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ABSTRACT

The use of 3D finite element (FE) analysis has increased substantially in recent years
for design of reinforced concrete slabs. A common problem in this type of analysis is
the occurrence of unrealistic force concentrations, caused by concentrated forces or
supports. These concentrations may not be as critical in reality due to the non-linear
response of reinforced concrete and introducing methods for estimating this more
favourable force distribution is therefore of interest. Recently, guidelines of how to
treat this problem have been presented in the literature.

The aim of this Thesis was to examine how force concentrations in linear elastic FE
analysis can be redistributed to better simulate the real behaviour of a structure. Focus
was directed towards moment distribution in the serviceability limit state, where
different scenarios which may appear in real structures were examined. An objective
was also to evaluate the recommendations given by the present guidelines.

The main instrument for the studies conducted in this Thesis was non-linear FE
analysis. A beam grillage model, in liaison with multi-linear moment-curvature
relations that defined the material response, was utilized. However, difficulties arose
regarding the choice of the torsional stiffness and how it should be implemented in
such an analysis. A parametric study demonstrated that the behaviour of a beam
grillage model is highly dependant on the torsional stiffness adopted. However, even
with conservatively chosen values of the torsional stiffness, the recommendations
given in the literature were still shown to be conservative.

The aim of this Thesis was also to study how cyclic loading influences the
development of plastic rotation in reinforced concrete slabs. The objective was to
study how the plastic rotation accumulates and develops with an increased number of
load cycles, different load combinations and varying load magnitudes.

The studies showed that the structures in this Thesis adapted to the moving forces and
thus the influence of the forces decreased as the number of load cycles increased.
Further, the analyses of moving forces demonstrated that such repetitive load
combination yields significantly more damage to a structure than static forces of the
same magnitudes. A superposition approach was finally proposed for estimating
future development of plastic rotations, caused by moving concentrated forces.

Key words: Non-linear 3D FE analysis, reinforced concrete slabs, concentrated forces,
moment distribution, cumulative plastic rotation, beam grillage model
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SAMMANFATTNING

Anvandningen av tredimensionella finita elementanalyser (FE-analyser) har Okat
kraftigt under de senaste aren. Ett vanligt problem vid dessa typer av analyser &r
forekomsten av orealistiskt stora koncentrationer av pakéanningar fran koncentrerade
laster eller stod. Dessa koncentrationer &r inte nddvandigtvis kritiska for verkliga
konstruktioner pa grund av det olinjara verkningssatt som armerad betong uppvisar.
Det ar saledes av intresse att studera och introducera metoder som tar hansyn till den
verkliga konstruktionens mer fordelaktiga spridning av pakanningar. Riktlinjer for hur
dessa fragestallningar ska behandlas har nyligen presenterats i litteraturen.

Syftet med detta examensarbete var att studera hur kraftkoncentrationer i
linjarelastiska FE-analyser kan omférdelas for att battre simulera en konstruktions
verkliga beteende. Fokus har riktats mot momentférdelning i bruksgranstillstand dar
olika scenarier som kan forekomma i verkliga konstruktioner studerades. Avsikten var
att utvardera de aktuella rekommendationer som presenterats i litteraturen.

Verktyget for de studier som genomforts i detta examensarbete var ickelinjara FE-
analyser dar multilinjara moment-krokningssamband definierade materialresponsen i
balkrostmodeller. Svarigheter patraffades emellertid géallande valet av vridstyvhet och
hur den ska behandlas i vald modell. En parameterstudie visade att beteendet, till hdg
grad, styrs av vridstyvheten. Fastan en lag vridstyvhet valdes, visades det att de
rekommendationer, givna i litteraturen, &r konservativa.

Syftet var ocksa att studera inverkan av rorlig cyklisk belastning och hur den paverkar
utvecklingen av plastisk rotation i armerade betongplattor. Avsikten var att studera
hur plastisk rotation ackumuleras och utvecklas for ett 6kande antal lastcykler, olika
lastkombinationer och varierande laststorlekar.

Genomforda studier visade att undersokta konstruktioner anpassades till den skada
som de cykliska lasterna gav upphov till samt att lasternas inverkan pa skade-
utvecklingen minskade da antalet lastcykler okade. Analyser pavisade ocksa att
cykliska laster ger upphov till betydligt stérre skada &n motsvarande statiska laster. En
metod baserad pa superposition introducerades i detta examensarbete for estimering
av framtida utveckling av plastisk rotation, orsakad av rorlig cyklisk belastning.

Nyckelord: 3D finit elementanalys, armerade betongplattor, koncentrerade laster,
momentfordelning, ackumulerad plastisk rotation, balkrostmodell
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Notations

Roman upper case letters
A Area
A Area of reinforcement

E Young’s modulus

E. Young’s modulus for concrete

E Young’s modulus for uncracked state
E; Young’s modulus for steel

F External force

Fe Force in concrete

Fs Force in steel

Fs. Force in steel in state |

G Shear modulus

GC  Gravity centre

I Moment of inertia

I Moment of inertia in state |
I Moment of inertia in state I
Ky Torsional stiffness

L Length
L. Characteristic span width
M Moment

M Cracking moment
My Moment at yielding
My Ultimate moment
My Plastic moment

Me| Elastic moment

Q Axle load

R Reaction force

R Resultant force

T Torsional moment

\Y Shear force

VEg Design value of shear
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Roman lower case letters
Distance
Width of cross-section

a
b
b Width of concentrated force
c Concrete cover

d Effective depth of cross-section

d Distance between concentrated forces
fec Concrete compressive strength

fet Concrete tensile strength

fam  Mean value of concrete tensile strength

fi Steel strength in tension

fy Yield stress of reinforcing steel

h Height of cross-section

h Slab thickness

k; Modification factor for rotation capacity
I Length

lpi Development length of a plastic region
m Moment per unit width

me  Cracking moment per unit width
myg  Ultimate moment capacity per unit width
My, Torsional moment per unit width
n Number of load cycles
Ny Number of load cycles to failure
q Distributed load

Displacement
r Radius of curvature
t Thickness of the surfacing
W Distribution width
Wee  Effective distribution width

X Coordinate

X Height of compression zone

Xu Height of compression zone in the ultimate state
X0 Distance between maximum and zero moment
y Coordinate

Yes Distance from the centre of the load to the critical cross-section
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z Distance from gravity centre
z Coordinate

Greek lower case letters

a Ratio between stiffness in two direction

Os Ratio between Young’s Modulus for reinforcement and concrete

OR Stress block factor

aq Adjustment factor

ag Adjustment factor

i Constant depending on width to height ratio of a rectangular cross-section
Br Stress block factor

Bo Adjustment factor

y Ratio

Ratio between average and maximum moment
e Strain
& Concrete strain

Ece Concrete compression strain
g  Concrete strain at cracking
Eeu Ultimate concrete strain

&s Steel strain

&y Yield strain

Esu Ultimate steel strain

Eel Elastic strain
&pl Plastic strain
0 Angle

Opi Plastic rotation
Ona  Design value of plastic rotation
Org Plastic rotation capacity

A Shear slenderness

U Factor

v Poisson's ratio

o Stress

oc Concrete stress

oc.| Concrete stress in state |
ocn Concrete stress in state 11
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Oct
Os
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Os.l1

Xer
Xy

Xel
Apl
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Concrete tensile stress
Steel stress

Steel stress in state |
Steel stress in state 11
Angle of twist
Curvature

Curvature at cracking
Curvature at yielding
Ultimate curvature
Elastic curvature
Plastic curvature
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1 Introduction

This chapter covers the background, scope, method and limitations of this Thesis.
Further, the outline of the report is presented.

1.1 Background

Structural engineers have in the past used traditional design tools such as analytical
two-dimensional (2D) analysis for the design of reinforced concrete bridge deck slabs.
However, with increased computational power and software development, the use of
three-dimensional (3D) finite element (FE) analysis has increased substantially in
recent years. The advantage of such analyses is the possibility for a more accurate
approximation of the structural response. The introduction of FE analysis has,
however, introduced problems that were not present in traditional 2D analysis. A
common problem in linear elastic FE analysis is unrealistic force concentrations
caused by concentrated forces or supports, such as columns. These force
concentrations may not be as critical in reality due to the non-linear behaviour of
reinforced concrete. In reality, a redistribution of forces will take place which can be a
result of cracking of concrete and yielding of reinforcement. Hence, in a real
structure, there will normally be a considerably more favourable force distribution
than what is obtained from a linear elastic FE analysis.

It is possible to create a more realistic approximation of the structural behaviour with
the help of a more advanced FE model that takes the non-linear behaviour of
reinforced concrete into account. This will however require an iterative and thus more
time-consuming procedure which may not be feasible for design of an ordinary civil
engineering structure. It is therefore important to understand how force concentrations
obtained from linear elastic analysis should be distributed in the design process.
Guidelines have recently been presented in Pacoste et al. (2012) on how to treat this
problem. These recommendations are however believed to be conservative and a
literature study performed by Pacoste et al. show that a very small amount of studies
within the field have been documented. A too conservative method yields unnecessary
use of materials together with economic and environmental losses which motivates
further studies within the field.

This project is a continuation of a previous Master Thesis on the subject, Lim (2013).
That Thesis was mostly directed towards the ultimate limit state and studied the
plastic rotation in a cantilever slab exposed to concentrated forces. Lim gave
recommendations for further studies within the area where one such recommendation
was to study the effect of moving load; in order to study in what way it might affect
the total need of plastic rotation. A moving load can for instance be a traffic load on a
bridge structure.

1.2 Aim and objectives

The aim of this Thesis was to examine how the force concentrations in linear elastic
finite element analyses can be redistributed to better imitate the real behaviour of a
reinforced concrete slab. Focus was directed toward moment distribution in the
serviceability limit state (SLS). One objective was to improve understanding of how
cracking and varying stiffness in different directions would influence the moment
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distribution in the slab. For example, varying stiffness can be a product of different
reinforcement amounts in two main directions, or a product of different normal
stresses in those directions. In addition, the response of a single and two adjacent
concentrated forces were studied. Another objective was to evaluate the
recommendations in Pacoste et al. (2012).

The aim was also to study in which way a moving load would affect the total plastic
rotation in a reinforced concrete slab. The objective was to study how the plastic
rotation accumulates with the number of load cycles, load combinations and varying
load magnitudes.

1.3 Method

Tools for this project were linear and non-linear FE analyses. A large number of case
studies were of interest which motivated the choice of a numerically stable and
relatively simple analysing tool. It was therefore chosen to utilize a beam grillage
model, where multi-linear moment-curvature relations can be used as input. The use
of beam grillage models is a relatively common approach to analyse different types of
structures assuming a linear elastic response, while the method is uncommon for non-
linear analysis. However, the method is believed to yield a satisfactory approximation
of the non-linear behaviour of reinforced concrete for the studies conducted in this
Thesis. The finite element software used was the student version of ADINA (2012).

In this Thesis, simple structures were examined and the knowledge gained from these
was aimed to enable understanding of more complex structures. Two different types
of structures were chosen, a cantilever slab and a simply supported one-way slab.

For studies related to moment distribution in SLS, a number of cases were studied
which were intended to represent scenarios which may appear in a reinforced concrete
bridge. Examples of such cases are varying reinforcement amounts in different
directions and the effect of normal stresses in the slab. Multi-linear moment-curvature
relations were constructed to approximate the non-linear behaviour of reinforced
concrete and the solutions were compared with the isotropic and orthotropic linear
elastic solutions.

For studies related to cumulative plastic rotation, bilinear moment-curvature relations
were used as input, where the second branch of the relation was intended to represent
yielding of reinforcement. A value of the plastic rotation capacity was calculated and
concentrated forces were modelled such that they moved across the slab along a
chosen path. The slab was then exposed to several load cycles until it reached its
calculated rotation capacity. Several cases were studied including varying load
magnitudes and varying distance between two concentrated forces.

1.4 Limitations

Due to the limited time of this Master’s Thesis, only a small selection of structures
and different load combinations were examined. Focus was directed toward bending
action in the slab; hence shear forces and displacements were not discussed. In this
Thesis, the effect of creep and shrinkage was not taken into account, which may have
a significant effect. Further, all analyses in this Thesis are static and do not take into
account the dynamic response. No tests of real structures have been performed in
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order to verify the FE models, but they are assumed to describe the reality to a
satisfactory extent.

1.5 Outline of the report

The first part, Chapter 2, states basic background theory of reinforced concrete. The
material response of plain concrete and reinforcing steel is discussed and expanded to
how a moment-curvature relation for a reinforced concrete beam can be simplified.
Further, reinforced concrete slabs are categorised and torsional forces in slabs are
discussed.

In Chapter 3, finite element models for slabs are discussed, which include shell
element models and beam grillage models. The recommendations for moment
redistribution for linear elastic FE analyses given in Pacoste et al. (2012) are
presented. Further, traffic load models stated in Eurocode are presented.

Chapter 4 and 5 treats moment distribution in SLS for a cantilever slab and a simply
supported one-way slab, respectively. The methodology used when constructing the
moment-curvature relations is explained and the results from the analyses performed
are presented. In Chapter 4, the influence of the torsional stiffness of the beam
elements in the beam grillage model is discussed.

Chapter 6 and 7 treats cumulative plastic rotation for a cantilever slab and a simply
supported one-way slab, respectively. The bilinear moment-curvature relations used
as input are presented and a plastic rotational capacity is calculated. Further, the
results from the analyses performed are presented.

The results from Chapter 4 to 7 are discussed in Chapter 8, where observations and
comparisons are made.

Finally, concluding remarks and recommendations for further studies are presented in
Chapter 9.
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2 Structural response of reinforced concrete

This chapter covers the material response of reinforcing steel and concrete. The
material response of these two materials is also expanded to structural response of
reinforced concrete beams and slabs. The different states of concrete from first
loading to failure and the development of plastic rotation and the plastic rotation
capacity of a cross-section is also treated in this chapter.

2.1 Material response

Concrete is a complex material with a wide range of stress-strain relationships
depending on the concrete strength class. Since concrete is a brittle material, it will
crack for relatively low stresses in the magnitude of 2-4 MPa, while the strength in
compression is considerably higher. Common structural concrete have an axial
compressive strength in the range of 20-50 MPa. A typical stress-strain relation for
axially loaded plain concrete is illustrated in Figure 2.1a. For characteristic strength
values of concrete, the reader is referred to Eurocode 2, CEN (2004).

Reinforcing steel has a pronounced linear elastic behaviour up to a certain stress
where the steel starts to yield. When the yield stress f, is reached, the reinforcing steel
will develop plastic deformations. Reinforcing steel of grade B or C exhibits a
pronounced strain hardening effect when the steel is loaded beyond the yield stress.
The stress-strain relationship for typical hot-rolled reinforcing steel (class B and C)
are shown in Figure 2.1b. For characteristic strength values of reinforcing steel the
reader is referred to Eurocode 2.

Oa

******* e
(a) (b)

Figure 2.1 Typical stress-strain relationship for: (a) plain concrete (b) hot-rolled
reinforcing steel of class B or C in tension.

When unloaded, both steel and concrete will have unloading curves as shown in
Figure 2.2. If a second load cycle is initiated the load will follow a similar path to the
original stress-strain curve. The dashed line in the figure represents an approximation
for both steel and concrete where the unloading and reloading follows the same curve.
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Reloading _ /)
Unloading

(a) (b)

Figure 2.2 Typical unloading and reloading behaviour for: (a) concrete, and (b)
hot-rolled reinforcing steel of class B or C in tension.

2.2 Structural response of beams

This section will, as an introduction of the structural response of reinforced concrete,
cover the response of reinforced concrete beams since it is the most comprehensive
structure to analyse in a simplified way. The theories presented in this section can be
expanded to more complex structures, such as slabs.

2.2.1 Introduction to local and global response

The nature of reinforced concrete is a highly non-linear behaviour as shown in
Section 2.1. The structural response of a reinforced concrete member is influenced by
the structural response of the two constituent materials and the interaction between
them. The most pronounced non-linear behaviour is derived from cracking of concrete
and yielding of reinforcement.

The response of a reinforced concrete member can be divided into local and global
response. The local response is the structural response of the cross-section in a single
section of the beam and is determined by the relationship between the moment and the
average curvature in that particular section. The sum of all local responses yields the
overall behaviour of the beam i.e. the global response. The curvature y of a cross-
section is the inclination of the local deformation, i.e. strain ¢, shown in Figure 2.3
and Equation (2-1).
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Figure 2.3  Relation between deformation and curvature.

(2-1)

Where: y = curvature
= radius of curvature
= concrete strain

= reinforcement strain
= effective depth of the cross-section

When loaded until failure, the beam illustrated in Figure 2.3 will go through three
stages; State | (uncracked state), State Il (cracked state) and State Il (ultimate state)
according to Eurocode 2, CEN (2004). If the applied moment and the corresponding
curvature are plotted, the three states mentioned above are clearly visible as can be
seen in Figure 2.4.

M M
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State 111 /) 77 State IIl >~
/
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Figure 2.4 Response of a reinforced concrete member subjected to bending
illustrated (a) the moment-curvature relation and (b) a simplified model
for a combination of State I, Il and I1I.

2.2.2 Uncracked state (State I)

The uncracked state (State 1) is characterised by a linear behaviour of the cross-
section. The curvature of the cross-section increases linearly with the applied bending
moment, which is also reflected by the global response. It is generally assumed that
the reinforcement have a small impact on the behaviour of the cross-section in the
uncracked state. This is an assumption which underestimates the stiffness of the
uncracked section since the stiffness can be increased by more than 20 % when the
reinforcement is included, depending on the reinforcement amount, according to
Engstrom (2011).
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Figure 2.5 Internal forces, stresses and strains for a reinforced concrete cross-
section in State 1.

In order to evaluate the uncracked reinforced concrete section, illustrated in
Figure 2.5, as is introduced as a factor between the stiffness of the reinforcement and
the concrete, using the latter as the reference stiffness:

as = — (2-2)

Where: «a. = stiffness factor

S

E. = Young’s modulus for reinforcing steel

E. = Young’s modulus for concrete

The concrete stresses are calculated as:

M
Oc| (2) = |_ "z (2-3)

Where: o,, = concrete stress at the level z
M = Dbending moment at the considered section
z  =distance from the gravity centre, see Figure 2.5
I, =moment of inertia for a State | cross-section

The steel stress is calculated according to Equation (2-4) and can be calculated as a
resulting force according to Equation (2-5).

05 =00, (Zs) (2'4)
I:s.l =0y & (2'5)
Where: o, = steel stress in State |
z, = distance from the gravity centre to the reinforcement
F,, = resultant steel force in State |
A, =reinforcement area
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The moment-curvature relation for a State I model can be calculated according to
Equation (2-6) and is shown in Figure 2.6.

M., (2-6)

lcr:a

Where: y, = curvature at cracking in State |

M, = moment corresponding to cracking of the cross-section
E, = Young’s modulus in State |
M
A
M, ————-
- Ve
Ve
Ve
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Ve
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State [

| | |

i L ™

Figure 2.6  Moment-curvature relation for a State | model.

2.2.3 Cracked state (State I1)

The cracked state (State I1) is initiated when the concrete cracks. This will be the case
when the stress in the outermost fibre of the cross-section reaches the tensile strength
of the concrete f... The local response of the reinforced concrete section in a State 1l
model is, just as in a State | model, characterised by a linear behaviour.

The stiffness of a cracked reinforced concrete section is less than for an uncracked
section. The effect of this can be seen in Figure 2.4 where the inclination of the line in
the moment-curvature diagram is decreased when Stage Il is initiated. There is a
horizontal leap from State | to State Il at the cracking moment. This is because the
State Il model assumes all local cross-sections of the global structure to be fully
cracked, this is however not the case in a real structure.

As in the State 1l model, the stiffness in a real structure decreases when the concrete
cracks. However, the decrease in stiffness does not occur immediately at the cracking
moment M., due to a phenomenon called tension stiffening. As can be seen in
Figure 2.7, there are still uncracked sections between the cracks that occur at the
cracking moment. These uncracked sections are still in State | and will therefore
contribute to the global stiffness positively. As a result, the State Il model
overestimates the overall deformations. When the moment is increased, the number of
fully cracked sections will increase and thus approaching the assumption of a fully
cracked member. The effect of tension stiffening can be incorporated in a simplified
model as can be seen in Figure 2.7b.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



State 111

/
//Sta[e 1

’/////////////////////////A

i >
X

(a) (b)

Figure 2.7 Influence of tension stiffening: (a) beam in state I (b) a simplified model
including tension stiffening.

The State Il model contains limitations related to steel stress and concrete
compressive stresses. The model is limited to steel stresses up to yielding f, and
compressive stresses up to 50 % of the concrete compressive strength f; according to
Engstrom (2011). If this is the case, it is preferable to analyse the reinforced concrete
section with a State 111 model that allows a non-linear material response of concrete
independently of the response of the reinforcement.

&S &el 0-:0'45/2
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Figure 2.8 Internal forces, stresses and strains for a reinforced concrete cross-
section in State II.
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The concrete stresses in State Il are calculated in a similar manner as for the State |
model:

o (2) =

M
I—' z (2-7)

Where: o, =concrete stress at the level z in State I
I, = moment of inertia for a State Il cross-section

The steel stress is calculated according to Equation (2-8) and can be calculated as a
resulting force according to Equation (2-9).

Gs.ll = asgc.ll (Zs) (2'8)
Foi =0 A (2-9)
Where: o., = steel stress in State Il

sl

F., =resultant steel force in State Il

s.ll

10 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



The moment-curvature relation for a State Il model can be calculated according to
Equation (2-10) and is shown in Figure 2.9.

2= Ee (2-10)
X)’
Where: y, = curvature at reinforcement yielding in State I
X, = height of the compressive zone related to the moment at which the

reinforcement starts to yield

&, = concrete strain
M
A
M+ -
State I1
M,
/
| | |
n L

Figure 2.9 Moment-curvature relation for a State 11 model.

2.2.4 Ultimate state (State 111)

The ultimate state (State Ill) is initiated when the reinforcement starts to yield or
when the concrete stress reaches its compressive strength. The capacity of the cross-
section can be increased due to a decreased height of the compression zone, or due to
the positive effect of strain hardening of the tensile reinforcement. The ultimate
capacity of the cross-section is assumed to be reached when the tensile reinforcement
Is torn off or the concrete is crushed.

E’;’cg ‘%u U:fc

, | I
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Figure 2.10 Internal forces, stresses and strains for a reinforced concrete cross-
section in State IlI.

The concrete stresses in State Ill are calculated according to Equation (2-11) as a
resultant force of the non-linear stress profile shown in Figure 2.10.
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F. =ag f.bx (2-11)

Where: F, = resultant concrete force for State 111 concrete
a, = stress block factor
f. = concrete compressive strength
b = width of the cross-section
X = height of the compressive zone, see Figure 2.10

The values of the stress block factors, ar and S, varies as a function of the concrete
compressive strain ¢. The values of the stress block factors for the ultimate
compressive strain ¢, for normal strength concrete (C12/16-C50/60) are stated in
Equation (2-12) and (2-13). For stress block factors for concrete compressive strains
other than the ultimate compressive strain, the reader is referred to Engstrom (2011).

o, =0.810 (2-12)
B, =0.416 (2-13)

The reinforcing steel is assumed to be yielding in the State 11l model and the steel
stress is therefore replaced by the yield stress f, according to:

Fo=1,A (2-14)
Where: F, = resultant steel force
f, = steel yield stress

The moment-curvature relation for a State 111 model can be calculated according to
Equation (2-15) and is shown in Figure 2.11.
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Figure 2.11 Moment-curvature relation for a State 111 model.

= Ea (2-15)
u
Where: y, = ultimate curvature in State Il
X, = height of the ultimate compressive zone
g, = ultimate concrete strain

Ccu

12 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



Note that the plastic curvature will propagate over a plastic region. This is covered in
Section 2.2.6.

2.2.5 Simplified non-linear behaviour

The non-linear moment-curvature relationship for reinforced concrete shown in
Figure 2.4 can be simplified to multiple linear curves as shown in Section 2.2.1 to
2.2.4. These curves can be used as input data for finite element analysis in order to
model the non-linear behaviour of reinforced concrete. Figure 2.12 illustrates how
these curves can be combined in order to capture this behaviour from first loading, to
cracking of the concrete, yielding of the reinforcement and finally failure of the
structure.

M M M

State 111

State I /.é'/tate I ”/State 1 State IT ’,’/Slate 1

() (b) (c) *

Figure 2.12 Linear, trilinear and quadlinear models used for reinforced concrete in
a: (a) State I, (b) State 11 and (c) State 11 model.

2.2.6 Plastic rotation capacity

The reason for a collapse of a reinforced concrete member can either be derived from
local or global failure. In order to develop a global failure, the structure needs to have
sufficient plastic rotation capacity. If the structure does not have sufficient plastic
rotation capacity, local failure, such as crushing of concrete or reinforcement rip off
will take place and cause a global collapse.

In the yield line theory, plastic hinges are assumed to be concentrated to singular
points with no propagation along the member in the global structural analysis model,
Engstrom (2011). The response of the structure is assumed to behave linear elastically
between the plastic hinges that are formed. The plastic hinges are considered as single
or double, depending on where in a member it forms, see Figure 2.13. Single plastic
hinges can be formed in fixed ends, such as cantilever supports while double plastic
hinges can be formed in the span of a beam or over an inner support of a continuous
structure.

}%f\ W 0 0,
o, 6,
(a) (b) (c)

Figure 2.13 Single and double plastic hinges formed in: (a) a cantilever support, (b)
the span of a simply supported beam, and (c) the mid-support of a
continuous beam.
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In a real structure, the plastic hinges will propagate over a certain length I, where the
tensile steel strain exceeds the yield strain, see Figure 2.14.

by
bury b2

Xy X, K
\—\XT—/
(a) (b)

Figure 2.14 (a) moment-curvature relationship for elastic-plastic and plastic case
and (b) plastic rotation development length over an inner support.

In case of a double plastic hinge, the total length of the plastic region is the sum of the
lengths Ipi1 and I and the total plastic rotation is in accordance the sum of the plastic
rotation 61 and Gy, see Figure 2.14b. The plastic rotation can be obtained by
integrating the plastic curvature over the propagation length of the plastic region Iy,
see Figure 2.14 and the following equations:

r (2-16)
0, = J’;(pldx
Where:
Ao =X~ Xy (2-17)
L =% =X, (2-18)
Where: 6, = plastic rotation

xp = plastic curvature

y  =curvature
x, =Yieldcurvature

= propagation length of a plastic region
X, = section x;
X, = section x;

Eurocode 2, CEN (2004), provides a simplified approach in order to estimate the
plastic rotation capacity of a reinforced concrete cross-section. This simplified
approach is based on the plastic rotation capacity as a function of the x,/d ratio.
Values of the plastic rotation capacity are presented in a diagram in Eurocode 2. Since
no explicit values are stated in Eurocode 2, an interpretation of the diagram is
presented in Figure 2.15, and the interpreted values are stated in Table 2.1. This
diagram is valid for reinforced concrete sections with a shear slenderness A=3, and
concrete strength classes with an upper limit of C90/105 and reinforcement steel of
ductility class B and C. For concrete strength classes C55/67 to C80/95, linear
interpolation should be used. The diagram yields conservative values of the plastic
rotation capacity and the positive effect of any transverse reinforcement is neglected.
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Reinforcement class A is not recommended if plastic rotation is demanded and is
therefore omitted in this section. For cross-sections with a shear slenderness 1 # 3, the
values from Figure 2.15 should be multiplied by a factor k; according to
Equation (2-19).
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Figure 2.15 Diagram representing the correlation between maximum allowable
plastic rotation, 64 and X,/d ratio for concrete sections of different
concrete strengths with reinforcement class B and C. This diagram is
valid for sections with a shear slenderness 1=3.

Table 2.1  Interpreted values from Eurocode 2 of the maximum allowable plastic
rotation 6y 4and x./d ratio for concrete sections of different concrete
strengths with reinforcement class B and C

Concrete 0,14 (X,/d =0) O o 0,14 (X,/d =0.45)
strength class [mrad] 0., Imrad] | x, /d [m] [mrad]

Sc ggé/%o 17.0 33.0 0.080 750

fé%%s/fds 17.0 32.5 0.045 4.50

sC ggé/ﬁb 6.50 13.5 0.160 5.50

scégsbslﬁ)’s 6.50 13.0 0.080 3.00

The plastic rotation capacity increases with increasing x,/d ratio for small values of
X,/d up to a certain break point. The reason for this behaviour is that for small values
of x,/d, the plastic rotation capacity is limited by the ultimate steel strain &y. For
higher values of x,/d, i.e. after the breaking point, the rotation capacity is limited by
the ultimate concrete strain &y.
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According to Eurocode 2, CEN (2004), for shear slenderness values other than 1=3,
the plastic rotation capacity 6,4 can be calculated as:

Org =K10p14 (2-19)
Where:
A
k, = \/; (2-20)
X
A=-2 2-21
r (2-21)

Where: 6,, = plastic rotation capacity

0, = Pplastic rotation capacity according to Figure 2.15

k, = modification factor

A =shear slenderness

X, = distance between the considered maximum moment section and the
adjacent zero moment section after plastic redistribution, see
Figure 2.16

d = effective depth of the considered cross-section

My

[

Figure 2.16 Example of distance between maximum and zero moment X and effective
depth of the considered cross-section d, after plastic redistribution.

In order to simplify Equation (2-21), Eurocode 2 provides a possibility to estimate the
shear slenderness A based on the design forces and effective depth of the considered
Ccross-section as:

i_ MEd

Vo (2-22)

Where: M, = design value of bending moment
Vg, = design value of shear force

16 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



2.3 Structural response of slabs

This section covers the definition and categorisation of slabs, presented in
Eurocode 2, CEN (2004), that are used in this Thesis. Furthermore, the influence of
torsional forces in slabs and how these can be treated in analyses is covered.

2.3.1 Definition and categorisation

The structural response of a slab is different to that of a beam. The difference can be
derived from the transverse action that needs to be considered in a slab due to a high
width to height ratio. According to Eurocode 2, there is a strict difference in definition
between a beam and a slab that is specifically related to the relationship between the
width and the height of the cross-section. A slab is, by this definition, a structural
member with a width to height ratio, no smaller than 5. Furthermore, Eurocode 2
distinguishes between two types of slabs; one-way and two-way spanning slabs where
the first of the two is defined as:

“A slab subjected to dominantly uniformly distributed loads may be considered to be
one-way spanning if either:

- it possesses two free (unsupported) and sensibly parallel edges, or
- itis the central part of a sensibly regular slab supported on four edges with a
ratio of the longer to shorter span greater than 2.”

Since the definition presented in Eurocode 2 does not cover all possible cases, Pacoste
et al. (2012) defined a third category of slabs, predominantly one-way supported
slabs. The practical application of this third type is slab bridges where the slabs often
are supported by a combination of line supports (abutments) and point supports
(intermediate columns). The columns are arranged in such a way that the span is
significantly larger in one direction compared to the other, see Figure 2.17.
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(a) (b) (c)

Figure 2.17 Examples of bridge structures that can be interpreted as: (a) two-way
spanning slabs, (b) one-way spanning slabs and (c) predominantly one-
way spanning slabs, proposed by Pacoste et al. (2012).

The cantilever slab is also a frequently used structure in the bridge design community.
The difference between the type of slabs mentioned above and the cantilever slab is
that in the latter case, the loads are mainly carried in the transversal direction of the
bridge to the main load carrying structure.

Cantilever slabs can be observed in a vast range of structures. The most common
cantilever slab in buildings is the cantilevered balcony. In the bridge design
community, cantilever slabs are mainly found in composite bridges or concrete beam
bridges, see Figure 2.18.
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Figure 2.18 Cantilever slab in: (a) composite bridges and (b) concrete beam
bridges.

2.3.2 Torsional forces

The torsional stiffness has a significant influence on the structural behaviour and thus
the displacements of slabs. Torsion is particularly important for slabs which are
subjected to concentrated forces. However, there is little knowledge of the torsional
stiffness in slabs, especially in the cracked state (State II). In the ultimate limit state
(State I11), the torsional stiffness is usually omitted and the slab is considered to carry
the load only in the directions of the reinforcement which is sufficient to fulfil
equilibrium. However, in the service state, when there is a need to estimate the actual
moments experienced by the slab, the torsional stiffness has a significant role.

For members where the load is predominantly carried by bending, a relation between
uncracked and cracked stiffness in the range of 3-5 is reasonable. Since the stiffness
range is highly dependent on the reinforcement amount and the position of the bars,
the stiffness relation might therefore be outside of the above stated interval. However,
when torsion has a predominant role, this relation is no longer valid. Torsional
moments lead to a greater loss of stiffness in the cracked state than that of bending.
According to tests performed on a reinforced concrete slab in Lopes et al. (2014), the
torsional stiffness in a cracked state is about 1/17-1/15 of the stiffness in the elastic
state. BBK (2004) states that when calculating deformations caused by torsion in
reinforced concrete beams, the torsional stiffness should be reduced with a factor 0.3
of the elastic stiffness. This applies if flexural cracks are present and a factor 0.1
should be used if shear or torsional cracks are present.

If a beam grillage model is used for non-linear analysis, it is important to characterize
the torsional stiffness of the beams in order to receive a representative behaviour. It
was discussed in Lopes et al. that in numerical simulation, the torsional stiffness
adopted in the stiffness matrix of the finite element, greatly influence the slabs
deformation in both linear and non-linear analysis. However, it is complicated and
cumbersome to relate the torsional moment with angle of twist for beam elements in
the grillage model, particularly in the post-cracking state. The problem originates both
from the fact that bundled beams that are not attached to each other longitudinally
behave very differently from a solid section with the same total width, and that there
is little knowledge of the torsional stiffness in the cracked state.
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3 FE-modelling and traffic load application

This chapter covers background theory of possible ways to model slabs with the finite
element method. This chapter also covers load models on bridge structures provided
by Eurocode 1, CEN (2003), and the actual loads that can occur on real bridge
structures. As a final part of this chapter, current recommendations by Pacoste et al.
(2012) on how to redistribute moments from concentrated forces in different types of
slabs are covered.

3.1 Finite element models for slabs

In this Thesis, slabs are analysed using finite element models. The finite element
software used is the student version of ADINA (2012). Several approaches to model
reinforced concrete slabs exist. For instance, different types of elements can be
utilized which approximates the structural behaviour in different ways. In this Thesis,
the beam grillage model was chosen for non-linear analysis. In addition, linear elastic
shell element models were used for an early verification. However, fundamental
differences between the shell element model and the beam grillage model exist and
these will therefore not yield the same results even for matching input data. One of
these fundamental differences is how torsional moments are treated. The two different
types of models are illustrated in Figure 3.1.

Figure 3.1 (a) Shell element model, (b) Beam grillage model

3.1.1 Shell element models

In the early stages of ordinary reinforcement moment design, there is no knowledge of
the stiffness proportions in different directions of a slab. It can therefore be necessary
to start with a linear elastic isotropic model to acquire approximate reinforcement
amounts. The shell element model offers a simple way to model the behaviour of a
slab and the approach is widely used in both the bridge and building design
community. However, since the moment distribution is governed by stiffness, this
type of analysis will not yield the actual moment distribution experienced by the slab
since the behaviour is changed when reinforcement amounts are chosen. It is however
possible with shell elements, when reinforcement amounts are chosen, to perform a
second iteration with different stiffness in different directions corresponding to the
chosen reinforcement amount and layout. This can be made by manipulating the
Young’s modulus in different directions.
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A result of linear finite element analysis using shell elements is that unrealistic
concentrations of cross-sectional moments and shear forces occur. According to
Pacoste et al. (2012), there are mainly two simplifications of the reality that creates
these unrealistic force concentrations. The first of these two is geometrical
simplifications such as simplification of connections, supports and loads, which is
common in finite element analysis in order to save computation power and time.
When a support, or a concentrated force, is applied to a single node, a singularity is
introduced in the system and thus the solution. The second simplification is an
approximation of the mechanical properties of the chosen materials. It is often
assumed that reinforced concrete is an isotropic material and behaves linear
elastically. However, reinforced concrete shows a high degree of non-linear behaviour
due to cracking and crushing of concrete and yielding of reinforcement.

When a 3D linear elastic analysis is made for reinforcement design, calculated
sectional forces contain both bending and torsional moments, see Figure 3.2.

Figure 3.2  Bending and torsional moments acting on a shell element.

In reality, it is most common for the reinforcement to be arranged in grids with
reinforcement bars perpendicular to each other. This means that torsional moments
cannot be resisted effectively by the reinforcement. For simplicity, it is recommended
to transform the torsional moments into bending moments in the two main directions:

mrx,pos(neg) = mx + /u‘mxy‘ (3'1)
!
My, postnegy = My = — M, (3-2)
U
Where: = design reinforcement moment in x-direction

= design reinforcement moment in y-direction

mI’X
mfy
m, = bending moment in x-direction from the linear solution
m, = bending moment in y-direction from the linear solution
mXV

= torsional moment from the linear solution

u = factor that can be chosen with respect to practical considerations,
usually close to 1.0 or equal to 1.0

The indices pos and neg in the equations above refer to bottom and top reinforcement,
where for positive bending moments, a positive contribution from the torsional
moment should be added, and vice versa.

20 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



For analyses including shell elements in this Thesis, four-node isoparametric shell
elements were used. The element formulation used in ADINA is based on two main
assumptions, ADINA (2012):

e A line normal to the midsurface of the element that is originally straight
remains straight during deformations.
e The stress in the direction normal to the midsurface of the structure is zero.

Newton-Cotes integration method is used over the thickness of the shell elements with
7 integration points, while Gauss integration method is used over the width of the
elements with two integration points in both directions.

3.1.2 Beam grillage models

In order to model the non-linear behaviour of reinforced concrete slabs, the Thesis
utilizes a method offered in ADINA where non-linear moment-curvature relations are
used as input for beam elements which are used in a beam grillage model. The method
offers a simplified approach to model the non-linear response due to cracking and
yielding of reinforcement. Each section can be in different states regarding the
reinforced concrete response, see Figure 3.3. Each beam element can be given an
individual moment-curvature relation input, which yields the possibility to model
different behaviour in different directions.

L2V

Figure 3.3 Beam grillage model where different sections are in different states and
therefore in different levels in their corresponding moment-curvature
relationship.

The relevant inputs needed for this approach are the moment-curvature relations
around three axes. The three axes are illustrated in Figure 3.4 and are in ADINA
denoted s, t and r. The moment-curvature input for axes s and t correspond to flexural
bending while the input for r-direction corresponds to torsion and the input is
therefore named torsional moment versus angle of twist. The bending stiffness around
the t-axis will not affect the structural behaviour of a slab to a significant extent and
the input data for this parameter is therefore omitted in this section. Hence, when
moment-curvature input is further discussed in this Thesis, it is referred to bending
around the s-axis.
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Figure 3.4  Local coordinate system for a beam element in ADINA.

The use of a beam grillage models is believed to be an acceptable approximation of
the structural response for the analyses made in this Thesis. Even though more refined
models exist, where concrete and reinforcement is modelled separately, the beam
grillage model has the advantage of being more numerically stable.

The torsional behaviour of a beam, and thus also a beam grillage model, is different
from the torsional behaviour of a plate element, see Figure 3.5. It can therefore be
difficult to approximate the torsional stiffness that should be used as input for the
beam grillage model.

. e

P

Figure 3.5 Principle torsional moments for a shell element and a beam grillage
section.

As described in Lim (2013), the results obtained from the beam grillage model for the
linear elastic case were highly dependent on the density of the chosen mesh. The
torsional stiffness is highly dependent on the cross-sectional geometry, especially the
width of the cross-section, see Equation (3-3). Therefore, the torsional stiffness
changes with the mesh density as the cross-sectional width is chosen equal to the
spacing between the beams. With a coarser mesh, wider cross-sections of the beams
are obtained and therefore a significant increase of the torsional stiffness. It can
therefore be concluded that, in comparison to shell elements, an increased mesh
density does not lead to convergence.

e

K, = phb? (3-3)
Where: K, =torsional stiffness of a rectangular cross-section.
S =constant depending on the height to width ratio of the cross-section
h  =height of a rectangular cross-section

b =width of a rectangular cross-section
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For analysis involving beam elements in this Thesis, two-node elements were used.
The element is initially straight and is based on assumptions of a Hermitian beam
which neglects the effect of transverse shear deformations.

3.2 Traffic loads on bridges

There are numerous load models and load application types defined in standards that
are used in different parts of the world. This section focuses on the two most
commonly used vertical load models for vehicles (LM1 and LM2) presented in
Eurocode 1, CEN (2003). For additional applications and limitations for the two load
models, the reader is referred to Eurocode 1. Horizontal forces, such as breaking and
acceleration forces, are not covered in this Thesis and are therefore omitted in this
section.

3.2.1 Load model 1
Load model 1 (LM1) is presented in Eurocode 1 and is described as:

“Concentrated and distributed loads, which cover most of the effects of the traffic of
lorries and cars. This model should be used for general and local verifications”

Load model 1 consists of two partial systems. The first system consists of double-axle
concentrated loads where the load on each axle is defined as:

where aq is an adjustment factor which can be found in Eurocode 1. The load from

each axle pair is assumed to be distributed to two identical wheels, each consisting of
the concentrated load:

0.5 a4-Q (3-5)
where the contact surface of each wheel is a square with a side of 0.4 m. The second

system consists of uniformly distributed loads that only should be applied in the
unfavourable parts of the structure with a load according to:

aq ’ qk (3'6)

where o4 is an adjustment factor. The characteristic load values include the influence
of dynamic amplification and are presented in Table 3.1.

Table 3.1 Characteristic loads values valid for load model 1 Eurocode 1.

Location Axle loads Qi [kN] Dlsm?lliﬁ;jmlg]ads Qi
Lane Number 1 300 9
Lane Number 2 200 25
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Lane Number 3 100 2.5

Other lanes 0 2.5

Remaining area 0 2.5

Load model 1 is illustrated in Figure 3.6 where each lane has a width of 3 m.

0 Oy 09 Oy

U“qi ik
¥

1.2

0.5

2.0 D

0.5

0.4x0.4 @

[mgl
i)
m
=)

mlrm
[y
milm

/»J T

mlm
[y
mlm
g

®

ra ingl
i} CfT

Figure 3.6  Geometrical application for load model 1 (LM1), Eurocode 1.

3.2.2 Load model 2

Load model 2 (LM2), in comparison to load model 1, only consist of one single axle
load which can be applied at any location on the carriageway. The value of each axle
load is defined as:

ﬂQ 'Qak (3-7)

where Qa =400 kN which includes the influence of dynamic amplification and fq is
an adjustment factor. The load from the axle pair is assumed to be distributed to two
identical wheels, each consisting of the concentrated load:

0.5- B4 - Qu (3-8)

The contact surface for each wheel should be modelled as a rectangle of sides 0.35
and 0.6 m, see Figure 3.7.
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Figure 3.7 Geometrical application for load model 2 (LM2), Eurocode 1
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3.3 Measured traffic loads on bridges

A crucial part of ensuring a long service life of a bridge structure is to measure the
actual load levels that it is subjected to. A common approach to obtain this data today
Is to utilize the Weigh-in-Motion (WIM) technique, Zhou el al. (2014). WIM is a
device that is designed to capture and record axle weights and gross vehicle weights
as vehicles passes over a predefined measurement site. This technique is capable of
measuring vehicles travelling at normal speed and is therefore comprehensive for
measuring the loads acting on a bridge structure.

It is stated in Eurocode 1, CEN (2003) that bridge structures should be able to resist
the characteristic value for a 1000-year return period. This means that the probability
of the occurrence of one such load should be less than 5 % in a time period of 50
years. Since it is impossible to collect data for such time periods, smaller samples of
measurements and various extrapolation methods are used.

The load models presented in Eurocode 1 are based on WIM data collected in 1986 at
a WIM station on the heavy trafficked A6 motorway in Auxerre, France. The data
obtained from this two week period of measurements were used for calibrating the
characteristic values presented in Eurocode 1, Zhou el al. In a study conducted by
Zhou et al. the data from 1986 was compared with WIM data from a comparable
bridge, a bridge located on the A9 motorway in St Jean de Vedas, France. It was
shown from these results that the mean flow (vehicles per hour) had more than
doubled since 1986. The traffic composition showed that five-axle trucks and thus the
heavy traffic had a large increase during that time period. It was concluded that the
load models provided by Eurocode 1 still yields satisfying safety margin but it has
been reduced since the writing of the code due to changed regulations on weights and
dimensions of vehicles.

From what have been found in the literature study conducted in this Thesis, no WIM
results have given indications of higher total applied loads than what is predicted by
the load models provided by Eurocode 1. Siegert et al. (2008) studied the deflections
in the mid-span of a bridge during a 256 days period in 2004 and 2005. From the
obtained data, estimated values, based on a 1000 year return period, were presented
and compared with LM1, presented in Eurocode. The deflections from an LM1 model
yielded deflections 42 % greater than what was estimated by the study and the load
model was therefore considered as conservative in that isolated case.

Severe load events have, however, been observed which may cause local damages. An
extreme value was found in a study conducted by Treacy & Briihwiler (2013) which
was assumed to be derived from a special permission vehicle. This assumption was
based on the fact that the value was obtained on a Sunday when such loads usually are
permitted due to lesser traffic and safety reasons. It was also assumed by Nowak
(1993) that extremely heavy loaded trucks purposefully avoids routs with known
WIM stations and the data obtained for the severe loads might therefore be
underestimated. This indicates that loads of magnitudes higher than expected might
arise on a bridge structure during its service life.
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3.4 Redistribution of reinforcement moments

The moment distribution in a slab is more complex to predict compared to that of a
beam because of the transverse action. It is however necessary to make a reasonable
estimation of the moment distribution, both in the service state and the ultimate limit
state. The different states vary both in magnitude and shape of the moment
distribution due to the non-linear behaviour of concrete. In recent years, 3D finite
element analysis has become more frequently used for design of reinforced concrete
bridges. However, in linear elastic 3D analysis, some problems occur that was not
present in traditional 2D design. One such problem is how to treat force
concentrations which, for example, can be caused by concentrated loading or
concentrated supports, such as columns. Recently, guidelines on how to treat this
problem have been presented by Pacoste et al. (2012). These recommendations are
given as widths under which the total bending moment can be assumed to be
distributed, with a constant moment distribution over the width. These recommended
widths are based on old regulations such as Bro (2004) and BBK 04 (2004).

In this section, an example of a traditional approach is presented for better
understanding of how this situation was treated in old regulations. Further, the
recommendations in Pacoste et al. for FE analysis are presented.

3.4.1 Traditional approach

In the bridge design community, 2D analysis has been the main tool for design of
reinforced concrete bridge decks up until recent years. Demands and requirements of
structures are normally stated in norms, which also treated moment distribution
widths for concentred loading to some extent. For example, the old code B7 (1968),
included recommendations on moment distribution widths for concentrated loading on
slabs. For slabs supported along two parallel edges, the total moment in the ultimate
limit state was recommended to be distributed with a constant value within a width
calculated in Equation (3-9), see Figure 3.8 for notations.

W=min GI 2.5mj+b+t (3-9)

w = distribution width
| = the characteristic span length
b = width of the concentrated force

Where:

t = height of fill material
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Figure 3.8 Moment distribution width for slabs supported along two parallel edges.

Together with the recommendation for distribution width, demands were also made
on the transverse reinforcement. B7 also included recommendations for cantilever
slabs, designed with edge beams. The expressions take the stiffness of the edge beam
and the stiffness along the support into account, see Equation (3-10). For notations see
Figure 3.9.

w:z (3-10)
n
Where:
C
n= 3-11
\4E1, (-1
Where:
3El
- a32 (3-12)

Where: E = Young’s modulus for concrete
I, = moment of inertia of the edge beam and an additional part of the slab
from the edge beam to the applied load
I, =moment of inertia along the support, per unit width
a = distance from support to applied load

!12 = /i—l

Figure 3.9 Notations for a cantilever slab structure with an edge beam.
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3.4.2 Recommendations from Pacoste et al. for FE analysis

The recommendations, restrictions and limitations presented in this section can be
generally applied for slabs. There is however additional limitations and
recommendations for each individual type of slab presented in Figure 2.17. Simply
supported one-way slabs are treated in Section 3.4.2.1 and 3.4.2.2, cantilever slabs are
treated in Section 3.4.2.3, while two-way and predominantly one-way spans are
omitted in this Thesis. For information on the latter two types of slabs, the reader is
referred to Pacoste et al. (2012). The following recommendations for moment
distribution widths at a support are given by Pacoste et al:

. I X
W= mm(3h,5) for E” =0.45 (0.35 for concrete grades > C55/67)  (3-13)
. I X
W= mln(Sh, g] for E“ =0.30 (0.23 for concrete grades > C55/67) (3-14)
I X
W= 4 for F” =0.25 (0.15 for concrete grades > C55/67) (3-15)
I X
W= 2 for F” =0.15 (0.10 for concrete grades > C55/67) (3-16)
. I X
w =min| 5h, - for =~ =0.0 (3-17)
5 d
Where: h = height of the cross-section
X, = depth of the neutral axis in ultimate limit state after redistribution
d = effective depth at the critical cross-section

| = characteristic span length

For ductility values between the limits stated above, linear interpolation can be used
in order to obtain values of the corresponding distribution width w. Independent of the
requirements of ductility; the distribution width should be chosen according to:

w>w_.. =2h+a (3-18)

Where a is the dimension of the support in the considered direction. When using
Equation (3-13) to (3-17), additional limitations for columns with drop panels apply.
These types of supports are not covered in this Thesis but for more information on the
subject, the reader is referred to Pacoste et al. (2012). There is however an additional
restriction to the above stated equations on the ratio between the average and
maximum reinforcement moment:

mrx av
S=—" 506 (3-19)
m

rx,max

o8 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



Where myy av and My, max Can be determined based on Figure 3.10a and Equation (3-20)
if the distribution width exceeds the distance between the points of zero moments and
Figure 3.10b and Equation (3-21) if the distribution width is smaller than the distance
between the points of zero moments.

mrx.max

(b)

Figure 3.10 Definition of the average value of reinforcement moment distribution
where: (@) the distribution width is greater than the distance between
the points of zero moment and (b) the distribution width is less than the
distance between the points of zero moment.

The average moment after distribution myyq, in Figure 3.10a and Figure 3.10b can be
obtained using Equation (3-20) and (3-21), respectively.

1"
m =—1|m.d -
v = I wdy (3-20)
1W
m =—|m.d -
W{ dy (3-21)

3.4.2.1 Distribution widths for one-way slabs in ULS

The recommendations and restrictions on how to determine the distribution width for
simply supported one-way slabs are treated in this section. These are applied in
addition to those stated for slabs in Section 3.4.2. The distribution width for the
moment is divided into longitudinal and transversal direction. The characteristic span
length in the longitudinal direction is defined by Equation (3-22) and by
Equation (3-23) in the transverse direction and illustrated in Figure 3.11. In addition
to the general restrictions defined in Equation (3-13) to (3-17), the distribution width
in the transverse direction is limited to Equation (3-24).

I-L, (3-22)

-8, (3-23)
L

w, < 7y (3-24)
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Figure 3.11 Distribution widths for a simply supported one-way slab in longitudinal
and transversal direction.

3.4.2.2 Distribution widths for one-way slabs in SLS

According to Pacoste et al. (2012), there are very few recommendations in the
literature on how to choose an appropriate distribution width for moments in the
serviceability limit state. The reason for this is the difficulty of determining the
behaviour of the reinforced concrete immediately after the slab starts to crack.

The distribution of the reinforcement should reflect the assumed behaviour of the
slabs in working conditions which leads to a concentration of reinforcement over
columns. Pacoste et al. recommends that 50 % of the total amount of the top
reinforcement should be concentrated to a strip over the column with the width, w:

N

Wl (3-25)

o |
o |

where |; and |, are the distances between the column and the adjacent columns in the
direction perpendicular to the reinforcement which is illustrated in Figure 3.12. This
approach generally leads to a larger reinforcement concentration in the column strip
than what is obtained by linear elastic analysis.

Figure 3.12 lllustration of Equation (3-25).

The recommendation is to adapt a more conservative approach when choosing
moment distribution widths in SLS in comparison to the ULS. Due to this reason,
Pacoste et al. recommends the distribution width to be restricted to the
equation below, which is a combination of Equation (3-13) and (3-14).

min (Bh, I—j <w<min (Sh, I—j (3-26)
10 5
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3.4.2.3 Distribution widths for cantilever slabs

The recommendations given by Pacoste et al. are the result of a literature study,
mainly based on recommendations from Swedish handbooks such as BBK 04 (2004)
and also Davidson (2003). These recommendations are originally based on the work
and tests performed by Hedman and Losberg (1976). According to Pacoste et al, these
recommendations are not believed to be as conservative as the recommendations for
moment and shear distribution widths for simply supported slabs.

The simplest case of moment distribution in a cantilever slab is for one concentrated
static force. The load is transferred to the support over a distribution width due to the
effect of plastic redistribution. For one concentrated force, see Figure 3.13a, the
width w over which the moment is distributed in the ultimate limit state is defined as:

W= min 7d +b+t 3.97
~ 7 ]10d +1.3y,, (3-27)
Where: X, = depth of the neutral axis in ultimate limit state after redistribution
d = effective depth at the critical cross-section
h = height of the cantilever at the critical cross-section
b = width of the load
t = thickness of the surfacing

Yes = distance from the centre of the load to the critical cross-section

The above stated distribution width w applies for the following limits of the x,/d ratio:

X

0.15< F <0.25 for concrete classes C12/15 to C50/60 (3-28)
X

0.10< F“ <0.15for concrete classes C55/67 and greater (3-29)

For values outside the above stated limits, the distribution width wy should be defined
as the distribution width for the serviceability limit state:

w, =2h+b+t (3-30)
F EE
N t N t
%%ﬁd %ﬁd
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Figure 3.13 Moment distribution widths for: (a) one concentrated force and (b) two
or several concentrated forces.
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For the case of two or several concentrated forces, a similar distribution width as for
one concentrated force can be used. If the distance between the concentrated forces is
such that the distribution widths do not overlap, Equation (3-27) can be used for each
individual load. If on the other hand, the distribution widths from the concentrated
forces overlap, the combined distribution width wyr should be used:

W =2Yg +W, (3-31)
Where:
Yo = min{;/l (3-32)

Here, yr is the minimum distance between the outer concentrated forces and the
resultant force R, for a geometrical interpretation see Figure 3.14.
), ),
[ n |

o \
!

Figure 3.14 Geometrical interpretation of Equation (3-32).

32 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



4 Moment distribution in SLS — Cantilever slab

In this Thesis, simple structures were examined and the knowledge gained from these
Is aimed to enable understanding of more complex structures. The aim of Chapter 4
and 5 was to increase the understanding of moment distribution in slabs which are
subjected to concentrated forces in the service limit state. The shear force distribution
is not discussed in this Thesis, but is shown in Appendix | for the interested reader. In
this chapter, a cantilever slab was analysed. First, the response of a single
concentrated force was studied in Section 4.2. This study was then expanded to the
response of two concentrated forces which is covered in Section4.3. The
methodology was then repeated for a new structure, a simply supported one-way slab
in Chapter 5.

The cantilever slab was 8 m long and had a free edge and a fixed edge along the
length. The slab was 1.6 m wide, had a thickness of 0.2 m and is illustrated in
Figure 4.1. A coordinate system was chosen so that the x-axis was along the length of
the slab, and y-direction was along the width of the slab.

, 1, 200

1600 ¥

L..

8000

Figure 4.1 Geometry and dimensions of the studied cantilever slab.

4.1 Methodology

This section covers the methodology used for the studies related to moment
distribution in the service state and thus also applies to Chapter 5.

4.1.1 Moment-curvature relations

In this study, the aim was to gather reasonable estimates of the moment distribution in
slabs and gather more knowledge around important factors which can influence the
distribution. Such factors can be varying stiffness in different directions due to
varying reinforcement amounts or normal stresses. A stiffness factor a was therefore
introduced as:

a=_* (4-1)

Where E, and E, was the stiffness in the x- and y-direction, respectively. Also, in an
effort to include parts of the non-linear behaviour of reinforced concrete, analyses
involving trilinear moment-curvature relations were performed. The moment-
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curvature relations were used as input in beam grillage models and were intended to
imitate the behaviour before yielding in a small reinforced concrete section, see
Figure 4.2.

g

Figure 4.2  Trilinear moment-curvature relation.

This study was directed towards serviceability limit state and no yielding was
therefore allowed in the model. The shape of the real moment-curvature relationship
for a small section in a slab is case specific, and will depend on several factors
including slab thickness and reinforcement amounts. Also, the stiffness of reinforced
concrete is significantly influenced by normal stresses. Therefore, the study was
divided into three parts, representing different scenarios. The three scenarios were
intended to represent different regions of a bridge, where the cantilevering part of the
structure is subjected to global forces. For example, the upper flange of a bridge
cross-section will be in compression for a positive global moment, have no bending
stresses where the moment is zero, and be in tension for a negative global moment,

see Figure 4.3.
v

e

3
Global moment
diagram: L)
2
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Comprewed Neutral T ensioned

M M M

Figure 4.3 The three studied scenarios, dividing the cantilever in the categories
Uncracked (compressed), Neutral and Cracked (tensioned).
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The names of the scenario imply on the state and corresponding stiffness in the x-
direction.

The three chosen scenarios were:

1. “Uncracked” (U), where the slab was assumed to be compressed in x-
direction, i.e. have the stiffness of uncracked concrete. In y-direction, the slab
was assumed to be uncracked at the starting point but able to crack as the force
was applied, i.e. have a trilinear moment-curvature relation.

2. “Neutral” (N), where the slab was assumed to be loaded only by the
concentrated force, i.e. have no significant normal stresses in the x-direction
due to the global response. The slab was modelled with trilinear moment-
curvature relations in both directions.

3. “Cracked” (C), where the slab was assumed to be under tension in x-direction,
i.e. already in a cracked state when the concentrated force was applied, while
it had a trilinear moment-curvature relation in y-direction.

In addition, a variety of stiffness proportions and values of the cracking moment were
chosen. The magnitude of the applied load influence the behaviour since it decides in
which state the structure is in, for example if the structure experience a small or large
effect from tension stiffening. In order to have better control over the effect from
tension stiffening, it was decided that the cracking moment would be determined from
a factor of the maximum moment obtained from the corresponding orthotropic linear
solution. Two different levels of cracking moments were chosen, namely one half and
one third of the maximum linear moment:

M . siinear (B = 0E
M 4 = max.linear ( X y ) (4_2)
2
M_ i (E, =aE
M .= max.linear ; X y ) (4_3)

The lower branch of the trilinear moment-curvature relation in Figure 4.2 represents
an uncracked concrete section and the curvature y at the cracking moment M., was
calculated analytically as:

Ao = . (4-4)

Where: E, =33GPa

I. = moment of inertia for one uncracked beam used in the beam grillage
model
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In a linear case, for example with the use of linear elastic shell elements, it is possible
to utilize a simple variation of stiffness proportions by modifying the modulus of
elasticity in different directions. If one direction is kept constant while the other
direction is given a fictitious modulus of elasticity, it would mean that for high values
of the stiffness factor «, the stiffness would be greater than the stiffness in the
uncracked state. When using trilinear moment-curvature input, with an analytically
computed stiffness in the uncracked state, it is thus no longer possible to utilize the
same kind of methodology. The upper branch of the moment-curvature relation
represented cracked reinforced concrete sections. A range of inclinations were chosen
to represent different reinforcement amounts.

For the case “Uncracked”, the stiffness proportions can be large since uncracked
concrete has a larger stiffness compared to when it is in the cracked state. Therefore a
variety of the stiffness factor «, from 1 to 10 was studied, where 10 was the stiffness
that corresponded to a stiffness that was 10 times softer than in the uncracked state,
see Table 4.1. The table present the methodology used when constructing the input
data, however, the exact input data used is stated in Appendix C. Note that, since two
levels of cracking moment were chosen, each case of stiffness proportion yielded two
solutions.

For the case “Neutral”, the stiffness range was lower since the proportions imply on a
cracked state, which was why only a variety of the stiffness factor «, from 0.5 to 2
was studied. A reinforcement ratio of 0.5% was used as reference and the
corresponding stiffness was calculated analytically as:

A, =0.005-b-h (4-5)
Find x: 0% _ E: A -(d—x) (4-6)
2 E,
| —L'X3+5-As.(d—x)2 (4-7)
Il 3 EC

- M 4-8

Xos% E. -, (4-8)
Where: X = height of the compression zone with a triangular stress block

I, =the moment of inertia for a transformed concrete section

The calculated value was used for the upper branch in the moment-curvature relation
and was used in both directions for the case Ex=E,, see Table 3.2. For calculated
values, see Appendix C.

For the case “Cracked”, the same moment-curvature relations used in “Neutral” were
utilized but with a linear relation corresponding to a cracked state in x-direction, since
the slab was considered cracked before the concentrated load was applied, see
Table 4.3.
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Table 4.1

Moment-curvature relations for the case Uncracked.

Global region:
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Table 4.2 Moment-curvature relations for the case Neutral.

Global region:

( Neutral 2

) A

Moment-curvature relations used | Moment-curvature relations used in
in X-direction y-direction
Ex=05E, | M,
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Table 4.3 Moment-curvature relations for the case Cracked.

Global region:

/ Tensioned

A *

Moment-curvature relations used Moment-curvature relations used in
in X-direction y-direction
x = 0.5E,
>
X
Ex=E,
>
X
Ex=2E, M
M+———
|
|
|
|
|
|
|
i
| »
0 5{ Xo.50% >X Xer Xo.s50 "

Due to numerical stability reasons, a slight inclination was chosen for the second
branch of the trilinear relations, such that M, = 1.05M,,. Where M, is the moment at
the intersection between the second and third line. Tests showed that this inclination
did not affect the results to a significant extent.
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4.1.2 Finite element model

The finite element software used was the student version of ADINA (2012). Due to a
restraint in the student version, which only allows a maximum of 900 nodes, the slab
was modelled with a symmetry boundary condition, dividing the model to a length of
4 m. The moment distribution along the fixed edge was of interest in this study and is
presented along the length of 4 m. The coordinate x = 0 refer to the centre of the fixed
edge. The modelled part of the slab is presented in Figure 4.4.

AN

—

1600 Y

[

) \

symmetry line

4000

Figure 4.4  Modelled part of the slab.

For the majority of analyses, beam grillage models where moment-curvature relations
are used as input were utilized. However, shell element models were used for early
verification of the linear elastic beam grillage models. For the shell element model, it
was concluded that a mesh size of 0.2m gave satisfying results in terms of
convergence, see Appendix A. In the linear elastic case, where the concrete was
assumed to be uncracked, it was concluded that the grillage model with a beam width
of 0.2 m yielded results that were similar to the results from a shell element model,
which is why the width of 0.2 m was chosen, see Appendix A. The choice of 0.2 m
width was also made in Lim (2013). For further information about the shell and beam
element type and properties, see Section 3.1.

The concentrated force was modelled as a point load to a single node for both the
shell element model and the beam grillage model. Since the moment along the fixed
support was of interest, which is a certain distance from the applied load, it was
concluded that this approximation was acceptable. The boundary condition along the
fixed edge was modelled as fixed in all translations and rotations. The symmetry
boundary condition was modelled as a fixed rotation around the y-axis and a fixed
translation in the x-direction. Beams that were placed in the symmetry lines were
modelled as beams with half the cross-sectional width.

The Poisson’s ratio was chosen to 0. The iteration method for the non-linear analysis
was chosen to the full Newton method in ADINA and the iteration tolerance type was
set to energy.
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4.1.3 Torsional stiffness

When modelling the structure in a cracked state, difficulties arise regarding which
torsional stiffness of the beam elements that should be used. In Lim (2013), an elastic
(uncracked) torsional stiffness was used throughout the Thesis. It was however
discovered that the torsional stiffness dominates the behaviour of the structure. A
parametric study was performed with varying values of the torsional stiffness, see
Appendix B. The structure studied was the cantilever slab presented in this section
and a variety of the torsional stiffness was chosen which included 1, 1/8, 1/16 and 0 of
the elastic (uncracked) torsional stiffness of a concrete beam with a width and height
of 0.2 m. It was shown that, for a linear elastic isotropic case with a concentrated
force of 200 kN, the maximum moment was in the range between 75 and 113 KNm/m,
see Figure 4.5a. The influence of the torsional stiffness on the plastic rotation was also
studied. Both bilinear and trilinear moment-curvature relations were used in the study,
which showed that the plastic rotation significantly increases as the torsional stiffness
decreases, see Figure 4.5b. The case with zero torsional stiffness became too unstable
and the analysis was aborted. For more detailed information of the study, see
Appendix B.
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Figure 4.5 Results from the parametric study of the torsional stiffness: a) moment
distribution for an isotropic linear case, b) plastic rotation for an
isotropic bilinear and trilinear case.

According to tests presented in Lopes (2014), the torsional stiffness of a slab in a
cracked state is about 1/17-1/15 of the stiffness in the elastic state. Based in this, the
torsional stiffness of the beam elements throughout this Thesis was chosen to a linear
relation of 1/16 of the elastic stiffness of a concrete beam with a width and height of
0.2 m. The relation was kept constant independent on stiffness proportions. As stated
in Section 3.1, it should however be noted that the torsional stiffness of a plate is
different from the torsional stiffness of a beam grillage model, which further
complicates the choice of torsional stiffness. However, the choice was believed to be
conservative.

The torsional stiffness for a beam element is defined by a torsional moment verses
angle of twist per unit length relation. Since a linear relation of 1/16 of the elastic
stiffness was chosen, the model was unable to accurately describe parts that were
uncracked in the structure. A better approximation would have been to connect the
torsional stiffness to the bending moment such that when the element was uncracked
in bending, an elastic uncracked torsional stiffness would be active. This was however
not possible in ADINA and was believed to make the choice of torsional stiffness
even more conservative.
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The relation between torsional moment and angle of twist for a beam is defined as:

- T 4-1
@ GK, (4-1)
Where: @ = angle of twist per unit length
T  =torsional moment
G  =shear modulus

K, =torsion constant, see Equation (3-3)

For a linear relation, ADINA requires two points in the torsional moment versus angle
of twist diagram to be defined and interpolates linearly between those two points.
Since one point was defined in the origin, only one point needed to be calculated. A
reference torsional moment of 10 kNm was chosen and the corresponding angle of

twist which was 16 times weaker than the torsional stiffness of uncracked concrete
became:

9
_ & B0 656pa (4-2)
20-v)  2(1-0)
K, = B-h-b® =0.141.0.2-0.2° = 2.26.10* m (4-3)
T 10'000 1
_ 16-0043 ~ -
Y7 6K, T165-10°.2.26.10° m (4-4)

Where: E, =modulus of elasticity
v = poisons ratio, chosen to 0
f = constant depending on the height to width ratio of the cross-section,
equal to 0.141 for a section with equal width and height

It should be noted that by reducing the torsional stiffness of the beam elements, the

results will not match the results obtained by a shell element model, even for a linear
elastic case.
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4.2 Response of a single concentrated force

The first case of interest was the response of a single concentrated force. The study is
then in Section 4.3 expanded to the response of two concentrated forces. The model
was analysed for a static concentrated force with a magnitude of 200 kN, see
Figure 4.6.

“FZZ()O kN
;ﬁ
1600 W
L L.
4000 4000

Figure 4.6  Location and magnitude of the applied concentrated force.

4.2.1 Linear elastic orthotropic case

In the start of ordinary design, there is no knowledge of the stiffness proportions in
different directions of a slab. It is therefore necessary to start with a linear elastic
isotropic model to acquire needed reinforcement amounts. However, since the
moment distribution is governed by stiffness, this type of analysis will not yield the
actual moment distribution experienced by the slab. It was therefore of interest to
investigate how the design values are influenced by changes in stiffness in different
directions.

The slab was analysed using a linear elastic model to acquire values to which a more
refined model could be compared. In addition, a range of stiffness proportions was
used as input to later investigate how well a simple linear elastic orthotropic model
can describe the moment distribution when the reinforcement amounts are known.
The analysis was based on a beam grillage model where moment-curvature relations
were used as input for the beam elements. In the isotropic case, Ex = E,, the beams
were given an uncracked stiffness in both directions and the relation between
curvature and moment was calculated analytically as:

M
e, 49)

Where: E, =33 GPa
I, = moment of inertia for the gross concrete section of one beam element

For the orthotropic cases, the curvature in the y-direction was kept constant while the
stiffness in the x-direction varied with the stiffness factor . The torsional stiffness of
the beam elements was, as previously stated in Section 4.1.3, 1/16 of the elastic
uncracked stiffness. The results from the analysis are shown in Figure 4.7.
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Figure 4.7 Linear elastic orthotropic moment distribution.

4.2.2 Trilinear elastic orthotropic case

Following the methodology presented in Section 4.1, the cantilever slab was analysed
with multilinear moment-curvature input. As stated in Section 4.1.1, the magnitude of
the cracking moment was a factor 1/2 and 1/3 of the maximum moment measured in
the corresponding orthotropic linear elastic solution, presented in Figure 4.7. This
means that for each stiffness proportion there were two magnitudes of the cracking
moment.

The results from the analysis are presented in Figure 4.8 to Figure 4.10. The
distributions with equal stiffness factor o are plotted against each other together with
both the isotropic and their corresponding orthotropic linear solutions, which are the
same solutions as presented in Figure 4.7. The influence from uncracked concrete
sections, i.e. the effect of tension stiffening, can then be observed. The linear solution,
Mc=M;in /3 and M =M;;n/2 can be seen as no, small and large effect of tension
stiffening, respectively.

For exact input data, see Appendix C. The results are discussed in Section 4.2.3.
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Figure 4.8 Moment distributions from the case Uncracked with varying magnitude
of the cracking moment.
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Figure 4.9 Moment distributions from the case Neutral with varying magnitude of
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the cracking moment.
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4.2.3 Discussion

The maximum moment was found at the centre of the slab where the concentrated
force was applied. It should be noted that no self-weight was applied, which means
that the concentrated force was acting on the model exclusively.

In the results from the case Uncracked, shown in Figure 4.8, it is clearly visible that a
lower maximum moment was obtained as the stiffness in the x-direction increased.
The orthotropic linear solution and the trilinear solutions are fairly similar, but the
trilinear solutions show a marginally lower maximum moment. This is due to the fact
that some elements still were in the uncracked state and therefore attracted additional
moment, close to the edge of the slab. However, there seems to be an insignificant
difference between the two levels of cracking moment.

The cracking moment is clearly visible throughout the results as a plateau, similar to
what would be expected from a bilinear moment-curvature input where yielding takes
place. However, as the curvature further increases, the beam element reaches the
upper branch in the trilinear moment-curvature relation and adopts the stiffness of
state 1l. In the case Uncracked, it is the stiffness in y-direction which was varied and
the plateau is situated on a level of 1/3 and 1/2 of the maximum moment of the
orthotropic linear solution. However, in the case Neutral, it was the stiffness in x-
direction which was varied which means that the plateau was situated on the same
level for all different stiffness proportions, since it is the moment in y-direction which
IS presented.

The orthotropic linear solution is no longer close to the trilinear solutions for the case
Neutral. The trilinear solutions are very similar independent on stiffness proportions;
i.e. the stiffness in x-direction seems to have a very low influence. It should be noted
that the uncracked stiffness was equal for all cases, which could mean that the
uncracked stiffness in x-direction dominates the behaviour.

In the case Cracked, the linear orthotropic solution was again close to the trilinear
solutions. As in the case Neutral, the plateau is situated on the same level for all
stiffness proportions since the moment-curvature input in the y-direction was the
same. However, contrary to the case Neutral, the trilinear solutions are not similar
between the different stiffness proportions. The two levels of cracking moment do
however still seem to have a low influence.

A positive moment was observed close to the edge of the slab, and was believed to be
a phenomenon owing to the use of a beam grillage model. The beams positioned in
the x-direction are deflected downwards due to the applied load. However, the beams
in the y-direction acted as spring supports which pushed the edges of the beams in the
x-direction upwards, creating a positive moment, see Figure 4.11.

Figure 4.11 Illustration of how the positive moment occurs.

The effect was believed to be strongest in the trilinear solution because the beams
were still in an uncracked stiffness, due to the low moment close to the edges, making
the springs in Figure 4.11 stiffer.
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4.3 Response of two concentrated forces

In the case of two static concentrated forces, the examined slab was exposed to two
forces acting along the free edge of the slab. The two forces were of equal magnitude
and were positioned with a mutual distance of 1.2 m, see Figure 4.12. The chosen
distance between the loads originates from the traffic load model described in
Section 3.2.

F=200kN | F=200 kN

600 |, 600

1600 4
T—bx

4000 4000

Figure 4.12 Geometry and position of loading.

4.3.1 Linear elastic orthotropic case

The linear elastic orthotropic analysis presented in Section 4.2.1 was also performed
here, and the results are presented in Figure 4.13.
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Figure 4.13 Linear elastic orthotropic moment distribution.

4.3.2 Trilinear elastic orthotropic case

The multilinear analysis presented in Section 4.2.2 was also performed here, and the
results are presented in Figure 4.14 to Figure 4.16. For exact input data, see
Appendix C. The results are discussed in Section 4.3.3.
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Figure 4.14 Moment distributions from the case Uncracked with varying magnitude
of the cracking moment.
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Figure 4.15 Moment distributions from the case Neutral with varying magnitude of
the cracking moment.
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Figure 4.16 Moment distributions from the case Cracked with varying magnitude of
the cracking moment.
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4.3.3 Discussion

In general, the same observations made in Section 4.2.3 also apply here. As for the
single concentrated force, the linear orthotropic solution describes the trilinear
solutions fairly well for the cases Uncracked and Cracked, while it differs from the
trilinear solutions for the case Neutral.

The maximum moment was still found at the centre of the slab, which means that the
spacing between the loads were small enough to have a substantial overlapping effect.
The isotropic linear solution was slightly lower than the isotropic linear solution for a
single point load multiplied by 2, which is reasonable since there was a certain
distance between the loads.

The linear results were also compared by means of superposition. For example, for the
linear isotropic case, the moment for a single concentrated force at the position
X =0.6 m was:

m,. (x = 0.6) =103 KNm/m (4-6)

Since both of the loads in the case with two concentrated forces were acting a distance
of 0.6 m from the centre of the slab, the moment measured at x = 0 should be twice as
large:

2.m,. (x=0.6) = 2-103 = 206 KNm/m (4-7)
The actual moment measured in the case for two concentrated forces at x = 0 was:
M, (x = 0) = 206 kNm/m (4-8)

This means that, for the isotropic linear case, the structure was long enough for
superposition of the results.
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5 Moment distribution in SLS — Simply supported
slab

In the previous chapter, the cantilever slab was examined. The same types of analyses
were expanded to a new structure, a simply supported one-way slab. The comparison
between the cantilever slab and the simply supported slab were believed to be
interesting because of the, in some ways similar and in other ways different, structural
behaviour. For example, when exploiting a symmetry condition for the simply
supported structure, the forces acting on the two structures are mirrored, see
Figure 5.1.

Cantilever: )

|
Simply supported: ! )
|

Figure 5.1 Similarities between a cantilever and a simply supported one-way
structure.

The examined slab was similarly to the cantilever slab 8 m long, but had a width of
3.2m. It was simply supported along the length of the slab, see Figure5.2. The
moment distribution in the middle of the slab, along the length, was of primary
interest in this case. The shear force distribution is not discussed in this Thesis, but is
shown in Appendix | for the interested reader. A coordinate system was chosen such
that the x-axis runs along the length of the slab, while the y-axis runs along the width.

“
Y —o [mm]
y 200
RESULT LINE FOR
3200 o —®»x  MOMENTDISTRIBUTION |
8000 a¢ a-a

Figure 5.2  Geometry and dimensions of the studied one-way slab.

As for the cantilever slab, analyses where trilinear moment-curvature relations were
used as input were conducted to investigate the influence of uncracked concrete
sections in the slab. This study was directed towards serviceability limit state and no
yielding was therefore allowed in the model. The methodology presented in
Section 4.1 was also applied here. See Table 4.1 to Table 4.3 for descriptions of the
moment-curvature relations used in this study. For exact moment-curvature input
data, see Appendix C.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 55



5.1 Finite element model

In general, the choices described in Section 4.1.2 also apply here. However, some
specific choices were made for the simply supported slab which is described in this
section.

The slab was modelled with symmetry boundary conditions, dividing the model to a
length of 4 m and a width of 1.6 m. The moment distribution along the centre of the
slab was of interest in this study and is therefore presented along the length of 4 m.
The coordinate x = 0 refer to the centre of the slab. The modelled part of the slab is
presented in Figure 5.3.

4000

% 1600

symmetry line

L

sj/mme}ry line
Figure 5.3  Layout of the modelled slab with symmetry conditions.

As for the cantilever slab, shell element models were used for early verification. It
was concluded that shell element mesh sizes of 0.2 m gave satisfying results in terms
of convergence, see Appendix A. As for the cantilever slab, it was found that for the
linear elastic case where the concrete was assumed to be uncracked, beam widths of
0.2 m in the beam grillage model gave similar results as the shell element model.
Based on this, the spacing between beams in the grillage model was chosen to 0.2 m.

Since the moment distribution along the centreline was of interest, the point load was
positioned in the line where the moment was measured. Contrary to the cantilever slab
where the moment was measured a certain distance from the point load, attention had
to be directed to how the point load was modelled in order to obtain reasonable
results. It was therefore chosen to spread the concentrated force over an area of
0.4 x 0.4 m?. However, since it is not possible to model pressure loads on beam
elements, it was decided that the load should be divided into smaller point loads
acting on the intersection points within the chosen area, see Figure 5.4a. Note that the
nodal forces were divided in such a way that the proportion of each point load
represented the sum of an equivalent pressure load. In the modelled part of the slab,
one quarter of the load was modelled for the case with one concentrated force, see
Figure 5.4b. For the case with two concentrated forces, half of the load was modelled,
see Figure 5.4c.

.2 m0.2m
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020" 25/ ap g
020" 5 oy
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A s ﬁ e 2£/f Pl
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(a) (b) (c)

Figure 5.4  Force application on the beam grillage model.
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5.2 Response of a single concentrated force

In the case of a single static concentrated force, the examined slab was exposed to a
force acting in the centre of the slab, see Figure 5.5.

N \
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Figure 5.5 Position of loading on the modelled part of the slab.

5.2.1 Linear elastic orthotropic case

The linear elastic orthotropic analysis presented in Section 4.2.1 was also performed
here, and the results are presented in Figure 5.6.
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Figure 5.6  Linear elastic orthotropic moment distribution.

5.2.2 Trilinear elastic orthotropic case

The multilinear analysis presented in Section 4.2.2 was also performed here, and the
results are presented in Figure 5.7 to Figure 5.9. For exact input data, see Appendix C.
The results are discussed in Section 5.2.3.
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Figure 5.7 Moment distributions from the case Uncracked with varying magnitude
of the cracking moment.
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Figure 5.8 Moment distributions from the case Neutral with varying magnitude of
the cracking moment.
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Figure 5.9 Moment distributions from the case Cracked with varying magnitude of
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the cracking moment.
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5.2.3 Discussion

The results follow the same pattern as for the cantilever slab in Section 4.2.2 and
4.3.2. The orthotropic linear solution describes the trilinear solutions fairly well for
the cases Uncracked and Cracked, while the trilinear solutions differ from the
orthotropic linear solution for the case Neutral.

The curves are not as smooth, close to the applied load, in comparison to the
cantilever slab. This is due to the fact that the moment was measured directly under
the point load, while for the cantilever slab, the moment was measured a certain
distance from the load.

The trilinear solutions for the case Neutral are again very similar, independent on
stiffness proportion. The low influence from the variety of stiffness in the x-direction
can be explained by the dominating behavior from uncracked concrete sections which
had equal stiffness. It would mean that most of the beams in x-direction still were in
an uncracked state. To investigate this behavior further, different load levels were
chosen for the case Neutral with a level of the cracking moment M=M;;, /3 and the
resulting moment distributions are presented in Figure 5.10. Moment distributions
with equal cracking moment, but varying stiffness proportions, are plotted together for
the load levels 100, 200 and 400 kN.
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Figure 5.10 Moment distributions from the case Neutral, with the cracking moment
M=M;in / 3 and varying stiffness proportions.

It is observed that, for larger forces, the solutions became more dependent on the
stiffness proportions which were believed to be an effect of decreasing tension
stiffening.

The trilinear solutions from each stiffness proportion in the case Cracked were very
similar, independent on the level of the cracking moment.
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5.3 Response of two concentrated forces

In the case of two static concentrated forces, the examined slab was exposed to two
forces acting along the centreline of the slab. The two forces were of equal magnitude
and were positioned with a mutual distance of 1.2 m, see Figure 5.11. The chosen
distance between the loads originates from the traffic load model described in
Section 3.2.
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Figure 5.11 Geometry and position of loading.

5.3.1 Linear elastic orthotropic case

The linear elastic orthotropic analysis presented in Section 4.2.1 was also performed
here, and the results are presented in Figure 5.12.
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Figure 5.12 Linear elastic orthotropic moment distribution.

5.3.2 Trilinear elastic orthotropic case

The multilinear analysis presented in Section 4.2.2 was also performed here, and the
results are presented in Figure 5.13 to Figure 5.15. For exact input data, see
Appendix C. The results are discussed in Section 5.3.3.
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Figure 5.13 Moment distributions from the case Uncracked with varying magnitude
of the cracking moment.
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Figure 5.14 Moment distributions from the case Neutral with varying magnitude of
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Figure 5.15 Moment distributions from the case Cracked with varying magnitude of

the cracking moment.
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5.3.3 Discussion

In general, the results follow the same pattern as in Section 4.2.3, 4.3.3 and 5.2.3.
However, contrary to the cantilever slab in the case with two concentrated forces, the
maximum moment was not found in the slab centre. This is most likely due to the fact
that, contrary to the cantilever slab, the moment was measured directly under the
concentrated force.

As described in Section 4.3.3, the linear results can be compared between a single and
two concentrated forces by means of superposition. Here, the measured moment for a
single concentrated force at the position x = 0.6 m was:

M, (x = 0.6) = 44.5 KNm/m (5-1)

Since both of the loads in the case with two concentrated forces were acting a distance
of 0.6 m from the centre of the slab, the moment measured at x = 0 should be twice as
large:

2-m, (x=0.6) =2-44.5 =89 kNm/m (5-2)
The actual moment measured in the case for two concentrated forces at x = 0 was:
m,e (x =0) =89 kNm/m (5-3)

This means that, for the isotropic linear case, the structure was long enough for
superposition of the results.

66 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



6 Cumulative plastic rotation — Cantilever slab

As mentioned in Chapter 4, simple structures were in this Thesis examined and the
knowledge gained from these are intended to enable understanding of more complex
structures. The aim of Chapter6 and 7 was to increase the understanding of
development of accumulated damage in long slabs which are subjected to moving
concentrated forces at, below or above magnitudes predicted by the serviceability
limit state, SLS. The response of static forces was first studied for comparison
purposes and as reference results. The response of a single moving concentrated force
was thereafter studied and then expanded to two moving concentrated forces. The
forces were applied with constant and varying magnitudes in different orders. The
distance d between the two moving concentrated forces was altered in order to cover a
broader spectrum of possible load combinations. The same methodology was repeated
for a simply supported one-way slab, presented in Chapter 7.

The cantilever slab studied in Chapter 4 was for these analyses modelled without a
symmetry boundary since such a boundary could not reflect the moving forces of
interest in this Thesis. When the cantilever slab from Chapter 4 was modelled without
symmetry boundary conditions, numerical problems occurred. These numerical
problems were obtained due to disturbances of the slab in the vicinity of the free
edges. Since the scope of this analysis was to investigate how plastic rotation in a long
cantilever slab develops, the previous dimensions were altered. The new slab width
was set to 12 m while other geometrical parameters were kept constant.
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| | I |

Figure 6.1 Geometry and dimensions of the studied cantilever slab
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6.1 Methodology

This section covers the methodology used for the studies related to the development
of plastic rotation and thus also applies for Chapter 7. The background and the
practical application of these studies, the moment-curvature relations, the finite
element model and the influence of the torsional stiffness are also treated in this
section.

6.1.1 Background

The aim of this study was to gather reasonable estimates of the development of plastic
rotation in long slabs and to gather knowledge around important factors which can
influence the development. This study was directed towards load magnitudes that
causes plastic rotation in bridge structures but is also applicable for structures
subjected to similar forces. This Thesis defined two likely situations where plastic
rotation may occur which are presented below.

The first of the two situations were observed in Chapter 4, where moments higher
than predicted by a simplified linear elastic analysis occurred when a more refined
analysis was conducted. This difference was derived from the orthotropic stiffness
which was a result from varying reinforcement amounts in different directions. This
behaviour was observed for the linear elastic orthotropic case in Figure 4.7 and is also
illustrated here in Figure 6.2.
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Figure 6.2 Linear elastic orthotropic moment distribution.

As can be seen in Figure 6.2, there was a significant difference in maximum moment
between the isotropic (solid line) and the orthotropic solutions where an orthotropic
case yielded the highest moment. This means that a bridge structure, designed
according to a simplified linear elastic model, can be subjected to moments higher
than the design values and thus initiate plastic rotation.

The second situation when loads causes plastic rotation was here defined as forces of
magnitudes above what is predicted by the serviceability limit state (SLS) but below
those defined by the ultimate limit state (ULS), see Figure 6.3.
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Figure 6.3 Area of interest for the analyses in this section.

Bridge structures should not be exposed to these load levels but due to heavy
transportation, such as authorized industrial transportation and uncontrolled highly
loaded vehicles, these load levels may still be exceeded. When these load levels are
exceeded, a permanent damage arises in the structure which will continue to grow
each time the serviceability limit state load is exceeded. For additional information
about these load situations, the reader is referred to Section 3.3

The analyses in this section were conducted for a large number of load cycles n where
each load cycle represents a crossing of a vehicle below, at, or above the
serviceability limit state load that causes plastic rotation.

Figure 6.4 Practical interpretation of the load model used in this section.
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6.1.2 Moment-curvature relations

The non-linear behaviour of reinforced concrete, used in Chapter 4, was here
simplified to a bilinear behaviour. The trilinear moment-curvature relation used in
Chapter 4 could not be implemented in a plastic analysis due to restrictions in the FE
software ADINA. A simplified moment-curvature relation was therefore used in these
analyses and the reader is referred to Appendix C for additional information. The
moment-curvature relation used as input for the beam grillage models was intended to
simulate a simplified behaviour of the reinforced concrete structure, see Figure 6.5.

M
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State I
/ State II

>
X

Figure 6.5 Bilinear plastic moment-curvature relation.

As can be seen in Figure 6.5, the elastic section of the moment-curvature relation was
based on a state Il model, i.e. the cracked stiffness of a small reinforced concrete
section. The background for this choice can be derived from the restrictions in the
ADINA software and are treated separately in Appendix C.

Due to the limited timeframe of this Thesis, the analyses was only conducted on an
isotropic structure with a stiffness factor « = 1 according to Equation (6-1). The same
moment-curvature relations were therefore utilized in both x- and y-direction.

a=_* (6-1)

The bilinear plastic moment-curvature relation for the slab was based on the elastic
response of an isotropic, cracked cantilever slab subjected to a concentrated force of
200 kN at the centre of the primary free edge. This was the elastic moment-curvature
relation used for the cracked case in Chapter 4 for the cantilever structure in SLS. The
elastic part of the moment-curvature relation and the corresponding moment
distribution in the fixed support is illustrated in Figure 6.6.
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Figure 6.6 Elastic moment-curvature relation and the corresponding moment
distribution in the fixed support.
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The plastic moment My was chosen to 60 % of the maximum elastic moment Mg
M, =06-M, (6-2)

The choice of the plastic moment was based on a recommendation by Pacoste et al.
(2012) where the following limits for redistribution of reinforcement moments were
proposed:

0.6-M <M

elastic — plastic < Melastic (6'3)
Failure of the cantilever slab was defined as the plastic rotation capacity 6.4 for a
cross-section with a reinforcement amount of 0.5 %:

0.4 =2344 mrad (6-4)

For additional and a more profound description on the modelling choices, the
construction of the plastic moment and the design of the plastic rotation capacity, the
reader is referred to Appendix C.

To summarize; the bilinear plastic moment-curvature relation used in this section was
based on:

e The elastic response of an isotropic, cracked cross-section
e The plastic moment My, based on the elastic response of the structure
e The plastic rotation capacity 6,4 of the cross-section

Since the beam grillage model was designed with beams of the half cross-sectional
width in the boundaries, which is covered in Section 6.1.3, the plastic moment was set
to half of that in the rest of the beams in the beam grillage model. These two moment-
curvature relations used as input for the FE model are illustrated in Figure 6.7.
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Figure 6.7  Bilinear plastic moment-curvatures used for the analyses in this section.

6.1.3 Finite element model

As mentioned in the introduction of Chapter 6, the cantilever structure experienced
numerical problems due to disturbances at the boundaries. The cantilever slab was
therefore extended to 12 m and the moving concentrated forces was set to operate
within a length of 4.8 m, concentrated to the centre of the slab. The numerical
problems were in this way avoided and the model used for these analyses is illustrated
in Figure 6.8.
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Figure 6.8 Geometry and dimensions of the studied cantilever slab, here subjected
to a single moving concentrated force.

As in the analyses of moment distribution in Chapter 4 and 5, the finite element
software used was the student version of ADINA (2012). The plastic rotation and the
development of plastic rotation in the centre of the fixed support were of interest in
this study and are therefore presented in this section in the result point P1, illustrated
in Figure 6.1. When the development of the plastic rotation along the fixed support is
illustrated in this section, the coordinate x = 0 refer to the centre of the fixed support
(due to the symmetry behaviour of the structure).

For the beam grillage model, it was concluded that a beam width of 0.2 m yielded
satisfactory results. The mesh was however orthotropic with an increased mesh
density at the fixed support, where the element length was set to 0.05 m which is
further discussed in Appendix C. This mesh density was also chosen for similar
studies in Lim (2013).

The moving concentrated forces were modelled as point loads, applied to single
nodes. Since the plastic rotation at the fixed support was of interest, which was a
certain distance from the applied forces, it was concluded that this approximation was
acceptable. The boundary condition at the fixed support was modelled as fixed in all
translations and rotations. The beams in the beam grillage model that were placed in
the boundaries (the fixed support and the free edges) were modelled as beams with
half the cross-sectional width.

The FE model was designed as static, i.e. without considering any dynamic effects of
the structure or of the load application. This modelling choice was believed to yield
results on the unsafe side. The dynamic amplification of the applied forces is however
included in the characteristic load values provided by Eurocode 1 (2003) which was
presented in Section 3.2. Since the aim of this section was to study the development of
plastic rotation in a bridge structure, it was reasonable to treat the problem as static
since it is the most common approach in the bridge design community and
recommended by Eurocode 1.

The Poisson’s ratio was chosen to 0. The iteration method for the non-linear analysis
was chosen to the full Newton method in ADINA and the iteration tolerance type was
set to energy.

Since the behaviour of a long slab was of interest in this analysis, the plastic rotation
Op was only measured at the centre of the fixed support in the result point P; which
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can be seen in Figure 6.1. The plastic rotation was measured after each completed
load cycle n.

The plastic rotation was calculated using an approximate approach from the deflection
in the second and third node, u, and us. The angle «, i.e. the plastic rotation, was
calculated from the triangle created by the deflected nodes, which can be seen in
Figure 6.9

Figure 6.9 The approximate approach for calculating the plastic rotation 6y in the
centre of the fixed support in the cantilever slab.

The angle a and thus the plastic rotation 8, was calculated from the deflection from
the second and third node due to how the ADINA software treats the plastic curvature
in the FE model. ADINA provides the plastic curvature yp in five integrations points,
uniformly distributed over each element. The plastic rotation is obtained if the area A;
and Az, which are illustrated in Figure 6.10, is calculated. This is one of the options
that ADINA provides in order to obtain the plastic rotation. The FE program
distributes the plastic curvature to the two nodes of the element and thus gives
contributions to the plastic curvature to those nodes. In order to capture the plastic
rotation for the complete element, the difference in deflection has to be calculated
using the second and third node, as described above.

X X

pl pl
Ji
2
3 -
4
Element 1 5 2

‘ L 2] >y
Node 1 Node 2 Node 1 Node 2

Figure 6.10 Illustration of how ADINA treats the plastic curvature and how it is
distributed to the two nodes of the element.

The angle a was dependent on the mesh density since a finer mesh provides a better
approximation. The orthotropic mesh density described above yielded satisfactory
results and an increase of the mesh density did not influence the results significantly.

As described above, ADINA provides an option for obtaining the plastic curvature in
the integration points for each element. If the plastic curvature is summarized over the
element length, the plastic rotation is obtained. This option provided by ADINA is,
however rather cumbersome when exporting the obtained data for analysis. The
influence of the approximation stated above was small and the option provided by
ADINA was therefore rejected. The reader is referred to Appendix D for the study and
the influence of the approximation of determining the plastic rotation in the cantilever
structure
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6.1.4 Torsional stiffness

It was concluded in Section 4.1.3 that the torsional stiffness dominates the behaviour
of the structures in this Thesis when subjected to concentrated static forces. It was
also concluded that difficulties arose regarding how to model the torsional stiffness in
the cracked state (state I1). Lim (2013) assumed that the torsional stiffness of a beam
in the beam grillage model had a constant value of the torsional stiffness
independently of the state of the reinforced concrete. A parametric study was also
here performed in order to evaluate the influence of the torsional stiffness on moving
concentrated forces. The structure studied was the cantilever slab presented in this
section where the torsional stiffness was set according to the values presented in
Section 4.1.3. As in the case of a single static concentrated force, the plastic rotation
significantly increases as the torsional stiffness decreases, see Figure 6.11. The case of
an elastic torsional stiffness yielded no plastic rotation and the case with zero torsional
stiffness became too unstable and the analysis was aborted. For more detailed
information of the study the reader is referred to Appendix B.
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’é —o0— 3 Load cycles e 30 5 —O— 3 Load cycles
= 10 1 —&— 4 Load cycles - —a—d Loag cyc:es
£ 3 —r— 5 Load cycles < 5 Load cycles

~ 8 10 Load cycl = —O— 10 Load cycles
% oad cycles =] -| =0 15 Load cycles
= 6 { —0— 15 Load cycles E 15 20 Load cycles
i) 4 7r— 20 Load cycles e \ —&— 25 Load cycles
; —— 25 Load cycles © 10 ¥—FF—F——- N - —0— 30 Load cycles
Z 2 2 !
< K 5
o o
S 1 M SN - 0 |

0.0 2.0 40 6.0 0.0 20 6.0

4.0
Coordinate, x [m] Coordinate, x [m]

Figure 6.11 Plastic rotation development for a moving concentrated force of 150 kN.
Torsional stiffness of 1/8 and 1/16 of the elastic stiffness to the left and
right, respectively.

Based on the work done by Lopes (2014) and what is presented and treated in
Section 4.1.3 the torsional stiffness of the beam elements throughout the Thesis was
chosen to a linear relation of 1/16 of the elastic stiffness of a concrete beam with a
width and height of 0.2 m. As stated in Section 4.1.3, it should however be noted that
the torsional stiffness of a plate is different from the torsional stiffness of a beam
grillage model which further complicates the choice of torsional stiffness. As in
Section 4.1.3 the choice of torsional stiffness is believed to be conservative.

As described in Section 4.1.3, the torsional stiffness of a beam element is defined by a
torsional moment versus the angle of twist per unit length. Since a linear relation of
1/16 of the elastic stiffness was chosen, the model does not accurately describe parts
that are uncracked in the structure. The whole structure was however assumed to be
fully cracked due to the restrictions in the ADINA software which yielded even more
conservative results. For the definition and more detailed information of the torsional
stiffness, the reader is referred to Section 4.1.3.
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6.2 Response of a single and two static forces

The response and the development of plastic rotation for a single and two static forces
of varying magnitudes are treated in this section. The aim of this section was to study
how the cantilever structure behaves under static forces so that the development of
plastic rotation caused by moving concentrated forces can be compared and evaluated.
This evaluation is treated in Section 6.6.2.

The cantilever slab was subjected to single forces F of the following magnitudes:
F =[115120125 ... 205 210 215] kN (6-5)

The forces that were applied on the slab had a range of 115 kN, where no plastic
rotation occurred, and 215 KN which was the force of the smallest magnitude to cause
failure due to plastic rotation &,. The forces were applied in the centre of the primary
free edge which can be seen in Figure 6.12.

[mm]
6000 6000

| i \
Figure 6.12 Geometry and dimensions of the studied cantilever slab subjected to a
single static concentrated force.

The slab was also subjected to two concentrated forces F; and F, that varied
according to the following magnitudes:

F,=F, =[657075...125130135] kN (6-6)
The distance between the two forces was altered according to:

d=[1.21.6 2.0]m (6-7)
The forces that were applied on the slab had a range of 65 kN, where no plastic
rotation occurred for d =1.2 m, and 135 kN which was the force of the smallest

magnitude to cause failure due to plastic rotation for d = 2.0 m. The forces were also
here applied in the centre of the primary free edge which can be seen in Figure 6.13.
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Figure 6.13 Geometry and dimensions of the studied cantilever slab subjected to a
pair of static concentrated forces.

The results from the analyses are shown in Figure 6.14 where it is clearly shown that
it was advantageous for the cantilever structure with an increased distance between
the two concentrated forces. In order to compare the pair of static forces to a single
static force, the total applied force F,; was defined according to:

Ftot = Fl + Fz (6'8)

30
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[1 / )_

. P{EREsvNS
. SIS
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| A
e |

115 135 155 175 195 215 235 255 275
Total load magnitude, F,; [KN]

25 1 6;=234mrad

N

Plastic rotation, 6, [mrad]

N

Figure 6.14 Plastic rotation at the centre of the cantilever slab for different
magnitudes of static forces.

As a validation of the model, the cantilever structure was subjected to a single static
force of 180 kN that were applied over ten load cycles (applied and removed ten
times). A static force should in theory cause a plastic rotation that does not develop
when the number of load applications increases. As can be seen in Figure 6.15, there
is a slight development during the first load cycles but the model was after that
stabilized and no further disturbances occurred.
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Figure 6.15 Plastic rotation at the centre of the cantilever slab for a static force
F=180 kN during ten load cycles.
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6.3 Response of a single moving force

The response and the development of accumulated damage, i.e. plastic rotation, for a

single moving concentrated force of constant and varying magnitudes is treated in this

section. A comparison between the different load combinations and how a traditional

superposition approach corresponds to the behaviour of the slab from the conducted
analyses is also treated in this section.

[mm]

3600 4800 3600

Figure 6.16 Geometry and dimensions of the studied cantilever slab subjected to a
single moving concentrated force.

6.3.1 Load magnitudes — Constant

The slab in Figure 6.16 was exposed to a range of a moving concentrated forces F of
different magnitudes:

F =[115120125...175180185] kN (6-9)

The forces that were applied on the slab had a range of 115 kN, where no plastic
rotation occurred, and 185 kN where failure occurred during the first load cycle. As
can be seen in Figure 6.17, a high load magnitude led to failure in a small number of
load cycles while a low load magnitude led to failure with a higher number of load
cycles. This behaviour corresponded to the expected behaviour of the structure.

The cantilever slab was subjected to up to 150 load cycles n for each load
magnitude F.

Forces with a magnitude ranging from 165 kN to 185 kN reached failure in two or
less load cycles, which is shown in Figure 6.18 for scale purposes.

78 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



w
o

—0—F=165kN —a—F=160kN —o—F=155 kN
. —=—F=150 kN ——F=145kN —o—F=140 kN
25
IEany. ¥ |
g / / /A/A/u 0.4 =1234mrad
E rd
£20 //
< W e
§ 15 e i
2 —
210 P
&
g //
5 -
0
0 2 4 6 8 10 12 14

Load cycles, n [-]

Figure 6.17 Plastic rotation for different magnitudes of moving concentrated forces.
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Figure 6.18 Plastic rotation for different magnitudes of moving concentrated forces.

It is clear that the magnitude of the applied force F have a substantial influence on the
number of load cycles the cantilever slab can sustain before the occurrence of failure
due to plastic rotation. The number of load cycles to failure n, for different
magnitudes of the applied forces is shown in Figure 6.19.
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Figure 6.19 Number of load cycles to failure for different magnitudes of moving
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concentrated forces.

For a certain load level, plastic rotation was obtained during the early load cycles
while an increased number of load cycles approached a stable value of the plastic
rotation. The plastic rotation approached a stable state where the occurrence of failure
was unlikely to occur within a number of load cycles that could be analysed in this
Thesis. Due to this reason, a critical force Fcit was defined in this Thesis as the force

F that causes failure of the cantilever slab at 150 load cycles:

gpl (Fcrit) = Hrd
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F=130 kN = = = F=125kN
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Figure 6.20 Plastic rotation for different magnitudes of moving concentrated forces.
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The critical force was in the case a single moving concentrated force somewhere
between 140 kN and 145 kN. It can, from Figure 6.20 and the critical force, be
concluded that forces that causes a relative high degree of plastic rotation can be
acceptable for the studied structure. It is relatively safe to assume that a force
F <140 kN does not reach failure due to the asymptotic behaviour.

The reason for the phenomenon shown in Figure 6.20 can be derived from how the
cantilever slab behaves when the yield moment is marginally exceeded.
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Figure 6.21 Development of the plastic rotation 6 over time in the cantilever slab
after one and several load cycles.

During the first load cycle, the load requires plastic rotation in the slab in the most
critical section, which in this analysis was located at the centre of the fixed support.
As the first element started to yield, no additional load was taken in this element
which led to a redistribution of forces to the elements in the immediate vicinity. As
the number of load cycles increased, an increased number of elements reached
yielding. The redistribution of forces from the elements in the plastic state led to a
point where the slab approximately behaved linear elastically due to the fact that the
number of active elements approached a stable state. It should here, however, be
noted that the slab was not linear elastic but merely exhibited such behaviour. This
hypothesis is illustrated in Figure 6.21 where half of the studied cantilever slab is
illustrated with corresponding moment-curvature relations. The dots on the moment-
curvature relations illustrates where in this relation each section of the structure was
located. This illustrates how the plastic rotation developed in the cantilever structure
and the reason for the linear elastic behaviour that was obtained after a large number
of load cycles.

The hypothesis illustrated in Figure 6.21 was studied for a moving concentrated force
with a magnitude of 135 kN for an increasing number of load cycles. As can be seen
in Figure 6.20, the development of plastic rotation in the centre of the cantilever slab
for a moving concentrated force of 135 kN was decreased with an increased number
of load cycles. The plastic rotation along the fixed boundary is therefore shown in
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Figure 6.22 where it is clearly visible that the cantilever slab approached a linear
elastic behaviour as the number of load cycles increased.

It can be seen that the plastic rotation did not reach its maximum in the centre of the
slab during the first four load cycles. The reason for this behaviour was believed to be
derived from the fact that the slab was completely undamaged before the first load
cycle. The plastic rotation development of the slab in Figure 6.22 is illustrated on the
half of the slab where the moving force was removed, i.e. not the half that was
subjected to the force first. This means that the moving force accumulated plastic
rotation as it passed over the structure. When the structure accumulated enough
damage (after five load cycles for this particular force magnitude), the maximum
plastic rotation was located in the centre of the fixed support where it continued to
grow.

16
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Figure 6.22 Development of plastic rotation 0y along the fixed support for a load
magnitude of 135 kN.

The phenomenon described above would not occur if the load were applied over the
total length of the cantilever slab. In such a case, the plastic rotation would increase
near the free edges since there would be insufficient elements in order to redistribute
forces efficiently. This is also what caused the numerical problems that were
mentioned in the beginning of this section. These results are however valid for a long
cantilever structure without secondary free edges which are the most common
cantilever structure in the bridge design community.

6.3.2 Load magnitudes — Varying

The analyses for the constant load magnitudes for a single moving concentrated force
illustrated how the plastic rotation develops in the cantilever structure. The load
combination where a bridge structure was subjected to a constant force above the
serviceability limit state must be considered as an extreme case. If a bridge structure is
subjected to such loads, they are likely to be of different magnitudes and applied for
varying number of load cycles. In order to study how the cantilever structure behaves
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under such circumstances, it was subjected to two different load combinations, LCa
and LCsg.

The first load combination, LCa, was defined as a combination of one force of such
magnitude that it caused significant plastic rotation combined with a force of inferior
magnitude. The larger of the two forces was applied once and the inferior force was
applied several times. The forces were applied in such order that the larger force was
applied before or after the inferior forces, not in between.

In order to reflect these two load application orders, the load combination was divided
into two subcategories, LCa;, and LCp,. Load combination LCa; was defined
according to Equation (6-11) and is illustrated in Figure 6.23.

Fina > Fons (6-11)
| n=1 R \ n=35 N
F E
/\A i

Figure 6.23 Load combination A, LCa1

Load combination LCx, was defined according to Equation (6-12) and is illustrated in
Figure 6.24.

Fios <Fona (6-12)
. n=5 . n=1
F £,
¢

Figure 6.24 Load combination A;, LCa>

The magnitude of the larger force was set to 165 kN since it caused failure after two
load cycles. The magnitude of the inferior force was set to a range of 120 kN to
145 kN. 120 kN was the lower limit since it was the force of the smallest magnitude
to cause plastic rotation and 145 kN was the force of the smallest magnitude to cause
failure within 150 load cycles. A force magnitude of 145 kN was also the smallest
force to cause failure after five load cycles in combination with the larger force. This
force magnitude was therefore of interest since that timeframe was evaluated.

As can be seen in Figure 6.25, the development of plastic rotation depends on the load
history.
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Figure 6.25 Plastic rotation for varying magnitudes of moving concentrated forces

for six load cycles.

It is clear from Figure 6.25 that there is a small, but noticeable, difference in plastic
rotation after six load cycles between the two different load combinations. The plastic
rotation was measured after six load cycles and the difference between the two load
combinations was calculated using Equation (6-13). The difference is shown in

Figure 6.26.
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Figure 6.26 Difference in plastic rotation y,p.a between load combination A; and Ay,

84

shown in percent for different magnitudes of the inferior forces.
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O, —0
Vaua = g (6-13)
pl.Al

The values used in Equation (6-13) are tabulated in Appendix H for the interested
reader.

The second load combination, LCg consisted of two constant loads of two different
magnitudes, but applied in three steps. In this analysis the load F; was applied two
times, first with three load cycles and then with two load cycles. In between these load
applications, a load of greater magnitude F, was applied once.

FL=F.;=F,., (6-14)

F,=F..>F (6-15)
L A=3 =1 , n=2
5 5 5
v " B!

Figure 6.27 Load combination B, LCg

The magnitudes of the larger and the smaller forces were the same as in the case of
the first load combination, LCa and were based on the same background. It can be
seen in Figure 6.28 that the behaviour of the slab approached the behaviour for the
case of a single moving concentrated force of 165 kN, which is reasonable.
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Figure 6.28 Plastic rotation for varying magnitudes of moving concentrated forces.

This load combination was believed to reflect a likely load combination principle on a
real bridge structure. This is due to the fact that the highest applied force on the

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 85



structure is not as likely to occur as a force of lower magnitude. Therefore it is also
reasonable to assume that the highest applied force is not likely to occur as the first or
last load to exceed the serviceability limit state, as assumed in load combination A.
The most likely load combination would be a range of smaller forces in combination
with one or a few forces of high magnitudes. However, such a load combination was
not investigated since it was beyond the timeframe of this Thesis.

6.3.3 Comparison

In order to determine which of the studied load combinations in Section 6.3.2 is the
most critical in terms of plastic rotation, these load combinations is compared in
Figure 6.29.
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Figure 6.29 Plastic rotation for varying magnitudes of moving concentrated forces
for six load cycles.

It is clear from Figure 6.29 that there is a small, but noticeable, difference in plastic
rotation after six load cycles between the three different load combinations. The
plastic rotation was measured for load combination LCa;, LCa2 and LCg after six load
cycles and the difference between the load combinations was calculated using
Equation (6-16) and (6-17) for LCa, and LCg, respectively. The difference is shown in
Figure 6.30.

Opn —0
Vaua = g (6-16)
pl.Al
05 —0
Voo == (6-17)
pl. A1

The values used in Equation (6-16) and (6-17) are tabulated in Appendix H for the
interested reader.
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Figure 6.30 Difference in plastic rotation yy, between load combination A; and load
combination A, and B, shown in percent for different magnitudes of the
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It can be seen in Figure 6.30 that load combination LCg results in the highest plastic
rotation of the slab after six load cycles for inferior forces of a magnitude greater than
125 kN. For inferior forces of a magnitude below this value, load combination LCx;
results in the highest plastic rotation of the slab after six load cycles. These results
indicate that the most likely load combination of the structure, LCg, for the majority of
the investigated forces is also the one to cause the highest plastic rotation.

The result also indicates that a force of great magnitude causes more damage if it is
applied after a number of forces above the serviceability limit state. It also indicates
that the force of greater magnitude causes even more damage if it is applied after
fewer forces above the serviceability limit state than stated above. This means that the
greater force causes more damage if it is applied after a permanent damage has been
initiated, but the influence of the force diminishes as the permanent damage of the
slab increases.

It should however be noted that the difference between the two load combinations is
small and the results should therefore be treated with care.

6.3.4 Traditional Superposition approach

It has been shown in the previous sections that the development of plastic rotation is
dependent on the load history, which indicates that a superposition method is not
recommended. The error of a traditional superposition approach is here evaluated for
the two load combinations LCa and LCg examined in Section 6.3.2

The results from the superposition approach were obtained by merging results from
Section 6.3.1 where all the loads were applied on an unloaded cantilever slab. Two or
more loads series were merged and thus the behaviour of each load series was
captured. The theory of the superposition approach is illustrated in Figure 6.31.
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Figure 6.31 The superposition approach used in this Thesis.

The whole load model was applied according to the superposition approach and not
each load cycle. Such a superposition approach would not have accounted for the
decreasing effect that the applied forces have on the plastic rotation as the number of
load cycles increases and thus resulted in a linear development of the plastic rotation.
Such an approach is illustrated in Figure 6.32.
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Figure 6.32 A superposition approach omitted in this Thesis.

The development of plastic rotation for LCa;, which is shown in Figure 6.23 is
extended to 20 load cycles and is shown in Figure 6.33. The results for the different
load magnitudes from Section 6.3.1 were used in order to obtain a plastic rotation
development based on a superposition method. This is shown in Figure 6.34.

40
—0—F,=165 kN F,=145kN —a—F,=165kN F,=140 kN
35 —o—F,=165kN F,=135kN —%—F,=165kN F,=130 kN
——F,=165 kN F,=125kN —o—F,=165kN F,=120 kN
= 30
o
= 0., = 23.4 mrad
=25 i ———
= ]
K |
S22 4
=
S
515 4—
|z
z 10 /
|
0@
0 5 10 15 20

Load cycles, n [-]

Figure 6.33 Plastic rotation for varying magnitudes of moving concentrated forces.
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Figure 6.34 Plastic rotation for varying magnitudes of moving concentrated forces,
based on the superposition approach.

It is clear from Figure 6.33 and Figure 6.34 that there is a significant difference
between the results from the analyses and the results from a superposition approach.
The plastic rotation was measured after six load cycles and the difference between the
analyses and the superposition approach was calculated using Equation (6-18). The
difference is shown in Figure 6.35.
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Figure 6.35 Difference in plastic rotation yaisy for load combination A; between
results from analyses and results from a superposition approach, shown
in percent for different magnitudes of the inferior forces.
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The values used in Equation (6-18) are tabulated in Appendix H.

The development of plastic rotation for LCg, which was illustrated in Figure 6.28, is
also shown in Figure 6.36 for comparison purposes. The plastic rotation development
based on the superposition method is shown in Figure 6.37. The same superposition
approach that was used for load combination LCa; was also used in this case.
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Figure 6.36 Plastic rotation for varying magnitudes of moving concentrated forces.
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Figure 6.37 Plastic rotation for varying magnitudes of moving concentrated forces,
based on a traditional superposition approach.
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It is also from this load combination clear that there is a significant difference
between the result from the analyses and the results from a superposition approach.
The plastic rotation was also here measured after six load cycles and the difference
between the analyses and the superposition approach was calculated using
Equation (6-19). The difference is shown in Figure 6.38.

0 su -0 ana
79pI.B.sup = pI.Blap = (6'19)

pl.B.ana

The values used in Equation (6-19) are tabulated in Appendix H for the interested
reader.
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Figure 6.38 Difference in plastic rotation yg sy for load combination B between
results from analyses and results from a superposition approach, shown
in percent for different magnitudes of the inferior forces.

If Figure 6.35 and Figure 6.38 are combined, the difference in percentage between the
analyses and the superposition approach for load combination LCa and LCg can be

shown in Figure 6.39.
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Figure 6.39 Difference in plastic rotation ygsyp for load combination A; and B
between results from an analysis and results from a superposition
approach shown in percent for different magnitudes of the inferior

forces.

It is clear that the superposition approach overestimates the plastic rotation in the
structure for both load combination LCa and LCg. This behaviour was expected since
the adaptation of the slab due to repeated loading is not fully captured by the
traditional superposition approach. The difference in plastic rotation between the
analyses and the superposition approach is greater for load combination LCg than
LCa. The reason for this difference can be derived from the fact that the plastic
rotation from each load is overestimated and load combination B consists of three
separate loads instead of two separate loads which is the case for load combination A.
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6.4 Response of two moving forces — Equal magnitudes

The slab in this analysis was modelled with the same geometry and moment-curvature
relations as the slab in Section 6.3.

3600 4800 3600 [mm]

Figure 6.40 Geometry and dimensions of the studied cantilever slab for two
concentrated forces of equal magnitudes.

The modelling choices and moment-curvature relation from the analysis of a single
moving concentrated force was also used in this analysis. The reason for this approach
was to enable a comparison between the effects of subjecting a cantilever slab to one
or two concentrated forces. In addition, this approach also enables a comparison of the
effects of the distance d between a pair of concentrated forces and the influence of
varying load levels within a pair of concentrated forces.

The sum of the loads applied on the slab in this analysis differed between the
distances between the pair of concentrated forces. An increased distance resulted in a
decreased plastic rotation and additional force was therefore applied to study the
behaviour of the structure. The distance between the forces was altered according to
Equation (6-20) and the influence of this parameter is treated in separate sections.

d=[1.21.62.0]m (6-20)

6.4.1 Constant distance,d=1.2 m

In the case of a constant distance of d =1.2 m, the applied forces F; and F, varied
according to the following magnitudes:

F, =F, =[657075...100105110] kN (6-21)

The forces F1 and F, that were applied on the slab ranged from 65 kN to 110 kN based
on the same background as stated in Section 6.3.1. The total applied load F; of the
forces F1and F, is defined in Equation (6-22):

F

tot

=F,+F, (6-22)

As in the case of a single moving concentrated force, the analyses were conducted
with 150 load cycles n for each pair of concentrated forces if failure of the cantilever
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slab did not occur within this range. The plastic rotation in the centre of the slab for
different magnitudes of forces is shown in Figure 6.41.
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Figure 6.41 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.

As in the case of a single moving concentrated force, the magnitude of the total force
Fiwt have a big influence on the number of load cycles the cantilever slab can sustain
before the occurrence of failure due to plastic rotation. The number of load cycles to
failure n, for different magnitudes of the applied forces is shown in Figure 6.42.
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Figure 6.42 Number of loading cycles to failure for different magnitudes of a pair of
moving concentrated forces for d = 1.2 m.
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As in the case of a single moving concentrated force, the plastic rotation approached a
stable value where the occurrence of failure was unlikely to occur within the number
of load cycles studied in this Thesis. This was the case when the total force was below
the critical force Fit which in this case was somewhere between 80 kN and 85 kN.
The reason for this phenomenon is described in Section 6.3.1.
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Figure 6.43 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 95



6.4.2 Constant distance,d=1.6 m

In the case of a constant distance of d = 1.6 m, the applied forces F; and F; varied
between the following magnitudes:

F,=F,=[707580...105110115] kN (6-23)

The plastic rotation in the centre of the slab for different magnitudes of forces is
shown in Figure 6.44.
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Figure 6.44 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.
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Figure 6.45 Number of load cycles to failure for different magnitudes of a pair of
moving concentrated forces with for d = 1.6 m.
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The critical force F.i; was in this case somewhere between 90 kN and 95 kN.

30 _— F1:F2:90 kN
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Figure 6.46 Plastic rotation for different magnitudes of a pair of moving

concentrated forces.
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6.4.3 Constant distance, d =2.0 m

In the case of a constant distance of d =2.0 m, the applied forces F; and F, varied
between the following magnitudes:

F, =F, =[808590...110115 120] kN (6-24)

The plastic rotation in the centre of the slab for different magnitudes of forces is
shown in Figure 6.47.
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Figure 6.47 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.

S
N
BN

~

[op]

(¢, ]

I

w

Load cycles to failure, n, [-]

N

1

0

105 110 115 120
Load magnitude, F,=F, [kN]

Figure 6.48 Number of load cycles to failure for different magnitudes of a pair of
moving concentrated forces with for d = 2.0 m.
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The critical force Fci; was in this case somewhere between 100 kN and 105 kN.
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Figure 6.49 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.
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6.4.4 Comparison

In order to compare the plastic rotation caused by the different loads and load
magnitudes, the number of load cycles to cause failure n, was compared with the total
load magnitude Fy: from Equation (6-22) for the different loads applied on the
cantilever slab. This behaviour is shown in Figure 6.50.
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Figure 6.50 Number of load cycles to failure for different loads and load
magnitudes.

It is clearly shown in Figure 6.50 that it is advantageous for the cantilever slab, from
the perspective of plastic rotation, with an increased distance between a pair of
moving concentrated forces. It is also clearly shown that the case of two concentrated
forces is advantageous in comparison to the case of one moving concentrated force
with the same load magnitude. As the concentrated force was separated into two
forces and the distance between those two increased, the total load magnitude and
number of load cycles to failure increased. This behaviour corresponds to what was
expected.

In order to compare the number of load cycles to cause failure for the different loads
and load magnitudes, a load magnitude factor yg,.. » was defined. This factor is related
to the largest single moving concentrated force not cause any plastic rotation to the
slab F¢. The relative load magnitude factor was defined as:

Feoi(N,)
Vepwr = % (6-25)

el

Where F,, = the total applied force

F, = the force of the greatest magnitude not to cause any plastic rotation
for a single moving concentrated force, in this case 115 kN
n, = the number of load cycles to failure for each applied force
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It is possible, from this relation, to predict the vulnerability of the slab, i.e. how much
a moving concentrated force can be increased in magnitude before failure due to
plastic rotation occurs. This relation is shown in Figure 6.51 with the same
configuration as observed in Figure 6.50.
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Figure 6.51 Number of load cycles to failure for a load magnitude factor yepur
related to the load F.

It can be seen in Figure 6.51 that the moving concentrated force of the highest
magnitude not to cause any plastic rotation in the structure, could be increased by
26 % before failure of the cantilever slab occurred within 150 load cycles. If the total
force was separated into two concentrated forces with a distance of 1.2 m instead, the
total load could be increased by 47 % before failure of the cantilever slab occurred
within 150 load cycles. An increase of the distance between the two concentrated
forces generates an increase in total load magnitude before failure occurs. From the
behaviour observed in Figure 6.51, it is reasonable to assume that there is a distance d
between the pair of moving forces such that the cantilever structure experiences the
force pair as two independent forces. This behaviour was studied in the following
section.

6.4.5 Influence of distance, d

It was clearly shown in the previous section that it is advantageous for the cantilever
structure with an increased distance between the pair of moving concentrated forces.
In order to evaluate how the distance influences the plastic rotation of the structure,
the distance was increased with the same increments as in the previous sections, up to
adistanced =4.8 m:

d=[12162024283.236404.448]m (6-26)

The same type of analyses as presented in the previous sections was conducted for all
presented distances. All distances was analysed for force magnitudes not to cause any
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plastic rotation to force magnitudes where failure occurred during the first load cycle.
The results from these analyses are presented in Appendix F and are summarized in
this section.

The number of load cycles to cause failure n, was compared with the total load
magnitude F: (defined in Section 6.4.1) which can be seen in Figure 6.52. A load
magnitude factor yg,.. » Was used, as in Section 6.4.4, in order to evaluate the influence
of d on the total force that can be applied on the slab. This can be seen in Figure 6.53.
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Figure 6.53 Number of load cycles to failure for a load magnitude factor yepr
related to the load F.
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It can be seen in Figure 6.53 which value of the total load magnitude that causes
failure after one load cycle for each distance. The other extreme case is the largest
total load magnitude not to cause any plastic rotation to the structure. These extreme
values and the development of plastic rotation are presented in Appendix F and shown
in Figure 6.54 below.
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Figure 6.54 Relation between total load magnitude F and distance d for forces not
to cause any plastic rotation and failure after one load cycle.

As predicted in Section 6.4.4, when the distance reached a certain value, the two
forces started to behave like two independent forces. When the distance was increased
above 3.2m, the total applied force not to cause any plastic rotation remained
constant. The total force Fy: was in this case 230 kKN which vyielded that each
individual force had a magnitude of 115 kN. The magnitude was in this case the same
(F=115 kN) as F¢, which was the greatest magnitude of a single moving
concentrated force not to cause any plastic rotation to the structure. This means that
the distance exceeded a critical value dcri; where the cantilever structure experienced
the pair of concentrated forces as two individual forces. It also means that one of the
forces did not amplify the plastic rotation development of the other force for this
magnitude.

If the distance was increased above 3.6 m, the total applied force to cause failure due
to plastic rotation after one load cycle remained constant. The total force was in this
case 330 kN which yielded that each individual force had a magnitude of 165 kN. The
magnitude was in this case the same (F =165 kN) as the force of the lowest
magnitude to cause failure for a single moving concentrated force after two load
cycles. This means that the cantilever slab experienced two load cycles for each
individual load cycle for a pair of moving concentrated forces with a distance greater
than 3.6 m. If the distance was increased to 4.8 m, which corresponded to the total
length of the force application, the plastic rotation development corresponded exactly
to what was obtained from a single moving concentrated force.

As can be seen in Figure 6.54, there is a discrepancy between the load magnitudes and
the corresponding distances when the cantilever slab experienced the force pair as two
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independent forces. The reason for this behaviour was believed to be the derived from
the moment distribution that is a result from the plastic behaviour of the slab. When
the slab was completely elastic, a distance of 3.2 m between the forces was sufficient
for the slab to experience the force pair as two individual forces. When the slab was
partly plastic, the distance between the forces was increased to 3.6 m before the slab
experienced the two forces as two independent forces. This means that the
redistribution of forces in the cantilever structure is disadvantageous with respect to
the development of plastic rotation caused by several concentrated forces.
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6.5 Response of two moving forces — Different magnitudes

The slab shown in Figure 6.40 was in these analyses subjected to a number of forces
of different magnitudes in order to investigate the influence of such load
combinations. In order to investigate the influence of varying load magnitudes within
the pair of moving concentrated forces, the total applied force Fi was set to:

F, =F +F, =170 kN (6-27)
Where:
F,=F, (6-28)
F, = [10 20 30 40 50 60 70 80] kN (6-29)
F, = [160150140 130120110100 90] kN (6-30)

Where F; was the second force of the force pair to load the slab which can be seen in
Figure 6.40 and Figure 6.55. The magnitude of the force F, was, for this load
application order, always greater than the force F; according to Equation (6-31) and
Figure 6.55.

F, <F, (6-31)
E 4 |B |
| - |
| 12000 |

Figure 6.55 The first load application order LAO; of the studied cantilever slab.

The plastic rotation caused by the applied force pair was not significantly influenced
by the load application order, i.e. if the values of F, were set to the values of F; and
vice versa. The study on how the development of plastic rotation was influenced by
the load application order is presented in Appendix E and the analyses in this section
follow the first load application order LAO; which is stated in Equation (6-27) to
(6-31).
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6.5.1 Constant distance,d =[1.21.6 2.0] m

The distance d between the force pair applied on the cantilever slab was kept from the
previous analyses in Section 6.4 and the results from the analyses are shown in
Figure 6.56 to Figure 6.58:
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Figure 6.56 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 1.2 m.
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Figure 6.57 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 1.6 m.

106 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



w
(8]

w
o

—0—F,=10 F,=160 kN
—o—F,;=30 F,=140 kN
——F,=50 F,=120 kN
—0—F,=70 F,=100 kN

—— ;=20 F,=150 kN
—=—F,=40 F,=130 kN
—0—F;=60 F,=110 kN
——F;=80 F,=90 kN

N
(6]

A L

/O/O/O’

N
~N

Plastic rotation, ¢, [mrad]
N
o

0,,=23.4mrad

-
a1

i/

[EY
o

> 0]
e [

%

14

0 i

6 8
Load cycles, n [-]

o
N
S
[N
P -_H]_T
[EEN
i e
p

Figure 6.58 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 2.0 m.

As expected, and as observed in Section 6.4 it was advantageous for the cantilever
structure with an increased distance between the moving concentrated forces. It is also
clear that it was advantageous for the cantilever structure with a more evenly
distributed force application, i.e. when the two forces approached a mean value.

From Figure 6.56 to Figure 6.58, it can be seen that:

e For the distance d =1.2 m, all investigated load combinations led to failure
within 14 load cycles or less.

e For the distance d = 1.6 m, four of the investigated load combinations led to
failure within 14 load cycles or less.

e For the distance d = 2.0 m, three of the investigated load combinations led to
failure within 14 load cycles or less.

It can be seen in Figure 6.58 that the force pairs with more equal distribution
approached a state where no plastic rotation occurred for the investigated loads. A
further increase of the distance between the moving concentrated forces would likely
yield a significant decrease in the number of load combinations to cause failure due to
plastic rotation.

How the plastic rotation developed in the centre of the slab during the first 10 load
cycles for d = 1.2 m is shown in Figure 6.59. It can be seen that the development of
plastic rotation decreased when the forces approached a mean value and that it
approached a stable state when the number of load cycles increased. This corresponds
to what was observed in Figure 6.56 to Figure 6.58.
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Figure 6.59 Development of plastic rotation for different load combinations of a pair
of moving concentrated forces of varying magnitudes for d = 1.2 m.

It can be seen in Figure 6.59 that the load combinations with a large difference in
force magnitudes between the two forces led to failure after only a few load cycles.
The plastic rotation for these loads greatly exceeded the plastic rotation capacity for
the cross-section but is presented in this figure in order to evaluate how the
accumulated damage developed in the centre of the cantilever structure. It can be seen
that the accumulated damage caused by the forces of more equal magnitudes
approached a stable state more rapidly that the force pair with a larger difference in
magnitude between the two forces. This can also be observed in Figure 6.56 where the
distance between the curves decreases as the forces approaches a mean value.

6.5.2 Comparison

In order to determine how the plastic rotation was influenced by the distance d
between the moving concentrated forces of varying magnitudes, the different analyses
are compared below. The plastic rotation obtained from the analyses with d =1.6 m
and d=2.0m was compared to the plastic rotation with d =1.2 m according to
Equation (6-32) and (6-33) and is shown in Figure 6.60 and Figure 6.61.

0 m 0 m
79‘)'.1.6“1 _ pl.1.6 pl.1.2 (6-32)

0p|.1.2m

0 m -0 m
ygplz.om _ pl.2.0 pl.1.2 (6-33)

9p|.1.2m

The plastic rotation difference y,,, was calculated for each load cycle n and each
distance d and is shown for the first 15 load cycles in the figures below.
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Figure 6.60 Difference in plastic rotation ygy16m for different load combinations
betweend =1.2andd = 1.6 m.
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Figure 6.61 Difference in plastic rotation ygy20m for different load combinations
betweend =1.2mand d = 2.0 m.

It is clear from Figure 6.60 and Figure 6.61 that it was, as in the case of a force pair of
equal magnitudes, advantageous for the cantilever structure with an increased distance
between the forces. It is also clear that the difference in plastic rotation was almost
constant for each separate load combination and distance which means that the
difference is independent from the number of load cycles. Due to this fact, it was
convenient to measure the mean difference in plastic rotation which is presented
below:

T"D_T“T”T:TZTZTZI
T 1T T IF i o el O O e
9

11 13 15
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9p|.1.2m
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Y epl20m = )
pl.l1.2m

Where the mean plastic rotation for the two cases was calculated according to:

n
zepl.lﬁm
L

5 I =
pl.1.6m n
n
Zepl.Z.Om
§ _ 0
12 =
pl.2.0m n

(6-34)

(6-35)

(6-36)

(6-37)

Where n = 150, which was the total number of load cycles in the conducted analyses.
The results from these calculations are shown in Figure 6.62. The values derived from

Equation (6-34) and (6-35) are tabulated in Appendix H for the interested reader.
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Figure 6.62 Mean difference in plastic rotation yg, between a d=1.2m
d=16mandd=2.0m.

and,

It can be seen in Figure 6.62 that an increased distance d resulted in a significant

decrease in plastic rotation. The difference in plastic rotation increased

with

decreasing difference between the two forces F; and F,. This behaviour was expected
since the distance between a force of a great magnitude and a force of a small

magnitude should not influence the accumulated damage to a great extent. When

both

forces are of a relative high magnitude, the distance should influence the accumulated

damage to a greater extent, which was the case.
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6.6 Summation

This section covers a comparison between the moving concentrated forces presented
in Section 6.3 to 6.4. A single and a pair of moving concentrated forces are compared
with static forces of the same magnitudes. As a final part of this section, the results
presented in Chapter 6 are discusses.

6.6.1 Comparison — Moving forces

This section covers the investigated forces on the cantilever structure presented in
Section 6.3 to 6.4 and evaluates the differences and similarities between them. These
sections have covered the four main load cases:

A single moving concentrated force — Constant magnitude
A single moving concentrated force — Varying magnitudes
Two moving concentrated forces — Equal magnitudes
Two moving concentrated forces — Different magnitudes

The case of two moving concentrated forces of different magnitudes can be seen as an
intermediate combination of the case of two moving concentrated forces of equal
magnitudes and a single moving concentrated force of constant magnitudes. The case
of a single moving concentrated force of constant magnitude can be seen as an
extreme case of two moving concentrated force of different magnitudes. The other
extreme case is when the different force magnitudes approach a mean value, which is
the case of two moving forces of equal magnitudes. This means that the plastic
rotation obtained by the two moving concentrated forces of different magnitudes
should be found between the two extreme cases as explained above. This was also the
case which can be seen in Figure 6.63 to Figure 6.65 where these analyses are
presented together.

40
—F=170 kN —0— F,=10 F,=160 kN
35 —4a— F,=20 F,=150 kN —o— F;=30 F,=140 kN
—a—F =40 F,=130 kKN —=~—F,;=50 F,=120 kN
= 30 —0—F,;=60 F,=110 kN —&— F,;=70 F,=100 kN
o / —— F;=80 F,=90 kN - = = F;=F,=85 kN
E AR 0., = 23.4 mrad
=2 [ I i m
§ 20 //,
©
B
S 15 +——
=
2
o 10 +—
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0
0 2 4 6 8 10 12 14

Load cycles, n [-]

Figure 6.63 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 1.2 m.
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Figure 6.64 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 1.6 m.
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Figure 6.65 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 2.0 m.

It can be seen in Figure 6.63 to Figure 6.65 that the results where F;=F,=85 kN
corresponded well to the case where F1=80 kN and F,=90 kN for all distances d. The
plastic rotation obtained by F=170 kN was slightly higher than the case where
F1=10 kN and F,=160 kN for all distances d. These results indicate that a difference
between the two moving concentrated forces of different magnitudes of 10 kN
(F1=80 kN and F,=90 kN) was small enough not to influence the plastic rotation
further. This corresponded well to what was expected. These results also indicate that
it was advantageous for the cantilever structure to separate the total force into two
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separate forces, even if the difference was relatively small. The advantageous effect of
dividing the total force into two separate forces increased with the increased distance
d which was reasonable.

These analyses were only conducted for one total force Fi;=170 kN for the two
moving forces of different magnitudes but the advantageous effect of dividing the
total force into two separated forces was believed to increase with an increased total
force. It was also treated in previous sections that a further increase of the distance d
is advantageous for the cantilever structure.

6.6.2 Comparison — Static vs. moving forces

It is clear that a moving concentrated force caused significantly more plastic rotation
to the cantilever structure than what was caused by a static force of the same
magnitude. It was shown in Section 6.3 to 6.4 that the plastic rotation reached a stable
state after a number of load cycles. This indicates that a moving concentrated force
have an upper limit of the amount of plastic rotation it can cause. This upper limit
may be situated above the plastic rotation capacity of the structure but, as have been
illustrated in Section 6.3 to 6.4, were in most cases for forces of great magnitudes
situated below this limit.

It is also clear that there is a significant difference between the plastic rotation caused
by static and moving concentrated forces immediately after the first completed load
cycle. This means that all values of the plastic rotation caused by a moving
concentrated force must be present within these upper and lower limits as can be seen
in Figure 6.66.

N

Upper limit

Figure 6.66 Upper and lower limit of plastic rotation for moving concentrated forces

In order to compare the moving forces to the static forces, a cumulative factor yg; mov
was defined according to Equation (6-38). The cumulative factor describes the
relation between the plastic rotation caused by a moving concentrated force and the
plastic rotation caused by a static force.

epl.mov.n
Y gpimov = (6-38)

epl.stat

In order to evaluate the distribution of this factor, two sub factors yg,imov.mn and
YopLmov.max Was defined. These factors were calculated for all forces that reached a
stable state (reached its maximum plastic rotation) in the conducted analyses. The
factors were calculated using Equation (6-39) and (6-40), respectively, which is
shown in Figure 6.67.
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Vapimoumx =g (6-39)

pl.stat

0

76¥Jlmov.min = % (6'40)

pl.stat

Where le.stat = the plastic rotation caused by a static force of the same magnitude

as a moving force

0 = the plastic rotation caused by a moving force for each load cycle n

pl.mov.n

It is clear from Figure 6.67 that the plastic rotation caused by a moving concentrated
force was within the range of 2 to 20 times larger than the plastic rotation caused by a
static force. It is also clear that an increased distance d between the forces and an
increased total applied force Fy: yielded plastic rotations closer to what was predicted
by the static forces. How the cumulative factor developed for a single moving
concentrated force is shown in Figure 6.68. For the development of the cumulative
factor for two moving concentrated forces, the reader is referred to Appendix G.
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Figure 6.67 Maximum and minimum values of the cumulative factor yg,; .., for a
single and a pair of moving concentrated forces.
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Figure 6.68 Development of the cumulative factor yg..m... for a single moving
concentrated force for 150 load cycles.

6.6.3 Discussion

It was first discovered in Section 6.3 that the development of plastic rotation in the
cantilever structure reached a stable state where the influence of the applied force
decreased as the number of load cycles increased. The behaviour of the slab
resembled the linear elastic behaviour even though the slab was still in the plastic
state. This behaviour was then found for all types of load magnitudes, load
combinations and load application orders studied in this Thesis. When this behaviour
of the slab was reached differs for all the above stated variables but for a large amount
of the studied forces, this was found before the plastic rotation capacity was reached.

It was discovered that a traditional superposition approach of moving concentrated
forces significantly overestimated the plastic rotation. This overestimation was based
on the fact that the superposition approach did not account for the decreased effect of
the applied forces as the number of load cycles increased. This means that the error
was increased as the number of load series were increased in the superposition
approach. It was also shown that the error was almost linearly increased with an
increase of the applied force.

It was shown in Section 6.2 to 6.5 that there was a significant difference between the
plastic rotation caused by static and moving concentrated forces. The plastic rotation
caused by a moving force could be as high as 20 times the plastic rotation caused by a
static force of the same magnitude. This difference might be greater for forces that
were not covered in this Thesis. It was shown that this difference decreased as the
force magnitude increased and also decreased with increased distance d between a
pair of moving concentrated forces.
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7 Cumulative plastic rotation — Simply supported
slab

The aim of this chapter, as was mentioned in Chapter 6, was to increase the
understanding of development of accumulated damage in long slabs which are
subjected to moving concentrated forces of magnitudes below, at or above what is
predicted by the serviceability limit state as have been described in Section 6.1.1. The
response of static forces was, as in Chapter 6, studied for comparison purposes and as
reference results. The response of a single moving concentrated force was thereafter
studied and then expanded to two moving concentrated forces. The forces were, as in
Chapter 6, applied with constant and varying magnitudes and the distance between the
two moving concentrated forces was altered in order to cover a broader spectrum of
possible load combinations.

The simply supported one-way slab studied in Chapter 5 was for these analyses
modelled without a symmetry boundary in the y-direction since such a boundary
could not reflect the moving forces of interest in this Thesis. The symmetry boundary
in x-direction was, however, kept due to the restriction of nodes in the student version
of ADINA. As for the cantilever slab in Chapter 6, numerical problems occurred and
the measures taken were the same as stated in that chapter. The width of the slab was
therefore set to 12 m on the same basis and background as stated in Chapter 6.

The methodology and the results presented in this chapter correspond well to what
was defined and observed in Chapter 6. Due to this fact, these are in this chapter
presented in a more compact form and the reader is referred to Chapter 6 for
comparison and additional information regarding these matters.

aﬁ-‘ [mm]

T 7*
y 200
RESULT LINE FOR
32000 -0 . —wx  MOMENTDISTRIBUIION __ __ |
) 7§
12000 ‘ a-a
a¥
} 12000 .
1
1600 4

symmetry line

Figure 7.1  Geometry and dimensions of the studied simply supported one-way slab.
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7.1 Methodology

This section covers the methodology used for the studies related to the development
of plastic rotation. The background and the practical application of these studies, the
moment-curvature relations, the FE model and the influence of the torsional stiffness
are also treated in this section.

7.1.1 Background

The aim of this study was the same as stated in Section 6.1.1. This study was also
directed towards load magnitudes below, at or above what is predicted by the
serviceability limit state. For additional information of the background of this study,
the reader is referred to Section 6.1.1.

As observed in Chapter 5, moments higher than predicted by a simplified linear
elastic analysis occurred when a more refined analysis was conducted. This difference
was derived from the orthotropic stiffness which was a result from varying
reinforcement amounts in different directions. This behaviour was also here observed
for the linear elastic orthotropic case in Figure 5.6 and is also illustrated here in
Figure 7.2.
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Figure 7.2 Linear elastic orthotropic moment distribution.

7.1.2 Moment-curvature relations

The restrictions and modelling choices made for the cantilever structure in
Section 6.1.2 generally also applies here and are therefore omitted in this section. For
the background of the modelling choices the reader is referred to Appendix C.

The bilinear plastic moment-curvature relation for the slab was here based on the
elastic response of an isotropic, cracked, simply supported slab subjected to a
concentrated force of 100 kN at the centre of the slab. This can be compared with the
force magnitude of 200 kN that was applied on the cantilever structure in Chapter 6.
The reason for this difference can be derived from the fact that the simply supported
structure was subjected to the force in the symmetry boundary which yielded a total
force of 200 kN.

The elastic part of the moment-curvature relation used for these analyses was the
moment-curvature relation used for the case Cracked of the simply supported slab in
SLS, presented in Chapter 5. The elastic part of the moment-curvature relation and the
corresponding moment distribution in the fixed support is illustrated in Figure 7.3.
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Figure 7.3 Elastic moment-curvature relation and the corresponding moment
distribution in the centre of the slab.

It can here be noted in Figure 7.3 that the moment distribution had a sharp peak in the
centre of the slab. This in contrast to the moment distribution obtained for the
cantilever structure. The reason for this discrepancy can be derived from the fact that
the moment distribution was measured directly below the location of the load
application in this case. The force was also applied differently in this analysis
compared to the cantilever structure. This is treated below.

The force was in this case applied in six nodes instead of a single node, which was the
case for the cantilever structure in Chapter 6. The reason for this load application can
be derived from the fact that a load application in a single node is a simplification that
yielded unrealistic force concentrations and thus unrealistic plastic rotations. Such a
simplification yielded satisfactory results for the cantilever structure in Chapter 6
since the plastic rotation was measured a certain distance from the location of the
force application. For additional information about the load application, the reader is
referred to Appendix C.

How the plastic moment M, was derived was covered in Section 6.1.2 and is not
further discussed here.

To summarize, the bilinear plastic moment-curvature relation used in this section was
based on:

e The elastic response of an isotropic, cracked cross-section
e The plastic moment My, based on the elastic response of the structure
e The plastic rotation capacity 6,4 of the cross-section

The two moment-curvature relations used as input for the analyses in this section is
illustrated in Figure 7.4
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Figure 7.4  Bilinear plastic moment-curvatures used for the analyses in this section.
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For additional and a more profound description on the modelling choices made for
these analyses, the reader is referred to Appendix C. The construction of the plastic
moment and the design of the plastic rotation capacity are also treated in Appendix C.

7.1.3 Finite element model

How the simply supported one-way slab was modelled for the analyses in this section
and how the moving forces were applied is illustrated in Figure 7.5.

4800 3600

: LF |
| \
Figure 7.5 Geometry and dimensions of the studied simply supported slab for a
single moving concentrated force.

The finite element models used for the simply supported one-way structure were in
most cases the same as the cantilever structure in Section 6.1.3. Large parts are
therefore omitted in this section and the reader is referred to Section 6.1.3 for
additional information of the FE model.

The plastic rotation and the development of plastic rotation in the centre of the slab
were of interest in this study and are therefore presented in this section in the result
point Py, illustrated in Figure 7.1. When the development of the plastic rotation along
the centre line of the slab is illustrated in this section, the coordinate x = O refer to the
centre of the slab (due to the symmetry behaviour of the structure).

Since the plastic rotation in the centre of the symmetry boundary was of interest, the
point loads were positioned in the line where the plastic rotation was measured.
Contrary to the cantilever slab where the plastic rotation was measured a certain
distance from the point load, attention had to be directed to how the point load was
modelled to yield reasonable results. This was briefly treated in Section 7.1.2 and the
reader is referred to Appendix C for additional information regarding this matter.

The plastic rotation was calculated in the same approximate approach as presented in
Section 6.1.3. The rotation in the first node was also here prescribed by the boundary
conditions to zero, which influenced the angle of the triangle. The angle «, i.e. the
plastic rotation, was calculated from the triangle created by the deflected nodes, which
can be seen in Figure 7.6.
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Figure 7.6 The approximate approach for calculating the plastic rotation 6y in the
centre of the symmetry boundary in the simply supported one-way slab.

The angle a and thus the plastic rotation 8y, was calculated from the deflection in the
second and third node due to how the ADINA software treats the plastic curvature in
the FE model. The angle a was dependent on the mesh density since a finer mesh
provides a better approximation. The orthotropic mesh density described above
yielded satisfactory results and an increase of the mesh density did not influence the
results significantly. For additional information regarding how ADINA treats the
plastic curvature and how the results could have been obtained, the reader is referred
to Section 6.1.3 and Appendix D.

7.1.4 Torsional stiffness

The torsional stiffness was for these analyses also set to 1/16 of the elastic stiffness of
a concrete beam with a width and height of 0.2 m. The choice of torsional stiffness
was also here believed to be conservative and for additional information about this
matter, the reader is referred to Section 6.1.4 and Appendix B.
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7.2 Response of a single and two static forces

The response and the development of plastic rotation for a single and two static forces
of varying magnitudes are treated in this section. The aim of this section was to study
how the simply supported one-way structure behaved under static forces so that the
development of plastic rotation caused by moving concentrated forces could be
compared and evaluated. This evaluation is treated in Section 7.6.2.

The simply supported slab was subjected to single forces F of the following
magnitudes:
F =[556065...135140 145] kN (7-1)

The forces that were applied on the slab had a range of 55 kN, where no plastic
rotation occurred, and 145 kN which was the force of the smallest magnitude to cause
failure due to plastic rotation 6,. The forces were applied in the centre of the slab
which can be seen in Figure 7.11.

[mm]

symmetry line

6000

\ L |
Figure 7.7 Geometry and dimensions of the studied simply supported slab subjected
to a single static concentrated force.

symmetry line

6000

The slab was also subjected to two concentrated forces F; and F, that varied
according to the following magnitudes:

F,=F, =[404550...85 90 95| kN (7-2)

The distance between the two forces was kept from Section 6.2 and was therefore
altered according to:

d=[1.21.62.0]m (7-3)

The forces that were applied on the slab had a range of 40 kN, where no plastic
rotation occurred for d=1.2 m, and 95 kN which was the force of the smallest
magnitude to cause failure due to plastic rotation for d = 2.0 m. The forces were also
here applied in the centre of the slab which can be seen in Figure 7.8.
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Figure 7.8 Geometry and dimensions of the studied simply supported slab subjected
to a pair of static concentrated forces.

The results from the analyses are shown in Figure 7.13 where it is clearly shown, as
for the cantilever structure in Section 6.2, that it was advantageous for the cantilever
structure with an increased distance between the two concentrated forces.
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Figure 7.9  Plastic rotation at the centre of the simply supported slab for different
magnitudes of static forces.

As a validation of the model, the simply supported structure was subjected to a single
static force of 115 kN that were applied over ten load cycles (applied and removed ten
times). As stated in Section 6.2, a static force should in theory cause a plastic rotation
that does not develop when the number of load applications increases. This is also
how the model behaved, as can be seen in Figure 7.10, and it is clear that the model
was more stable than the cantilever structure in Section 6.2.
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Figure 7.10 Plastic rotation at the centre of the simply supported slab for a static
force F=115 kN during ten load cycles.
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7.3 Response of a single moving force

The response and the development of accumulated damage, i.e. plastic rotation, for a
single moving concentrated force of constant and varying magnitudes is treated in this
section. A comparison between the different load cases and how a superposition
approach corresponds to the behaviour of the slab from the conducted analyses is also
treated in this section. The results obtained in these analyses corresponded well to
those obtained in Section 6.3 for the cantilever structure. The results are therefore
presented here in a more compact form and the reader is referred to Section 6.3 for
comparison and additional information regarding the analyses.

4800 3600
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Figure 7.11 Geometry and dimensions of the studied simply supported slab for a
single moving concentrated force.

7.3.1 Load magnitudes — Constant

The slab in Figure 7.11 was exposed to a range of moving concentrated forces F of
different magnitudes:

F =[556065...115120125] kN (7-4)

As can be seen in Figure 7.12, a high load magnitude led to failure in a small number
of load cycles while a low load magnitude led to failure with a higher number of load
cycles. This behaviour corresponded to the expected behaviour of the structure and
what was observed in Section 6.3.

The simply supported slab was also subjected to 150 load cycles n for each load
magnitude F if failure of the structure did not occur within that range.

Forces with a magnitude ranging from 110 kN to 125 kN reached failure in two or
less load cycles which is shown in Figure 7.13 for scale purposes.
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Figure 7.12 Plastic rotation for different magnitudes of moving concentrated forces.
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Figure 7.13 Plastic rotation for different magnitudes of moving concentrated forces.

It is also here clear that the magnitude of the applied force F had a substantial
influence on the number of load cycles the simply supported slab could sustain before
the occurrence of failure due to plastic rotation. The number of load cycles to failure
ny for different magnitudes of the total force is shown in Figure 7.14.
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Figure 7.14 Number of load cycles to failure for different magnitudes of moving
concentrated forces.

As in the case of the cantilever structure, plastic rotation for a certain load magnitude
was obtained during the early load cycles while an increased number of load cycles
approached a stable value of the plastic rotation. The plastic rotation approached a
stable state where the occurrence of failure was unlikely to take place within a number
of load cycles that could be analysed in this Thesis.

The critical force F¢ri; was in the case of a single static moving concentrated force
somewhere between 80 kN and 85 kN. This behaviour can be seen in Figure 7.15.
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Figure 7.15 Plastic rotation for different magnitudes of moving concentrated forces.
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The reason for the phenomenon shown in Figure 7.15 is the same as described in
Section 6.3.1 for the cantilever structure.

The theory shown in Figure 6.21 in Section 6.3.1 was investigated for a moving
concentrated force with a magnitude of 70 kN for an increasing number of load
cycles. The plastic rotation along the centre of the slab is shown in Figure 7.16 where
it is clearly visible that the simply supported slab approached a linear elastic
behaviour with an increased number of load cycles. As for the cantilever slab, it can
be seen that the plastic rotation did not reach its maximum in the centre of the slab
during the early load cycles. It is also clear that the simply supported structure
demanded a greater number of load cycles before the maximum plastic rotation was
found in the centre of the slab. The reason for this was assumed to be derived from
how the forces were applied and the reason for the overall behaviour can be found in
Section 6.3.1.
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Figure 7.16 Development of plastic rotation 6y along the centre line for a load
magnitude of 70 kN.

7.3.2 Load magnitudes — Varying

The analyses for the constant load magnitudes for a single moving concentrated force
illustrated how the plastic rotation developed in the simply supported structure. As
described in Section 6.3.2, the case where a bridge structure is subjected to a constant
force above the serviceability limit state must be considered as an extreme case. The
simply supported structure was therefore subjected to two different load
combinations, LCa and LCg. The same approach and notations used in the case of the
cantilever structure in Section 6.3.2 was used for these analyses.

The load combinations and how these are defined was discussed in Section 6.3.2 and
are here presented without further discussion as a support for the results presented
below. Load combination LCa; is here again defined in Equation (7-5) and is
illustrated in Figure 7.17. Load combination LCa, is here again defined in
Equation (7-6) and is illustrated in Figure 7.18.
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Figure 7.18 Load combination A;, LCa

The magnitude of the larger force was set to 110 kN and the magnitude of the inferior
force was set to a range of 60 kN to 90 kN. The background of the chosen range of the
load magnitudes for the load combinations was treated in Section 6.3.2.

As can be seen in Figure 7.19, and which have been observed for the cantilever
structure, the development of plastic rotation is dependent on the load history.
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Figure 7.19 Plastic rotation for varying magnitudes of moving concentrated forces
for six load cycles.

It is clear from Figure 7.19 that there is a small, but noticeable, difference in plastic
rotation after six load cycles between the two different load combinations. The plastic
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rotation was also here measured after six load cycles the difference was calculated
according to Equation (6-13), defined in Section 6.3.2. The difference is shown in in
Figure 7.20 and the reader is referred to Appendix H for tabulated values.
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Figure 7.20 Difference in plastic rotation yg,.a between load combination A; and A,
shown in percent for different magnitudes of the inferior forces.

The second load combination, LCg consisted of two constant loads of two different
magnitudes, but applied in three steps. This load combination was also defined and
discussed in Section 6.3.2 and are here presented without further discussion as a
support for the results presented below.

Fl = Fl,n:S = FZ,n:Z (7'7)
Fz = Fz,n:1 > Fl (7'8)
. n=3_ o n=1_ . n=2_
F E F

Figure 7.21 Load combination B, LCg

The magnitudes of the larger and the smaller forces were the same as in the case of
the first load combination, LCa and were based on the same background theory.

It can be seen in Figure 7.22 that the behaviour of the slab approached the behaviour
of a single moving concentrated force of 110 kN, which is reasonable.
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Figure 7.22 Plastic rotation for varying magnitudes of moving concentrated forces
for six load cycles.

7.3.3 Comparison

In order to determine the most critical load combination with respect to plastic
rotation that was studied in Section 7.3.2, these are compared in Figure 7.23. The
comparison conducted in this section corresponds to the comparisons made in
Section 6.3.3 and the reader is thus referred to that section for equations and
definitions.
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Figure 7.23 Plastic rotation for varying magnitudes of moving concentrated forces
for six load cycles.
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It is clear from Figure 7.23 that there is a small, but noticeable, difference in plastic
rotation after six load cycles between the three different load combinations. The
plastic rotation was measured for load combination LCa;, LCa2 and LCg after six load
cycles and the difference was calculated according to Equation (6-16) and (6-17),
defined in Section 6.3.3. The difference is shown in in Figure 7.24 and the reader is
referred to Appendix H for tabulated values.
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Figure 7.24 Difference in plastic rotation y,,, between load combination A;, and load
combination A, and B, shown in percent for different magnitudes of the
inferior forces.

It can be seen in Figure 7.24 that load combination LCg resulted in the highest plastic
rotation of the slab after six load cycles for inferior forces of a magnitude greater than
65 kN. For inferior forces of a magnitude below this value, load combination LCx;
yielded the highest plastic rotation of the slab after six load cycles. These results
indicate that the most likely load combination of the structure, LCg, for the majority of
the investigated forces, was the one to cause the highest plastic rotation. This was also
observed for the cantilever structure in Section 6.3.3.

It should also here be noted that the difference between the two load combinations is
small and the results should therefore be treated with care.

7.3.4 Traditional superposition approach

As for the cantilever structure, it was clearly shown that the development of plastic
rotation is dependent on the load history which indicates that a traditional
superposition method is not recommended. The error of a superposition approach was
here evaluated for the two load combinations LCx and LCg. The result from the
superposition approach were obtained by merging results from Section 7.3.1 where all
the loads were applied on an unloaded, simply supported slab. For the background
theory of the superposition approach used in this section, the reader is referred to
Section 6.3.4.
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The development of plastic rotation for LCaz, which was shown in Figure 7.19, was
extended to 20 load cycles and is shown in Figure 7.25. The results for the different
load magnitudes from Section 7.3.1 were used in order to obtain a plastic rotation
development based on a superposition method. This is shown in Figure 7.26.
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Figure 7.25 Plastic rotation for load combination LCa;.
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Figure 7.26 Plastic rotation for load combination LCp;, based on a traditional
superposition approach.

It is clear from Figure 7.25 and Figure 7.26 that there is a significant difference
between the result from the analyses and the results from a superposition approach.
The plastic rotation was measured after six load cycles and the difference was
calculated according to Equation (6-18), defined in Section 6.3.4. The difference is
shown in in Figure 7.27 and the reader is referred to Appendix H for tabulated values.
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As can be seen in Figure 7.27, the value obtained for F = 75 kN exhibited a deviant
behaviour. The analyses were thoroughly examined but no indication of an error was
discovered. This value was however assumed to be amiss which influenced the results
illustrated in Figure 7.30 and Figure 7.31.

The development of plastic rotation for LCg, which is shown in Figure 7.22, is also
shown in Figure 7.28 for comparison purposes. The plastic rotation development
based on the superposition method is shown in Figure 7.29. The same superposition
approach that was used for the load combination LCa; was also used in this case.
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Figure 7.28 Plastic rotation for load combination LCg.
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Figure 7.29 Plastic rotation for load combination LCg, based on a traditional

superposition approach.

It is clear from Figure 7.28 and Figure 7.29 that there is a significant difference
between the result from the analyses and the results from a superposition approach.
The plastic rotation was measured after six load cycles and the difference was
calculated according to Equation (6-19), defined in Section 6.3.4. The difference is

shown in Figure 7.30 and the reader is referred to Appendix H for tabulated values.

]

45

= = N N w w B
o (8, ] o (4] o (3] o

Plastic rotation difference, yyp g sup [%0]

(3]

//

222

P

7=

or

//

Za8

60

65 70 75 80
Inferior load magnitude, F [KN]

85

90

Figure 7.30 Difference in plastic rotation ygiesyp after six load cycles for load
combination B between results from an analysis and results from a

superposition approach.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73

135



If Figure 7.27 and Figure 7.30 are combined, the difference in percentage between the
analyses and the superposition approach for load combination LCa and LCg can be
shown in Figure 7.31.
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Figure 7.31 Difference in plastic rotation yg sy for load combination A; and B
between results from an analysis and results from a superposition
approach, shown in percent for different magnitudes of the inferior
forces.

It is clear that the superposition approach overestimated the plastic rotation in the
structure for both load combination LC, and LCg. This was also shown for the
cantilever structure in Section 6.3.4 and was expected since the adaptation of the slab
due to repeated loading was not fully captured by the superposition approach. The
difference in plastic rotation between the analyses and the superposition approach was
greater for load combination LCg for larger loads and for LCa for loads of smaller
magnitudes.

In the case of the cantilever structure in Section 6.3.4, load combination LCg yielded a
larger difference in plastic rotation than load combination LCa. The reason for the
difference was believed to be derived from the fact that the plastic rotation from each
load was overestimated and load combination B consisted of three separate loads
instead of two separate loads which was the case for load combination A. This was
obviously not the case for all magnitudes of the inferior forces for the simply
supported structure. It can however be seen that the difference increased with an
increased value of the inferior force which was the case for the cantilever structure.
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7.4 Response of two moving forces — Equal magnitudes

The slab in this analysis was modelled with the same geometry and moment-curvature
relations as the slab in Section 7.3. The results obtained in this section corresponded
well to those obtained in Section 6.4 for the cantilever structure. The results are
therefore presented here in a more compact form and the reader is referred to
Section 6.4 for comparison and additional information regarding the analyses.

) symmetry line ) -
d
3600 ’H‘ 4800 ‘ 3600

Figure 7.32 Geometry and dimensions of the studied simply supported slab for two
concentrated forces.

The modelling choices and moment-curvature relation from the analysis of a single
static moving concentrated force was also used in this analysis.

The sum of the loads applied on the slab in this analysis differed between the
distances d between the pair of concentrated forces. The distance between the forces
was altered according to Equation (7-9) and the influence of this parameter is treated
in Section 7.4.1t0 7.4.3.

d=[1.21.62.0]m (7-9)

7.4.1 Constant distance,d=1.2 m

In the case of a constant distance of d = 1.2 m, the applied forces F; and F, varied
according to the following magnitudes:

F,=F, =[404550...65 70 75| kN (7-10)
Where:
Fo=F+F, (7-11)

As in the case of a single moving concentrated force, the analyses were conducted
with 150 load cycles n for each pair of concentrated forces if failure of the simply
supported slab did not occur within this range. The plastic rotation in the centre of the
slab for different magnitudes of forces is shown in Figure 7.33.
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Figure 7.33 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.

The number of load cycles to failure n, for different magnitudes of the applied forces
Is shown in Figure 7.34.
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Figure 7.34 Number of load cycles to failure for different magnitudes of a pair of
moving concentrated forces for d = 1.2 m.

As in the case of a single moving concentrated force, the plastic rotation approached a
stable value where the occurrence of failure was unlikely to occur within the number
of load cycles studied in this Thesis. This was the case when the total force was below
the critical force F¢it which in this case was somewhere between 55 kKN and 60 kN.
The reason for this phenomenon was described in Section 6.3.1.
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7.4.2 Constant distance,d=1.6 m

In the case of a constant distance of d = 1.6 m, the applied forces F; and F, varied
according to the following magnitudes:

F,=F, =[455055...70 7580] kN (7-12)

The plastic rotation in the centre of the slab for different magnitudes of forces is
shown in Figure 7.36.
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Figure 7.36 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.

12

[EY
0] o

AN
N

»

I

Load cycles to failure, n, [-]

0

65 70 75 80
Load magnitude, F,=F, [kN]

Figure 7.37 Number of load cycles to failure for different magnitudes of a pair of
moving concentrated forces for d = 1.6 m.
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The critical force F.i; was in this case somewhere between 60 kN and 65 kN.
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Figure 7.38 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.
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7.4.3 Constant distance, d =2.0m

In the case of a constant distance of d = 2.0 m, the applied forces F; and F, varied
according to the following magnitudes:

F,=F, =[455055... 7580 85] kN (7-13)

The plastic rotation in the centre of the slab for different magnitudes of forces is
shown in Figure 7.41
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Figure 7.39 Plastic rotation for different magnitudes of a pair of moving

concentrated forces.
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Figure 7.40 Number of load cycles to failure for different magnitudes of a pair of
moving concentrated forces for d = 2.0 m.
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The critical force F.i; was in this case somewhere between 65 kN and 70 kN.
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Figure 7.41 Plastic rotation for different magnitudes of a pair of moving
concentrated forces.
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7.4.4 Comparison

In order to compare the plastic rotation caused by the different loads and load
magnitudes, the number of load cycles to cause failure n, was compared with the total
load magnitude F: from Equation (7-11) for the different loads applied on the simply
supported slab. This behaviour is shown in Figure 7.42. The methodology used in this
section was kept from Section 6.4.4 which the reader is referred to for comparison and
additional information.
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Figure 7.42 Number of load cycles to failure for different loads and load
magnitudes.

It is clearly shown in Figure 7.42 that was is advantageous for the simply supported
slab, from the perspective of plastic rotation, with an increased distance between a
pair of concentrated forces. It is also clearly shown that the case of two concentrated
forces was advantageous in comparison to the case of a single moving concentrated
force with the same load magnitude. As the concentrated force was separated into two
forces and the distance between those two increased, the total load magnitude and
number of load cycles to failure increased.

In order to compare the number of load cycles to cause failure for the different loads
and load magnitudes, a load magnitude factor y,;, » was defined as in Section 6.4.4:

_ Fa(n)
Vopur = B

el

(7-14)

Where F,, = the total applied force

F, = the force of greatest magnitude not to cause any plastic rotation for a
single moving concentrated force, in this case 55 kN
n, = the number of load cycles to failure for each applied force
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It was possible, from this relation, to predict the vulnerability of the slab, i.e. how
much the moving concentrated forces could be increased in magnitude before failure
due to plastic rotation occurs. This relation is shown in Figure 7.43.
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Figure 7.43 Number of load cycles to failure for a load magnitude factor ygu..r
related to the load F.

It can be seen in Figure 7.43 that the moving concentrated force of the highest
magnitude not to cause any plastic rotation in the structure could be increased by
63 % before failure of the simply supported slab occurred within 150 load cycles. If
the total force was separated into two concentrated forces with a distance of 1.2 m
instead, the total applied load could be increased by 118 % before failure of the
simply supported slab occurred within 150 load cycles. An increase of the distance
between the two concentrated forces generated an increase in total load magnitude
before failure occurred.

As in the case of the cantilever structure in Section 7.4, it is reasonable to assume that
there is a distance d between the pair of moving concentrated forces such that the
simply supported structure experiences the force pair as two single forces. This
behaviour was not studied for this structure due to the limited timeframe of this
Thesis. It is however reasonable to assume that the smallest distance di; for the slab
to experience the force pair as two single forces is smaller than the critical distance for
the cantilever structure. This can be derived from Figure 7.43 where it is clearly
shown that the applied forces can be significantly more increased that the forces for
the cantilever structure and thus have an advantageous distribution of the plastic
rotation.
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7.5 Response of two moving forces — Different magnitudes

The slab shown in Figure 7.32 was in this analysis subjected to a number of forces F
of different magnitudes in order to study the influence of such load combinations. The
methodology used in this section was kept from Section 6.5 and is therefore presented
here in a more compact form. In order to study the influence of varying load
magnitudes within the pair of moving concentrated forces, the total applied force Fiy
was set to:

Fo. =F +F, =120 kN (7-15)
Where:

F,=F, (7-16)

F, =[10 20 30 40 50] kN (7-17)

F, = [110100 90 80 70] kN (7-18)

Where F; was the second force of the force pair to load the slab which can be seen in
Figure 7.32. The magnitude of the force F, was, for this load application order, always
greater than the force F; according to Equation (7-19) and Figure 7.44

F<F (7-19)
E , |F | |

l Y7 N/ ]

) 12000 )

Figure 7.44 The first load application order LAO; of the studied slab.

The plastic rotation caused by the applied force pair was not significantly influenced
by the load application order. A study of this influence is treated in Appendix E and
the analyses in this section follow the first load application order, LAO;, which is
stated in Equation (7-15) to (7-19).
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7.5.1 Constant distance,d =[1.21.6 2.0] m

The distance d between the force pair applied on the cantilever slab was kept from the
previous analyses in Section 7.4 and the results from the analyses are shown in
Figure 7.45 to Figure 7.47:
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25 AR e 0,y =234 mrad
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=
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2 4 6 8 10 12 14
Load cycles, n [-]

Figure 7.45 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 1.2 m.
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Figure 7.46 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 1.6 m.
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Figure 7.47 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d = 2.0 m.

As expected, and as observed in Section 7.4, it was advantageous for the simply
supported structure with an increased distance between the moving concentrated
forces. It is also clear that it was advantageous for the simply supported structure with
a more evenly distributed force application.

From Figure 7.45 to Figure 7.47, it can be seen that:

e For the distance d = 1.2 m, all investigated load combinations led to failure
within 14 load cycles or less.

e For the distance d = 1.6 m, four of the investigated load combinations led to
failure within 14 load cycles or less.

e For the distance d = 2.0 m, three of the investigated load combinations led to
failure within 14 load cycles or less.

How the plastic rotation developed in the centre of the slab during the first 10 load
cycles for d = 1.2 m is illustrated in Figure 7.48.

It can be seen in Figure 7.48 that the load combinations with a large difference in
force magnitudes between the two forces led to failure during a few load cycles. The
plastic rotation for these loads greatly exceeded the plastic rotation capacity for the
cross-section but is presented here in order to evaluate how the accumulated damage
developed in the centre of the simply supported structure. It can be seen that the
accumulated damage for the forces of more equal magnitudes approached a stable
state more rapidly than the force pair with a bigger difference in magnitude between
the two forces. This was also observed in Figure 7.45 where the distance between the
curves decreased as the forces approached a mean value.
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Figure 7.48 Development of plastic rotation for different load combinations of a pair
of moving concentrated forces of varying magnitudes for d = 1.2 m.

7.5.2 Comparison

In order to determine how the plastic rotation was influenced by the distance d
between the moving forces of varying magnitudes, the different analyses were
compared below. The plastic rotation obtained from the analyses with d = 1.6 m and
d=2.0m was compared to the plastic rotation with d=1.2m according to
Equation (6-32) and (6-33), defined in Section 6.5.2. The difference is shown in
Figure 7.49 and Figure 7.50 and the reader is referred to Appendix H for tabulated
values.
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Figure 7.49 Difference in plastic rotation ys16m for different load combinations
betweend =1.2mandd = 1.6 m.
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Figure 7.50 Difference in plastic rotation ygy2om for different load combinations
betweend =1.2mandd =2.0 m.

It was here observed, as in Section 6.5.2 that the difference in plastic rotation was
almost constant for each separate load combination and distance after a few load
cycles. The mean plastic rotation difference was therefore of interest and defined as in
Section 6.5.2. The mean plastic rotation difference was calculated according to
Equation (6-34) to (6-37), presented in Section 6.5.2. The difference is shown in
Figure 7.51 and the reader is referred to Appendix H for tabulated values.
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Figure 7.51 Mean difference in plastic rotation yg, between d=1.2m and,
d=16mandd=2.0m.

It can be seen in Figure 7.51 that an increased distance d resulted in a significant
decrease in plastic rotation. The difference in plastic rotation increased with decreased
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difference between the two forces F; and F,. This behaviour was expected since the
distance between a force of a great magnitude and a force of a small magnitude should
not influence the accumulated damage to a great extent. When both forces are of a

relative high magnitude, the distance should influence the accumulated damage to a
greater extent, which was the case.
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7.6 Summation

This section covers a comparison between the moving concentrated forces presented
in Section 7.3 to 7.5. A single and a pair of moving concentrated forces are compared
with static forces of the same magnitudes. As a final part of this section, the results
presented in Chapter 7 are discussed.

7.6.1 Comparison — Moving forces

This section covers the investigated forces on the simply supported structure
presented in the Section 7.3 to 7.5 and evaluates the differences and similarities
between them. These sections have covered the two main load cases:

A single moving concentrated force — Constant magnitude
A single moving concentrated force — Varying magnitudes
Two moving concentrated forces — Equal magnitudes
Two moving concentrated forces — Different magnitudes

As discussed in Section 6.6.1, the results from the pair of moving concentrated forces
of different magnitudes should yield plastic rotation greater than what is caused by a
pair of moving forces of equal magnitudes and less that what is caused by a single

moving force. This can be seen in Figure 7.52 to Figure 7.54 where these analyses are
presented together.
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Figure 7.52 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d=1.2 m.
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Figure 7.53 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d=1.6 m.
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Figure 7.54 Plastic rotation for different load combinations of a pair of moving
concentrated forces of varying magnitudes for d=2.0 m.

It can be seen in Figure 7.52 to Figure 7.54 that the results where F;=F,=60 kN
yielded higher plastic rotation than the case where F; =50 kN and F, =70 kN during
the first load cycles. However, the accumulated damage caused by the load
combination of two concentrated forces of different magnitudes was thereafter greater
than the case where F;=F,=60 kN. The results indicates that the two equal forces
were more critical to the development of the plastic rotation during the early load
cycles and that the simply supported slab thereafter adapted to the load magnitude
quicker than in the case of two different forces. The effect of the larger force
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(F2=70kN) was in this case decisive for the development of the plastic rotation
which caused this load combination to develop more plastic rotation after a few load
cycles than the case of two equal forces.

The plastic rotation obtained by F= 120 kN was slightly higher than the case where
F1=10 kN and F,= 110 kN for all distances d.

These analyses were only conducted for one total force Fi:=120 kN for the two
moving concentrated forces of different magnitudes but the advantageous effect of
separating the total force into two separated forces are believed to increase with an
increased total force.

7.6.2 Comparison — Static vs. moving forces

As in the case of the cantilever structure, it is clear that a moving concentrated force
causes significantly more plastic rotation than what is caused by a static force of the
same magnitude. The development factor used for the cantilever structure in
Section 6.6.2 was here used in the same way and based on the same observations.

As for the cantilever structure, the distribution of the development factor yg,; o Was
divided into two sub factors gy mov.min ANA Ygprmov.mar. These factors represent the
minimum and maximum difference in plastic rotation between static and moving
forces of the same magnitudes. For the definition of these factors, the reader is
referred to Section 6.6.2.

The development factors were also here calculated for all forces that reached a stable
state (reached its maximum plastic rotation) in the conducted analyses and the results
Is shown in Figure 7.55.
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Figure 7.55 Maximum and minimum values of the cumulative factor yg,;m.. for a
single and a pair of moving concentrated forces.

It is clear from Figure 7.55. that the plastic rotation caused by a moving concentrated
force was within the range of 1.5 to 30 times larger than the plastic rotation caused by
a static force. It is also in this case clear that an increased distance d between the
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forces and an increased total applied force Fi yielded plastic rotations closer to what
was predicted by static forces. How the cumulative factor developed for a single
moving concentrated force is shown in Figure 7.56. For the development of the
cumulative factor for two moving concentrated forces, the reader is referred to
Appendix G.
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Figure 7.56 Development of the cumulative factor yg,.m... for a single moving
concentrated force.

7.6.3 Discussion

In general, the results presented in Chapter 7 follow the same pattern as in Chapter 6
and are here briefly discussed. For a more detailed discussion and for additional
information the reader is referred to Section 6.6.3.

The simply supported one-way structure reached a stable state, with respect to the
plastic rotation development, when the number of load cycles n was increased.

A traditional superposition approach of moving concentrated forces significantly
overestimated the plastic rotation. The magnitude of the overestimation corresponded
well to what was obtained from the cantilever structure, but with a slightly different
behaviour. The difference for the cantilever structure indicated a linear behaviour
while the difference seemed to diminish as the load magnitude increased for the
simply supported structure.

It was also for the simply supported structure shown that there was a significant
difference between the plastic rotation caused by static and moving concentrated
forces. The plastic rotation caused by a moving force could be as high as 30 times the
plastic rotation caused by a static force of the same magnitude. It was also for this
structure shown that this difference decreased as the force magnitude increased and
also decreased with increased distance d between a pair of moving concentrated
forces.
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8 Evaluation and discussion of results

This chapter covers the evaluation and discussion of the obtained results, presented in
this Thesis. Section 8.1 covers the results from Chapter 4 and 5, focused on the
moment distribution in the serviceability limit state for slabs subjected to static
concentrated forces. Section 8.2 covers the results from Chapter 6 and 7, focused on
the development of cumulative plastic rotation 6, in slabs subjected to moving
concentrated static forces.

8.1 Moment distribution in SLS

For studies related to moment distribution in SLS, several cases were studied which
were intended to represent different scenarios which may appear in a bridge structure.
The different scenarios included a variety of stiffness in different directions due to
varying reinforcement amounts or normal stresses in those directions. The non-linear
analyses were divided into three different categories, namely Uncracked, Neutral and
Cracked. The names of the three categories imply on the state and corresponding
stiffness in the longitudinal direction of the slab, i.e. the x-direction in the figures
presented in this section. The variety of stiffness may be derived from the global
bending moment for a beam bridge structure where, for example, a positive global
moment compresses the upper flange of the cross-section. Further, two different levels
of the cracking moment were chosen. See Section 4.1 for the methodology used.

Two different structures were studied, a cantilever slab and a simply supported one-
way slab. Both structures were studied with a single concentrated force and two
concentrated forces, see Figure 8.1.
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Figure 8.1 The studied structures and load applications; (a) cantilever slab, single
force (b) cantilever slab, two forces (c) simply supported slab, single
force (d) simply supported slab, two forces

In this section, a summary of the maximum moments obtained from the analyses is
made for easier comparison. Further, the responses of the structures are investigated
with the help of contour plots which display in which branch of the trilinear moment-
curvature relation the beam elements are situated. Finally, the results are compared to
the recommendations in Pacoste et al. (2012).
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8.1.1 Maximum moment

The maximum moments obtained from the analyses were of most interest and the
results are therefore summarized in column graphs for easier comparison; see
Figure 8.2 to Figure 8.5. The values are expressed as a factor of the isotropic linear
solution obtained from the beam grillage model.
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Figure 8.2 Maximum moments; cantilever slab, single concentrated force.
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Figure 8.3 Maximum moments; cantilever slab, two concentrated forces.
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Figure 8.4 Maximum moments; simply supported one-way slab, single concentrated
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Figure 85 Maximum moments; simply supported one-way slab, two concentrated
forces.

It was observed that for all different cases, the orthotropic linear solution was
conservative with respect to the non-linear solutions. This is logical due to the fact
that the positive influence from uncracked sections was ignored. In the cases
Uncracked and Cracked, the response in the x-direction was linear, which is a reason
why the non-linear solutions were more similar to the orthotropic linear solutions than
for the case Neutral.

In the case Uncracked, it is shown that the maximum moment was decreased by about
20 to 25 % for the stiffness proportion Ex=5E,, which is a reasonable stiffness
proportion between uncracked and cracked reinforced concrete. The case Uncracked
was intended to represent a region of a bridge structure which is uncracked in the
longitudnal directions due to global forces, see Figure 4.3. This region may be quite
large depending on the structure, which means that there could be a significant gain in
taking this stiffness proportion into account, even with a linear orthotropic model.

The non-linear solutions for the case Neutral are very similar, independent on stiffness
proportions. This is most likely due to the fact that uncracked parts of the structure
dominates the behaviour, and would mean that the solution would tend to approach
the orthotropic linear solution if the structure was already cracked from an earlier
applied load. The non-linear solutions could thus be too liberal for design of a bridge,
where moving loads may cause cracking along an extensive part of the structure,
which also applies for the case Cracked. It was also shown in Section 5.2.3, that if the
load was of a higher magnitude in relation to the cracking moment, the solutions
would be more affected by the stiffness proportions.

For the cases Neutral and Cracked, both main directions had the stiffness of cracked
reinforced concrete when the load was applied. The stiffness proportion was thus a
result of varying reinforcement amounts in the two directions. Unlike the case
Uncracked, where one direction had the stiffness of uncracked concrete throughout
the analysis, the range of stiffness proportion was smaller. This is why only a range of
stiffness proportion from E,=0.5E, to E,=2E, were chosen. The orthotropic linear
solutions show a variation of about 10 to 15 % of the maximum moment compared to
the isotropic linear solution. This means that the actual moment in the slab could be
underestimated by an isotropic linear elastic analysis. Even though the non-linear
analyses show a lower moment than the isotropic solution for the majority of cases,
the solution could still be too liberal if the structure is already cracked due to earlier
loading as previously mentioned.
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8.1.2 Contour plots

In order to investigate and interpret the results, the curvature in the beam elements of
the finite element model was measured and illustrated as contour plots. The plots
follow the orientation presented in Figure 8.1. Each element was given a colour
depending on which branch of the moment-curvature relation the beam element was
situated in, see Figure 8.6. The plots presented in this section were based on the
results from cases with the chosen magnitude of the cracking moment M=M;; /3.
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Figure 8.6  Colour distinction for contour plots

8.1.2.1 Case Uncracked

The contour plots from the case Uncracked for a single concentrated force are shown
in Figure 8.7. Note that, since all elements in the x-direction had an uncracked
stiffness, only elements that were orientated in the y-direction are plotted.

Cantilever slab Simply supported one-way slab

E, = 10E,

Figure 8.7 Contour plot for the case Uncracked with a single concentrated force.
Beam elements orientated in the y-direction.

In the case Uncracked, the stiffness in the x-direction was locked to the stiffness of
uncracked concrete. This means that, as the stiffness factor a = E«/ Ey increased, the
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y-direction got weaker. The plots show that, as the y-direction got weaker, additional
elements along the length of the slab were activated.

8.1.2.2 Case Neutral

As seen in Section 8.1.1, the maximum moments for the case Neutral were similar,
independent on stiffness proportions. The contour plots are divided into beam
elements in x- and y-direction. Cracking along each main direction can then be
observed. The contour plots for the cantilever slab from the case Neutral are presented
in Figure 8.8.

x-direction y-direction

E = 2E,

Figure 8.8  Contour plot for the case Neutral, cantilever slab with a single
concentrated force.

The results show that most cracking occurred in the y-direction along the fixed edge
and that a large part of the structure close to the applied load reached the state Il
stiffness. In the x-direction, only elements directly under the concentrated force
reached a state Il stiffness. Note that the cracks under the applied load were bottom
cracks, while the cracks to the right of the applied load were top cracks. This explains
the uncracked area in between, since it is an area in which the moment changes from
positive to negative. This means that for a moving load, there will be both bottom and
top cracks along the entire structure. As discussed in Section 8.1.1, the non-linear
solution can thus be too liberal if the structure is already cracked due to earlier
loading.

Contrary to the moment distribution, the curvature contour plot show a distinct
difference between the three different stiffness proportions. Namely, that as the x-
direction increased in stiffness and thus attracted additional loads which resulted in a
larger area which reached the state 11 stiffness.
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8.1.2.3 Case Cracked

In the case Cracked, the x-direction had a linear moment-curvature relation which
represents the stiffness of cracked concrete with varying reinforcement amounts.
Since the relation was linear, all elements orientated in the x-direction had the same
stiffness. In Figure 8.9, the contour plots for the case Cracked with a single
concentrated force are presented. Only beam elements orientated in the y-direction is
displayed.

Cantilever slab Simply supported one-way slab

E. = 2E,

Figure 8.9  Contour plot for the case Cracked with a single concentrated force.
Beam elements orientated in the y-direction.

As in the case Uncracked, the extent of the cracked regions were increased as the y-
direction became weaker in proportion to the x-direction. It is however not as clear as
in the case Uncracked. The reason is most likely due to the larger range of stiffness
proportions in the case Uncracked.
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8.1.3 Effective moment distribution width

An objective of this Thesis was to evaluate the recommendations given in Pacoste et
al. (2012), see Section 3.4.2. In Pacoste, the recommendations are stated in terms of
effective moment distribution width wes which can be computed as:

M tot
Wy == = (8-1)
Yy, max
Where: w,, = effective width for moment distribution
M, = total momentin y-direction
m, . = Maximum moment my, measured in analysis

The distribution width weg from the linear solutions in Chapter 4 and 5 are presented
in Figure 8.10. Note that no scenarios in this study include values of the stiffness
factor a below 0.5. A value of, for example a = 0.1, would mean that the slab had an
uncracked stiffness in the y-direction, while it had a cracked stiffness in the x-
direction. This could be accomplished by prestressing the concrete in the y-direction.
However, this scenario was not discussed in this Thesis.

—— Cantilever slab, single force —o— Simply supported slab, single force
50 —o— Cantilever slab, two forces —o— Simply supported slab, two forces
4.5
=40
35 //;'// $=a
£ 30 7
225 & ".,%ﬂ T T T
2 20 ZIIJ;{[
R i
T 15 g
2 (<]
010 8
0.5 T
0.0
0.1 1 10

Stiffness factor, a = Ex/ Ey [-]

Figure 8.10 Effective moment distribution width from linear elastic orthotropic
cases.

The moment distribution widths for the trilinear solutions were omitted since the
orthotropic linear solutions describe the trilinear solutions fairly well for the majority
of cases. Also, with respect to the maximum moment from the trilinear solutions, the
linear orthotropic solution is conservative.

The recommended values of the moment distribution width were calculated from
simple relations stated in Section 3.4.2. The relations include the thickness of the slab
which in this Thesis was chosen to 0.2 m. However, a range of stiffness proportions
were chosen and the levels of the cracking moment were chosen as a factor of the
orthotropic linear solution, see Section 4.1.1. Thus, the only parameter the height of
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the slab affects is the torsional stiffness which was chosen conservatively, see
Section 4.1.3.

The relations also include the width of the applied load. For the cantilever slab, the
concentrated force was modelled as a point load acting on a single node. However, for
the simply supported slab the load was spread over an area of 0.4 x 0.4 m?, which was
chosen according to the load model described in Section 5.1. Therefore, when
calculating the recommended value, b =0.4 m was chosen. No surfacing material
were discussed and was chosen to t =0 m.

For the cantilever slab subjected to a single concentrated force, the recommended
distribution width was calculated as:

Wy =2h+b+t=2.02+04+0=08m (8-2)

For the cantilever slab subjected to two concentrated forces, the recommended
distribution width was calculated as:

Wy =2-Xz +2h+b+t=2-06+2-02+04+0=20m (8-3)

For the simply supported one-way slab subjected to a single concentrated force, the
recommended distribution width was chosen according to:

. I . |
min| 3h, — | <w,, <min| 5h, — -
( 10) y ( 5) (8-4)
. 3.2 . 3.2
min| 3-0.2, —— [SWy4 <min| 5-0.2, — -
( 10) y [ 5) (8-5)
0.32m<w, <0.64m (8-6)

The case with several concentrated forces was not treated in Pacoste et al. (2012) for
simply supported one-way slabs. However, following the methodology used for
cantilever slabs, the recommended distribution width was chosen according to:

2-Xg + min[3h, Ij SWyq <2-Xg + min(Sh, Ij (8-7)
10 5

2-0.6+ min£3-0.2, i(ﬂ <w, <2-06+ min(S-O.Z, 3;) (8-8)

1.52m<wy, <1.84m (8-9)

A minimum value was however calculated for a single force as:

Wy min =2h+b=2.02+04=08m (8-10)

And for two forces as:

Wemn =2 Xg +2N+b=2.06+2-02+04=20m (8-11)
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The recommended values were well below the calculated values presented in
Figure 8.10. It should be noted that a low value of the torsional stiffness of the beam
elements was chosen in the analyses, which was believed to be conservative, see
Section 4.1.3. If a larger torsional stiffness would be chosen, the results would display
a better distribution of the forces which means that the effective distribution width
would increase even more.

If the thickness of the slab was set to 0.4 m, instead of the chosen 0.2 m, the
recommended values would increase, see Table 8.1.

Table 8.1  Recommended values of moment distribution width according to
Pacoste et al. using a slab thickness of 0.4 m.

Cantilever slab, single force Wy, =1.2m
Cantilever slab, two forces Wy =2.4m
Simply supported slab, single force Wy =1.2m
Simply supported slab, two forces Wy =2.4m

Table 8.1 shows that the recommendations were conservative for the studies made,
even with a slab thickness of 0.4 m. It should be noted that with an increased height,
the torsional stiffness would have increased and thus resulted in a wider distribution
of the forces. For easier comparison, both the calculated and the recommended values
are shown in Figure 8.11.

—0— Cantilever slab, single force —o— Simply supported slab, single force
—+— Cantilever slab, two forces —o— Simply supported slab, two forces

eff[ ]

w E -b (6)]
(2] o ()] o
Isotropic

nNoow
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Dlstrlbu::\l)on width, w,
\
N
AR
\

Two forces, h =0.2 m

S (A A A Single force, h = 0.41m
10 ------------------------ S i-lli‘.ﬁt:-ful-bﬁ-, h-—-og Iﬂ _
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0.0

0.1 1 10

Stiffness factor, @ = Ex / Ey [-]

Figure 8.11 Effective moment distribution width from linear elastic orthotropic cases
combined with the recommended values from Pacoste et al.
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8.2 Cumulative plastic rotation

This section covers the evaluation and discussion from the results obtained in
Chapter 6 and 7. The development of cumulative plastic rotation was studied for a
cantilever and a simply supported one-way concrete slab, illustrated in Figure 8.12.
The plastic rotations are for some analyses in this section significantly higher than the
defined plastic rotation capacity 6,4 used in this Thesis and are also significantly
higher than plastic rotations that can be expected in real structures. These values are
however presented and used due to comparison purposes.

3600 4800 3600
3600 . 4800 . 3600 . y -y y
1 1F 1 T ] Frtr 1
. : = - T
T 1600 I 1600
X X
(a) (b)
7777777777777 y - T T T 7777777777777))777777777777
1600 1600
Symmetry F X N Symmetry Symmetry ] £ X S Symmetry
1600 1600
[ 3600 [ 4800 | 3600 | f 3600 {LJF 4800 | 3600 |
(c) (d)

Figure 8.12 The studied structures and load applications; (a) cantilever slab, single
moving force (b) cantilever slab, two moving forces (c) simply supported
slab, single moving force (d) simply supported slab, two moving forces

The development of plastic rotation was studied for the following four main load
combinations:

A single moving concentrated force — Constant magnitude

A single moving concentrated force — Varying magnitudes

Two moving concentrated forces — Equal magnitudes (F1 = F,)
Two moving concentrated forces — Different magnitudes (F1 # F»)

Where the following parameters was altered:

e Load magnitudes, F, for all forces
e Load application order, LAO, of all forces
e Distance, d, between the two moving concentrated forces

8.2.1 Plastic rotation development — Moving forces

The development of plastic rotation for the load combinations presented above is
illustrated for the cantilever and the simply supported structure in Figure 8.13 and
Figure 8.14, respectively. It can be seen that the plastic rotation approached a stable
state for both structures when the number of load cycles were increased. This means
that a load that causes accumulated damage to the structures becomes less significant
as the number of load cycles increases. This phenomenon was discovered for all the
studied load combinations and load applications in this Thesis.

The single force could, for both structures, not be studied for the same amount of load
cycles as the load combination consisting of two forces since the analyses were too
unstable for such a high degree of plastic rotation. The values were instead estimated
by the superposition approach in Section 8.2.4, proposed for further studies.
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Figure 8.13 Development of plastic rotation 6y, for the first 19 load cycles for
different load combinations. Cantilever structure.
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Figure 8.14 Development of plastic rotation 6y, for the first 19 load cycles for
different load combinations. Simply supported one-way structure.

It can be seen in Figure 8.13 and Figure 8.14, that a single moving concentrated force
was the most critical for the structures with respect to the development of plastic
rotation. If the single force was separated into two forces where one was significantly
larger than the other, the damage done to the structure decreased. The damage further
decreased if the two forces of different magnitudes approached an equal force
distribution. The damage done to the structure was, for all cases, decreased if the
distance between the two forces increased. This behaviour was expected. The
adaptation to the damage, and thus the decreased influence of the applied forces, was
however not anticipated.

As have been noted above, the distance d between the force pair was essential to the
development of accumulated damage in the structure. A plastic rotation factor yg,,,
defined as a relation of the plastic rotation caused by a single moving force and two
moving forces of the same total magnitude, is illustrated in Figure 8.15 and
Figure 8.16.
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Figure 8.15 Plastic rotation factor yg,. Cantilever structure.
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Figure 8.16 Plastic rotation factor yg,. Simply supported structure.

It can be seen in Figure 8.15 and Figure 8.16 that the plastic rotation caused by a pair
of moving concentrated forces merely constituted a smaller proportion of what was
caused by a single moving force of the same total magnitude.

If the distance between the two forces was increased enough, the structure
experienced the force pair as two single forces. This can be seen in Figure 8.17 where
the total load magnitude Fi: (the sum of the force pair), not to cause any plastic
rotation or failure due to plastic rotation after one load cycle, is illustrated for an
increased distance d.
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Figure 8.17 Total load magnitude F for different distances between the moving
concentrated forces of equal magnitudes. Cantilever structure.

The study of the influence of the distance between the pair of moving concentrated
forces were only conducted on the cantilever structure but it is reasonable to assume
that the simply supported structure exhibit a similar behaviour.

8.2.2 Plastic rotation development — Static vs. moving forces

In traditional analysis and design, static forces are most commonly used. The subject
of comparing the plastic rotation caused by static and moving forces was therefore of
interest. In order to compare these two types of forces, a cumulative factor y g,;.mov Was
defined. This factor represents the difference between the plastic rotation caused by a
moving force and the plastic rotation caused by a static force of the same magnitude.

As have been observed Chapter 6, 7 and partly in Section 8.2.1, the development of
plastic rotation reaches a stable state where the plastic rotation in the structure did not
increase with an increased number of load cycles. This means that there is an upper
and lower limit of plastic rotation caused by a moving force and thus an upper and
lower limit of the cumulative factor, here denoted as Yy mov.max and Ygprmov.min- The
lower limit was set to the plastic rotation after the first load cycle and the upper limit
was set to the plastic rotation after load cycle number 150. The analyses could not be
conducted for 150 load cycles for all load magnitudes due to the unstable nature of the
FE models at such a high degree of plastic rotation. The analyses conducted are
presented in Figure 8.18 and Figure 8.19.

0 mov.n=:

7/6pl.mov.max = % (8'12)
pl.stat
0 mov.n="

7/6]3I.m0v.min = % (8'13)

pl.stat
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Figure 8.18 Cumulative factors. Cantilever structure.
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Figure 8.19 Cumulative factors. Simply supported structure.

From Figure 8.18 and Figure 8.19, it can be seen that the upper limit of the cumulative
factor decreases with increased load magnitude and increased distance d between the
pair of moving concentrated forces. The lower limit of the cumulative factor behaves
similarly but to a lesser extent and exhibits a more stable behaviour. This behaviour
applies for both structures studied in this Thesis. Two crucial observations can be
made from these results:

o Static forces yielded plastic rotations closer to what was obtained from moving
forces when the magnitude was increased and the distance between the
moving concentrated forces were increased.

e The moving forces caused plastic rotation that was 1.5 to 30 times greater than
what was caused by static forces of the same magnitudes.

It is also crucial to observe that the maximum value of the lower limit values was in
the magnitude of 4. This means that a moving concentrated force that is applied once,
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which is reasonable to assume, can cause plastic rotations four times greater than a
static force of the same magnitude. This indicates that the load application (static or
moving) is vital when estimating the structural response and the corresponding
damage.

8.2.3 Traditional superposition approach

It was observed in Section 8.2.1 that the load history was of great importance for the
case of cumulative damage for both structures. It was therefore essential to study if a
traditional superposition approach could be utilized when estimating future damage
on a structure where a damaging process has been initiated. The superposition
approach used in this Thesis is illustrated in Figure 8.20.

A A A

,z —  »n » n »n

Figure 8.20 The superposition approach used in this Thesis.

In order to study if a superposition approach is a valid method for the development of
plastic rotation; the structures were subjected to the three following load combinations
of single forces:

LCai: One large force (n = 1) followed by one smaller force (n = 5)
LCa2: One small force (n = 5) followed by one large force (n = 1)

LCg: One small force (n=3) followed by one large force (n=1) followed by one
small force (n = 2)

Where n was the number of load cycles for each applied force F.

It can be seen in Figure 8.21 and Figure 8.22 that a traditional superposition approach
greatly overestimated the plastic rotation. The figures illustrate the plastic rotation
after six load cycles for the load combinations stated above. There is a slight
difference between the plastic rotations caused by these combinations and it can be
seen that it was advantageous for the structure to be subjected to the larger force when
the accumulated damage was small.

The worst case was not the opposite of this, i.e. to apply the larger force when the
accumulated damage in the structure was large. The most disadvantageous load
combination was to apply a large force right after a damaging process had been
initiated. This means that the most advantageous and disadvantageous load
combinations were separated by only one force that caused plastic rotation.

It should however be noted that the difference is small and these results should
therefore be treated with care.
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Figure 8.21 Plastic rotation 6y after six load cycles. Cantilever structure.
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Figure 8.22 Plastic rotation 8y after six load cycles. Simply supported structure.

8.2.4 Proposed superposition approach

It has been illustrated in Section 8.2.3 that a traditional superposition approach is not
recommended (or even valid) for the development of plastic rotation. It was however
discovered that an alternative superposition approach could be utilized in order to
predict the development of future damages. This superposition approach is based on
the plastic rotation obtained after the first load cycle and it is possible, from this value,
to predict the future development of plastic rotation in the structures studied in this
Thesis. This discovery was made in the final stage of this Thesis and was therefore
not thoroughly studied. The aim of this section is therefore to provide fundamental
knowledge of this superposition approach in order to initiate further studies within the
subject.
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As stated above, the proposed superposition approach was based on the plastic
rotation caused by the first load cycle which is illustrated in Figure 8.23.

A

»n

Figure 8.23 Proposed superposition approach.

For each load cycle n of a single and two moving concentrated forces of varying and
equal magnitudes, a development factor ypg.n was defined according to
Equation (8-14):

le.n
Voepln = 0 (8-14)
pl.n=1
A mean value for all development factors was defined according to:
Vosin = M (8-15)
Ne

Where ng was defined as the number of load magnitudes, and thus analyses, that were
conducted for 150 load cycles (a stable state of the plastic rotation was defined at
n = 150). These mean development factors were used in order to predict the plastic
rotation development of a range of single moving forces. This development is
illustrated for the cantilever (ne=9, 120-160 kN) and the simply supported structure
(ne =10, 60-105 kN) in Figure 8.24 and Figure 8.25, respectively.
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Figure 8.24 Plastic rotation development for the results obtained from analyses (A)
and the proposed superposition (S) approach. Cantilever structure.
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Figure 8.25 Plastic rotation development for the results obtained from analyses (A)
and the proposed superposition (S) approach. Simply supported
structure.

It can be seen in Figure 8.24 and Figure 8.25 that the results from the proposed
superposition approach corresponds rather well to the results obtained from the
analyses. This is reasonable since the mean development factor was merely a mean
value of the development of the presented forces. The mean factor was, however, of
great interest since it indicates that there is one factor for each load cycle from where
it is possible to predict the plastic rotation development for a range of force
magnitudes. In other words; if the development factor is defined for a small number of

174 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



magnitudes, it is possible to predict the plastic rotation caused by forces of inferior or
greater magnitudes. The factor is however case specific and therefore has to be
evaluated for each load combination and application. The development factor is
illustrated in Figure 8.26 and Figure 8.27 for a single force of constant magnitude and
two concentrated forces of equal and different magnitudes.
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Figure 8.26 Mean plastic development factor. Cantilever structure.
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Figure 8.27 Mean plastic development factor. Simply supported structure.

As can be seen in Figure 8.26 and Figure 8.27, the development factor differs between
the two studied structures.

It is possible from each separate curve to predict the plastic rotation development of a
vast range of force magnitudes. With a larger number of structures, load combinations
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and load magnitudes, it should be possible to normalize the development factors to a
relatively narrow spectrum. Consequently, it may, from such a spectrum of
development factors, be possible to predict the plastic rotation for a large number of
ordinary bridge structures and load combinations to a satisfactory extent. Hence, this
development could accordingly be related to the cumulative factors, as presented and
discussed in Section 8.2.2, and thus be related to static forces of equal magnitudes. In
summation; this approach could be used to estimate the plastic rotation development
for moving forces, based on the plastic rotation caused by a single static force. This
would be advantageous since static forces are less time consuming and cumbersome
than moving forces and thus convenient for conventional bridge design analysis. This
approach is illustrated in Figure 8.28.

pl YD, ol

Upper limit factors

Static force -:ﬂ:-

L’}’l »n »n

Lower limit factors

Figure 8.28 lllustration of how the proposed superposition approach can be
developed and used.

It can be concluded that no development factors have been presented for forces of
varying magnitudes which is the most probable load combination on a bridge
structure. It is however believed to be possible, from the superposition approach
proposed in this Thesis, to relate a development factor to an existing damage 6 and
the plastic rotation capacity #,4. Consequently, it should, from such a relation, be
possible to estimate future damages caused by forces of varying magnitudes and thus
cover a wide spectrum of possible load combinations that are of interest in the bridge
design community.
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8.3 Shear force distribution

The shear force distribution has not been discussed in this Thesis, but is presented for
the interested reader in Appendix | for the studies related to moment distribution in
SLS. However, some unexpected irregularities were discovered in the shear force
distributions and are therefore pointed out in this section. One such irregularity is that
for the linear elastic analyses, with a single concentrated force positioned in the center
of the slab, the maximum shear force was not obtained in the center, where the
maximum moment is positioned. The shear force distributions for the cantilever slab
in the linear elastic case are presented in Figure 8.29a. Further, unexpected local peak
values were obtained in the non-linear analyses. These peaks are positioned at
locations where the moment-curvature relations in the beam elements are in, or close
to the horizontal part of the trilinear relation, see Figure 8.29b.
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Figure 8.29 Shear force distribution, cantilever slab with a single force. (a) Linear
elastic case (b) Case Uncracked Ey = 2E,

The shift in position of the maximum shear force in the linear elastic case seems to be
a product of the beam grillage model, and is not obtained in a corresponding shell
element model. It was shown in this Thesis that the torsional stiffness of the beam
elements had a significant influence on the structural response of a beam grillage
model. The effect discussed above is present even for an elastic (uncracked) torsional
stiffness, but is magnified with lowered torsional stiffness. The peak values shown in
Figure 8.29b was not obtained in Lim (2013) for similar analyses. This is most
probably due to the fact that an elastic (uncracked) torsional stiffness was utilized in
the beam elements.

The majority of results in this Thesis are based on bending action, which is believed
to be more accurately described by the beam grillage model than the shear force
distribution. However, the effects described above should be further studied in order
to verify the use of a beam grillage model for non-linear analysis.
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9 Concluding remarks

The conclusions derived in this Thesis and proposals for further studies within the
field are presented in this chapter.

9.1 Conclusions

This Thesis studied the response of reinforced concrete slabs subjected to
concentrated forces. Two main aspects were studied, namely moment distribution in
the serviceability limit state and cumulative plastic rotation where the latter arises
from cyclic moving forces.

A beam grillage model in liaison with multi-linear moment-curvature relations that
defined the material response was utilized. However, difficulties arose regarding the
choice of the torsional stiffness and how it should be implemented in such an analysis.
A parametric study performed in this Thesis showed that the torsional stiffness has a
significant effect on the structural response in a beam grillage model. Further,
unexpected irregularities were discovered in the shear force distribution when
utilizing a beam grillage model.

Studies related to moment distribution in SLS showed that results from a linear
orthotropic model correspond to those obtained from a multi-linear model. A model
which takes uncracked parts of the structure into account, only display a marginally
lower maximum moment. However, an orthotropic stiffness which may arise from
varying normal stresses in the two main directions of a slab was shown to have a
significant effect on the moment distribution. Results indicated that the maximum
moment could be reduced by approximately 20-25 %, if the transverse direction of the
slab had the stiffness of uncracked concrete, while the studied direction had a stiffness
of cracked reinforced concrete. Further, the recommendations given for moment
redistribution in Pacoste et al. (2012) were shown to be conservative for the studied
cases. However, it is difficult to predict to what extent the recommendations are
conservative due to the difficulties in estimating the torsional stiffness of the beam
elements used in the model.

Studies related to cumulative plastic rotation demonstrated that the structures studied
in this Thesis adapted to the accumulated damages and was stabilized; i.e. the
influence of the applied forces decreased with an increased number of load cycles.
Studies showed that there was a significant difference between the plastic rotation
caused by static and moving concentrated forces. Due to this significant difference, it
is recommended to treat static forces that may cause plastic rotation, such as heavy
industrial transportation, with caution. It was shown in this Thesis that the maximum
moment may be underestimated due to simplifications in the linear elastic analysis.
This underestimation may cause unintended plastic rotation to occur, even for design
loads. This further stresses the importance of a cautious approach when authorizing
permits for heavy transportation that is generally not allowed on the structure.

Results obtained in this Thesis indicate that a traditional superposition approach of
load combinations greatly overestimates the plastic rotation development. An
alternative superposition approach, based on the plastic rotation after the first load
cycle, was therefore proposed in this Thesis. This approach requires further studies in
order to expand the method to a broad spectrum of load combinations and structures
which may be of great interest for the bridge design community.
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9.2 Further studies

A beam grillage model in liaison with linear moment-curvature relations that defines
the material response is a common approach in FE analysis today. However, there
seems to be a limited amount of documented studies of the behaviour of such a model
in liaison with non-linear moment-curvature relations. Consequently, further studies
within the field are essential in order to validate the method. The method described
could be a powerful tool for non-linear analysis due to its simplicity and numerical
stability.

The torsional stiffness of the beam elements in the grillage model was shown to have
a significant influence of the structural response. Since difficulties arose regarding
how to treat this problem it is proposed to further study the influence of torsional
stiffness in reinforced concrete slabs and how it can be treated in a grillage model.

The shear force distribution was not discussed in this Thesis. However, some
irregularities were discovered in the solutions. These irregularities should also be
further studied in order to verify the use of a beam grillage model.

The studies of plastic rotation development were directed towards the bearing
capacity of structures and showed that the plastic rotation accumulates for cyclic
loads. Furthermore, it is of interest to study how this type of loading correlates to a
reduced service life of the structure, due to the induced damage. Consequently, it
ought to be of great societal interest to quantify the actual cost, based on the reduced
service life of the structure, of authorizing heavy transportation.

The proposed superposition approach for moving cyclic load was just briefly studied
in this Thesis. A study conducted on additional structures with varying geometries,
load combinations and load magnitudes could yield further knowledge on how to
estimate the plastic rotation development based on static forces.

180 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



10 References

ADINA (2012) Theory and Modelling Guide, Vol 1: ADINA Solids & Structures
Report ARD 11-8, ADINA R & D, Inc., Watertown, MA. USA.

B7 (1968) Bestammelser for betongkonstruktioner - Allménna konstruktions-
bestdmmelser, Statens betongkommitté, Svensk byggtjanst, Stockholm, Sweden.

BBK 04 (2004) Boverkets handbok om betongkonstruktioner, BBK 04, Boverket,
Sweden.

Bro (2004) Vagverkets allménna tekniska beskrivning for nybyggande och forbattring
av broar, Végverket, Sweden.

CEN (2003) Eurocode 1: Action on structures — Part 2: Traffic loads on bridges,
European Comittee for Standardization, Brussels, Belgium.

CEN (2004) Eurocode 2: Design of concrete Structures — Part 1-1: General rules and
rules for buildings, European Comittee for Standardization, Brussels, Belgium.

Davidsson M. (2003) Strukturanalys av betongkonstruktioner med finita
elementmetoden, Brosamverkan Vast, Géteborg, Sweden.

Engstrom B. (2011) Design and analysis of continuous beams and columns, Report
2007:3, Edition 2011. Division of Structural Engineering, Concrete Structures,
Chalmers University of Technology, Géteborg, Sweden.

Hedman O., Losberg A. (1976) Skjuvhallfasthet hos tunna betongplattor belastade
med rorliga punktlaster, Preliminar delrapport till \Vagverket, Sweden.

Lim S. (2013) Redistribution of force concentrations in reinforced concrete cantilever
slab using 3D non-linear FE analyses, Division of Structural Engineering,
Concrete Structures, Chalmers University of Technology, Goéteborg, Sweden.

Lopes A.V., Lopes M.R., Carmo R. (2014) Stiffness of reinforced concrete slabs
subjected to torsion, Department of Civil Engineering, University of Coimbra

Nowak A. S. (1993) Live load model for highway bridges. Structural safety vol 13,
pp 53-56.

Pacoste C., Plos M., Johansson M. (2012) Recommendations for finite element
analysis for the design of reinforced concrete slabs. Royal Institute of Technology,
Stockholm, Sweden.

Siegert D., Estivin M., Billo J., Barin F. and Toutlemonde F. (2008) Extreme Effects
of the Traffic Loads on a Prestressed Concrete Bridge. In Jacob B., editor, 10th
International Conference of Heavy Vehicle, pp 379-387, Paris France.

Treacy M. A. & Bruhwiler E. (2013) Extreme action effects in reinforces concrete
bridges from monitoring. International Association for Bridge and Structural
Engineering, vol 99, pp 144-145.

Zhou Y. X., Schmidt F., Jacob B., Toutlemonde F. (2014) Accurate and up-to-date
evaluation of extreme load effects for bridge assessment. Transport Research
Arena, Paris, France, vol 1.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 181



182 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



Appendix A Modelling Choices

This chapter covers the modelling choices that were made concerning mesh densities,
beam widths for the beam grillage models etc. Since one aim of this Thesis is to study
the moment distribution and redistribution in SLS, most modelling choices were
based on moment distribution.

A.l1 Cantilever slab

This section covers the chosen mesh densities for both the shell element model and
the beam grillage model.

A.1.1 Shell element model

For the shell element model, mesh sizes of 0.1, 0.2 and 0.4 m were studied. The
moment distributions along the fixed edge are shown in Figure A.1. The shell model
was only used for a linear isotropic elastic analysis. A modulus of elasticity
E = 33 GPa was used as input.
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Figure A.1 Moment distribution along the fixed edge, shell element model.

It was concluded that the model with 0.2 m mesh size yielded satisfying results and
was, due to the converged behaviour, chosen for further analysis.

A.1.2 Beam grillage model

In order to determine an appropriate beam grillage model, beam widths of 0.1, 0.2 and
0.4 m were compared to the shell element model. It should here be noted that the
mesh size of the beams was set to the width of the beam elements so that nodes were
positioned at the intersection between two beams. For linear elastic analysis, there
was no difference in the results obtained for beams with smaller mesh size, i.e.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 183



additional nodes between the intersections. The analysis was isotropic and a modulus
of elasticity E = 33 GPa was used as input. The beam elements were modelled with a
linear elastic material and a rectangular cross-section in ADINA, which means that
ADINA calculated the torsional stiffness of the beam element from the modulus of
elasticity and the geometry of the cross-section. A comparison of the moment
distribution between the beam grillage models and the shell element model is shown
in Figure A.2.
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Figure A.2 Comparison between shell element model and beam grillage models
with varying beam widths.

The maximum moment was of most interest in this Thesis and it was believed that the
shell element model yielded the most reasonable results for a linear elastic analysis.
Therefore, the model that corresponded best with the shell element model, comparing
the maximum moments, was chosen for further analysis. It was concluded that the
beam grillage model with beam width 0.2 m yielded satisfying results in the isotropic
linear elastic case. Therefore, a beam grillage model with a beam width of 0.2 m was
chosen for further analysis. The difference between the obtained results can be
derived from the influence of the torsional stiffness which is studied in Appendix B.
The choice of 0.2 m beam width was also made in Lim (2013) for similar studies.
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A.2 Simply supported slab

This section covers the chosen mesh densities and load application for the simply
supported one-way slab.

A.2.1 Shell element model

For the shell element model, mesh sizes of 0.1 and 0.2 m were studied. The moment
distributions for both cases are shown in Figure A.3. The shell model was only used
for linear elastic analysis. The analysis was isotropic and a modulus of elasticity
E = 33 GPa was used as input.
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Figure A.3 Moment distribution along the centre of the slab, shell element model.

It was concluded that the model with 0.2 m mesh size yielded satisfying results and
was, due to the converged behaviour, chosen for further analysis.

A.2.2 Beam grillage model

In order to determine an appropriate beam grillage model, beam widths of 0.1 and
0.2 m were compared with the shell element model. Models of greater widths were
not of interest due to the load application, where the concentrated force was
distributed over an area of 0.2 x 0.2 m* in the double-symmetric model. It should here
be noted that the mesh size of the beams were equal to the width of the beams so that
the nodes were positioned at the intersection between two beam elements. The
analysis was isotropic and a modulus of elasticity E = 33 GPa was used as input. The
beam elements were modelled with a material and cross-section in ADINA, which
means that ADINA calculated the torsional stiffness of the beam element from the
modulus of elasticity and the geometry of the cross-section. A comparison of moment
distribution between the beam grillage model and the shell element model is shown in
Figure A.4.
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Figure A.4 Comparison between shell element model and beam grillage models
with varying beam widths.

The maximum moment is of most interest in this Thesis. And it is believed that the
shell element model yields the most reasonable results for a linear elastic analysis.
Therefore, the model that corresponded best with the shell element model, comparing
the maximum moments, was chosen for further analysis. It was concluded that the
beam grillage model with beam width 0.2 m yielded satisfying results in the isotropic
linear elastic case. Therefore, a beam grillage model with a beam width of 0.2 m was
chosen for further analysis. The difference between the obtained results can, as in the
case of the cantilever structure, be derived from the influence of the torsional stiffness
which is studied in Appendix B.

A.2.3 Influence of load model

For the cantilever slab, the load model did not affect the moment distribution to a
noticeable extent. This, because the moment was measured a certain distance from the
applied load. However, for the case of the simply supported slab, the moment was
measured in a line that crossed the applied load. It was therefore important to choose
an appropriate load model that yields reasonable results.

The shell element model was modelled with a pressure load which is intuitively the
most reasonable way to model a concentrated force coming from a tire of a vehicle.
However, this was not possible when utilizing beam elements. A study was therefore
conducted in order to investigate the response from different load models on the beam
grillage model, see Figure A.5.
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) ©

Figure A.5 Load models; (a) grid of line loads, (b) two crossing line loads, (c) point
loads acting on several adjacent nodes.

Again, the shell element model was used to compare the three different load models,
see Figure A.6.
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Figure A.6  Comparison of load models.

It was concluded that the shape of the moment distribution from the load model with
several adjacent point loads corresponded to the shell element model to the greatest
extent. Even though the maximum moment obtained from two crossing line loads
were the best fit, the shape was assumed to be unrealistic. The shape probably
originated from torsional rigidity errors in the half beam, positioned in the symmetry
boundary line. The model with several adjacent point loads also had the advantage of
yielding the same total moment as that of a pressure load. The total moment from two
crossing line loads was larger due to the fact that additional load was concentrated in
the middle of the slab. Therefore, the load model with four point loads was chosen for
further analysis.
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Appendix B Torsional stiffness in beam grillage
models

This chapter covers the study of the influence of torsional stiffness on beam elements
in a beam grillage model. The first section covers the influence of torsional stiffness
on moment distribution in SLS. The second section covers the influence of torsional
stiffness on plastic rotation development.

Difficulties arose regarding the torsional stiffness when the slabs, presented in this
Thesis, were modelled with beam grillage models. The main difficulty was to design
the torsional stiffness that was to be used for input values for the beam elements. In
Appendix A, it was shown that the beam grillage model, where the widths of the
beams were equal to the height of the slab, gave results similar to the linear elastic
shell element model. However, since the non-linear behaviour was of interest in this
Thesis, multilinear moment-curvature relations were used in order to capture the
material response of the structures. The moment-curvature relations were calculated
analytically for an equivalent beam with a width equal to the distance between the
beam elements, which was believed to be an acceptable approximation. However, the
torsional stiffness of slabs is more complicated, and the difference between a grillage
model and a plate is more pronounced. It was therefore motivated to perform a
parametric study of the influence of the torsional stiffness of the beam elements in the
beam grillage model.

For the studies in this section, different magnitudes of the torsional stiffness of the
beam elements were chosen. The elastic stiffness, i.e. the stiffness based on the
modulus of elasticity and the gross geometry of the cross-section was chosen as
reference. A factor 1/8, 1/16 and 0 of the elastic stiffness was thereafter studied.
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B.1 Moment distribution in SLS

The study directed towards moment distribution in SLS was performed on the
cantilever slab in Chapter 4 and the moment-curvature model was utilized in both
main directions of the structure. Both difference in moment distribution and plastic
rotation was here of interest.

Linear moment-curvature relations were used which was based on a reference
stiffness of 0.5 % reinforcement amount, see Section 4.1.1. A concentrated force of
the magnitude F =200 kN was applied, see Figure 4.6. The results from the study
with varying torsional stiffness are presented in Figure B.1.
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Figure B.1 Moment distribution with varying torsional stiffness for the cantilever
slab.

As can be seen in Figure B.1, the moment distribution was significantly influenced by
the torsional stiffness of the beam elements. The maximum moment was
approximately 50 % greater for the case with no torsional stiffness compared to the
elastic stiffness. It should here be noted that the real torsional stiffness of a slab is not
linear, which has been assumed in this study, and will change with increased cracking.

The influence of the torsional stiffness when analysing plastic rotation in a slab with
the help of beam grillage models was also studied. In Lim (2013), an elastic torsional
stiffness was used throughout the Thesis, even for elements which was in the post-
cracking state. Both bilinear and trilinear moment-curvature relations were used in the
study, and the cantilever slab was of equal dimensions as the one studied here. Also,
the applied load was of equal magnitude, i.e. F =200 kN. Similar to the case in Lim,
the plastic moment capacity for each beam element was chosen to 60 % of the
maximum moment, measured in the linear elastic case with elastic torsional stiffness.
For the trilinear case, the cracking moment was chosen to M¢=M;;, /3. The stiffness in
state 11 was chosen to the reference value based on a reinforcement amount of 0.5 %,
see Section 4.1.1. The results from the study are presented in Figure B.2.
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Figure B.2 Plastic rotation with varying torsional stiffness.

The results indicate only a small difference between the bilinear and trilinear cases.
For the elastic torsional stiffness, results similar to the ones presented by Lim were
obtained. Note that a different state Il stiffness was used in this study compared to
Lim, which can explain the small deviation between the results. However, the study
shows that with decreasing torsional stiffness, the plastic rotation is considerably
increased. The case with zero torsional stiffness became too numerically unstable and
the analysis was aborted.

This study shows that great care should be taken when the torsional stiffness is
chosen. An elastic torsional stiffness will most likely yield results which are not
conservative in the post-cracking state, while zero torsional stiffness probably is too
conservative and will yield unrealistic deformations, since the stiffness of the slab is
greatly reduced.
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B.2 Cumulative plastic rotation

The study directed towards cumulative plastic rotation was performed on the
cantilever slab in Chapter 6 and the moment-curvature model was also here utilized in
both main directions of the structure. Since the study was performed for cumulative
plastic rotation, only the results from a completely unloaded slab (i.e. between each
completed load cycle) were of interest and the moment distribution was therefore
omitted in this section. A study of the plastic rotation obtained from a single static
force was also conducted for comparison purposes.

As in Section B.1, the linear moment-curvature relations were used with the same
reference stiffness, see Section 4.1.1. Concentrated forces of the magnitudes
F =135 kN and F = 150 kN was applied on the cantilever structure. The smaller force
yielded no plastic rotation for an elastic torsional stiffness and a factor of 1/8 of the
elastic stiffness. The case with zero torsional stiffness was also here aborted due to the
unstable behaviour of the structure. The applied force was therefore increased to
150 kN and the results from the study are shown for a torsional stiffness of 1/8 and
1/16 of the elastic stiffness in Figure B.3 and Figure B.4, respectively. The elastic
torsional stiffness did not yield any plastic rotation and the case with zero torsional
stiffness was also here aborted on the same basis as stated above.

As can be seen in Figure B.3 and Figure B.4, the plastic rotation was significantly
influenced by the torsional stiffness of the beam elements. It can also be seen that the
plastic rotation did not develop over the total length of the structure which can be
derived from how the forces were applied, see Chapter 6. As have been stated in
Section 6.3.1, the structure adapted to the applied forces and thus appeared to behave
linear elastically. The structure was, in fact, in the plastic state and approached a
stable state where the development of plastic rotation did not increase significantly for
additional load cycles. The maximum plastic rotation, for the case of 1/16 of the
elastic stiffness, was for all load cycles 140 to 170 % greater than what was obtained
for 1/8 of the elastic stiffness.
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Figure B.3 Plastic rotation development for a torsional stiffness factor of 1/8.
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Figure B.4 Plastic rotation development for a torsional stiffness factor of 1/16.

The results from the analysis for a single static force are shown in Figure B.5. In
accordance with the results presented in Figure B.3 and Figure B.4, the torsional
stiffness was also for static forces of significant importance. The difference in plastic
rotation between the static forces was roughly 150 % which corresponded well to
what was observed for the moving concentrated forces.
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Figure B.5 Plastic rotation for a static concentrated force.

The plastic rotation was, in the case of 1/8 of the elastic stiffness, roughly 140 %
greater for a single moving force than for a single static force. This means that the
difference was of such magnitude after the first load cycle was completed for the
moving force. The difference was thereafter increased towards 1000 %, when the
plastic rotation was stabilized after 30 load cycles. For the case of 1/16 of the elastic
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stiffness, the difference ranged from 130 to 1100 % for the same spectrum of load
cycles. This behaviour was also observed in Section 6.6.2 where the difference
decreased with increased load magnitude of the applied force.

It was from this study concluded that the torsional stiffness influences the plastic
rotation and the development of plastic rotation to a significant extent. The influence
was for the studied load magnitudes not increased as the number of load cycles
increased for the moving concentrated forces. However, due to the large difference in
the obtained plastic rotation, the torsional stiffness was also for these analyses chosen
to 1/16 of the elastic stiffness. This stiffness was believed to be conservative and was
utilized throughout the Thesis.
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Appendix C  Moment-curvature relations

This chapter covers the moment-curvature relations used for the analyses in Chapter 4
to 7 and how these were derived. The first section covers the moment-curvature
relations used for the moment distribution in SLS while the second section covers the
moment-curvature relations used for the analyses of plastic rotation development.

C.1 Moment distribution in SLS

The moment-curvature relations used in the Chapter 4 and 5, regarding moment
distribution in the service state, are presented in this section. For the methodology
behind the construction of these relations, the reader is referred to Section 4.1.

Due to numerical stability reasons, a slight inclination was chosen for the second
branch of the trilinear relations, such that M, = 1.05M,. Where M is the moment at
the intersection between the second and third line. Tests showed that this inclination
did not affect the results to a significant extent.

C.1.1 Linear elastic analyses

For linear elastic analysis, the moment-curvature relation is equal for both the
cantilever slab and the simply supported slab. The stiffness of an uncracked concrete
section with a height and width of 0.2 m was used as a reference. The reference
stiffness was used in both directions for the case Ex = E,, and kept constant in the y-
direction while the stiffness in the x-direction varied, as presented in Figure C.1. The
relations are presented both in a figures and in the form of tabulated values, where
linear interpolation can be utilized for intermediate values.
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Figure C.1 Moment-curvature relations in the x-direction for linear elastic
analyses.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 195



C.1.2 Case Uncracked

The moment-curvature relations for the case Uncracked are presented in this section.
The stiffness in the x-direction was kept constant as the stiffness of an uncracked
concrete section with a height and width of 0.2 m. Since two levels of the cracking
moment M, was chosen as factors of the maximum moment in the linear solution, the
relations are different for the cantilever slab and the simply supported slab, and also
for a single force and two forces. The relations are presented as graphs in Figure C.2
to Figure C.5, and as tabulated values in Table C.1 and Table C.2.

20

N Y / ] /
18 4 / 18 = = /
.S _o/ .S .o/
= Sl oA = Sl
16 :l 8 //LVU < / 16 ‘g'l & //Ly - /
5t ;5/ S/ 5 g/ e%
= ¥ 17 & bi//& =¥1 7 g 4 =
3 = / 3
% 12 2 / yQ/‘\" =z 12 N 7@*’
=3 L / = - /
= 10+ / / e&“( S0l / : %
- ks - RS
5 5l / / S S s ’L S
<A e’
g . y A it I
'__-J I
4 +— 4
0 4 (U
0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.005 0.010 0.015 0.020 0.025
(a) Curvature, y [1/m] (b) Curvature, y [1/m]

Figure C.2 Moment-curvature relations for the cantilever slab with a single
concentrated force, case Uncracked. (&) Mcr = Myin /3, (b) Mcr = Myin /2
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Figure C.3 Moment-curvature relations for the cantilever slab with two
concentrated forces, case Uncracked. (a) M¢ = Min /3, (b) Mcr = Myin /2

196 CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73



20 T / 20 T / /
18 §l‘ g/ / 18 .9: §7/ /
gl | 5f< = R f /
16 g 3 16 12 &f7 $
X0
oy sHo Y A S
14 14 »

—_ 1 T ,.0‘/// —_ 1 T S

R A R A

; 10 " l, \-‘n'ﬁ\ / ;; 10 " I, // &/
< < = o

g [/ AR TN i AR A

g 5

= =

NV
) A 4VIL—J

4vlﬁ__/
2 2
0 0

0.000 0.005 0.010 0015 0.020 0.025 0.000 0.005 0.010 0.015 0.020 0.025
(a) Curvature, y [1/m] (b) Curvature, y [1/m]
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Table C.1  Moment-curvature relations used in the x-directions, case Uncracked.

Moment |Curvature
[Nm] [1/m]

0 0
20000 0.00454

Table C.2  Moment-curvature relations used in the y-directions, case Uncracked.

Cantilever slab, single concentrated force
Mcr = Mlin/3 Mcr = Mlin/2

E.=2E, E, = 5E, E, = 10E, E, = 2E, E, = 5E, E, = 10E,
Moment |Curvature{Moment |Curvature|{Moment |Curvature|Moment |Curvature|Moment |Curvature{Moment |Curvature
[Nm]  J[¥m] |[Nm] |[t/m] |[Nm] |[¥/m] |[Nm] |[/m] |[Nm] |[Um] |[Nm]  |[L/m]
0 0 0 0 0 0 0 0 0 0 0 0
6382 0.00145 (5314 0.00121 |4624 0.00105 |9572 0.00218 |7971 0.00181 |6936 0.00158
6701 0.00305 {5580 0.00635 |4855 0.01104 {10051 0.00457 |8370 0.00952 |7282 0.01657
20000 0.00910 {20000 0.02275 20000 0.04550 {20000 0.00910 {20000 0.02275 {20000 0.04550
Cantilever slab, two concentrated forces
M, = Mlin/3 M = '\/Ilin/2

E«=2E, E. = 5E, E, = 10E, E,=2E, E,=5E, E, = 10E,
Moment |Curvature{Moment |Curvature|{Moment |Curvature|Moment |Curvature|Moment |Curvature{Moment |Curvature
[Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [/m] [Nm] [1/m] [Nm] [1/m]
0 0 0 0 0 0 0 0 0 0 0 0
12144 0.00276 {10299 0.00234 {9022 0.00205 (18216 0.00414 (15448 0.00351 (13533 0.00308
12751 0.00580 (10814 0.01230 (9473 0.02155 (19126 0.00870 (16221 0.01845 (14210 0.03233
20000 0.00910 {20000 0.02275 20000 0.04550 (20000 0.00910 {20000 0.02275 {20000 0.04550
Simply supported one-way slab, single concentrated force
Mcr = Mlinl3 Mcr = 'vllin/2

E.=2E, E, = 5E, E, = 10E, E,=2E, E, =5E, E, = 10E,
Moment |Curvature{Moment |Curvature{Moment |Curvature|Moment |Curvature|Moment |Curvature{Moment |Curvature
[Nm]  J[¥m] J[Nm] |[/m] |[Nm] |[m] |[Nm] |[/m] |[Nm] |[Um] |[Nm] |[L/m]
0 0 0 0 0 0 0 0 0 0 0 0
4045 0.00092 {3350 0.00076 (2868 0.00065 |6067 0.00138 |5026 0.00114 {4302 0.00098
4247 0.00193 |3518 0.00400 (3011 0.00685 |6371 0.00290 |5277 0.00600 |4517 0.01028
20000 0.00910 {20000 0.02275 20000 0.04550 {20000 0.00910 {20000 0.02275 {20000 0.04550

Simply supported one-way slab, two concentrated forces

Mcr = Mlin/3 Mcr = Mlin/2

E.=2E, E, = 5E, E, = 10E, E, = 2E, E, = 5E, E, = 10E,
Moment |Curvature{Moment |Curvature|{Moment |Curvature|Moment |Curvature|Moment |Curvature{Moment |Curvature
[Nm]  J[¥m] |[Nm] |[t/m] |[Nm] |[¥/m] |[Nm] |[/m] |[Nm] |[Um] |[Nm] |[L/m]
0 0 0 0 0 0 0 0 0 0 0 0
5894 0.00134 |5157 0.00117 |4588 0.00104 (18216 0.00414 (15448 0.00351 {13533 0.00308
6188 0.00282 |5415 0.00616 (4818 0.01096 (19126 0.00870 (16221 0.01845 (14210 0.03233
20000 0.00910 {20000 0.02275 20000 0.04550 {20000 0.00910 {20000 0.02275 {20000 0.04550
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C.1.3 Case Neutral

The moment-curvature relations for the case Neutral are presented in this section. The
stiffness in state Il was kept constant in the y-direction for the different stiffness
proportions, while the stiffness in state Il varied with the stiffness factor o in the x-
direction. However, the level of the cracking moment M, varied for both directions.
The relations are presented as graphs in Figure C.6 to Figure C.9, and as tabulated
values in Table C.3 and Table C.4.
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Figure C.6 Moment-curvature relations for the cantilever slab with a single
concentrated force, case Neutral. (a) M¢r = Min /3, (b) M = Myin 12
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Figure C.8 Moment-curvature relations for the simply supported one-way slab with
a single concentrated force, case Neutral. (a) M= M;n/3,
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Table C.3  Moment-curvature relations used in the x-directions, case Neutral.

Cantilever slab, single concentrated force
Mcr = Mlin/3 Mcr = Nllin/2

E, =0.5E, E<=E, E«=2E, E, =0.5E, Ex=E, E«=2E,
Moment |Curvature{Moment |Curvature|{Moment |Curvature|Moment |Curvature|Moment |Curvature|{Moment |Curvature
[Nm]  J[¥m] |[Nm] |[t/m] |[Nm] |[¥m] |[Nm] |[Um] |[Nm] |[Um] |[Nm] |[L/m]
0 0 0 0 0 0 0 0 0 0 0 0
8725 0.00198 |7413 0.00168 (6382 0.00145 (13087 0.00297 (11120 0.00253 |9572 0.00218
9161 0.02492 (7784 0.01059 (6701 0.00456 (13741 0.03738 (11676 0.01588 (10051 0.00683
20000 0.05440 {20000 0.02720 20000 0.01360 {20000 0.05440 {20000 0.02720 {20000 0.01360
Cantilever slab, two concentrated forces
Mcr = Mlin/3 Mcr = 'vllin/2

E, = 0.5E, E,=E, E, = 2E, E, = 0.5E, Ex=E, E. = 2E,
Moment |Curvature{Moment |Curvature{Moment |Curvature|Moment |Curvature|Moment |Curvature{Moment |Curvature
[Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m]
0 0 0 0 0 0 0 0 0 0 0 0
15531 0.00353 (13749 0.00312 (12144 0.00276 (23297 0.00529 (20623 0.00469 (18216 0.00414
16308 0.04436 (14436 0.01963 |12751 0.00867 (24462 0.06654 (21654 0.02945 (19126 0.01301
40000 0.10880 {40000 0.05440 40000 0.02720 {40000 0.10880 {40000 0.05440 {40000 0.02720

Simply supported one-way slab, single concentrated force

Mcr = Mlin/3 Mcr = Mlin/2

E, = 0.5E, E,=E, E, = 2E, E, = 0.5E, Ex=E, E. = 2E,
Moment |Curvature{Moment |Curvature{Moment |Curvature|Moment |Curvature|Moment |Curvature{Moment |Curvature
[Nm]  J[¥m] |[Nm] |[/m] |[Nm] |[Um] |[Nm] |[¥m] |[Nm] |[Um] |[Nm]  |[L/m]
0 0 0 0 0 0 0 0 0 0 0 0
5302 0.00120 |4629 0.00105 |4045 0.00092 {7953 0.00181 |6943 0.00158 |6067 0.00138
5567 0.01514 {4860 0.00661 |4247 0.00289 |8350 0.02271 {7290 0.00991 |6371 0.00433
20000 0.05440 {20000 0.02720 20000 0.01360 {20000 0.05440 {20000 0.02720 {20000 0.01360

Simply supported one-way slab, two concentrated forces

M, = Mlin/3 M = Nllin/2

E, = 0.5E, E,=E, E,=2E, E, = 0.5E, E<=E, E=2E,
Moment |Curvature{Moment |Curvature|{Moment |Curvature|Moment |Curvature|Moment |Curvature|{Moment |Curvature
[Nm]  J[¥m] J[Nm] |[t/m] |[Nm] |[/m] |[Nm] |[/m] |[Nm] |[Um] |[Nm]  |[V/m]
0 0 0 0 0 0 0 0 0 0 0 0
7083 0.00161 |6421 0.00146 (5894 0.00134 (10624 0.00241 |9708 0.00221 |8841 0.00201
7437 0.02023 |6742 0.00917 (6188 0.00421 (11155 0.03034 (10193 0.01386 {9283 0.00631
20000 0.05440 {20000 0.02720 20000 0.01360 (20000 0.05440 {20000 0.02720 {20000 0.01360

Table C.4  Moment-curvature relations used in the y-directions, case Neutral.

Cantilever slab

Single concentrated force Two concentrated forces
Mcr = Mlin/3 Mcr = Mlin/2 Mcr = Mlin/3 Mcr = Mlin/2
Moment |Curvature|Moment |Curvature|{Moment |Curvature|Moment |Curvature
[Nm] [1/m] [Nm] [/m] [Nm] [1/m] [Nm] [1/m]
0 0 0 0 0 0 0 0
7413 0.00168 11120 0.00253 (13749 0.00312 20623 0.00469
7784 0.01059 (11676 0.01588 (14436 0.01963 21654 0.02945
20000 0.02720 (20000 0.02720 {40000 0.05440 40000 0.05440
Simply supported one-way slab

Single concentrated force Two concentrated forces
M, = Mlin/3 M = Mlin/2 M, = Mlin/3 M, = Mlin/2
Moment |Curvature|Moment |Curvature|Moment |Curvature|Moment |Curvature
[Nm]  [¥m] |[Nm] |[¥Um] |[Nm]  |[Um] |[Nm]  [[1/m]
0 0 0 0 0 0 0 0
4629 0.00105 (6943 0.00158 |6421 0.00146 (9708 0.00221
4860 0.00661 |7290 0.00991 |6742 0.00917 10193 0.01386
20000 0.02720 20000 0.02720 {20000 0.02720 20000 0.02720
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C.1.4 Case Cracked

The moment-curvature relations for the case Cracked are presented in this section.
The stiffness in state 11 was kept constant in the y-direction for the different stiffness
proportions, while the stiffness in state Il varied with the stiffness factor o in the x-
direction. The relation in the x-direction is linear which was meant to represent a
cracked stiffness before the load is applied, while the slab is uncracking from start in
the y-direction. The relations are presented as graphs in Figure C.10 to Figure C.13,
and as tabulated values in Table C.5 and Table C.6.
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Figure C.10 Moment-curvature relations for the cantilever slab with a single
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Figure C.12 Moment-curvature relations for the simply supported one-way slab with
a single concentrated force,
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Figure C.13 Moment-curvature relations for the simply supported one-way slab with
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Table C.5 Moment-curvature relations used in the x-directions, case Cracked.

Cantilever slab, single concentrated force
Mcr = Mlin/3 Mcr = Nllin/2

E, =0.5E, E<=E, E,=2E, E, =0.5E, Ex=E, E«=2E,
Moment |Curvature|Moment |Curvature|Moment |Curvature| Moment |Curvature|{Moment |Curvature|Moment |Curvature
[Nm] [1/m] [Nm] [1/m] [Nm] [/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m]
0 0 0 0 0 0 0 0 0 0 0 0
20000 0.0544 {20000 0.0272 {20000 0.0136 (20000 0.0544 (20000 0.0272 {20000 0.0136
Cantilever slab, two concentrated forces
Mcr = Mlin/3 Mcr = Iv'lin/2

E, = 0.5E, E.=E, E, = 2E, E, = 0.5E, E.=E, E, = 2E,
Moment |Curvature{Moment |Curvature|Moment |Curvature|Moment |Curvature|Moment |Curvature{Moment |Curvature
[Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m]

0 0 0 0 0 0 0 0 0 0 0 0
40000 0.1088 {40000 0.0544 {40000 0.0272 {40000 0.1088 (40000 0.0544 {40000 0.0272
Simply supported one-way slab, single concentrated force
M, = Mlin/3 Mg = Mlin/2
E, =0.5E, E<=E, E,=2E, E, =0.5E, Ex=E, E«=2E,
Moment |Curvature{Moment |Curvature|Moment |Curvature|Moment |Curvature|{Moment |Curvature{Moment |Curvature

[Nm] [Um]  |[Nm]  |[Um]  [[Nm] [L/m] [Nm] [1/m] [Nm] [Um]  |[Nm]  |[V/m]

0 0 0 0 0 0 0 0 0 0 0 0
20000 0.0544 {20000 0.0272 20000 0.0136 ({20000 0.0544 {20000 0.0272 {20000 0.0136
Simply supported one-way slab, two concentrated forces
Mcr = |\/Ilin/‘?’ Mcr = 'vllin/2
E, = 0.5E, E.=E, E, = 2E, E, = 0.5E, E.=E, E, = 2E,
Moment |Curvature|Moment |Curvature| Moment |Curvature| Moment |Curvature|{Moment |Curvature|Moment |Curvature

[Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m] [Nm] [1/m]
0 0 0 0 0 0 0 0 0 0 0 0
20000 0.0544 {20000 0.0272 {20000 0.0136 (20000 0.0544 {20000 0.0272 {20000 0.0136

Table C.6  Moment-curvature relations used in the y-directions, case Cracked.

Cantilever slab

Single concentrated force Two concentrated forces
Mcr = I\/llin/3 Mcr = Mlin/2 Mcr = Mlin/3 Mcr = Ivllin/2
Moment |Curvature Moment |Curvature/Moment |Curvature|{Moment |Curvature
[Nm]  [Um] |[Nm] |[¥m] |[Nm] [[Um] [[Nm] |[1/m]
0 0 0 0 0 0 0 0
7413 0.00168 11120 0.00253 (13749 0.00312 (20623 0.00469
7784 0.01059 (11676 0.01588 14436 0.01963 (21654 0.02945
20000 0.02720 20000 0.02720 40000 0.05440 40000 0.05440
Simply supported one-way slab

Single concentrated force Two concentrated forces
Mcr = Mlin/3 Mcr = Mlin/2 Mcr = Mlin/3 Mcr = I\/Ilin/2
Moment |Curvature| Moment |Curvature/Moment |Curvature{Moment |Curvature
[Nm]  [Um] |[Nm] |[¥m] |[Nm] [[Um] [[Nm] |[1/m]
0 0 0 0 0 0 0 0
4629 0.00105 (6943 0.00158 |6421 0.00146 (9708 0.00221
4860 0.00661 |7290 0.00991 (6742 0.00917 (10193 0.01386
20000 0.02720 |20000 0.02720 20000 0.02720 |20000 0.02720
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C.2 Cumulative plastic rotation

This section covers the bilinear moment-curvature relations that were used for the
cumulative plastic rotation analyses. The modelling choices, limitations in ADINA,
the plastic rotation capacity 6,4 and how the moment-curvature relation was derived
are also treated in this section.

C.2.1 Modelling choices

The trilinear elastic model used in Chapter 4 and 5 could not be adapted to a plastic
analysis. The plastic analysis provided in ADINA does not allow the stiffness of a
material in a phase to be higher than the previous phase, i.e. the derivative of the
moment-curvature functions must decrease as the curvature increases, ADINA (2012).
When unloaded, the inclination of the unloading curve is equal to the inclination of
the first defined curve in the moment-curvature relation. How this applies
geometrically is illustrated in Figure C.14.

M

XV

(b)

Figure C.14 Moment-curvature input for ADINA with the unloading response as a
dashed line for: (a) moment-curvature relation allowed by ADINA, and
(b) moment-curvature relation declined by ADINA.

Since the trilinear elastic part of the model in Figure C.14b could not be adapted to a
quadlinear plastic analysis, a bilinear moment-curvature relation was used instead.
This simplification of the moment-curvature relation is illustrated in Figure C.15.

State 11 State 111

State 11

X

xv

(a) (b)

Figure C.15 Moment-curvature relations for (a) a quadlinear plastic analysis, and
(b) a bilinear plastic analysis.

The moment-curvature relation used for the plastic analyses in this report was
constructed from the bilinear plastic model in Figure C.15b and the plastic rotation
capacity ord, treated in Appendix C.2.2.
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As an alternative to the chosen moment-curvature relation, a quadlinear model that
includes the effect of tension stiffening, as can be seen in Figure C.16 could have been
used. However, this model was omitted due to the two main reasons stated below:

e The tension stiffening effect was believed to be small in these analyses.
e The unloading curve was believed to be better represented by a state 11 model
than a state | model.

The tension stiffening effect was believed to be small since the analyses mainly
focused on cumulative damage in the structure. With up to 150 load cycles n, the
overall effect of tension stiffening would decrease with each completed load cycle. As
an effect of the curve shown in Figure C.16, the unloading curve would have a much
steeper inclination than obtained by the moment-curvature relation in Figure C.15b.

Since one aim of this Thesis is to study cumulative damage, the state Il model was
believed to represent the true unloading curve to a greater extent than the state I
model. Since large plastic rotations were to be studied, an increased number of beam
elements in the beam grillage model would reach the yield state (state IlI). It is
therefore safe to assume that the investigated sections in a real structure would
experience high stresses and therefore behave more like a fully cracked, than an
uncracked, section when unloaded.

State 111

>
X

Figure C.16 Trilinear plastic moment-curvature relation including the effect of
tension stiffening.

C.2.2 Plastic rotation capacity

The plastic rotation capacity 6,4 of a cross-section is a function of the geometry of the
cross-section b, the reinforcement amount As, the concrete strength class fy and
reinforcing steel class and strength fyy. The cantilever slab and the simply supported
slab do not differ in the above stated input data and therefore have the same
sustainability towards accumulated damage. Due to this fact, both structures are
treated together below. The theory of the plastic rotation capacity of a cross-section
and how it is determined in Eurocode 2, CEN (2004) is treated in Section 2.2.6.

The total amount of reinforcement was set to 0.5 % which is treated in Section 4.1.1
and yielded:

A, =0.005- A =0.005-1-0.2 =1000-10°m? (C-1)

Concrete C30/37 and reinforcing steel B500B yielded:
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fy 500-10°

fo=X """ _4348MPa -
Ty 1.15 (C-2)
. 6
f,ootu 830107 ohvpa (C-3)
e
Where:
}/S :1.15 (C-4)
7. =15 (C-5)
Which yielded:
fo. 106 . .10-6
X, = A _ 434810 10006 10° _ 0.027 m (C6)
ag-fy-b 0.810-20-10° -1
X _ 0.027 0164 (C-7)
d 0.164

From Figure C.17, with x,/d =0.164, Class B steel and concrete strength class
C30/37, 6,14 Was obtained as:

04 =13-107° rad (C-8)
35 1 — = = Class C, <C50/60
30 It N — = —Class C, C90/105

! ,' =K RN —e— (Class B, <C50/60
Ny ~l > |[—=—Class B, C90/105
II / h S N s ~
T 20 4’ S
E [ 4 SO TN
=15 S
T T At <~
S| LT — T
I T — — ™4
) 2= ! — 1
| \T
0 |

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
X, /d [-]

Figure C.17 Plastic rotation capacity for reinforcement class B and C.
The shear slenderness A was determined according to:

| .
g 16 g7 (C-9)
164

0

(A [9.76
k, =.]2 =.]>= =180 C-10
=37\ 3 (C-10)
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The plastic rotation capacity of the cross-section was determined according to:

o,

e

¢ =k;-0,,4=180-13-10"° = 23.44-10"° rad (C-11)

The plastic rotation capacity 6,q = 23.44 mrad was used throughout this Thesis.

C.2.3 Cantilever slab — A single moving concentrated force

The plastic bilinear moment-curvature relation for the cantilever slab subjected to a
single moving force of constant and varying load magnitudes was established from
the linear elastic behaviour of an isotropic, cracked slab. The cantilever structure was
subjected to a force F = 200 kN in the centre of the primary free edge, as can be seen
in Figure C.18.

[mm]
A
| F -
1600 ; 200
L.
'p
L 6000 L ! | 6000 L a-a
7 T B '
F
z !
fe »
X
| 12000 |

7 71

Figure C.18 Geometry and location of the applied force of the studied cantilever
slab.

The width of the slab was chosen to 12 m in order to avoid numerical problems that
were obtained with a slab with an 8 m width. For the shorter slab, disturbances of the
slab occurred near the free edges and a wider slab was therefore chosen since the
scope of this Thesis is to investigate the behaviour of a long slab. This is further
treated in Section 6.1.3.

The load model consisted of one concentrated static force, applied in a single node
using a total of 500 time steps, which gives a load increment of 2.5 kN per time step.

The moment-curvature relation used for this analysis was the isotropic, cracked
stiffness used in Chapter 4 and 5, which can be seen in Figure C.19.
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Figure C.19 Elastic moment-curvature for an isotropic, cracked cross-section, used
in order to establish the bilinear plastic moment-curvature relation.

From the load application, the moment distribution along the fixed edge was obtained
which is shown in Figure C.20.

120

100 AN

. /N

Moment, m, [KNm/m]
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\
/

EEsEcs N

-20
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Figure C.20 Moment distribution for the studied slab with an applied concentrated
force of 200 kN.

The maximum moment from the isotropic, cracked analysis was used in order to
establish the yield moment for the bilinear plastic analysis where:

m, =104.1 kNm/m (C-12)
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The plastic moment my was chosen to 60% of the maximum elastic moment me which
yields:

m,, = 0.6-104.1=62.46 kNm/m (C-13)

In order to obtain the plastic moment for each beam in the beam grillage model in this
analysis, the plastic moment my was multiplied by the beam width according to:

M, =m, -b=6246-0.2=12.49 kNm (C-14)

pl
The choice of the plastic moment m, was based on a recommendation by Pacoste et
al. (2012) where the following limits for redistribution of reinforcement moments
were proposed:

0.6-M elastic <M plastic < Melastic (C‘15)
Failure of the cantilever slab was defined as in Appendix C.2.2 where the plastic

rotation capacity 6,4 was determined for a cross-section with a reinforcement amount
of 0.5 % where:

6., =23.44 mrad (C-16)

The bilinear moment-curvature relation used in this analysis is based on a
combination of the elastic response of a cracked cross-section mg, the plastic moment
mp described in Equation (C-13) and the failure due to plastic rotation, defined as the
plastic rotation capacity 64 described in Equation (C-16). The bilinear moment-
curvature relation from the above stated input was combined and is shown in
Figure C.21.

14

12

1OI
Al
|
|

Moment, M, [kKNm]

0 100 200 300 400 500
Curvature, y [mrad]

Figure C.21 Bilinear plastic moment-curvature relation for the studied cantilever
slab. Valid for the majority of the beams in the beam grillage model.
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The above stated moment-curvature relation applies for the majority of the beams in
the beam grillage model. As can be seen in Equation (C-13), the moment-curvature
relation applies for beams with a width of 0.2 m. As have been stated in Section 6.1.3,
the beam grillage models were modelled with beams of half the width in the
boundaries. This yields moment-curvature relations for these beams with the same
elastic response and plastic rotation capacity but with a plastic moment my, that is
50 % of a full cross-section. The moment-curvature relation for the beams in the
boundaries is shown in Figure C.22.

7

N

w

N
|
|
|

Moment, M, [KNm]

0 100 200 300 400 500
Curvature, y [mrad]

Figure C.22 Bilinear plastic moment-curvature relation for the studied cantilever
slab. Valid for beams in the boundaries in the beam grillage model.

C.2.4 Cantilever slab — Two moving concentrated forces

The plastic bilinear moment-curvature relation for the cantilever slab subjected to a
single moving force of constant and varying magnitudes was also used for these
analyses. There are mainly two reasons for this choice of moment-curvature relation:

e Comparison purposes between a single and two moving concentrated forces.
e Comparison purposes within the two moving concentrated forces.

If a moment-curvature relation were to be constructed for two moving concentrated
forces, no comparison between this load case and the load case for a single moving
concentrated force could have been made. Since one aim of this Thesis is to study
how long slabs behave for cumulative damage, it was essential to make comparisons
between different load cases. The aim of this Thesis is also to investigate how the
cumulative damage is affected by the distance d between the two moving
concentrated forces. With individual moment-curvature relations for each distance, a
comparison study between these would be less obvious.
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C.2.5 Simply supported slab — A single moving concentrated force

The plastic bilinear moment-curvature relation for the simply supported one-way slab
subjected to a single moving concentrated force of constant and varying load
magnitudes was established from the linear elastic behaviour of an isotropic, cracked
slab. The cantilever structure was subjected to a total force F =200 kN in the centre
of the slab, as in the case of the cantilever structure. Due to the symmetry boundary,
the total applied force Fy: in the analysis was set to 100 kN, as can be seen in Figure
C.23.

1600 I
X

Figure C.23 Geometry and location of the applied force of the studied simply
supported one-way slab.

As in the case of the cantilever structure, the width of the slab was chosen to 12 m in
order to avoid numerical problems.

The load model used can be seen in Figure C.24 which consists of six concentrated
static forces that were applied using a total of 500 time steps, which gave a load
increment of 1.25 KN per time step. The six concentrated forces represented one
concentrated force, applied over a surface of 0.4 x 0.4 m% Due to the symmetry
boundary, this area was set to 0.4 x 02 m?.

Figure C.24 Load model and force distribution used for beam grillage model.

Since the six concentrated forces represented a surface load, applied on a beam
grillage model, the forces corresponds to the force contributions from the represented
areas. Due to this load interpretation, the two mid-forces received force contributions
from two areas and were therefore greater than the remaining forces. How the forces
were applied on the beam grillage model can be seen in the Figure C.24.

The total number of force contributions was eight, four from each surface, which was
distributed over six forces. This gave the following force relations:

F=F,=F,=F, = th (C-17)
FtOt
F,=Fy =2 (C-18)
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The moment-curvature relation used for this analysis was the cracked stiffness used in
Chapter 4 and 5, which can be seen in Figure C.25.
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Figure C.25 Elastic moment-curvature for a cracked cross-section, used in order to
establish the bilinear plastic moment-curvature relation.

From the load application, the moment distribution along the mid-section of the slab
was established which is shown in Figure C.26. The peak moment was more distinct
than in the case of the cantilever slab. The reason for this can be derived from the fact
that the moment distribution was measured in the same line as where the forces were
applied.
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Figure C.26 Moment distribution for the studied slab with an applied concentrated
force of 100 kN.
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The maximum moment from the isotropic, cracked analysis was used in order to
establish the yield moment for the bilinear plastic analysis. The procedure was the
same as stated for the cantilever structure in Appendix C.2.3 and is here presented in a
simplified and more compact form:

m,, = 60.75 KNm/m (C-19)
m, =0.6-60.75.1= 36.45 kNm/m (C-20)
M, =m, -b=236.45-0.2=7.29 kNm (C-21)

Failure of the simply supported slab was also here defined as in Appendix C.2.2
where the plastic rotation capacity 6, was determined for a cross-section with a
reinforcement amount of 0.5% where:

6.4 = 23.44 mrad (C-22)

The bilinear moment-curvature relation used in this analysis was, as in the case of the
cantilever structure, based on a combination of the elastic response of a cracked cross-
section mg, the plastic moment my, described in Equation (C-20) and the failure due to
plastic rotation, defined as the plastic rotation capacity 6., described in
Equation (C-22). The bilinear moment-curvature relation from the above stated input
was combined and is shown in Figure C.27.
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Figure C.27 Bilinear plastic moment-curvature relation for the studied cantilever
slab. Valid for the majority of the beams in the beam grillage model.

The above stated moment-curvature relation applies for the majority of the beams in
the beam grillage model. As in the case of the cantilever structure, the moment-
curvature relation presented in Figure C.27 does not apply for beams in the
boundaries. The moment-curvature model for these beams in the beam grillage model
is presented in Figure C.28.
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Figure C.28 Bilinear plastic moment-curvature relation for the studied cantilever
slab. Valid for the beams in the boundaries and the symmetry
boundaries in the beam grillage model.

C.2.6 Simply supported slab — Two moving concentrated forces

The plastic bilinear moment-curvature relation for the simply supported one-way slab
subjected to a single moving force of constant and varying magnitudes was also used
for these analyses. The reasons for this choice were the same as stated in
Appendix C.2.4 for the cantilever structure:

e Comparison purposes between a single and two moving concentrated forces.
e Comparison purposes within the two moving concentrated forces.
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Appendix D Approximation of plastic rotation

This chapter covers the approximate approach that was used in this Thesis to measure
plastic rotation in the cantilever and simply supported structure. This chapter also
covers how this approximate approach differs from the results obtained from the
option provided by ADINA.

D.1 Background of the approximation

ADINA provides an option for obtaining the plastic curvature in the integration points
over the elements. If the plastic curvature is summarized over the element length, the
plastic rotation in the structure is obtained. The results from the option provided from
ADINA is, however rather cumbersome when exporting the obtained data for external
analysis. As an alternative to obtaining the plastic curvature and thus the plastic
rotation directly from ADINA, deflections in the nodes can be measured and an angle
a created by these nodes can be determined. If the angle « is measured after each load
cycle is completed, i.e. when the cantilever slab is completely unloaded, it represents
the plastic rotation 6y accumulated during that load cycle. This method is the
approximate approach used throughout this Thesis that is further examined below.

Since the approximate approach is dependent on the distance between the nodes in
order to calculate the plastic rotation, the mesh densities influence the results. The
mesh density for the two structures was set so that the element length was 0.2 m for
the majority of the elements in the structures. The mesh density was however
increased so that the element length was 0.05 m where the plastic rotation was
calculated. The choice was based on the observations made by Lim (2013) and a
parametric study was performed in this Thesis indicated that the choice was
reasonable and yielded satisfying results. This decreased element length was therefore
used at the cantilever support and in the centre of the simply supported structure, see
Figure D.1 and Figure D.5

The influence of further increased mesh densities did not yield results that differed
significantly from the ones obtained from the above stated mesh used in this Thesis.
The above stated mesh was therefore evaluated as satisfactory for the analyses
conducted in this Thesis.

D.2 Cantilever slab

Figure D.1 Deflected shape and mesh density for the cantilever structure

The approximate approach to determine the plastic rotation was to measure the
deflection in the second and third node, u, and us after each completed load cycle.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 217



AU =U, —Ug (D-1)
The angle a, i.e. the plastic rotation, was calculated from the triangle created by the
deflected nodes.

Au
a= tan(l—) (D-2)

ele

Where lge=0.050 m, which is the length of each element at the fixed support, see
Figure D.1.

Figure D.2 Geometrical interpretation of the plastic rotation for the cantilever
structure.

The rotation in the first node u; was prescribed to zero by the boundary conditions
which influenced the angle of the triangle and thus results in an approximation. The
approximation is shown in Figure D.3.

J

ele /\

L.,

Figure D.3 Approximation of the plastic rotation for the cantilever structure.

The background for calculating the angle based on the deflection in the second and
third node was derived from how ADINA treats plastic curvature in beam elements.
The reader is referred to Section 6.1.3 for additional information on this matter.

In order to evaluate the influence of the above stated approximation, the cantilever
structure in Chapter 6 was subjected to a single moving concentrated force of the
following magnitudes:

F = [140 145150 155 160 165] kN (D-3)

This range of force magnitudes covered the largest force not to cause failure within
150 load cycles to the smallest force to cause failure after two load cycles. The result
from the approximation was used throughout this Thesis and is shown in Figure 6.17.

The analyses for the different forces were conducted for 150 load cycles if failure of
the structure did not occur within that range. The plastic rotation obtained by the
option provided by ADINA and the approximation stated above is shown in
Figure D.4.
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Figure D.4 Plastic rotation for different magnitudes of moving concentrated forces.

As can be seen in Figure D.4, the approximate approach yields satisfactory results for
the development of plastic rotation for a single moving force on the cantilever
structure. It was from these results concluded that the approximate approach was
satisfactory for the load cantilever structure and combinations studied in this Thesis.
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D.3 Simply supported slab

Figure D.5 Deflected shape and mesh density for the simply supported one-way
structure.

The approximate approach to determine the plastic rotation was to measure the
deflection in the second and third node, u, and us after each completed load cycle.

AU=U, —U, (D-4)

The angle a, i.e. the plastic rotation, was calculated from the triangle created by the
deflected nodes.

o = tan(~Y) (D-5)

ele

Where l¢e = 0.050 m, which is the length of each element in the centre of the slab.

Figure D.6 Geometrical interpretation of the plastic rotation for the simply
supported one-way structure.

The rotation in the first node u; was also here prescribed to zero by the boundary
conditions which influenced the angle of the triangle and thus results in an
approximation. The approximation is shown in Figure D.7.

Figure D.7 Approximation of the plastic rotation for the simply supported one-way
structure.
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In order to evaluate the influence of the above stated approximation, the simply
supported structure in Chapter 7 was subjected to a single moving concentrated force
of the following magnitudes:

F =[80859095100105110] kN (D-6)

The background for the range of forces was covered in Appendix D.2. The results
from the approximation were used throughout this Thesis and are shown in
Figure 7.12.

The analyses for the different forces were also here conducted for 150 load cycles if
failure of the structure did not occur within that range. The plastic rotation obtained
by the option provided by ADINA and the approximation stated above is shown in
Figure D.8.
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Load cycles, n [-]
Figure D.8 Plastic rotation for different magnitudes of moving concentrated forces.

It can also here be seen that the approximation yields satisfactory results which
motivates the use of the approximation for the simply supported structure in this
Thesis.
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Appendix E  Load application order

This chapter covers the load application order of a pair of moving concentrated forces
with a constant distance d = 1.2 m and how this influenced the plastic rotation in a
cantilever and a simply supported one-way structure. This chapter also covers the
difference in plastic rotation between these load application orders which served as a
foundation for the load application order used for the analyses in this Thesis.

The load application order is in this Thesis defined as the order of how two forces of
different magnitudes are applied on the structure. There are in this case two possible
load application orders, here denoted LAO; and LAO;, where the first force was
greater than the second and vice versa. Equation (E-1) and (E-2) defines the first and
second load application order respectively and these are also illustrated in Figure E.1
and Figure E.2 respectively.

F <F, (E-1)

| |
) 12000 |

Figure E.1  Force layout for the first load application order, LAO;

F>F, (E-2)

J 12000 ]

Figure E.2 Force layout for the second load application order, LAO,
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E.1 Cantilever slab

The load application order, i.e. how a pair of moving concentrated forces are applied
and how this influences the development of the plastic rotation in the cantilever
structure is here evaluated. The study was conducted on the cantilever structure
presented in Section 6.5 for a pair of moving concentrated forces of different

magnitudes.
The total applied force Fi; was kept constant so that:

Fo =F +F, =170 kN
Where:

F=F,

Where the first load application order LAO; had the following force layout:

F, =[102030 4050 60 70 80 ] kN

F, =[160150140130120110100 90 | kN
The second load application order LAO, had the following force layout:
F, =[160150140130120110100 90 | kN

F, =[10 20304050 60 70 80 |kN

(E-3)

(E-4)

(E-5)

(E-6)

(E-7)

(E-8)

The two different load application orders are treated and compared in Appendix E.1.1

to E.1.3.
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E.1.1 Load application order LAO,, F;<F,

The plastic rotation is shown in Figure E.3 and the development of the plastic rotation
during the first ten load cycles is illustrated in Figure E.4.

35
_D_F1:10 F2:160 kN —— F1:20 F2=150 kN
_O_F1:3O F2:140 kN —— F1:40 F2=130 kN
30 —+—F,=50 F,=120 KN —0—F;=60 F,=110 kN
— ——F,;=70 F,=100 kN  ——F;=80 F,=90 kN
8 25 / /cl) /. |1 = | | = |2
£ /A \
S0 Oy = 23.Amrad
c
2
T
§ 15 -
Q
& 10 -
o
5 -
O 7
0 2 4 6 8 10 12 14

Load cycles, n [-]

Figure E.3 Plastic rotation for different load combinations for the

application order LAO;.

—o—3 Load cycles
—2—15 Load cycles
—o—7 Load cycles
—e—9 Load cycles

60 L —o—1 Load cycle

—a—2 Load cycles
—a—4 Load cycles
—o—6 Load cycles
——8 Load cycles
——10 Load cycles

ﬁ§

Plastic rotation, 8, [mrad]
w
o

S s

‘A§§\=§ ‘

0., =23.4mrad
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first load

Figure E.4 Development of plastic rotation for different load combinations for the

first load application order LAO;.
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E.1.2 Load application order LAO,, F;>F,

The plastic rotation in the centre of the slab can is shown in Figure E.5 and the
development of the plastic rotation during the first ten load cycles is illustrated in

Figure E.6.
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--0- F;=140 F,=30 kN - -% - F,=130 F,=40 kN
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= s - -2 - F,=100 F,=70 kN --&- F,=90 F,=80 kN
E 25 1 /I - 1 ! I
(S =" - T == 'é'- A JZJ;_--“ 1
— 1,0 f % " _,—O"— 2 i =7 1
S0 I ,’./ -0 ,_R,'_‘—%"E 6, =234 mrad
- 4,4 4 Vi 7 r’&}”—” 3 1
§ I'I’II, A PP e :E’
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Figure E.5 Plastic rotation for different load combinations for the first load

appl

ication order LAO,.

--+- 1 Load cycle
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Figure E.6 Development of plastic rotation for different load combinations for the

first
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load application order LAO,.
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E.1.3 Comparison of load application orders

The two load application orders are here compared in order to evaluate the influence it
has on the development of plastic rotation. As can be seen in Figure E.7, the load
application order has a small influence on the plastic rotation development of the
structure. It is clear that the greatest difference in plastic rotation arises after the first
load cycle for the load combinations with the greatest load magnitude differences.

45

—0O—1 Load cycle, F; >F, --0r- 1Load cycle, F; <F,
40 —&— 2 Load cycles, F; >F, --&-2Load cycles, F; <F,
—o—3 Load cycles, F; >F, --o- 3 Load cycles, F; <F,
= 35 —=&— 4 | oad cycles, F; >F, --®- 41]oadcycles, F; <F,
© —a»—5 Load cycles, F; >F, --&-51Loadcycles, F; <F,
:_25 . HM:'?Amrad
2
T 20 ~
e \
(&)
E A
L‘*‘H}\*}*—J}—————u
5
0

10J160 20]150 30140 40/130 50120 60|110 70/100 80|90
Load magnitude, F,|F, and F,|F;[kN]

Figure E.7 Development of plastic rotation for different load combinations for the
first and second load application order for the first five load cycles.

The difference in plastic rotation y,,; .40 between the two load application orders was
calculated according to Equation (E-9):

Opr.a02 ~ Oy
Y aro = pl.LAO2 pl.LAOL (E-9)

9p|.LA01

The result from Equation (E-9) is shown in Figure E.8 where it is clearly illustrated
that there is no obvious connection between the load application order and the
development of plastic rotation.

If, however, only load cycle number seven to ten is shown, a clearer pattern arises as
can be seen in Figure E.9 and a tendency of convergence arises. It appears from this
figure that LAO; is advantageous for the structure when the load magnitude difference
is significant to intermediate. As the load magnitude difference decreases, the
difference of the plastic rotation from the two load application orders also decreases.
This behaviour is natural since the difference between the force magnitudes are small
and the load application order should therefore not be significant.
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Plastic rotation difference, v, a0 [%0]

——1 Load cycle
—o—3 Load cycles

1 ——5 Load cycles
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—2—8 Load cycles

—0—10 Load cycles
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Load magnitude, F;|F, and F,|F;[kN]

70/100  80j90

Figure E.8 Difference in plastic rotation y a0 for the first ten load cycles between
the results from LAO; and LAO, for the first ten load cycles.
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Figure E.9 Difference in plastic rotation y o for the first ten load cycles between
the results from LAO; and LAO; for load cycle seven to ten.

The second load application order LAO, causes greater plastic rotation for the majority
of the studied load combinations and load cycles. It should here be noted that the
difference is small and a bit unstable. The load application order used in this Thesis
was chosen to LAO;.
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E.2 Simply supported slab

The load application order and how this influenced the development of the plastic
rotation in the simply supported structure is here evaluated. The study was conducted
on the simply supported structure in Chapter 7 for a pair of moving concentrated
forces of different magnitudes.

The total applied force Fi,;was also here kept constant so that:

Fo. =F +F, =120 kKN (E-10)
Where:
F#F, (E-11)

Where the first load application order LAO; had the following force layout:

F, =[102030 4050 |kN (E-12)

F, =[110100 9080 70] kN (E-13)
The second load application order LAO, had the following force layout:

F, =[110100 9080 70 | kN (E-14)

F, =[102030 4050 |kN (E-15)

The two different load application orders are treated and compared in Appendix E.2.1
to E.2.3
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E.2.1 Load application order LAO,, F;<F,

The plastic rotation is shown in Figure E.10 and the development of the plastic
rotation during the first ten load cycles is illustrated in Figure E.11.
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yARS 04 =234 mrad

—0—F;=10 F,=110 kN
——F;=20 F,=100 kN
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—~—F;=50 F,=70 kN
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Load cycles, n [-]
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Figure E.10 Plastic rotation for the first load application order, LAO;.
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Figure E.11 Development of plastic rotation for the first load application order,
LAO;.
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E.2.2 Load application order LAO,, F;> F,

The plastic rotation is shown in Figure E.12 and the development of the plastic
rotation during the first ten load cycles is illustrated in Figure E.13.
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Figure E.12 Plastic rotation for the second load application order, LAO,.
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Figure E.13 Development of plastic rotation for the second load application order,
LAO,.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 231



E.2.3 Comparison of load application orders

The two load application orders are here compared in order to evaluate the influence it
had on the development of plastic rotation. As can be seen in Figure E.14, the load
application order has a noticeable influence on the plastic rotation development of the
structure. It is clear that the greatest difference in plastic rotation arises after the first
load cycle for the load combinations with intermediate load magnitude differences.
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Load magnitude, F,|F, and F,|F; [kN]

Figure E.14 Development of plastic rotation for different load combinations for the
first and second load application order for the first five load cycles.

The difference in plastic rotation y,,; .40 between the two load application orders was
calculated according to Equation (E-16):

0 1.LAO2 -0 1.LAO1
VeplLao = : : (E-16)

gpI.LAOl

The result from Equation (E-16) is shown in Figure E.15 where it is clearly shown
that the difference in plastic rotation between the two load application orders is
diminished as the number of load cycles is increased. It can be seen in the figure that
LAO; is advantageous for the structure for all investigated load combinations. The
difference in plastic rotation seems to reach a stable state after a few load cycles
where the difference is slightly bigger for larger differences between the force
magnitudes. The second load application order LAO; causes greater plastic rotation for
all investigated load combinations and load cycles.

The load application LAO; was however chosen for the analyses presented in this
Thesis due to comparison purposes to the cantilever structure.
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Figure E.15 Difference in plastic rotation y ao for the first ten load cycles between
the results from LAO; and LAO, for the first ten load cycles.
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Appendix F  Influence of distance, d

This chapter covers the study conducted on the cantilever structure in Section 6.4.5
where the influence of the distance d between a pair of moving concentrated forces
was evaluated. The results presented in this chapter is not discussed to a great extent
but are presented for the interested reader.

In order to evaluate how the distance influenced the plastic rotation of the structure,
the distance between the pair of moving concentrated forces was altered according to:

d=[121.62024283236404.448|m (F-1)

The cantilever structure was subjected to forces from 65 kN to 165 kN according to
the following magnitudes:

F,=F,=[657075...155160165 | kN (F-2)

The total applied load F of the forces F; and F; is defined in Equation (F-3):

F, =F +F, (F-3)
3600 4800 | 3600 {mim]
L d ‘
F F
b v — b
- =N

Figure F.1 Geometry and dimensions of the studied cantilever slab for two
concentrated forces of equal magnitudes.

The analyses were conducted for 150 load cycles n for each pair of concentrated
forces if failure of the cantilever slab did not occur within this range. The plastic
rotation in the centre of the slab for different magnitudes of forces and distances
between the forces is shown in Figure F.2 to Figure F.21.
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Figure F.2 Plastic rotation in the centre of the cantilever slab for d = 1.2 m.
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Figure F.3 Plastic rotation in the centre of the cantilever slab for d = 1.2 m.
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Figure F.4 Plastic rotation in the centre of the cantilever slab for d = 1.6 m.
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Figure F.5 Plastic rotation in the centre of the cantilever slab for d = 1.6 m.
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Figure F.6  Plastic rotation in the centre of the cantilever slab for d = 2.0 m.
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Figure F.7 Plastic rotation in the centre of the cantilever slab for d = 2.0 m.
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Figure F.8 Plastic rotation in the centre of the cantilever slab for d = 2.4 m.
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Figure F.9 Plastic rotation in the centre of the cantilever slab for d = 2.4 m.
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Figure F.10 Plastic rotation in the centre of the cantilever slab for d = 2.8 m.
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Figure F.11 Plastic rotation in the centre of the cantilever slab for d = 2.8 m.
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Figure F.12 Plastic rotation in the centre of the cantilever slab for d = 3.2 m.
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Figure F.13 Plastic rotation in the centre of the cantilever slab for d = 3.2 m.
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Figure F.14 Plastic rotation in the centre of the cantilever slab for d = 3.6 m.
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Figure F.15 Plastic rotation in the centre of the cantilever slab for d = 3.6 m.
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Figure F.16 Plastic rotation in the centre of the cantilever slab for d = 4.0 m.
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Figure F.17 Plastic rotation in the centre of the cantilever slab for d = 4.0 m.
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Figure F.18 Plastic rotation in the centre of the cantilever slab for d = 4.4 m.
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Figure F.19 Plastic rotation in the centre of the cantilever slab for d = 4.4 m.
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Figure F.20 Plastic rotation in the centre of the cantilever slab for d = 4.8 m.

35

——F,=F,=140kN — F;=F,=135kN
20 Fi=F,=130 kN ---- F;=F,=125kN
——— F1=F,=120 kN —+— F;=F,=115 kN
=)
S 25
é —
20 e
c /
S
= [ ———
5 15 /
Q
2 10
o
| B R g g o g i gt g g o g g i g iy g g i g g P
//
[ S
0 25 50 75 100 125 150

Load cycles, n [-]
Figure F.21 Plastic rotation in the centre of the cantilever slab for d = 4.8 m.

As can be seen in Figure F.13, Figure F.15, Figure F.17, Figure F.19 and Figure F.21
there is an increase in plastic rotation after a certain load cycles. This phenomenon
can be observed when the plastic rotation at the fixed support has developed to such
an extent that the slab starts to behave differently. The forces are in this state carried
in x-direction, perpendicular to the direction towards the support, since the majority of
the centre part of the slab cannot carry any additional force. This would not be the
case in a long slab which is of interest in this report and the results after this critical
section is therefore omitted in this Thesis.

The number of load cycles to failure n, for each distance d and total load magnitude
Fiot IS summarized in Table F.1. The largest applied total force for each distance, not
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to cause any plastic rotation, is also summarized in this table. These extreme values
are shown in Figure F.22.

Table F.1  Number of load cycles to failure n, for different values of the total
applied force and distance.

Distance d

For [KN] | 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 3.6 4.0

130 0

135 -

140 - o0

145 - -

150 - -

155 - -

160 - - 0

165 - - -

170 15 - -

180

190

200

210

NN WD
NN | W |

220

230 1

BN w |~
1
1

240

250 2 - . . ; ; ;

260 1 23 - - - - -

270 2 - - - - -

280 1 10

290 2

300 1

310

320

P I N W W o
P NN WO
P NN WO
PN W o

330
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Figure F.22 Relation between total load magnitude F and distance d for forces not
to cause any plastic rotation and failure after one load cycle.
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Appendix G Comparison — Static vs. moving forces

This chapter covers the cumulative factor ygmev for a single static and a pair of
concentrated forces of different magnitudes. The results from these analyses are in
this chapter presented for the cantilever and the simply supported one-way structure.
The results are not discussed but are just presented for the interested reader.

As described in Section 6.6.2 in 7.6.2, the difference between static and moving
concentrated forces was of interest. The distance d between the pair of moving
concentrated forces varied according to Equation (G-1):

d=[1.21.62.0]m (G-1)

The cumulative factor was defined as the relation between the plastic rotation caused
by a moving concentrated force and a static force of the same magnitude. This relation
Is stated in Equation (G-2):

epl.mov.n
76p|mov = (G'Z)

epl.stat

G.1.1 Cantilever slab
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7. .
S 12 4l
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> /-
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= 51, F=140 kN
SEES - = = F=135kN
It - = = F=130kN
2 i F=125 kN
0 - - = F=120 kN
0 25 50 75 100 125 150

Load cycles, n [-]

Figure G.1 Development of the cumulative factor yg,.m... for a single moving
concentrated force.
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Figure G.2 Development of the cumulative factor ygm. for two moving
concentrated forces withd = 1.2 m.
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Figure G.3 Development of the cumulative factor ygm. for two moving
concentrated forces with d = 1.6 m.
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Figure G.4 Development of the cumulative factor ygm. for two moving
concentrated forces with d = 2.0 m.

G.1.2 Simply supported slab
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Figure G.5 Development of the cumulative factor yg,.m... for a single moving

concentrated force.

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73

251



[N
o

b el e e e g PR Py g P g P A -
— /
210 4
= [}
?? .
< 8 1+
k3] ]
'E—G .
E ' L -— - -
5 .
E 4 -
>
(@]
———F;=F,=75 kN ——— F;=F,=70 kN
2 1 Fy=F,=65kN = = = F,=F,=60 kN
- == F1:F2:55 kN F1:F2=50 kN
0 = - = Fj=F,=45kN .
0 25 50 75 100 125 150

Load cycles, n [-]
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Figure G.7 Development of the cumulative factor ygm. for two moving
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concentrated forces withd = 1.6 m.
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Appendix H Tabulated values

This Chapter covers tabulated values to the comparison studies conducted in
Chapter 6 and 7. The values presented in the tables in Section H.1 and H.2 was used
to construct the figures in Chapter 6 and 7. The values should here be seen as
additional information for the interested reader and is not commented and discussed to
a great extent. The figures and equations in Section H.1 and H.2 are the same as
illustrated and defined in Chapter 6 and 7 and are here presented as a help and for
orientation purposes for the reader.

H.1 Cantilever slab

This section covers the tabulated values to the comparison studies conducted in
Chapter 6.

H.1.1 Load magnitudes — Varying
Figure H.1 consists of Figure 6.25 and Figure 6.26.

30 6
§ 04=23.4mral J g
EZS pl —H § 4
— (]
%EZO %'?2
i >
S 15 4 5% /"/
2 10 g =0 r—
o e /
o ©
g s 7 R
o gg",og a
0 SEE= -4

120 125 130 135 140 145
Load cycles, n [-] Inferior load magnitude, F [kN]
Figure H.1 Plastic rotation development and difference in plastic rotation yg.a
between load combination A; and A..

0p|.A2 - 9p|.A1

Y s e— (H-1)
oL HpI.Al

Table H.1  Plastic rotation 6y 4 and difference in plastic rotation yg A after six load
cycles for a single moving concentrated force of varying magnitudes.

F, [kN] | 6, [mrad] | 6, [mrad] | 7,4 [%]
120 13.40 13.07 -2.5
125 14.24 14.15 -0.7
130 15.89 16.01 0.8
135 18.01 18.41 2.2
140 20.66 21.33 3.1
145 23.89 24.69 3.2

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:73 255



H.1.2 Comparison of single forces — Varying
Figure H.2 consists of Figure 6.29 and Figure 6.30.

w
o

N
ol

10

Plastic rotation, 8, [mrad]
=
ol

4
Load cycles, n [-]

Plastic rotation difference,

6 —
—=a— | oad combination A,

—o— Load combination B

~

N

Yopl [%0]

\

125 130 135 0
In%erior load magnitude, F]ﬁ<N]

145

Figure H.2 Plastic rotation development and difference in plastic rotation yg.a
between load combination A; and load combination A, and B.

Yara = 0“;& (H-2)
pl.AL
pl.AL
Table H.2  Plastic rotation 6, and difference in plastic rotation yg, after six load
cycles for a single moving concentrated force of varying magnitudes.
F[kN] | 6, [mrad] | 6, ,, [mrad] | 6, [mrad] | 7,4 [%] Vs %]
120 13.40 13.07 13.08 -2.5 -2.5
125 14.24 14.15 14.20 -0.7 -0.2
130 15.89 16.01 16.17 0.8 1.7
135 18.01 18.41 18.65 2.2 34
140 20.66 21.33 21.52 3.1 4.0
145 23.89 24.67 24.86 3.2 3.9
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H.1.3 Traditional superposition approach
Figure H.3 consists of Figure 6.33 and Figure 6.34.
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=
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Load cycles, n [-] Load cycles, n [-]

Figure H.3 Plastic rotation development from analyses and a traditional

superposition approach. Load combination A;.

Yool assup = 9""“‘;“" ~Fpamane (H-4)
pl.ALana
Table H.3  Plastic rotation and difference in plastic rotation ygp a1.sup after six load
cycles for a single moving concentrated force of varying magnitudes
FIN] | Gpssana [Mrad] | 0, [Mrad] | 70 a0 (%]
120 13.39 13.45 0.4
125 14.24 15.57 94
130 15.89 18.78 18.3
135 18.01 22.68 25.9
140 20.66 27.08 31.1
145 23.89 32.06 34.2

Figure H.4 is a miniature of Figure 6.35.
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=
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Figure H.4 Difference in plastic rotation yg.a1.sup for load combination A; between

the results from an analysis and a traditional superposition approach.
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Figure H.5 consists of Figure 6.36 and Figure 6.37.
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=
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o
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Figure H.5 Plastic rotation development from analyses and a traditional

superposition approach. Load combination B.

0 0

pl.B.sup ~ “plB.ana

70pI.B.sup = 0 (H'5)

pl.B.ana

Table H.4  Plastic rotation and difference in plastic rotation ygp g.sup after six load

cycles for a single moving concentrated force on a cantilever slab.

FIKN] | 6,150 (Mrad] | 6,5, [Mrad] | 760 (%]
120 13.08 13.45 2.8
125 14.20 15.75 10.9
130 16.17 19.43 20.2
135 18.65 24.15 29.5
140 21.52 29.65 37.8
145 24.86 39.91 44.9

Figure H.6 consists of Figure 6.38 and Figure 6.39.
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Figure H.6 Difference in plastic rotation ygg1.sup for load combination B between
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the results from an analysis and a traditional superposition approach.
The right figure is a combination of load combination A; and B.
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H.1.4 Comparison of two forces — Varying

Vepl16m =

Y epr20m =

_ 0p|.l.6m %
0

pl.l.2m

pl.1.2m

_ 0p|.2.0m -0
0

pl.l1.2m

pl.1.2m

Figure H.7 consists of Figure 6.60 and Figure 6.61.
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Figure H.7 Difference in plastic rotation
forces of different magnitudes.
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Load cycles, n [-]

(H-6)

(H-7)

Yopl.Lem and ygpi20m for a pair of moving

(H-8)

(H-9)

(H-10)

(H-11)

Mean plastic rotation difference for all load combinations and load
cycles for a pair of moving concentrated forces of varying magnitudes.

0 -0
— pl.1.6m pl.l1.2m
Vepriem = =
pLLe 0p|.1.2m
0,120m — 0,
— pl.2.0m pl.l.2m
Y gpr20m = =
plao 9p|.1.2m
Where:
_ Zepl.lﬁm
6p|.1.6m =2 n
_ ZHpI.Z.Om
0
0p|.2.0m = n
Table H.5
Fl [kN] 775p|.1.6m [%] 770p|.2.0m [%]
10 -5.5 -4.7
20 -11.8 -10.8
30 -19.6 -19.9
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40 -28.2 -32.9
50 -36.9 -48.8
60 -44.0 -64.5
70 -49.2 -17.5
80 -52.1 -85.9

Figure H.8 is a miniature of Figure 6.62.
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Figure H.8 Mean difference in plastic rotation between a distance of 1.2 m and,
1.6 mand 2.0 m.
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H.2 Simply supported slab

This section covers the tabulated values to the comparison studies conducted in
Chapter 7

H.2.1 Load magnitudes — Varying
Figure H.9 consists of Figure 7.19 and Figure 7.20.
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Figure H.9 Plastic rotation development and difference in plastic rotation ygy.a
between load combination A; and A..

O, —0
Vaua = g (H-12)
pl.Al

Table H.6  Plastic rotation 6y 4 and difference in plastic rotation yg A after six load
cycles for a single moving concentrated force of varying magnitudes.

F, [kN] | 0, [mrad] | 6, ,, [mrad] | 7,4 [%]
60 14.40 14.45 0.4
65 14.80 15.24 3.0
70 16.08 16.59 3.2
75 17.93 18.58 3.6
80 20.31 21.12 4.0
85 23.20 24.27 4.6
90 26.65 27.94 4.9
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H.2.2 Comparison of single forces — Varying
Figure H.10 consists of Figure 7.23 and Figure 7.24.
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Figure H.10 Plastic rotation development and difference in plastic rotation yg.a
between load combination A; and load combination A, and B.

y . ‘9p|.A2 _HpI.Al
oA — 45
HpI.Al
y _ epI.B _epI.Al
o8B — 5
epI.Al

(H-13)

(H-14)

Table H.7  Plastic rotation and difference in plastic rotation yg, after six load
cycles for a single moving concentrated force of varying magnitudes.

F [kN] | 0,4 [mrad] | 6,,,, [mrad] | 6,5 [mrad] | 7, [%] Vs %]
60 14.40 14.45 14.43 0.3 0.3
65 14.80 15.24 15.17 3.0 2.5
70 16.08 16.59 16.72 3.2 4.0
75 17.93 18.58 18.84 3.6 5.1
80 20.31 21.12 21.54 4.0 6.1
85 23.20 24.27 24.69 4.6 6.4
90 26.65 27.95 28.38 4.9 6.5
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H.2.3 Traditional superposition approach
Figure H.11 consists of Figure 7.25 and Figure 7.26.
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Figure H.11 Plastic rotation development from analyses and a traditional
superposition approach. Load combination A;.

7

gpI.Al.sup -

_ pl.Al.ana
76}3I.A1.sup - 9

(H-15)

pl.Al.ana

Table H.8  Plastic rotation and difference in plastic rotation ygp a1.sup after six load
cycles for a single moving concentrated force of varying magnitudes

FIKN] | O psana [Mrad] | O pcup [mrad] | 71 00500 [%]
60 14.39 14.52 0.9
65 14.80 16.23 9.6
70 16.08 18.69 16.3
75 17.93 21.28 18.7
80 20.31 25.87 27.4
85 23.20 30.55 31.7
90 26.65 35.83 344

Figure H.12 is a miniature of Figure 7.27
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Figure H.12 Difference in plastic rotation ygy.a1sup fOr load combination A; between
the results from an analysis and a traditional superposition approach.
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Figure H.13 consists of Figure 7.28 and Figure 7.29.
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0
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76m.B.Sup _ pI.B.saup pl.B.ana (H-16)
pl.B.ana
Table H9  Plastic rotation and difference in plastic rotation yp s.sup after six load
cycles for a single moving concentrated force of varying magnitudes.
F [kN] gpI.B.ana [mrad] gpI.B.sup [mrad] 7/9pl.B.sup [%]

60 14.43 14.52 0.6

65 15.17 16.30 7.5

70 16.72 19.08 14.1

75 18.84 22.63 20.1

80 21.54 28.17 30.8

85 24.69 33.99 37.7

90 28.38 40.52 42.8
Figure H.14 consists of Figure 7.30 and Figure 7.31.
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Figure H.14 Difference in plastic rotation ygpe1sup for load combination B between
the results from an analysis and a traditional superposition approach.
The right figure is a combination of load combination A; and B.
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H.2.4 Comparison of two forces — Varying
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Table H.10 Mean plastic rotation difference for all load combinations and load
cycles for a pair of moving concentrated forces of varying magnitudes.

FKN] | Zaion (%] | Zpioon [%]
10 -3.55 -6.1
20 -8.22 -13.9
30 -14.67 -24.2
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40

-25.42 -39.9

50

-35.99 -59.0

Figure H.16 is a miniature of Figure 7.51
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Figure H.16 Mean difference in plastic rotation between a distance of 1.2 m and,
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Appendix |

Shear force distribution

The shear force distributions from the chapters concerning moment distribution in
SLS are presented here; see Table 1.1 to Table I.4. The results are not discussed but
are shown for the interested reader. The results are presented in the same order as the
moment distributions.

Table I.1

Cantilever slab, single concentrated force.
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Table 1.2 Cantilever slab, two concentrated forces.
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Table 1.3

Simply supported slab, single concentrated force.
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Table 1.4 Simply supported slab, two concentrated forces.
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Appendix J

Input files for ADINA

The input files (.in-files) used for the ADINA software in this Thesis is presented in

this chapter for the two following examples:

e Moment distribution in SLS - Simply supported slab
o Asingle static force F = 125 kN

o Case uncracked
o Me=Myn/3
o Ex=5Ey

e Cumulative plastic rotation - Cantilever slab
o A single moving concentrated force F = 120 kN

o 150 load cycles n
o Orthotropic mesh

For additional input data and the results obtained from the two analyses presented
above, the reader is referred to Appendix C, and Chapter 5 and 6 respectively. Due to
the great number of time functions and load applications used for the analysis of
cumulative plastic rotation, these have been significantly shortened.

J.1 Moment distribution — Simply supported slab

ANALYSIS

*--- ADINA: AUI version 8.9.2 ---*
DATABASE NEW SAVE=NO PROMPT=NO
FEPROGRAM ADINA

CONTROL FILEVERSION=V89

AUTOMATIC TIME-STEPPING MAXSUBD=10
ACCURACY=NO,

DISTOL=0.00100000000000000 DTMAX=3.00000000000000,

RESTORE=AUTOMATIC RESPS=NO
RESFAC=0.000100000000000000,
DIVFAC=2.00000000000000 LSMASSF=1.00000000000000

MASTER ANALYSIS=STATIC MODEX=EXECUTE
TSTART=0.00000000000000 IDOF=0,

OVALIZAT=NONE FLUIDPOT=AUTOMATIC
CYCLICPA=1 IPOSIT=STOP,

REACTION=YES INITIALS=NO FSINTERA=NO
IRINT=DEFAULT CMASS=NO,

SHELLNDO=AUTOMATIC AUTOMATI=ATS
SOLVER=SPARSE,

CONTACT-=CONSTRAINT-FUNCTION
TRELEASE=0.00000000000000,

RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-
PEN=NO SINGULAR=YES,

STIFFNES=0.000100000000000000 MAP-OUTP=NONE
MAP-FORM=NO,

NODAL-DE="POROUS-C=NO ADAPTIVE=0 ZOOM-
LAB=1 AXIS-CYC=0,

PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO
STABILIZ=NO,

STABFACT=1.00000000000000E-10 RESULTS=PORTHOLE
FEFCORR=NO,

BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO
DEGEN=YES TMC-MODE=NO,

ENSIGHT-=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO
ESINTERA=NO,

OP2GEOM=NO
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*** TIME STEP & FUNCTION ***
TIMESTEP NAME=DEFAULT
@CLEAR

500 1

@

TIMEFUNCTION NAME=1
@CLEAR

0 0

500 1

@

GEOMETRY ***#kskshokkhkkhhkkskk

NODES

COORDINATES POINT SYSTEM=0
*** POINTS ON X AXIS ***
10.000.000.00 0
20.200.000.00 0
30.400.000.000
40.600.000.000
50.800.000.000
61.000.00 0.00 0
71.200.000.00 0
81.400.000.000
91.600.000.000
101.800.000.00 0
112.000.00 0.00 0
122.200.000.00 0
132.400.000.000
14 2.60 0.00 0.00 0
152.800.000.00 0
16 3.00 0.00 0.00 0
17 3.200.000.00 0
18 3.400.00 0.00 0
19 3.60 0.00 0.00 0
203.800.000.000
214.000.000.000
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*** POINTS ON Y=1.4 ***
101 0.00 1.40 0.00 0
102 0.201.400.00 0
103 0.40 1.40 0.00 0
104 0.601.400.00 0
105 0.80 1.40 0.00 0
106 1.001.400.00 0
107 1.20 1.40 0.00 0
108 1.401.400.000
1091.601.400.00 0
110 1.80 1.40 0.00 0
1112.001.400.000
112 2.20 1.40 0.00 0
1132.401.400.000
114 2.60 1.40 0.00 0
1152.801.400.000
116 3.00 1.40 0.00 0
1173.201.400.000
118 3.40 1.400.00 0
1193.601.400.000
120 3.80 1.40 0.00 0
1214.001.400.000

*** POINTS ON Y=1.6 ***
151 0.00 1.60 0.00 0
152 0.20 1.60 0.00 0
153 0.40 1.60 0.00 0
154 0.60 1.60 0.00 0
1550.80 1.60 0.00 0
156 1.00 1.60 0.00 0
157 1.20 1.60 0.00 0
158 1.40 1.60 0.00 0
159 1.60 1.60 0.00 0
160 1.80 1.60 0.00 0
161 2.00 1.60 0.00 0
162 2.20 1.60 0.00 0
163 2.40 1.60 0.00 0
164 2.60 1.60 0.00 0
1652.80 1.60 0.00 0
166 3.00 1.60 0.00 0
1673.20 1.60 0.00 0
168 3.40 1.60 0.00 0
169 3.60 1.60 0.00 0
170 3.80 1.60 0.00 0
1714.00 1.60 0.00 0

*** POINTS ON Y AXIS ***
2010.000.200.00 0
202 0.00 0.400.000
203 0.00 0.60 0.00 0
204 0.000.800.000
205 0.00 1.00 0.00 0
206 0.00 1.20 0.00 0

*** POINTS ON X=4 ***
301 4.000.20 0.00 0
302 4.000.400.000
303 4.00 0.60 0.00 0
304 4.000.800.000
305 4.00 1.00 0.00 0
306 4.00 1.20 0.00 0

*** AUXILLARY POINTS ***
1001 -0.20 -0.20 0.00 0
@

LINES

*** LINES IN Y-DIRECTION ***

LINE STRAIGHT NAME=1 P1=1 P2=101
LINE STRAIGHT NAME=2 P1=2 P2=102
LINE STRAIGHT NAME=3 P1=3 P2=103
LINE STRAIGHT NAME=4 P1=4 P2=104
LINE STRAIGHT NAME=5 P1=5 P2=105
LINE STRAIGHT NAME=6 P1=6 P2=106
LINE STRAIGHT NAME=7 P1=7 P2=107
LINE STRAIGHT NAME=8 P1=8 P2=108
LINE STRAIGHT NAME=9 P1=9 P2=109
LINE STRAIGHT NAME=10 P1=10 P2=110
LINE STRAIGHT NAME=11 P1=11 P2=111
LINE STRAIGHT NAME=12 P1=12 P2=112
LINE STRAIGHT NAME=13 P1=13 P2=113
LINE STRAIGHT NAME=14 P1=14 P2=114
LINE STRAIGHT NAME=15 P1=15 P2=115
LINE STRAIGHT NAME=16 P1=16 P2=116
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LINE STRAIGHT NAME=17 P1=17 P2=117
LINE STRAIGHT NAME=18 P1=18 P2=118
LINE STRAIGHT NAME=19 P1=19 P2=119
LINE STRAIGHT NAME=20 P1=20 P2=120
LINE STRAIGHT NAME=21 P1=21 P2=121

LINE STRAIGHT NAME=51 P1=101 P2=151
LINE STRAIGHT NAME=52 P1=102 P2=152
LINE STRAIGHT NAME=53 P1=103 P2=153
LINE STRAIGHT NAME=54 P1=104 P2=154
LINE STRAIGHT NAME=55 P1=105 P2=155
LINE STRAIGHT NAME=56 P1=106 P2=156
LINE STRAIGHT NAME=57 P1=107 P2=157
LINE STRAIGHT NAME=58 P1=108 P2=158
LINE STRAIGHT NAME=59 P1=109 P2=159
LINE STRAIGHT NAME=60 P1=110 P2=160
LINE STRAIGHT NAME=61 P1=111 P2=161
LINE STRAIGHT NAME=62 P1=112 P2=162
LINE STRAIGHT NAME=63 P1=113 P2=163
LINE STRAIGHT NAME=64 P1=114 P2=164
LINE STRAIGHT NAME=65 P1=115 P2=165
LINE STRAIGHT NAME=66 P1=116 P2=166
LINE STRAIGHT NAME=67 P1=117 P2=167
LINE STRAIGHT NAME=68 P1=118 P2=168
LINE STRAIGHT NAME=69 P1=119 P2=169
LINE STRAIGHT NAME=70 P1=120 P2=170
LINE STRAIGHT NAME=71 P1=121 P2=171

*** LINES IN X-DIRECTION ***

LINE STRAIGHT NAME=201 P1=1 P2=21
LINE STRAIGHT NAME=202 P1=201 P2=301
LINE STRAIGHT NAME=203 P1=202 P2=302
LINE STRAIGHT NAME=204 P1=203 P2=303
LINE STRAIGHT NAME=205 P1=204 P2=304
LINE STRAIGHT NAME=206 P1=205 P2=305
LINE STRAIGHT NAME=207 P1=206 P2=306

LINE STRAIGHT NAME=210 P1=151 P2=152
LINE STRAIGHT NAME=211 P1=152 P2=153
LINE STRAIGHT NAME=212 P1=153 P2=154
LINE STRAIGHT NAME=213 P1=154 P2=155
LINE STRAIGHT NAME=214 P1=155 P2=156
LINE STRAIGHT NAME=215 P1=156 P2=157
LINE STRAIGHT NAME=216 P1=157 P2=158
LINE STRAIGHT NAME=217 P1=158 P2=159
LINE STRAIGHT NAME=218 P1=159 P2=160
LINE STRAIGHT NAME=219 P1=160 P2=161
LINE STRAIGHT NAME=220 P1=161 P2=162
LINE STRAIGHT NAME=221 P1=162 P2=163
LINE STRAIGHT NAME=222 P1=163 P2=164
LINE STRAIGHT NAME=223 P1=164 P2=165
LINE STRAIGHT NAME=224 P1=165 P2=166
LINE STRAIGHT NAME=225 P1=166 P2=167
LINE STRAIGHT NAME=226 P1=167 P2=168
LINE STRAIGHT NAME=227 P1=168 P2=169
LINE STRAIGHT NAME=228 P1=169 P2=170
LINE STRAIGHT NAME=229 P1=170 P2=171

LINE STRAIGHT NAME=250 P1=101 P2=102
LINE STRAIGHT NAME=251 P1=102 P2=103
LINE STRAIGHT NAME=252 P1=103 P2=104
LINE STRAIGHT NAME=253 P1=104 P2=105
LINE STRAIGHT NAME=254 P1=105 P2=106
LINE STRAIGHT NAME=255 P1=106 P2=107
LINE STRAIGHT NAME=256 P1=107 P2=108
LINE STRAIGHT NAME=257 P1=108 P2=109
LINE STRAIGHT NAME=258 P1=109 P2=110
LINE STRAIGHT NAME=259 P1=110 P2=111
LINE STRAIGHT NAME=260 P1=111 P2=112
LINE STRAIGHT NAME=261 P1=112 P2=113
LINE STRAIGHT NAME=262 P1=113 P2=114
LINE STRAIGHT NAME=263 P1=114 P2=115
LINE STRAIGHT NAME=264 P1=115 P2=116
LINE STRAIGHT NAME=265 P1=116 P2=117
LINE STRAIGHT NAME=266 P1=117 P2=118
LINE STRAIGHT NAME=267 P1=118 P2=119
LINE STRAIGHT NAME=268 P1=119 P2=120
LINE STRAIGHT NAME=269 P1=120 P2=121
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FkdkkR R MOMENT-CURVATURE RELATIONS ***xxxkxxx

*** GROUP 1: Used for beams in X-direction***
TWIST-MOMENT NAME=1

@CLEAR

0 0

0.043 10000

@)

MOMENT-TWIST NAME=1
@CLEAR

0 1

1E6 1

@)

*** Bending moment, S-direction
CURVATURE-MO NAME=2
@CLEAR

0.00227 10000
0.00454 20000
@

MOMENT-CURVA NAME=2
@CLEAR

0 2

1E6 2

@)

*** Bending moment, T-direction
CURVATURE-MO NAME=3
@CLEAR

0.00227 10000
0.00454 20000
@

MOMENT-CURVA NAME=3
@CLEAR

0 3

1E6 3

@)

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=1
RIGIDITY=1,
MOMENT-R=1 MOMENT-S=2 MOMENT-T=3 DENSITY=0,
MASS-ARE=0 MASS-RIN=0,
MASS-SIN=0 MASS-TIN=0,
ALPHA=0

*** GROUP 2: Used for beams in Y-direction ***
TWIST-MOMENT NAME=4

@CLEAR

0 0

0.043 10000

@

MOMENT-TWIST NAME=4
@CLEAR

0 4

1E6 4

@

*** Bending moment, S-direction
CURVATURE-MO NAME=5
@CLEAR

-0.02275  -20000

-0.00400 -3518

-0.00076  -3350

0 0

0.00076 3350

0.00400 3518

0.02275 20000

@

MOMENT-CURVA NAME=5
@CLEAR

0 5

1E6 5

@
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*** Bending moment, T-direction
CURVATURE-MO NAME=6
@CLEAR

0.00227 10000
0.00454 20000
@

MOMENT-CURVA NAME=6
@CLEAR

0 6

1E6 6

@

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=2
RIGIDITY=1,
MOMENT-R=4 MOMENT-S=5 MOMENT-T=6 DENSITY=0,
MASS-ARE=0 MASS-RIN=0,
MASS-SIN=0 MASS-TIN=0,
ALPHA=0

*** GROUP 3: Used for beam along X-axis in symmetry line ***
TWIST-MOMENT NAME=7

@CLEAR

0 0

0.215 10000

@

MOMENT-TWIST NAME=7
@CLEAR

0 7

1E6 7

@

*** Bending moment, S-direction
CURVATURE-MO NAME=8
@CLEAR

0.00454 10000
0.00908 20000
@

MOMENT-CURVA NAME=8
@CLEAR

0 8

1E6 8

@

*** Bending moment, T-direction
CURVATURE-MO NAME=9
@CLEAR

0.00454 10000
0.00908 20000
@

MOMENT-CURVA NAME=9
@CLEAR

0 9

1E6 9

@

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=3
RIGIDITY=1,
MOMENT-R=7 MOMENT-S=8 MOMENT-T=9 DENSITY=0,
MASS-ARE=0 MASS-RIN=0,
MASS-SIN=0 MASS-TIN=0,
ALPHA=0

*** GROUP 4: Used for beam along Y-axis in symmetry line ***
TWIST-MOMENT NAME=10

@CLEAR

0 0

0.215 10000

@

MOMENT-TWIST NAME=10
@CLEAR

0 10

1E6 10

@
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*** Bending moment, S-direction
CURVATURE-MO NAME=11
@CLEAR

-0.045500 -20000

-0.004002 -1759

-0.000761 -1675

0

0.000761 1675
0.004002 1759
0.045500 20000

@)

MOMENT-CURVA NAME=11
@CLEAR

0 11

1E6 11

@)

*** Bending moment, T-direction
CURVATURE-MO NAME=12
@CLEAR

0.00454 10000
0.00908 20000
@

MOMENT-CURVA NAME=12
@CLEAR

0 12

1E6 12

@)

Fxksskwwkxxx MOMENT-CURVATURE GROUPS ***sskskokkkxk

RIGIDITY-MOM NONLINEAR-ELASTIC NAME=4
RIGIDITY=1,

MOMENT-R=10 MOMENT-S=11 MOMENT-T=12
DENSITY=0,

MASS-ARE=0 MASS-RIN=0,

MASS-SIN=0 MASS-TIN=0,

ALPHA=0

*** ELEMENT GROUPS ***
EGROUP BEAM NAME=1 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=1 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=1
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=1 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO

EGROUP BEAM NAME=2 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=2 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=2
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO
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EGROUP BEAM NAME=3 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=2 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=3
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO

EGROUP BEAM NAME=4 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=2 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=4
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO

MESHING

FkddkkFKdFK*IF*HF* NESH DENSITY *HHrrsskhshshhhskkhkrikr

SUBDIVIDE MODEL MODE=LENGTH
S1ZE=0.200000000000000 NDIV=1,
PROGRESS=GEOMETRIC MINCUR=1

GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL
NCTOLERA=1.00000000000000E-05,
SUBSTRUC=0 GROUP=1 MIDNODES=CURVED
X0=0.00000000000000,
'Y0=0.00000000000000 ZO=0.00000000000000
XYZOSYST=SKEW
@CLEAR
201
TO
207
250
TO
269
@

FkkkFkFKkFKxIFx*FI*HR MESH GROUPING *HH**dokkkkkkskkk s

GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL
NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=2 MIDNODES=CURVED
X0=0.00000000000000,

'Y0=0.00000000000000 ZO=0.00000000000000
XYZOSYST=SKEW
@CLEAR

GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL
NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=3 MIDNODES=CURVED
X0=0.00000000000000,

'Y©0=0.00000000000000 Z0=0.00000000000000
XYZOSYST=SKEW
210
TO
229
@
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GLINE NODES=2 AUXPOINT=1001 NCOINCID=ALL
NCTOLERA=1.00000000000000E-05,

SUBSTRUC=0 GROUP=4 MIDNODES=CURVED
X0=0.00000000000000,

'Y0=0.00000000000000 ZO=0.00000000000000
XYZOSYST=SKEW
@CLEAR
1
51
@)

FrxkkrkkxFxrkk BOUNDARY CONDITIONS Frsskorksoksksokkksk

FIXITY NAME=ROLLER
@CLEAR
'Z-TRANSLATION'
'OVALIZATION'

@)

FIXITY NAME=XSYMM
@CLEAR
'Y-TRANSLATION'
'X-ROTATION'
'OVALIZATION'

@)

FIXITY NAME=YSYMM
@CLEAR
'X-TRANSLATION'
'Y-ROTATION'
'OVALIZATION'

@)

FIXITY NAME=ORIGO
@CLEAR
'X-TRANSLATION'
'Z-TRANSLATION'
'Y-ROTATION'
'OVALIZATION'

@)

FIXITY NAME=XYSYMM
@CLEAR
'X-TRANSLATION'
"Y-TRANSLATION'
'X-ROTATION'
'Y-ROTATION'
'OVALIZATION'

@

FIXBOUNDARY POINTS FIXITY=ALL
@CLEAR

2 'ROLLER'

TO

21 'ROLLER’

152 'XSYMM'
TO
171 'XSYMM'

201'YSYMM'
TO

206 'YSYMM'
101 'YSYMM'

1 'ORIGO'
151 ' XYSYMM'
@

FkkkdkFF kxR IHFFRR | OAD APPLICATION Frssksokkkhsskskkkrx

LOAD FORCE NAME=1 MAGNITUD=12500.00 FX=0.00,
FY=0.00 FZ=-1.00

APPLY-LOAD BODY=0

@CLEAR

1 'FORCE'1 'POINT'101010.000-1000 'NO',0.000.001 0
‘MID'

2 'FORCE'1 'POINT'102010.000-1000 'NO',0.000.001 0
‘MID'

3 'FORCE'1 'POINT'151010.000-1000 'NO*, 0.000.0010
‘MID'

4 'FORCE'1 'POINT'152010.000-1000 'NO', 0.000.0010
‘MID'

@

END

J.2 Cumulative plastic rotation — Cantilever slab

DATABASE NEW SAVE=NO PROMPT=NO
FEPROGRAM ADINA
CONTROL FILEVERSION=V89

GEOMETRY *#skkkkksskokkkhkhkkkk

COORDINATES POINT SYSTEM=0

@CLEAR
NODES

*** | ine L5

1 0 0 0 0
2 0.2 0 0 0
3 0.4 0 0 0
4 0.6 0 0 0
5 0.8 0 0 0
6 1 0 0 0
7 1.2 0 0 0
8 14 0 0 0
9 1.6 0 0 0
10 1.8 0 0 0
11 2 0 0 0
12 2.2 0 0 0
13 2.4 0 0 0
14 2.6 0 0 0
15 2.8 0 0 0
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16 3 0 0 0
17 3.2 0 0 0
18 3.4 0 0 0
19 3.6 0 0 0
20 3.8 0 0 0
21 4 0 0 0
22 4.2 0 0 0
23 4.4 0 0 0
24 4.6 0 0 0
25 4.8 0 0 0
26 5.0 0 0 0
27 52 0 0 0
28 54 0 0 0
29 5.6 0 0 0
30 5.8 0 0 0
31 6.0 0 0 0
32 6.2 0 0 0
33 6.4 0 0 0
34 6.6 0 0 0
35 6.8 0 0 0
36 7.0 0 0 0
37 7.2 0 0 0
38 7.4 0 0 0
39 7.6 0 0 0
40 7.8 0 0 0
41 8.0 0 0 0
42 8.2 0 0 0
43 8.4 0 0 0
44 8.6 0 0 0
45 8.8 0 0 0
46 9.0 0 0 0
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47 9.2 0 0 0 129 0 1.6 0 0
48 9.4 0 0 0
49 9.6 0 0 0 *** Free edge, x=0
50 9.8 0 0 0 130 0.0 14 0 0
51 10.0 0 0 0 131 0.0 1.2 0 0
52 10.2 0 0 0 132 0.0 1.0 0 0
53 10.4 0 0 0 133 0.0 0.8 0 0
54 10.6 0 0 0 134 0.0 0.6 0 0
55 10.8 0 0 0 135 0.0 0.4 0 0
56 11.0 0 0 0 136 0.0 0.2 0 0
57 11.2 0 0 0
58 114 0 0 0 *** |_ine for finer mesh at the fixed support
59 11.6 0 0 0 200 0.2 0.2 0 0
60 11.8 0 0 0 201 0.4 0.2 0 0
61 12.0 0 0 0 202 0.6 0.2 0 0
203 0.8 0.2 0 0
*** Free edge, x=12 204 1 0.2 0 0
62 12.0 0.2 0 0 205 1.2 0.2 0 0
63 12.0 0.4 0 0 206 14 0.2 0 0
64 12.0 0.6 0 0 207 1.6 0.2 0 0
65 12.0 0.8 0 0 208 1.8 0.2 0 0
66 12.0 1.0 0 0 209 2 0.2 0 0
67 12.0 12 0 0 210 22 0.2 0 0
68 12.0 14 0 0 211 24 0.2 0 0
69 12.0 1.6 0 0 212 2.6 0.2 0 0
213 2.8 0.2 0 0
*** Line L3 214 3 0.2 0 0
70 11.8 1.6 0 0 215 3.2 0.2 0 0
71 11.6 1.6 0 0 216 3.4 0.2 0 0
72 11.4 1.6 0 0 217 3.6 0.2 0 0
73 11.2 1.6 0 0 218 3.8 0.2 0 0
74 11.0 1.6 0 0 219 4 0.2 0 0
75 10.8 1.6 0 0 220 4.2 0.2 0 0
76 10.6 1.6 0 0 221 4.4 0.2 0 0
7 104 1.6 0 0 222 4.6 0.2 0 0
78 10.2 1.6 0 0 223 438 0.2 0 0
79 10.0 1.6 0 0 224 5.0 0.2 0 0
80 9.8 1.6 0 0 225 52 0.2 0 0
81 9.6 1.6 0 0 226 5.4 0.2 0 0
82 9.4 1.6 0 0 227 5.6 0.2 0 0
83 9.2 1.6 0 0 228 5.8 0.2 0 0
84 9.0 1.6 0 0 229 6.0 0.2 0 0
85 8.8 1.6 0 0 230 6.2 0.2 0 0
86 8.6 1.6 0 0 231 6.4 0.2 0 0
87 8.4 1.6 0 0 232 6.6 0.2 0 0
88 8.2 1.6 0 0 233 6.8 0.2 0 0
89 8.0 1.6 0 0 234 7.0 0.2 0 0
90 7.8 1.6 0 0 235 7.2 0.2 0 0
91 7.6 1.6 0 0 236 7.4 0.2 0 0
92 74 1.6 0 0 237 7.6 0.2 0 0
93 7.2 1.6 0 0 238 7.8 0.2 0 0
94 7.0 1.6 0 0 239 8.0 0.2 0 0
95 6.8 1.6 0 0 240 8.2 0.2 0 0
96 6.6 1.6 0 0 241 8.4 0.2 0 0
97 6.4 1.6 0 0 242 8.6 0.2 0 0
98 6.2 1.6 0 0 243 8.8 0.2 0 0
99 6.0 1.6 0 0 244 9.0 0.2 0 0
100 5.8 1.6 0 0 245 9.2 0.2 0 0
101 5.6 1.6 0 0 246 9.4 0.2 0 0
102 5.4 1.6 0 0 247 9.6 0.2 0 0
103 5.2 1.6 0 0 248 9.8 0.2 0 0
104 5.0 1.6 0 0 249 10.0 0.2 0 0
105 4.8 1.6 0 0 250 10.2 0.2 0 0
106 4.6 1.6 0 0 251 10.4 0.2 0 0
107 4.4 1.6 0 0 252 10.6 0.2 0 0
108 4.2 1.6 0 0 253 10.8 0.2 0 0
109 4 1.6 0 0 254 11.0 0.2 0 0
110 3.8 1.6 0 0 255 11.2 0.2 0 0
111 3.6 1.6 0 0 256 11.4 0.2 0 0
112 34 1.6 0 0 257 11.6 0.2 0 0
113 3.2 1.6 0 0 258 11.8 0.2 0 0
114 3 1.6 0 0
115 2.8 1.6 0 0 *** AUX point
116 2.6 1.6 0 0 1000 12.2 1.8 0 0
117 2.4 1.6 0 0
118 2.2 1.6 0 0 LINES
119 2 1.6 0 0
120 1.8 1.6 0 0 *** |_ines as boundaries
121 1.6 1.6 0 0 LINE STRAIGHT NAME=1 P1=1 P2=61
122 14 1.6 0 0 LINE STRAIGHT NAME=2 P1=61 P2=62
123 1.2 1.6 0 0 LINE STRAIGHT NAME=3 P1=129 P2=69
124 1 1.6 0 0 LINE STRAIGHT NAME=4 P1=1 P2=136
125 0.8 1.6 0 0 LINE STRAIGHT NAME=501 P1=62 P2=69
126 0.6 1.6 0 0 LINE STRAIGHT NAME=502 P1=136 P2=129
127 0.4 1.6 0 0
128 0.2 1.6 0 0
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*** Lines in y-direction LINE STRAIGHT NAME=124 P1=224 P2=104

LINE STRAIGHT NAME=5 P1=2 P2=200 LINE STRAIGHT NAME=125 P1=225 P2=103
LINE STRAIGHT NAME=6 P1=3 P2=201 LINE STRAIGHT NAME=126 P1=226 P2=102
LINE STRAIGHT NAME=7 P1=4 pP2=202 LINE STRAIGHT NAME=127 P1=227 P2=101
LINE STRAIGHT NAME=8 P1=5 P2=203 LINE STRAIGHT NAME=128 P1=228 P2=100
LINE STRAIGHT NAME=9 P1=6 pP2=204 LINE STRAIGHT NAME=129 P1=229 P2=99
LINE STRAIGHT NAME=10 P1=7 P2=205 LINE STRAIGHT NAME=130 P1=230 P2=98
LINE STRAIGHT NAME=11 P1=8 P2=206 LINE STRAIGHT NAME=131 P1=231 P2=97
LINE STRAIGHT NAME=12 P1=9 pP2=207 LINE STRAIGHT NAME=132 P1=232 P2=96
LINE STRAIGHT NAME=13 P1=10 P2=208 LINE STRAIGHT NAME=133 P1=233 P2=95
LINE STRAIGHT NAME=14 P1=11 P2=209 LINE STRAIGHT NAME=134 P1=234 P2=94
LINE STRAIGHT NAME=15 P1=12 P2=210 LINE STRAIGHT NAME=135 P1=235 P2=93
LINE STRAIGHT NAME=16 P1=13 p2=211 LINE STRAIGHT NAME=136 P1=236 P2=92
LINE STRAIGHT NAME=17 P1=14 pP2=212 LINE STRAIGHT NAME=137 P1=237 P2=91
LINE STRAIGHT NAME=18 P1=15 p2=213 LINE STRAIGHT NAME=138 P1=238 P2=90
LINE STRAIGHT NAME=19 P1=16 pP2=214 LINE STRAIGHT NAME=139 P1=239 P2=89
LINE STRAIGHT NAME=20 P1=17 p2=215 LINE STRAIGHT NAME=140 P1=240 P2=88
LINE STRAIGHT NAME=21 P1=18 P2=216 LINE STRAIGHT NAME=141 P1=241 P2=87
LINE STRAIGHT NAME=22 P1=19 p2=217 LINE STRAIGHT NAME=142 P1=242 P2=86
LINE STRAIGHT NAME=23 P1=20 pP2=218 LINE STRAIGHT NAME=143 P1=243 P2=85
LINE STRAIGHT NAME=24 pP1=21 P2=219 LINE STRAIGHT NAME=144 P1=244 P2=84
LINE STRAIGHT NAME=25 P1=22 P2=220 LINE STRAIGHT NAME=145 P1=245 P2=83
LINE STRAIGHT NAME=26 P1=23 p2=221 LINE STRAIGHT NAME=146 P1=246 P2=82
LINE STRAIGHT NAME=27 P1=24 p2=222 LINE STRAIGHT NAME=147 P1=247 P2=81
LINE STRAIGHT NAME=28 P1=25 pP2=223 LINE STRAIGHT NAME=148 P1=248 P2=80
LINE STRAIGHT NAME=29 P1=26 p2=224 LINE STRAIGHT NAME=149 P1=249 P2=79
LINE STRAIGHT NAME=30 P1=27 pP2=225 LINE STRAIGHT NAME=150 P1=250 P2=78
LINE STRAIGHT NAME=31 P1=28 pP2=226 LINE STRAIGHT NAME=151 P1=251 P2=77
LINE STRAIGHT NAME=32 P1=29 p2=227 LINE STRAIGHT NAME=152 P1=252 P2=76
LINE STRAIGHT NAME=33 P1=30 p2=228 LINE STRAIGHT NAME=153 P1=253 P2=75
LINE STRAIGHT NAME=34 P1=31 P2=229 LINE STRAIGHT NAME=154 P1=254 P2=74
LINE STRAIGHT NAME=35 P1=32 P2=230 LINE STRAIGHT NAME=155 P1=255 P2=73
LINE STRAIGHT NAME=36 P1=33 p2=231 LINE STRAIGHT NAME=156 P1=256 P2=72
LINE STRAIGHT NAME=37 P1=34 p2=232 LINE STRAIGHT NAME=157 P1=257 P2=71
LINE STRAIGHT NAME=38 P1=35 pP2=233 LINE STRAIGHT NAME=158 P1=258 P2=70
LINE STRAIGHT NAME=39 P1=36 pP2=234
LINE STRAIGHT NAME=40 pP1=37 pP2=235 *** Lines in x-direction
LINE STRAIGHT NAME=41 P1=38 P2=236 LINE STRAIGHT NAME=200 P1=136 P2=62
LINE STRAIGHT NAME=42 P1=39 p2=237 LINE STRAIGHT NAME=201 P1=135 P2=63
LINE STRAIGHT NAME=43 P1=40 pP2=238 LINE STRAIGHT NAME=202 P1=134 P2=64
LINE STRAIGHT NAME=44 P1=41 P2=239 LINE STRAIGHT NAME=203 P1=133 P2=65
LINE STRAIGHT NAME=45 P1=42 P2=240 LINE STRAIGHT NAME=204 P1=132 P2=66
LINE STRAIGHT NAME=46 P1=43 p2=241 LINE STRAIGHT NAME=205 P1=131 P2=67
LINE STRAIGHT NAME=47 P1=44 P2=242 LINE STRAIGHT NAME=206 P1=130 P2=68
LINE STRAIGHT NAME=48 P1=45 pP2=243
LINE STRAIGHT NAME=49 P1=46 pP2=244
LINE STRAIGHT NAME=50 P1=47 p2=245
LINE STRAIGHT NAME=51 P1=48 P2=246 Fxxsrxkkx MJOMENT-CURVATURE RELATIONS **xskxskrs
LINE STRAIGHT NAME=52 P1=49 p2=247
LINE STRAIGHT NAME=53 P1=50 P2=248
LINE STRAIGHT NAME=54 P1=51 P2=249
LINE STRAIGHT NAME=55 P1=52 P2=250 FrgFRIFFKIFFRAFRAFIX GENERAL DATA FHrrsFrssdkrskrskrrs
LINE STRAIGHT NAME=56 P1=53 p2=251
LINE STRAIGHT NAME=57 P1=54 P2=252 *** Axial force and axial strain
LINE STRAIGHT NAME=58 P1=55 P2=253 FORCE-STRAIN NAME=100
LINE STRAIGHT NAME=59 P1=56 pP2=254 @CLEAR
LINE STRAIGHT NAME=60 P1=57 P2=255 -0.003 -160000
LINE STRAIGHT NAME=61 P1=58 P2=256 -0.001 -160000
LINE STRAIGHT NAME=62 P1=59 p2=257 0 0
LINE STRAIGHT NAME=63 P1=60 P2=258 0.001 160000

0.003 160000
*** |ines for finer mesh @
LINE STRAIGHT NAME=100 P1=200 pP2=128
LINE STRAIGHT NAME=101 P1=201 pP2=127 *** Twist moment, symmetry line
LINE STRAIGHT NAME=102 P1=202 P2=126 TWIST-MOMENT NAME=100
LINE STRAIGHT NAME=103 P1=203 P2=125 @CLEAR
LINE STRAIGHT NAME=104 P1=204 pP2=124 -21.185 -1000000
LINE STRAIGHT NAME=105 P1=205 P2=123 -0.21184 -10000
LINE STRAIGHT NAME=106 P1=206 p2=122 0 0
LINE STRAIGHT NAME=107 P1=207 pP2=121 0.21184 10000
LINE STRAIGHT NAME=108 P1=208 P2=120 21.185 1000000
LINE STRAIGHT NAME=109 P1=209 P2=119 @
LINE STRAIGHT NAME=110 P1=210 P2=118
LINE STRAIGHT NAME=111 P1=211 pP2=117 MOMENT-TWIST NAME=100
LINE STRAIGHT NAME=112 P1=212 P2=116 @CLEAR
LINE STRAIGHT NAME=113 P1=213 P2=115 -1E6 100
LINE STRAIGHT NAME=114 P1=214 P2=114 0 100
LINE STRAIGHT NAME=115 P1=215 P2=113 1E6 100
LINE STRAIGHT NAME=116 P1=216 P2=112 @

LINE STRAIGHT NAME=117 P1=217 pP2=111
LINE STRAIGHT NAME=118 P1=218 P2=110
LINE STRAIGHT NAME=119 P1=219 P2=109
LINE STRAIGHT NAME=120 P1=220 P2=108
LINE STRAIGHT NAME=121 P1=221 p2=107
LINE STRAIGHT NAME=122 P1=222 P2=106
LINE STRAIGHT NAME=123 P1=223 P2=105
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*** Twist moment
TWIST-MOMENT NAME=200

@CLEAR
-4.305
-0.04304
0

0.04304
4.305

@)

-1000000
-10000

0

10000
1000000

MOMENT-TWIST NAME=200

@CLEAR
-1E6

0

1E6

@)

200
200
200

*** Bending moment, T-direction
CURVATURE-MO NAME=300

@CLEAR
-10.0000
-0.02159
0

0.02159
10.0000
@

-20000
-20000
0
20000
20000

MOMENT-CURVA NAME=300

@CLEAR
-1E6

0

1E6

@)

Faxxxskkk BENDING MOMENT IN S-DIRECTION ok

300
300
300

*** GROUP 1: Used for beams in X-direction
CURVATURE-MO NAME=1

@CLEAR
-10
-0.01699
0

0.01699
10

@

-12491
-12491
0
12491
12491

MOMENT-CURVA NAME=1

@CLEAR
-1E6

0

1E6

@

1
1
1

*** GROUP 2: Used for beams in Y -direction
CURVATURE-MO NAME=2

@CLEAR
-10
-0.01699
0

0.01699
10

@

-12491
-12491
0
12491
12491

MOMENT-CURVA NAME=2

@CLEAR
-1E6

0

1E6

@

*** GROUP 3: Used for beam along X-axis in symmetry line

2
2
2

CURVATURE-MO NAME=3

@CLEAR
-10
-0.01699

0
0.01699
10

@

-6246
-6246
0
6246
6246

MOMENT-CURVA NAME=3

@CLEAR
-1E6

0

1E6

@
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3
3
3
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*** GROUP 4: Used for beam along Y-axis in symmetry line

CURVATURE-MO NAME=4

@CLEAR

-10 -6246
-0.01699 -6246
0 0
0.01699 6246
10 6246
@

MOMENT-CURVA NAME=4
@CLEAR

-1E6 4

0 4

1E6 4

@

*** GROUP 5: Used for beam along y-axis at the support
CURVATURE-MO NAME=5

@CLEAR

-2 -12491
-0.01699 -12491
0 0
0.01699 12491
2 12491
@

MOMENT-CURVA NAME=5
@CLEAR

-1E6 5

0 5

1E6 5

@

Fxxrxkwkxxx MIOMENT-CURVATURE GROUPS ***xsskskokkxxsk

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=1
HARDENIN=ISOTROPIC,

BETA=0 FORCE-AX=100 MOMENT-R=200 MOMENT-S=1,

MOMENT-T=300 AXIAL-CY=1 BENDING-=1,

TORSION-=1 DENSITY=0,

MASS-ARE=0 MASS-RIN=0,

MASS-SIN=0 MASS-TIN=0,

ACURVE-T=UNSYMMETRIC TCURVE-
T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC,

ALPHA=0

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=2
HARDENIN=ISOTROPIC,

BETA=0 FORCE-AX=100 MOMENT-R=200 MOMENT-S=2,

MOMENT-T=300 AXIAL-CY=1 BENDING-=1,

TORSION-=1 DENSITY=0,

MASS-ARE=0 MASS-RIN=0,

MASS-SIN=0 MASS-TIN=0,

ACURVE-T=UNSYMMETRIC TCURVE-
T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC,

ALPHA=0

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=3
HARDENIN=ISOTROPIC,

BETA=0 FORCE-AX=100 MOMENT-R=100 MOMENT-S=3,

MOMENT-T=300 AXIAL-CY=1 BENDING-=1,

TORSION-=1 DENSITY=0,

MASS-ARE=0 MASS-RIN=0,

MASS-SIN=0 MASS-TIN=0,

ACURVE-T=UNSYMMETRIC TCURVE-
T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC,

ALPHA=0

RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=4
HARDENIN=ISOTROPIC,

BETA=0 FORCE-AX=100 MOMENT-R=100 MOMENT-S=4,

MOMENT-T=300 AXIAL-CY=1 BENDING-=1,

TORSION-=1 DENSITY=0,

MASS-ARE=0 MASS-RIN=0,

MASS-SIN=0 MASS-TIN=0,

ACURVE-T=UNSYMMETRIC TCURVE-
T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC,

ALPHA=0



RIGIDITY-MOM PLASTIC-MULTILINEAR NAME=5
HARDENIN=ISOTROPIC,

BETA=0 FORCE-AX=100 MOMENT-R=200 MOMENT-S=5,

MOMENT-T=300 AXIAL-CY=1 BENDING-=1,

TORSION-=1 DENSITY=0,

MASS-ARE=0 MASS-RIN=0,

MASS-SIN=0 MASS-TIN=0,

ACURVE-T=UNSYMMETRIC TCURVE-
T=UNSYMMETRIC BCURVE-T=UNSYMMETRIC,

ALPHA=0

FkFKkxKkxFxkFHR**R | EMENT GROUPS F*rHAksskoksskokksskkkskr

%k X-AXIS
EGROUP BEAM NAME=1 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=1 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=1
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=1 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO

Y -AXIS
EGROUP BEAM NAME=2 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=2 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=2
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO

*** X-AXIS SYMMETRY LINE
EGROUP BEAM NAME=3 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=2 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=3
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO

*** Y-AXIS, SYMMETRY LINE
EGROUP BEAM NAME=4 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=2 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=4
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO
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***%Y-AXIS, AT SUPPORT
EGROUP BEAM NAME=5 SUBTYPE=THREE-D
DISPLACE=DEFAULT MATERIAL=2 RINT=5,

SINT=7 TINT=DEFAULT RESULTS=FORCES
INITIALS=NONE CMASS=DEFAULT,

RIGIDEND=NONE MOMENT-C=YES RIGIDITY=5
MULTIPLY=1000000.00000000,

RUPTURE=ADINA OPTION=NONE BOLT-
TOL=0.00000000000000 DESCRIPT=,
'NONE' SECTION=2 PRINT=DEFAULT SAVE=DEFAULT
TBIRTH=0.00000000000000,

TDEATH=0.00000000000000 SPOINT=4
BOLTFORC=0.00000000000000,

BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 BOLT-
LOA=0.00000000000000,

WARP=NO

Fkxkkrxkkxkrxx BOUNDARY CONDITIONS Frsskrksokskskokkisk

FIXITY NAME=P1
@CLEAR
'X-TRANSLATION'
'Y-TRANSLATION'
'Z-TRANSLATION'
'X-ROTATION'
"Y-ROTATION'
'Z-ROTATION'
'OVALIZATION'

@

FIXBOUNDARY POINTS FIXITY=ALL
@CLEAR

1PI

TO

61 'P1'

@

MESHING

FkkkddHF kIR I I FFI*IIK NESH DENSITY Frrssskokhhhsskskokhrrs

SUBDIVIDE MODEL MODE=LENGTH SIZE=0.2 NDIV=1,
PROGRESS=GEOMETRIC MINCUR=1

SUBDIVIDE LINE NAME=2 MODE=LENGTH SIZE=0.05
@CLEAR

2

4

TO

63

@

FkxkFHFFFIIIIFFFIRIHE M ESH GROUPING **55Frkkksoskokkkxx

*** X-AXIS
GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL,
NCTOLERA=1E-05 SUBSTRUC=0 GROUP=1
MIDNODES=CURVED,
X0=0 YO=0 Z0=0,
XYZOSYST=SKEW
@CLEAR
200
TO
206
@

*** X-AXIS "SYMMETRY LINE"
GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL,
NCTOLERA=1E-05 SUBSTRUC=0 GROUP=3
MIDNODES=CURVED,
X0=0 YO=0 Z0=0,
XYZOSYST=SKEW
@CLEAR
1
3
@
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Y -AXIS TIMEFUNCTION NAME=5 IFLIB=1

GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, @CLEAR
NCTOLERA=1E-05 SUBSTRUC=0 GROUP=2 0 0
MIDNODES=CURVED, 40 0
X0=0 YO=0 Z0=0, 50 1
XYZOSYST=SKEW 60 0
@CLEAR 39010 0
5 @
TO
33 TIMEFUNCTION NAME=6 IFLIB=1
35 @CLEAR
TO 0 0
63 50 0
100 60 1
TO 70 0
158 39010 0
@ @
*** Y-AXIS, "SYMMETRY LINE" TIMEFUNCTION NAME=7 IFLIB=1
GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, @CLEAR
NCTOLERA=1E-05 SUBSTRUC=0 GROUP=4 0 0
MIDNODES=CURVED, 60 0
X0=0 YO=0 Z0=0, 70 1
XYZOSYST=SKEW 80 0
@CLEAR 39010 0
2 @
4
501 TIMEFUNCTION NAME=8 IFLIB=1
502 @CLEAR
@ 0 0
70 0
*** Y-AXIS, SUPPORT 80 1
GLINE NODES=2 AUXPOINT=1000 NCOINCID=ALL, 90 0
NCTOLERA=1E-05 SUBSTRUC=0 GROUP=5 39010 0
MIDNODES=CURVED, @
X0=0 YO=0 Z0=0,
XYZOSYST=SKEW TIMEFUNCTION NAME=9 IFLIB=1
@CLEAR @CLEAR
34 0 0
@ 80 0
90 1
100 0
39010 0
dhkhkhkkhkhhhhhkhhhhkh TIMEFUNCTIONS *hhhkkhkhhkkhkhkhhhkhkhhhhikk @

TIMEFUNCTION NAME=10 IFLIB=1

@CLEAR

TIMESTEP NAME=DEFAULT 0 0

@CLEAR 90 0

39010 1 100 1

@ 110 0
39010 0

TIMEFUNCTION NAME=1 IFLIB=1 @

@CLEAR

0 0

0 0

10 1

20 0

39010 0

@

TIMEFUNCTION NAME=2 IFLIB=1

@CLEAR

0 0

10 0

20 1

30 0 TIMEFUNCTION NAME=3740 IFLIB=1

39010 0 @CLEAR

@ 0 0
38880 0

TIMEFUNCTION NAME=3 IFLIB=1 38890 1

@CLEAR 38900 0

0 0 39010 0

20 0 @

30 1

40 0 TIMEFUNCTION NAME=3741 IFLIB=1

39010 0 @CLEAR

@ 0 0
38890 0

TIMEFUNCTION NAME=4 IFLIB=1 38900 1

@CLEAR 38910 0

0 0 39010 0

30 0 @

40 1

50 0

39010 0
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TIMEFUNCTION NAME=3742 IFLIB=1
@CLEAR
0

38900
38910
38920
39010

@

OO oo

TIMEFUNCTION NAME=3743 IFLIB=1
@CLEAR
0

38910
38920
38930
39010

@

TIMEFUNCTION NAME=3744 IFLIB=1
@CLEAR
0

38920
38930
38940
39010

@

TIMEFUNCTION NAME=3745 IFLIB=1
@CLEAR
0

38930
38940
38950
39010

@

[=Neh e Ne) OO oo

oo, oo

TIMEFUNCTION NAME=3746 IFLIB=1
@CLEAR
0

38940
38950
38960
39010

@)

OO oo

TIMEFUNCTION NAME=3747 IFLIB=1
@CLEAR
0

38950
38960
38970
39010

@

[=Neh el

TIMEFUNCTION NAME=3748 IFLIB=1
@CLEAR
0

38960
38970
38980
39010

@

oo Pr oo

TIMEFUNCTION NAME=3749 IFLIB=1
@CLEAR
0

38970
38980
38990
39010

@

oo oo

TIMEFUNCTION NAME=3750 IFLIB=1
@CLEAR
0

38980
38990
39000
39010

@

oo oo
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FkdkkkKkkFkkrKkxxx | OAD APPLICATION Hrsskhsskksskkkkkrk

LOAD FORCE NAME=1 MAGNITUD=120000 FX=0,
FY=0Fz=-1

APPLY-LOAD BODY=0
@CLEAR

1 'FORCE'1'POINT' 111 0 1 0 0 -1 0 0 0 'NO|,
0010 'BOTH

2 'FORCE'1'POINT' 110 0 2 0 0 -1 0 0 0 'NO|,
0010 'BOTH

3 'FORCE'1'POINT' 109 0 3 0 0 -1 0 0 O 'NO,
0010 'BOTH

4 'FORCE'1'POINT' 108 0 4 0 0 -1 0 0 O 'NO
0010 'BOTH

5 'FORCE'1'POINT' 107 0 5 0 0 -1 0 0 0 'NO
0010 'BOTH

6 'FORCE'1'POINT' 106 0 6 0 0 -1 0 0 0 'NO,
0010 'BOTH

7 'FORCE'1'POINT' 105 0 7 0 0 -1 0 0 O 'NO/,
0010 'BOTH

8 'FORCE'1'POINT' 104 0 8 0 0 -1 0 0 O 'NO,
0010 'BOTH

9 'FORCE'1'POINT' 103 0 9 0 0 -1 0 0 O 'NO,
0010 'BOTH'

10 'FORCE'1'POINT' 102 0 10 0 0 -1 0 0 O 'NO',
0010 'BOTH'

3740  'FORCE'1'POINT' 97 0 3740 0 0 -1 0 0 O
'‘NO,0 0 1 0 'BOTH'
3741  'FORCE'1'POINT' 96 0 3741 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3742  'FORCE'1'POINT' 95 0 3742 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3743  'FORCE'1'POINT' 94 0 3743 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3744  'FORCE'1'POINT' 93 0 3744 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3745 'FORCE'1'POINT' 92 0 3745 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3746  'FORCE'1'POINT' 91 0 3746 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3747  'FORCE'1'POINT' 90 0 3747 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3748  'FORCE'1'POINT' 89 0 3748 0 0 -1 0 0 O
‘NO,0 0 1 0 'BOTH'
3749  'FORCE'1'POINT' 88 0 3749 0 0 -1 0 0 O
'‘NO,0 0 1 0 'BOTH'
3750 'FORCE'1'POINT' 87 0 3750 0 0 -1 0 0 O
'‘NO,0 0 1 0 'BOTH'

ANALYSIS

ANALYSIS

MASTER ANALYSIS=STATIC MODEX=EXECUTE
TSTART=0.00000000000000 IDOF=0,

OVALIZAT=NONE FLUIDPOT=AUTOMATIC
CYCLICPA=1 IPOSIT=STOP,

REACTION=YES INITIALS=NO FSINTERA=NO
IRINT=DEFAULT CMASS=NO,

SHELLNDO=AUTOMATIC AUTOMATI=ATS
SOLVER=SPARSE,

CONTACT-=CONSTRAINT-FUNCTION
TRELEASE=0.00000000000000,

RESTART-=NO FRACTURE=NO LOAD-CAS=NO LOAD-
PEN=NO SINGULAR=YES,
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STIFFNES=0.000100000000000000 MAP-OUTP=NONE
MAP-FORM=NO,

NODAL-DE="POROUS-C=NO ADAPTIVE=0 ZOOM-
LAB=1 AXIS-CYC=0,

PERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO
STABILIZ=NO,

STABFACT=1.00000000000000E-10 RESULTS=PORTHOLE
FEFCORR=NO,

BOLTSTEP=1 EXTEND-S=YES CONVERT-=NO
DEGEN=YES TMC-MODE=NO,

ENSIGHT-=NO IRSTEPS=1 INITIALT=NO TEMP-INT=NO
ESINTERA=NO,

OP2GEOM=NO

FkFFRIFFIFFRFFIFFIK GAVE RESULTS *Hrrssrksohkshokkrskrrs

PRINT-STEPS SUBSTRUC=0 REUSE=1
@CLEAR

11260 259

2260 39000 260

@
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NODESAVE-STE ELEMSAVE=NO
@CLEAR

11260 259

2260 39000 260

@

ELEMSAVE-STE NODESAVE=NO
@CLEAR

11260 259

2 260 39000 260

@

FhFFRkFKIFK*FF*HFR*HE | OGGFILE

CONTROL UNDO=-1 AUTOMREBUILD=NO

FILEECHO OPTION=FILE F=loggfil.ut
FILELOG OPTION=FILE F=loggfil.ut

DATABASE SAVE PERMFILE="1.idb' PROMPT

END
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