STRAIGHT NAME=115 P1=215 P2=113 

LINE STRAIGHT NAME=116 P1=216 P2=112 

LINE STRAIGHT NAME=117 P1=217 P2=111 

LINE STRAIGHT NAME=118 P1=218 P2=110 

LINE STRAIGHT NAME=119 P1=219 P2=109 

LINE STRAIGHT NAME=120 P1=220 P2=108 

LINE STRAIGHT NAME=121 P1=221 P2=107 

LINE STRAIGHT NAME=122 P1=222 P2=106 

LINE STRAIGHT NAME=123 P1=223 P2=105 

LINE STRAIGHT NAME=124 P1=224 P2=104 

LINE STRAIGHT NAME=125 P1=225 P2=103 

LINE STRAIGHT NAME=126 P1=226 P2=102 

LINE STRAIGHT NAME=127 P1=227 P2=101 

LINE STRAIGHT NAME=128 P1=228 P2=100 

LINE STRAIGHT NAME=129 P1=229 P2=99 

LINE STRAIGHT NAME=130 P1=230 P2=98 

LINE STRAIGHT NAME=131 P1=231 P2=97 

LINE STRAIGHT NAME=132 P1=232 P2=96 

LINE STRAIGHT NAME=133 P1=233 P2=95 

LINE STRAIGHT NAME=134 P1=234 P2=94 

LINE STRAIGHT NAME=135 P1=235 P2=93 

LINE STRAIGHT NAME=136 P1=236 P2=92 

LINE STRAIGHT NAME=137 P1=237 P2=91 

LINE STRAIGHT NAME=138 P1=238 P2=90 

LINE STRAIGHT NAME=139 P1=239 P2=89 

LINE STRAIGHT NAME=140 P1=240 P2=88 

LINE STRAIGHT NAME=141 P1=241 P2=87 

LINE STRAIGHT NAME=142 P1=242 P2=86 

LINE STRAIGHT NAME=143 P1=243 P2=85 

LINE STRAIGHT NAME=144 P1=244 P2=84 

LINE STRAIGHT NAME=145 P1=245 P2=83 

LINE STRAIGHT NAME=146 P1=246 P2=82 

LINE STRAIGHT NAME=147 P1=247 P2=81 

LINE STRAIGHT NAME=148 P1=248 P2=80 

LINE STRAIGHT NAME=149 P1=249 P2=79 

LINE STRAIGHT NAME=150 P1=250 P2=78 

LINE STRAIGHT NAME=151 P1=251 P2=77 

LINE STRAIGHT NAME=152 P1=252 P2=76 

LINE STRAIGHT NAME=153 P1=253 P2=75 

LINE STRAIGHT NAME=154 P1=254 P2=74 

LINE STRAIGHT NAME=155 P1=255 P2=73 

LINE STRAIGHT NAME=156 P1=256 P2=72 

LINE STRAIGHT NAME=157 P1=257 P2=71 

LINE STRAIGHT NAME=158 P1=258 P2=70 

 

*** Lines in x-direction 

LINE STRAIGHT NAME=200 P1=136 P2=62 

LINE STRAIGHT NAME=201 P1=135 P2=63 

LINE STRAIGHT NAME=202 P1=134 P2=64 

LINE STRAIGHT NAME=203 P1=133 P2=65 

LINE STRAIGHT NAME=204 P1=132 P2=66 

LINE STRAIGHT NAME=205 P1=131 P2=67 

LINE STRAIGHT NAME=206 P1=130 P2=68 
 

****************************************************** 

******************************************************

********* MOMENT-CURVATURE RELATIONS ********** 

****************************************************** 

****************************************************** 

 

******************* GENERAL DATA ****************** 

 

*** Axial force and axial strain 

FORCE-STRAIN NAME=100 

@CLEAR 

-0.003        -160000 

-0.001        -160000 

0             0 

0.001         160000 

0.003         160000 

@ 

 

*** Twist moment, symmetry line 

TWIST-MOMENT NAME=100 

@CLEAR 

-21.185         -1000000 

-0.21184       -10000 

0               0 

0.21184        10000 

21.185          1000000 

@ 

 

MOMENT-TWIST NAME=100 

@CLEAR 

-1E6           100 

0              100 

1E6            100 

@ 
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*** Twist moment 

TWIST-MOMENT NAME=200 

@CLEAR 

-4.305          -1000000 

-0.04304        -10000 

0               0 

0.04304        10000 

4.305           1000000 

@ 

 

MOMENT-TWIST NAME=200 

@CLEAR 

-1E6           200 

0              200 

1E6            200 

@ 

 

*** Bending moment, T-direction 

CURVATURE-MO NAME=300 

@CLEAR 

-10.0000        -20000 

-0.02159        -20000 

0                0 

0.02159         20000 

10.0000         20000 

@ 

 

MOMENT-CURVA NAME=300 

@CLEAR 

-1E6          300 

0             300 

1E6           300 

@ 

 

********* BENDING MOMENT IN S-DIRECTION ********** 

 

*** GROUP 1: Used for beams in X-direction 

CURVATURE-MO NAME=1 

@CLEAR 

-10            -12491 

-0.01699  -12491 

0          0 

0.01699          12491 

10          12491 

@ 

 

MOMENT-CURVA NAME=1 

@CLEAR 

-1E6          1 

0             1 

1E6           1 

@ 

 

*** GROUP 2: Used for beams in Y-direction 

CURVATURE-MO NAME=2 

@CLEAR 

-10            -12491 

-0.01699  -12491 

0          0 

0.01699          12491 

10          12491 

@ 

 

MOMENT-CURVA NAME=2 

@CLEAR 

-1E6          2 

0             2 

1E6           2 

@ 

 

*** GROUP 3: Used for beam along X-axis in symmetry line 

CURVATURE-MO NAME=3 

@CLEAR 

-10            -6246 

-0.01699  -6246 

0          0 

0.01699          6246 

10          6246 

@ 

 

MOMENT-CURVA NAME=3 

@CLEAR 

-1E6          3 

0             3 

1E6           3 

@ 

*** GROUP 4: Used for beam along Y-axis in symmetry line 

CURVATURE-MO NAME=4 

@CLEAR 

-10            -6246 

-0.01699  -6246 

0          0 

0.01699          6246 

10          6246 

@ 

 

MOMENT-CURVA NAME=4 

@CLEAR 

-1E6          4 

0             4 

1E6           4 

@ 

 

*** GROUP 5: Used for beam along y-axis at the support 

CURVATURE-MO NAME=5 

@CLEAR 

-2            -12491 

-0.01699  -12491 

0          0 

0.01699          12491 

2          12491 

@ 

 

MOMENT-CURVA NAME=5 

@CLEAR 

-1E6          5 

0             5 

1E6           5 

@ 

 

*********** MOMENT-CURVATURE GROUPS ************ 

 

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=1 

HARDENIN=ISOTROPIC, 

     BETA=0 FORCE-AX=100 MOMENT-R=200 MOMENT-S=1, 

     MOMENT-T=300 AXIAL-CY=1 BENDING-=1, 

     TORSION-=1 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ACURVE-T=UNSYMMETRIC TCURVE-

T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC, 

     ALPHA=0 

 

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=2 

HARDENIN=ISOTROPIC, 

     BETA=0 FORCE-AX=100 MOMENT-R=200 MOMENT-S=2, 

     MOMENT-T=300 AXIAL-CY=1 BENDING-=1, 

     TORSION-=1 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ACURVE-T=UNSYMMETRIC TCURVE-

T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC, 

     ALPHA=0 

 

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=3 

HARDENIN=ISOTROPIC, 

     BETA=0 FORCE-AX=100 MOMENT-R=100 MOMENT-S=3, 

     MOMENT-T=300 AXIAL-CY=1 BENDING-=1, 

     TORSION-=1 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ACURVE-T=UNSYMMETRIC TCURVE-

T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC, 

     ALPHA=0 

 

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=4 

HARDENIN=ISOTROPIC, 

     BETA=0 FORCE-AX=100 MOMENT-R=100 MOMENT-S=4, 

     MOMENT-T=300 AXIAL-CY=1 BENDING-=1, 

     TORSION-=1 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ACURVE-T=UNSYMMETRIC TCURVE-

T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC, 

     ALPHA=0 
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RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=5 

HARDENIN=ISOTROPIC, 

     BETA=0 FORCE-AX=100 MOMENT-R=200 MOMENT-S=5, 

     MOMENT-T=300 AXIAL-CY=1 BENDING-=1, 

     TORSION-=1 DENSITY=0, 

     MASS-ARE=0 MASS-RIN=0, 

     MASS-SIN=0 MASS-TIN=0, 

     ACURVE-T=UNSYMMETRIC TCURVE-

T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC, 

     ALPHA=0 

 

**************** ELEMENT GROUPS ****************** 

 

*** X-AXIS 

EGROUP BEAM NAME=1 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=1 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=1 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=1 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

*** Y-AXIS 

EGROUP BEAM NAME=2 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=2 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

*** X-AXIS SYMMETRY LINE 

EGROUP BEAM NAME=3 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=3 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

*** Y-AXIS, SYMMETRY LINE 

EGROUP BEAM NAME=4 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=4 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

      

 

 

 

 

 

*** Y-AXIS, AT SUPPORT 

EGROUP BEAM NAME=5 SUBTYPE=THREE-D 

DISPLACE=DEFAULT MATERIAL=2 RINT=5, 

     SINT=7 TINT=DEFAULT RESULTS=FORCES 

INITIALS=NONE CMASS=DEFAULT, 

     RIGIDEND=NONE MOMENT-C=YES RIGIDITY=5 

MULTIPLY=1000000.00000000, 

     RUPTURE=ADINA OPTION=NONE BOLT-

TOL=0.00000000000000 DESCRIPT=, 

'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT 

TBIRTH=0.00000000000000, 

     TDEATH=0.00000000000000 SPOINT=4 

BOLTFORC=0.00000000000000, 

     BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-

LOA=0.00000000000000, 

     WARP=NO 

 

****************************************************** 

******************************************************

************** BOUNDARY CONDITIONS  ************** 

****************************************************** 

****************************************************** 

 

FIXITY NAME=P1 

@CLEAR 

 'X-TRANSLATION' 

 'Y-TRANSLATION' 

 'Z-TRANSLATION' 

 'X-ROTATION' 

 'Y-ROTATION' 

 'Z-ROTATION' 

 'OVALIZATION' 

@ 

 

FIXBOUNDARY POINTS FIXITY=ALL 

@CLEAR 

1  'P1' 

TO 

61  'P1' 

@ 

 

****************************************************** 

******************************************************

********************** MESHING ********************** 

****************************************************** 

****************************************************** 

 

******************** MESH DENSITY ****************** 

 

SUBDIVIDE MODEL MODE=LENGTH SIZE=0.2 NDIV=1, 

     PROGRESS=GEOMETRIC MINCUR=1 

 

SUBDIVIDE LINE NAME=2 MODE=LENGTH SIZE=0.05 

@CLEAR 

2 

4 

TO 

63 

@ 

 

******************** MESH GROUPING **************** 

 

*** X-AXIS 

GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, 

     NCTOLERA=1E-05 SUBSTRUC=0 GROUP=1 

MIDNODES=CURVED, 

     XO=0 YO=0 ZO=0, 

     XYZOSYST=SKEW 

@CLEAR 

200 

TO 

206 

@ 

 

*** X-AXIS "SYMMETRY LINE" 

GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, 

     NCTOLERA=1E-05 SUBSTRUC=0 GROUP=3 

MIDNODES=CURVED, 

     XO=0 YO=0 ZO=0, 

     XYZOSYST=SKEW 

@CLEAR 

1 

3 

@ 
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*** Y-AXIS 

GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, 

     NCTOLERA=1E-05 SUBSTRUC=0 GROUP=2 

MIDNODES=CURVED, 

     XO=0 YO=0 ZO=0, 

     XYZOSYST=SKEW 

@CLEAR 

5 

TO 

33 

35 

TO 

63 

100 

TO 

158 

@ 

 

*** Y-AXIS, "SYMMETRY LINE" 

GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, 

     NCTOLERA=1E-05 SUBSTRUC=0 GROUP=4 

MIDNODES=CURVED, 

     XO=0 YO=0 ZO=0, 

     XYZOSYST=SKEW 

@CLEAR 

2 

4 

501 

502 

@ 

 

*** Y-AXIS, SUPPORT 

GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, 

     NCTOLERA=1E-05 SUBSTRUC=0 GROUP=5 

MIDNODES=CURVED, 

     XO=0 YO=0 ZO=0, 

     XYZOSYST=SKEW 

@CLEAR 

34 

@ 

 

****************************************************** 

******************************************************

***************** TIMEFUNCTIONS ******************** 

****************************************************** 

****************************************************** 

 

TIMESTEP NAME=DEFAULT 

@CLEAR 

39010 1     

@     

      

TIMEFUNCTION NAME=1 IFLIB=1   

@CLEAR 

0 0     

0 0     

10 1     

20 0     

39010 0     

@     

     

TIMEFUNCTION NAME=2 IFLIB=1   

@CLEAR      

0 0     

10 0     

20 1     

30 0     

39010 0     

@     

  

TIMEFUNCTION NAME=3 IFLIB=1   

@CLEAR      

0 0     

20 0 

30 1     

40 0     

39010 0     

@     

     

TIMEFUNCTION NAME=4 IFLIB=1   

@CLEAR      

0 0     

30 0     

40 1     

50 0     

39010 0     

TIMEFUNCTION NAME=5 IFLIB=1   

@CLEAR      

0 0     

40 0     

50 1     

60 0     

39010 0     

@ 

      

TIMEFUNCTION NAME=6 IFLIB=1   

@CLEAR      

0 0     

50 0     

60 1     

70 0     

39010 0     

@      

     

TIMEFUNCTION NAME=7 IFLIB=1   

@CLEAR      

0 0     

60 0     

70 1     

80 0     

39010 0     

@     

     

TIMEFUNCTION NAME=8 IFLIB=1   

@CLEAR      

0 0     

70 0     

80 1     

90 0     

39010 0     

@     

     

TIMEFUNCTION NAME=9 IFLIB=1   

@CLEAR      

0 0     

80 0     

90 1     

100 0     

39010 0     

@     

     

TIMEFUNCTION NAME=10 IFLIB=1   

@CLEAR      

0 0     

90 0     

100 1     

110 0     

39010 0     

@   

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

TIMEFUNCTION NAME=3740 IFLIB=1   

@CLEAR      

0 0     

38880 0     

38890 1     

38900 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3741 IFLIB=1   

@CLEAR      

0 0     

38890 0     

38900 1     

38910 0     

39010 0     

@      
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TIMEFUNCTION NAME=3742 IFLIB=1   

@CLEAR      

0 0     

38900 0     

38910 1     

38920 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3743 IFLIB=1   

@CLEAR      

0 0     

38910 0     

38920 1     

38930 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3744 IFLIB=1   

@CLEAR      

0 0     

38920 0     

38930 1     

38940 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3745 IFLIB=1   

@CLEAR      

0 0     

38930 0     

38940 1     

38950 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3746 IFLIB=1   

@CLEAR      

0 0     

38940 0     

38950 1     

38960 0     

39010 0     

@     

     

TIMEFUNCTION NAME=3747 IFLIB=1   

@CLEAR      

0 0     

38950 0     

38960 1     

38970 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3748 IFLIB=1   

@CLEAR      

0 0     

38960 0     

38970 1     

38980 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3749 IFLIB=1   

@CLEAR      

0 0     

38970 0     

38980 1     

38990 0     

39010 0     

@      

     

TIMEFUNCTION NAME=3750 IFLIB=1   

@CLEAR      

0 0     

38980 0 

38990 1 

39000 0 

39010 0 

@ 

 

 

 

 

 

 

****************************************************** 

******************************************************

***************** LOAD APPLICATION ***************** 

****************************************************** 

****************************************************** 

 

LOAD FORCE NAME=1 MAGNITUD=120000 FX=0, 

     FY=0 FZ=-1 

 

APPLY-LOAD BODY=0 

@CLEAR 

 

1       'FORCE' 1 'POINT'   111   0   1   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

2       'FORCE' 1 'POINT'   110   0   2   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

3       'FORCE' 1 'POINT'   109   0   3   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

4       'FORCE' 1 'POINT'   108   0   4   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

5       'FORCE' 1 'POINT'   107   0   5   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

6       'FORCE' 1 'POINT'   106   0   6   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

7       'FORCE' 1 'POINT'   105   0   7   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

8       'FORCE' 1 'POINT'   104   0   8   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

9       'FORCE' 1 'POINT'   103   0   9   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

10       'FORCE' 1 'POINT'   102   0   10   0   0   -1   0   0   0   'NO', 

             0   0   1   0   'BOTH' 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

3740       'FORCE' 1 'POINT'   97   0   3740   0   0   -1   0   0   0        

'NO', 0   0   1   0   'BOTH' 

3741       'FORCE' 1 'POINT'   96   0   3741   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3742       'FORCE' 1 'POINT'   95   0   3742   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3743       'FORCE' 1 'POINT'   94   0   3743   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3744       'FORCE' 1 'POINT'   93   0   3744   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3745       'FORCE' 1 'POINT'   92   0   3745   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3746       'FORCE' 1 'POINT'   91   0   3746   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3747       'FORCE' 1 'POINT'   90   0   3747   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3748       'FORCE' 1 'POINT'   89   0   3748   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3749       'FORCE' 1 'POINT'   88   0   3749   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

3750       'FORCE' 1 'POINT'   87   0   3750   0   0   -1   0   0   0   

'NO', 0   0   1   0   'BOTH' 

 

****************************************************** 

******************************************************

********************** ANALYSIS ********************* 

****************************************************** 

****************************************************** 

 

********************* ANALYSIS ********************** 

 

MASTER ANALYSIS=STATIC MODEX=EXECUTE 

TSTART=0.00000000000000 IDOF=0, 

     OVALIZAT=NONE FLUIDPOT=AUTOMATIC 

CYCLICPA=1 IPOSIT=STOP, 

     REACTION=YES INITIALS=NO FSINTERA=NO 

IRINT=DEFAULT CMASS=NO, 

     SHELLNDO=AUTOMATIC AUTOMATI=ATS 

SOLVER=SPARSE, 

     CONTACT-=CONSTRAINT-FUNCTION 

TRELEASE=0.00000000000000, 

     RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-

PEN=NO SINGULAR=YES, 
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     STIFFNES=0.000100000000000000 MAP-OUTP=NONE 

MAP-FORM=NO, 

     NODAL-DE='' POROUS-C=NO ADAPTIVE=0 ZOOM-

LAB=1 AXIS-CYC=0, 

     PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO 

STABILIZ=NO, 

     STABFACT=1.00000000000000E-10 RESULTS=PORTHOLE 

FEFCORR=NO, 

     BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO 

DEGEN=YES TMC-MODE=NO, 

     ENSIGHT-=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO 

ESINTERA=NO, 

     OP2GEOM=NO 

 

******************* SAVE RESULTS ******************* 

          

PRINT-STEPS SUBSTRUC=0 REUSE=1 

@CLEAR 

1 1 260 259 

2 260 39000 260 

@ 

 

NODESAVE-STE ELEMSAVE=NO 

@CLEAR 

1 1 260 259 

2 260 39000 260 

@ 

 

ELEMSAVE-STE NODESAVE=NO 

@CLEAR 

1 1 260 259 

2 260 39000 260 

@ 

 

******************** LOGGFILE *********************** 

 

CONTROL UNDO=-1 AUTOMREBUILD=NO 

FILEECHO OPTION=FILE F=loggfil.ut 

FILELOG OPTION=FILE F=loggfil.ut 

 

DATABASE SAVE PERMFILE='1.idb' PROMPT 

 

*********************** END ************************** 

 


