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Abstract

In this thesis, we focus on different aspects of electron transport in nanos-
tructured graphene (such as graphene nanoribbons). We develop and im-
plement numerical methods to study quantum coherent electron transport
on an atomistic level, complemented by analytical calculations based on the
Dirac approximation valid close to the points �K and �K ′ in the graphene Bril-
louin zone. By simulating a graphene nanogap bridged with 1,4-phenylene-
diamine molecules anchored via C60 molecules, we show that a transistor
effect can be achieved by back-gating the system. By simulating STM-
measurements on nanoribbons with single impurities, we investigate the
interplay between size quantization and the local scatterers, and show ana-
lytically how the features of the Fourier transformed local density of states
can be explained by electrons scattering between different transverse modes
of the ribbons. We extend the analys to also include analytical transport
calculations, and explain the origin of characteristic dips found in the trans-
mission and their relations to quasi-bound states formed around the ribbon
impurities. We construct and simulate graphene ribbons with transverse
grain boundaries, and illustrate how such grain boundaries form metallic
states bridging the two edges of the ribbon together. This is a plausible
candidate to explain the attenuation (or even destruction) of the quantum
Hall effect often seen in quantum Hall bar measurements, especially with
graphene grown on metals (such as copper) where grain boundaries are
common. The introductory chapters also present a basic introduction to
the field of graphene and graphene ribbons, and we thoroughly present the
tight-binding techniques used for simulation.

Keywords: graphene; nanoribbons; quantum coherent electron transport;
tight-binding; grain boundaries; FT-LDOS
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Chapter 1

Introduction

Carbon has atomic number Z = 6, and its uncharged atom will thus have
six electrons. As illustrated in Fig. 1.1a, in the ground state, carbon has
the electron configuration 1s22s22p2, which means that carbon will have
two electrons in the 1s subshell, two electrons in the 2s subshell and the
remaining two electrons will be in the 2p subshell. The first shell (consisting

Figure 1.1: Electron configuration of carbon in a) the ground state 1s22s22p2

and b) the more bonding favourable configuration 1s22s12p3

.

only of the 1s subshell) is full, and these (core) electrons will not be available
for bonding. In the second shell (consisting of the 2s and 2p subshells), we
see that there are two unpaired electrons (in the 2p subshell) and we would
therefore expect carbon to form a maximum of two bonds if we were to
hybridize two atoms in the ground state. Nature, however, likes to minimize
energy, and since energy is released when a bond is formed nature would
strive to maximize the number of bonds formed. Being clever enough, carbon
will promote one of the electrons in the 2s subshell to the 2p subshell, as seen
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CHAPTER 1. INTRODUCTION

in Fig. 1.1b. We now have four unpaired electrons, and after hybridizing
each carbon atom can form a maximum of four bonds involving both the 2s
and 2p subshells.

When hybridizing carbon atoms, we may or may not involve all of the
unpaired electron orbitals in the bonding process. If all orbitals are in-
cluded, one 2s-orbital and three 2p-orbitals will mix into what is called a
sp3-hybridization, leaving us with four sp3-hybrid orbitals. To minimize the
forces of repulsion, the hybrid orbitals will arrange themselves in space to be
as far apart from each other as possible. The result is a tetrahedral structure
where any bond angle will be 109.5◦. All orbitals will form direct σ-bonds
and the resulting structure is known as diamond. Since the strong orbital
σ-bonds are extended in all directions in space, diamond is a very strong
material that is almost impossible to break. On the other hand, since all
of the four valence electrons are involved in the bonding, the electric con-
ductivity of diamond will be zero, making diamond a very good insulator.
If only two of the 2p-orbitals are used, we will form three sp2-hybrid or-
bitals instead while the remaining 2p-orbital will be left unchanged. After
minimizing repulsion, the sp2-hybrid orbitals will all lie in the same plane
with the remaining 2p-orbital aligning perpendicular to said plane. The hy-
bridized orbitals will form strong (in-plane) σ-bonds (with a bond angle of
120◦), and the left-over 2p-orbitals will form extended π-bonds. Due to the
σ-bonds, the structure will be very strong in-plane, but since we also have an
extra electron not taking part in the bonding, the structure will also be elec-
trically conductive. A schematic picture of the different orbitals involved in
the sp2-bonding process is shown in Fig.1.2. A single layer of carbon atoms
are called graphene, and if multiple layers are stacked on top of each other
(held together weakly by van der Waals forces) we have what is known as
graphite (where the layers easily separate, making graphite ideal as a ma-
terial for standard pencils or lubricants). Serving as the building block of
the different graphitic allotropes of carbon (see Fig. 1.3), graphene may be
rolled up into carbon nanotubes (CNT’s), or folded into fullerene-molecules

such as the C60 Buckminsterfullerene (the ”Bucky-ball”).

Although graphite, being the most stable configuration of carbon under
normal conditions, has been known to and used by man for several thousand
years, the knowledge about it being made up of several one-atom thick layers
is much more recent. Benjamin Collins Brodie, while studying graphite
oxide, pointed out in 1859 [1] that the structure appeared to be highly

2



CHAPTER 1. INTRODUCTION

Figure 1.2: The atomic orbitals involved in the hybridization responsible
for the formation of the graphene lattice: a) the spherically symmetric 2s-
orbital, b-d) the three 2p-orbitals aligned along the x-, y- and z-axis respec-
tively, e) the resulting hybridized 3sp2-orbital plus the remaining 2pz-orbital,
and f) a topview of several orbitals forming the graphene lattice. Note how
the overlap of the 3sp2-orbitals form σ-bonds in the graphene plane, while
the 2pz-orbitals overlap to form π-bonds and deallocate the electrons over
the graphene sheet.

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Graphitic allotropes in different dimensions: (a) 0D, C60
fullerene (the ”Bucky-ball”); (b) 1D, carbon nanotube; (c) 2D, graphene;
(d) 3D, graphite.

lamellar and in half a century later, using various methods of diffraction
[2, 3, 4], the crystallographic structure of graphite was resolved. Although
the structure was known, single-atom layers of graphite were impossible to
observe, and even more so to isolate, and not much theoretical consideration
were given to them.

The first theoretical study of single-layer graphite (later named graphene by
Boehm in 1994 [5, 6]) was done by Wallace, while working on the theoretical
aspects of 3D graphite (in connection to its intended use in nuclear reactors).
In his now seminal paper from 1947 [7], Wallace derived the band-structure
of a ”single hexagonal layer”of carbon atoms, and he noted that, close to
certain points in the Brillouin zone, the dispersion of a single layer was
linear with respect to momentum. The next chapter will contain a similar
derivation.

Such a linear dispersion relation is usually observed if one looks at the
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CHAPTER 1. INTRODUCTION

relativistic energy-momentum relation,

E2 = (pc)2 +
(
moc

2
)2
, (1.1)

where p is the momentum, m0 the particles (intrinsic) rest mass, and c the
speed of light. If we put the rest mass to zero, the energy-momentum rela-
tion is simplified to the linear relation E = cp, and it seems like electrons
in graphene behave as if they were massless relativistic particles. Relativis-
tic particles are described by the so called Dirac hamiltonian, after Paul
M. Dirac, and the similarity between the Dirac hamiltonian and that for
graphene for low energies were pointed out by Semenoff [8] and DiVincenzo
and Mele [9] in 1984.

Even if a theoretical understanding of graphene was now born, it was still
impossible to isolate and to observe single layers experimentally. Ruoff pro-
posed in 1999 [10] that it should be possible to mechanically exfoliate single-
layer flakes of graphene from single-crystals of graphite, but the attempts at
doing so were unsuccessful and no single layers were observed. There were
even doubts about whether it would be possible for graphene to exist at all
[11], and the field did not evolve much under the following years. It was not
until 2004, when Andrei Geim and Kostya Novoselov from the University of
Manchester managed to, for the first time, both exfoliate, and isolate, single
flakes of graphene that the field started to attract widespread interest again.

During one of their now famous ”late friday night”-experiments (which had
earlier rendered results on both Gecko-tape [12] and levitating frogs [13]...),
the two scientists and their collaborators, using the method proposed by
Ruoff, were able to gradually exfoliate thinner and thinner layers of graphite
until only a few layers remained, using regular Scotch-tape. After placing
the flakes on a silicon substrate, they were able to visually observe flakes of
few-layer graphene using a simple optical microscope [14]. As pointed out by
Semenoff [8], the presence of the linear type of dispersion in graphene, one
should be able to observe an anomaly in the integer quantum Hall effect, if
a sample of graphene was measured in a magnetic field. This was soon con-
firmed by Geim and Novoselov [15], and they were now sure that what they
had were in fact single-layer graphene, and that the electrons were behaving
like Dirac-like particles. For their discovery, Geim and Novoselov were later
awarded the Nobel Price in Physics in 2010 [16, 17]. Similar studies were
conducted also by Gusynin and Sharapov [18] and Zhang et al. (P. Kim’s
group) [19] (who published their results back-to-back with the Manchester
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CHAPTER 1. INTRODUCTION

group in Nature). The discovery of single-layer, or monolayer, graphene
had created a field that were about to explode, and the amount of proposed
possible practical applications of graphene would soon be impossible to keep
count on. Just two weeks after the discovery in Manchester, the group of de
Heer [20] managed to epitaxially grow graphene on silicon carbide (SiC), and
many other techniques have been following ever since, such as (to name a
few) chemical vapour deposition (CVD) growth on metal substrates, chem-
ical synthesis or liquid phase exfoliation [21, 22, 23, 24].

As stated earlier, the possible applications for graphene are indeed nu-
merous. In addition to being a never before seen example of a true two-
dimensional material, graphene has really interesting mechanical [25] and
thermal [26] properties, and has potential use and/or applications both in
transistors [27], in photonics [28], in renewable energy production [29, 30,
31], and in (bio) sensing [32, 33].

The linear dispersion and relativistic nature of electrons in graphene are
also predicted to behave according to the Klein-paradox (as proposed by the
Swedish scientist Oskar Klein in 1929 [34]), in which the bipolar spectra of
graphene allows particles to, opposite to what ones intuition might suggest,
tunnel through infinitely high barriers with unity transmission (for certain
angles) [35, 36]. This behaviour was verified experimentally in 2009 [37].

Other interesting and possible effects are Vaselago lensing [38] (negative re-
fraction index) and specular Andreev reflection [39], and even the possibility
of using graphene to redefine/improve the quantum resistance standard [40].
Finally, as if it was not already enough, the possibility of having bi-, tri- or
multi- layered structures of stacked graphene honeycomb lattices further
expands on future possibilities of graphene as a material.

The references given above are few in relation to the vaste amount of the-
oretical and/or experimental articles produced every day in the area of
graphene. The interested reader is directed to one of the many reviews
written [11, 41, 42, 43, 44, 45, 46, 47, 48, 49] and the references given therein.
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CHAPTER 1. INTRODUCTION

1.1 Thesis scope and outline

As seen in the previous section, the field of graphene has grown really large
and it is hard for everyone but a selected few to keep track of all that is
going on. As a mere graduate student, my (hopeful) contribution to the giant
scientific puzzle that is graphene will be focused on electron transport, and
in particular how impurities in nanostructured graphene (such as ribbons)
influence the electron properties. To do so, I have implemented and further
developed algorithms to numerically simulate electrons on graphene lattices,
and, when possible, derived analytical handles to better understand the
results of the numerical simulations. Following Swedish tradition, this thesis
is a compilation thesis where the bulk of the scientific content is found in the
attached research articles. The introductory chapters are written as a help
for anyone wanting to understand what is written in the articles, but they
may, of course, also serve as a basic introduction to the field of graphene,
quantum transport and numerical simulations. It is, however, recommended
to read both the articles and the text in the introductory chapters to get all
the details.

The current chapter, chapter 1, is aimed at giving a brief introduction to
carbon, its most common graphitic allotropes (including graphene) and a
short historical overview of how graphene was discovered together with a
non-exhaustive list of its many possible applications.

In the second chapter, I will formally introduce the graphene honeycomb
lattice, establish the notation I will use throughout the rest of the thesis, and
try to point out some of the theoretical peculiarities that follows when trying
to derive the electronic properties (such as dispersion and wave-functions)
of bulk graphene.

The third chapter will present the numerical algorithms and methods used to
perform tight-binding simulations on graphene lattices of arbitrary shape.
Much of my time as a Ph.D student was spent on developing and imple-
menting such methods, and I will try to give some hints and tips for anyone
wanting to do the same.

In chapter 4, I will investigate what happens when bulk graphene is cut
into pieces, introducing confinement. I will look at the two most common
types of nanoribbons in graphene (the armchair and zigzag ribbons), derive

7



CHAPTER 1. INTRODUCTION

their electronic properties, and point out their individual differences. I will
introduce the electron propagators (Green’s functions), and some of the
results found will be compared to numerical simulations done using the
techniques introduced earlier.

In the next chapter, chapter 5, I will investigate how a more complicated
impurity, the grain boundary, can be constructed in graphene, and how it ef-
fects measurements involving the quantum Hall effect (studied in Paper V).

Finally, I will summarize the results of my work. The thesis also contains
appendices, in which lengthy derivations and technical details have been
placed.

8



Chapter 2

Electronic properties

2.1 The graphene lattice

The natural starting point, before doing anything else, is to introduce a
proper definition of the honeycomb lattice (i.e., bulk graphene). Graphene
has a unit cell consisting of two atoms, refered to as A- and B-atoms. After
repeating the unit cell, these atoms form two triangular lattices called the
A- and B-lattice, located such that each A- atom is directly neighboured by
three B-atoms, as is shown in Fig. 2.1. If we by a0 ≈ 0.142 nm mean the
separation between two neighbouring carbon atoms, the three neighbouring
B-atoms to an A-atom can be reached via the neighbour vectors �ci, defined
as

�c1 = a0 (0, 1) ,

�c2 =
a0
2

(
−
√
3,−1

)
,

�c3 =
a0
2

(√
3,−1

)
,

(2.1)

and we can define two primitive lattice vectors as

�n1 = �c2 − �c1 =
a0
2

(
−
√
3,−3

)
,

�n2 = �c3 − �c1 =
a0
2

(√
3,−3

)
.

(2.2)

9



CHAPTER 2. ELECTRONIC PROPERTIES

Figure 2.1: Graphene, its two triangular sublattices (the A- and B-lattice)
creating the honeycomb structure, and the defining vectors.

The A-atoms are located at

�Ai = mi�n1 + ni�n2, (2.3)

and the B-atoms at

�Bi = mi�n1 + ni�n2 + �c1 = �Ai + �c1, (2.4)

where ni and mi are integer indices. We also introduce the lattice constant
a, defined as a =

√
3a0. The size of the unit cell, spanned by �n1 and �n2 and

shown shaded in Fig. 2.1, is Ωuc = �n1 × �n2 = 3
√
3a20/2 =

√
3a2/2.

The reciprocal primitive lattice vectors �mi, found by using the definition
�mi · �nj = 2πδij , are

�m1 =
2π

3a0

(√
3,−1

)
,

�m2 =
2π

3a0

(√
3, 1

)
.

(2.5)

These vectors span a hexagonal reciprocal lattice (as is shown in Fig. 2.2).
The corner points of the first Brillouin zone (1BZ, shown shaded in the fig-
ure) are labeled by �Ki, where at �K1 = 4π/3a (1, 0), �K2 = 2π/3a0

(
1/
√
3, 1

)
,

10



CHAPTER 2. ELECTRONIC PROPERTIES

Figure 2.2: The reciprocal lattice, showing the six corner points ( �Ki) of the
first Brillouin zone (shaded hexagon) and the reciprocal lattice vectors.

�K3 = 2π/3a0
(−1/

√
3, 1

)
, �K4 = − �K1, �K5 = − �K2 and �K6 = − �K3. The

area of the 1BZ is Ω1BZ = �m1 × �m2 = (2π/3a0)
22
√
3 = (2π)22/

√
3a2 =

(2π)2/Ωuc.

2.2 The (tight-binding) Hamiltonian and the elec-

tronic dispersion

In a model of non-interacting electrons, the basic physics of graphene is
captured by the tight-binding Hamiltonian

H = −t
∑
<ij>

(
a†ibj + b†jai

)
, (2.6)

where the operators ai and bi annihilate (and a†i and b
†
i create) electrons on

sites �Ai and �Bi respectively, t is the hopping energy and the sum is taken
only over nearest neighbours i and j. To find the dispersion, we expand the

11



CHAPTER 2. ELECTRONIC PROPERTIES

annihilation operators in momentum space as

ai =
1√
N

∑
�k

ei
�k· �Aia�k,

bi =
1√
N

∑
�k

ei
�k· �Bib�k,

(2.7)

where N is the number of unit cells in our system and a�k and b�k create

electrons with momentum �k, which, after insertion into (2.6), gives us that

H = −t 1
N

∑
i

3∑
j=1

∑
�k�k′

ei(−�k+�k′)· �Aiei
�k′·�cja†�kb�k′ + ei(−�k+�k′)· �Aie−i�k·�cjb†�ka�k′ . (2.8)

Using that
∑

�k′
ei(

�k′−�k)· �Aif(�k′) = f(�k), we can simplify this expression to

H = −t 1
N

∑
i

3∑
j=1

∑
�k

ei
�k·�cja†�kb�k + e−i�k·�cjb†�ka�k

= −t
3∑

j=1

∑
�k

ei
�k·�cja†�kb�k + e−i�k·�cjb†�ka�k,

(2.9)

or, if written on matrix form,

H =
∑
�k

(
a†�k b†�k

)( 0 φ(�k)

φ∗(�k) 0

)(
a�k
b�k

)
, (2.10)

where φ(�k) = −t∑3
j=1 e

i�k·�cj . To simplify things even further, we rewrite

the complex quantity φ(�k) as an amplitude plus a phase, Φ(�k) = |φ(�k)|eiθ�k ,
where θ�k = arg(kx + iky) is the angle between �k and the positive kx axis. If

we also define the vector �a†�k =
(
a†�k b†�k

)
, we have that

H =
∑
�k

= �a†�kh(
�k)�a�k, (2.11)

where

h(�k) =

(
0 Φ(�k)

Φ∗(�k) 0

)
= |φ(�k)|

(
0 eiθ�k

e−iθ�k 0

)
. (2.12)

12
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The eigenvalues of the matrix h(�k) are given by±|Φ(�k)|, and the eigenvectors
are

�g±(�k) =
1√
2

(
1

±e−iθ�k

)
. (2.13)

This knowledge allows us to find a unitary transformation, U(�k), that will
help us to diagonalize h(�k) and to find the dispersion. If we create

U(�k) =
(
�g+(�k) �g−(�k)

)
=

1√
2

(
1 1

e−iθ�k −e−iθ�k

)
,

D(�k) =

(
|Φ(�k)| 0

0 −|Φ(�k)|

)
= |Φ(�k)|

(
1 0
0 −1

)
,

(2.14)

we know that we can rewrite h(�k) = U(�k)D(�k)U †(�k), or,

H =
∑
�k

= �a†�kU(�k)D(�k)U †(�k)�a�k. (2.15)

Since

U †(�k)�a�k =
1√
2

(
1 eiθvk

1 −eiθ�k
)(

a�k
b�k

)
=

1√
2

(
a�k + eiθ�kb�k
a�k − eiθ�kb�k

)
=

(
γ+(�k)

γ−(�k)

)
,

(2.16)
where γλ(�k) =

1√
2

(
a�k + λeiθ�kb�k

)
, λ = ±1, we arrive at the final (now diag-

onalized) form of the Hamiltonian

H =
∑
�k

|Φ(�k)|
(
γ†+(�k) γ†−(�k)

)(1 0
0 −1

)(
γ+(�k)

γ−(�k)

)

=
∑
�k

|Φ(�k)|
(
γ†+(�k)γ+(�k)− γ†−(�k)γ−(�k)

)
=
∑
�k

∑
λ=±1

ελ(�k)γ
†
λ(
�k)γλ(�k),

(2.17)

where the bipolar dispersion is given by ελ(�k) = λ|Φ(�k)| = λ|φ(�k)|, with
corresponding quasi-particles (created by γ†λ(�k)) that are linear combinations
of electronic excitations on the A- and B-lattice (with a relative phase-shift
depending on the angle of �k and on λ).
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Figure 2.3: The dispersion of bulk graphene.

If we rewrite the dispersion using trigonometric functions, we find that

ελ(�k) = λ|φ(�k)| = λ

∣∣∣∣∣∣−t
3∑

j=1

ei
�k·�cj

∣∣∣∣∣∣ = . . .

= λ|t|
√

1 + 4 cos

(
kxa

2

)
cos

(
kya0
2

)
+ 4cos2

(
kxa

2

) (2.18)

The dispersion (bandstructure) ελ(�k) is plotted in Fig. 2.3a-b.

If we look at the plot of the dispersion, we see that the two bands (λ = ±1)
touches at the points �Ki, where Φ(�k) goes to zero. Around these points,
referred to as K-points or (later) Dirac points, the constant energy contours
are circular if the energy is small. For higher energies, the contours are dis-
torted into triangular shapes (known as trigonal-warping). This is illustrated
in Fig. 2.3b. We note that for any of the points in the set { �K1, �K3, �K5}, we
can reach the other two points in the set by a translation given by a linear
combination of the reciprocal lattice vectors �m1 and �m2. The same is true
for any of the points in the set { �K2, �K4, �K6}. Thus, even though there are
six K-points, only two of them (belonging to different sets) are inequivalent.

14
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2.3 Low-energy physics: the Dirac approximation

By looking at Fig. 2.3, we learned that the two dispersion bands touch at the
points �Ki, and we also see that the dispersion appears to be linear (ε ∝ |�k|)
in the vicinity of �Ki. This can be shown more formally by expanding the
dispersion for low energies.

Since only two of the six �Ki-points are inequivalent, it is enough to study
one such pair of inequivalent points. We pick the two points defined by
�Kν = ν �K1 = 4π

3a (ν, 0), ν = ±1, and redefine the momentum �k = �Kν + �κ,

where �κ is small compared to �Kν . Since �κ is small, we can expand Φ(�k)
around �k = �Kν as

Φ(�k) = Φ( �Kν + �κ) ≈ 3

2
a0t(νκx − iκy). (2.19)

If we insert this into the Hamiltonian given by (2.12), we arrive at the low-
energy approximation

hν(�κ) = h̄vf

(
0 νκx − iκy

νκx + iκy 0

)
= h̄vf |�κ|

(
0 νe−iνθ�κ

νeiνθ�κ 0

)
, (2.20)

where vf = 3
2a0|t|/h̄ is the Fermi-velocity (≈ 106 m/s) and θ�κ = arg(κx +

iκy). The low-energy eigenvalues and eigenvectors are

ελ(�k) = λ|Φ(�κ)| = λh̄vf |�κ|, (2.21)

independent of ν, and

�gνλ(�κ) =
1√
2

(
1

λνeiνθ�κ

)
. (2.22)

The dispersion for graphene in the Dirac approximation is plotted in Fig. 2.4.

2.4 Pseudospin, helicity and Berry’s phase

Because of the presence of two atoms in the real space unit cell (making
up the two sublattices), the wavefunctions of graphene are two-component
vectors (or pseudospinors). Using the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.23)
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Figure 2.4: The Dirac approximation, valid in the vicinity of the K-points

the low-energy Hamiltonian can be rewritten as

hν(�κ) = h̄vf (νκxσx + κyσy) (2.24)

or

h(�κ) =

{
h̄vf�σ · �κ around �K+,

−h̄vf�σ∗ · �κ around �K−,
(2.25)

where �σ = (σx, σy) and �σ
∗ = (σx,−σy).

When dealing with normal electron spin, one often talks about the projection
of the spin onto a fixed axis (such as the z-axis, given by the operator σz).
Another concept, that of helicity, is defined as the projection not on a fixed
axis, but on the direction of momentum (i.e., the direction the particle is
moving). If the spin (or pseudospin, in the case of graphene) points in the
same direction as the momentum, the helicity is said to be right-handed, or
positive. If the opposite is true, that the pseudospin points in the opposite
direction of the momentum, the helicity is left-handed or negative. The
helicity-operator is given (in our low-energy notation) by

h̃ =
1

2

�σ · �p
|�p| =

1

2

1

|�κ|
(

0 κx − iκy
κx + iκy 0

)
, (2.26)

and we directly see that around the point �K+ (since the helicity operator is
then directly proportional to h(�κ)), we have that

h̃�g+(�κ) =
1

2|�κ|
1√
2

(
λ(κx − iκy)e

iθ�κ

κx + iκy

)
= λ

1

2
�g+(�κ). (2.27)
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Thus, around �K+, the helicity is positive for positive energies (in the con-
duction band), and negative for negative energies (in the valence band).
At the other K-point, �K−, graphene litterature often (confusingly) states
that the same relation holds [50] but with an opposite sign, i.e. that
h̃�g−(�κ) = −λ�g−(�κ). This is, as seen by inspection, not totally true in the
notation we use, and the confusion arises because people often do not clearly
state what coordinate systems they use, and in what basis their calculations
are done. If we would change κx → −κx around the point �K−, the relation
would hold. In other words, for the relation to hold it requires that we use
a left-handed local coordinate system around �K−. We may, just as well,
just redefine the helicity-operator in that area to be left-handed (by using
the left-handed Pauli matrices, h̃− = 1

2
�σ∗·�κ
|�κ| , where �σ

∗ = (σx,−σy), instead).
Then,

h̃−�g−(�κ) = −λ1
2
�g−(�κ), (2.28)

and we see that the eigenvalues now comes with an opposite sign. This
can also be seen directly by looking at (2.25), where we see that a helicity
operator proportional to �σ·�p will not be a conserved quantitiy around �K− (it
does not commute with H ∝ −�σ∗ · �κ, while a helicity operator proportional
to −�σ∗ · �p does). Thus, the helicity around the point �K− is the opposite to
that of �K+. The concept of helicity in graphene is illustrated in Fig. 2.5.

Figure 2.5: Helicity in graphene.

The Berry-phase is defined as (C is a closed contour around one of the
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Dirac-points)

θB = −i
∮
C
d�κ [�gνλ(�κ)]

† ∂

∂�κ
�gνλ(�κ)

= −i1
2

∫ 2π

0
dθ�κ

(
1 λνe−iνθ�κ

) ∂

∂θ�κ

(
1

λνeiνθ�κ

)

=
1

2
ν

∫ 2π

0
dθ�κ = νπ,

(2.29)

which is different from the normal case where going around a close loop
would introduce a phase shift that is a multiple of 2π (i.e., no phase-shift at
all). For graphene, the pseudospinors are such that a phase-shift of ±π is
achieved [51] and the wavefunction changes sign. This phenonemenon was
observed earlier in research on carbon nanotubes [52, 53].
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Chapter 3

Numerical Techniques

In (very) simplified terms, the basic constituents of the systems we will
simulate are 1) a (often large) number N of atoms (or sites) located in
real space on the positions �ri, where i ∈ [1, N ], 2) a given overlap of the
different orbitals belonging to the different atoms, and 3) electrons that can
move around (”hop”) between the atoms. The electrons may, or may not,
interact with each other, directly or indirectly.

A non-interacting (free) electron currently located at atomic site j have
two choices. It may either remain (associated with the onsite energy εi),
or it may hop to any other atomic site i where the orbital overlap is non-
zero (associated with a hopping energy tij). As simple as it sounds, this
model, known as a tight-binding model, can then be used to extract several
interesting properties of the system. The parameters εi and tij are (often)
found through complicated overlap integrals between the different atomic
orbitals, or they can be extracted from experiment or found in literature.

If we introduce the operators ai and a
†
i that annihilates (creates) an electron

on site j, the processes described above may be written as the Hamiltonian

H =
∑
i

εia
†
iai +

∑
i �=j

(
tija

†
iaj + h.c.

)
. (3.1)

This is the same type of Hamiltonian as the one shown in (2.6), although
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Figure 3.1: A schematic sketch of a tight-binding process in which an elec-
tron can either remain on atomic site j (energy εj), or hop to another site j
(energy tij).

we have now dropped the division into an A- and B-lattice.

If we want to draw the atomic system, we usually mark the atomic positions
with filled circles, and if the hopping element between two atoms is non-
finite, the circles are connected with a line. A sketch of such a system is
shown in Fig. 3.1.

The Hamiltonian in (3.1) may also be written on matrix form. This Hamil-
tonian matrix will be of size N ×N , where the elements will correspond to
Hii = εi and Hij = tij . By inverting this Hamiltonian, we may find the
systems (retarded) Green’s function matrix, defined as

Gij(E) = (E + iη −H)−1 , (3.2)

from which we can then extract properties such as, e.q., the local density of
states [given by ρi(E) = −(1/π)ImGii(E)].

The problem with calculating the Green’s function as given in (3.2) is that
matrix inversion is a very costly operation. By brute force, inverting a N×N
matrix will require O(N3) operations, and as the system size N grows large,
direct inversion becomes intractable. There are, however, numerous tricks
one can use, based on the facts that 1) the matrix H is usually very sparse,
and 2) one normally do not require the knowledge of all the elements of
Gij(E). The matrix is sparse since the orbital overlap will vanish between
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atoms that are located far from each other, and one usually considers finite
tij ’s only when atoms i and j are nearest, or next-nearest, neighbours.

One trick is to divide the system into smaller parts (often slices), perform
matrix inversion on the smaller slice Hamiltonians, and then link the slice
Green’s functions together using recursion. These methods, usually known
as slice-by-slice methods, are well established [54, 55, 56, 57, 58]. If a system
of N atoms can be divided into N ′ subsystems each containing M atoms,
the computational complexity can be reduced since inverting N ′ = N/M
matrices of sizeM×M requires only O(NM2) operations, which (forM <<
N offers a significant speed-up). A more elaborate discussion about such
methods are given in Paper III.

Even if they are conceptually simple, the slice-by-slice methods are usually
restricted to systems with very specific geometries (often linear, such as
ribbons where it is easy to repeat the same slice over and over again, although
recent development also allows non-linear, multi-terminal structures [59]).
Here, we will look at another algorithm which allows complete flexibility
in terms of the system geometry, internal degrees of freedom and number
of attached leads/contacts, while preserving the improved computational
performance of the slice-by-slice methods.

3.1 A recursive tight-binding (knitting) algorithm

The algorithm we will use was first proposed by Kazymyrenko and Waintal
[60] (see also [61]), and is more or less the above partitioning of the system
into smaller sub-systems (slices) taken to the extreme. Namely, what hap-
pens if the slices consists of only a single atom, turning matrix inversion into
the problem of normal scalar division?

We start with the same system as earlier, consisting of N atoms located at
positions �ri, i ∈ [1, N ]. Here, we will add the possibility of each atom having
internal degrees of freedom. This allows us to also include the effects of, e.g.,
electron spin (up/down) or electron/holes. Depending on the situation, the
parameters εi and tij are either scalars or matrices of size D×D where D is
the number of internal degrees of freedom for each atom. By reducing the
slice-size to one, we will find our Green’s functions by building the system
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one atom at a time.

We define the Green’s function GA
ij as the propagator from site j to i in a

system where the first A atoms has already been included (or ”knitted”).
The Green’s function of the first atom, G1

11, is trivial, and is given by G1
11 =

g111, where

g111 = [E + iη − ε1]
−1 . (3.3)

At this point, we have calculated everything there is to know about the
system so far. The next step is to add the second (A = 2) atom. The
difference is now that the system now already contains atom 1, and we do
not start with empty space. Instead, we must take into account the effects
of atom 1 already being added, which is done by using the Dyson equation.

First, we calculate the (unperturbed) Green’s function of atom 2 before
connecting it to the system as

g222 = [E + iη − ε2]
−1 . (3.4)

Once this is known, we use the Dyson equation to find that

G2
22 = g222 + g222t21G

2
12, (3.5)

G2
12 = g111t12G

2
22, (3.6)

so that

G2
22 = g222 + g222t21g

1
11t12G

2
22. (3.7)

After rewriting this expression, we find that

G2
22 =

[
1− g222t21g

1
11t12

]−1
g222, (3.8)

or, after noting that g111 = G1
11,

G2
22 =

[
1− g222t21G

1
11t12

]−1
g222. (3.9)

Since there is now a connection between atoms 1 and 2, we can also calculate
the Green’s function between these atoms:

G2
12 = G1

11t12G
2
22 (3.10)

and

G2
21 = G2

22t21G
1
11. (3.11)
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Finally, we have that

G2
11 = G1

11 +G1
11t12G

2
21

= G1
11 +G1

11t12G
2
22t21G

1
11

= G1
11 +G1

11t12G
2
22︸ ︷︷ ︸

=G2
12

[
G2

22

]−1
G2

22t21G
1
11︸ ︷︷ ︸

=G2
21

= G1
11 +G1

12

[
G2

22

]−1
G1

21.

(3.12)

After calculating these Green’s functions, we once again know everything
about the system after having added atoms 1 and 2. In the same way, we go
on adding new atoms one by one, until we arrive at having added the last
atom, where A = N .

Next, we realize that if we want to calculate the propagator GA
AA, all we

need to know is the propagators between all atoms in the set σ that are
neighbours of atom A (that is, all atoms where tσA and tAσ are finite, and
where the atoms have already been connected, i.e., where σ < A). An atom
can be either partially connected (some of its neighbours are still to be added
to the system), or fully connected (an atom where all of its neighbours are
already added). We define the set of all partially connected atoms as a (or
b).

The general expression for GA
AA can be written

GA
AA =

[
E + iη − εA − gAAA

∑
σσ′

tAσG
A−1
σσ′ tσ′A

]−1

gAAA

=

[[
gAAA

]−1 − gAAA

∑
σσ′

tAσG
A−1
σσ′ tσ′A

]−1

gAAA.

(3.13)

The propagator to any already added atom α in the system from atom A
(or from any already added atom β to A) is given if know the propagators to
any of the atoms σ neighbouring atom A , plus the propagator GA

AA, since

GA
αA =

∑
σ

GA−1
ασ tσAG

A
AA (3.14)

and
GA

Aβ =
∑
σ

GA
AAtAσG

A−1
σβ . (3.15)
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Finally, the propagators between atoms α and β are given by

GA
αβ = GA−1

αβ +GA
αA

[
GA

AA

]−1
GA

Aβ . (3.16)

In the above, we have assumed that all N atoms are included in the set α
(or β), but we will soon see that we do not need to include more than a
couple of them. First, however, we look at what happens if our system is
also connected to one or several leads.

An example system is shown in Fig. 3.2, where the central system is con-
nected to three leads. We assume that the Green’s functions for the contact
atoms (the atoms in the leads, shown with white circles, that has neighbours
in the system) are known (for an example algorithm showing how to calcu-
late these, see Appendix. B). Instead of starting from the first black atom,

Figure 3.2: Example system with three attached semi-infinite leads (gray
atoms). The lead atoms (contact atoms) connected to the system are illus-
trated with white circles, and the system atoms with black circles.

we assume that our system already contains the contact atoms. The contact
atoms are included in the set c (or d). We will need to constantly update
any propagators going from/to a contact atom, so the set c will from now
on always be a subset of α. Instead of letting all already connected atoms
(there is A of them at each step) being part of α, only the contact atoms
plus the atoms currently being partially connected (the set a) are included.
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Figure 3.3: The system when adding atom A. The interface (α) consists of
the contact atoms (c, full white circles) and the system atoms still missing
one or more neighbours (a, dashed white circles). The atom A has two
neighbours (σ, dashed double-circles) that are already connected. Note that
σ is always a subset of a.

To make things clearer, consider Fig. 3.3, where we enter the calculation
approximately when half of the system atoms have been added. The different
sets of atoms (a, c and σ) are marked in the figure, and our set α consists of,
as stated earlier, the contact atoms (c) plus the partially connected atoms
(a). We can then go on and calculate GA

AA, G
A
αA, G

A
Aβ and finally GA

αβ .
When this is done, A is connected to the system and, if necessary (such as
if it still has neighbours to be connected), added to the sets a and/or σ. At
the same time, all atoms in a that are now fully connected are removed from
this set.

After all of the N atoms are connected, the first part of the algorithm (re-
ferred to as the ”knitting”-part by Kazymyrenko and Waintal) is completed.
Since all contact atoms were kept in α, we now have the propagators be-
tween all of the contact atoms, and we may easily calculate transmission
between any two of the leads. For example, in our example system, if c1 are
the contact atoms in the left lead (a subset of c), and c2 the contact atoms
of the right lead (another subset of c), we find the transmission from lead
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Figure 3.4: The system while going backwards to calculate local properties
(”sewing”). We now have two sets of partially connected atoms, a and a′,
that needs to be updated for each step A.

c1 to c2, G21, from the formula

T21 =
∑

γ,γ′∈c1

∑
δ,δ′∈c2

Γγγ′Gγ′δΓδδ′
(
Gγδ′

)∗
, (3.17)

where the contact self energies, Γ, are calculated as in Appendix B.

The next part of the algorithm, called the ”sewing”-part, will allow us to
also calculate local properties such as bond currents. For this, we need the
complete Green’s functions between all neighbours in the system, and not
only those between contact atoms. This is achieved by going backwards
again, starting from atom A = N and arriving at atom A = 1. In Fig. 3.4,
we have once again reached atom A (same atom as in Fig. 3.3). The set
a is the same at it were after A was knitted into the system, and we have
also introduced another set called a′ (or b′), which contains all atoms that
are partially connected when moving backwards. The complete Green’s
functions between any atom in the set a′ and A may be found from the
relations

Ga′A =
∑
ab′

Ga′b′tb′aG
A
aA, (3.18)

GAb′ =
∑
ba′

GA
Abtba′Ga′b′ , (3.19)
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and we also have that

GAA = GA
AA +

∑
ba′

GA
Abtba′Ga′A. (3.20)

Here, we see that we need the functions GA
aA and GA

Ab. These functions
needs to be stored for each step during the knitting-part of the algorithm,
which is no problem since the sets a (and b) where exactly the same then.
Once A has been sewn, it is added to the set a′, and the algorithm continues
until we arrive back at atom A = 1. Meanwhile, since we get the complete
Green’s functions between A and its neighbours in the primed set a′, we
can easily calculate local properties such as bond currents or local density
of states. The local density of states is given by

ρA = − 1

π
ImGAA, (3.21)

and the bond-current between A and a neighbour σ′ in a′ is given by

Iσ′A =
e

h

∫
dE G<

σ′AtAσ′ −G<
Aσ′tAσ′ . (3.22)

Here, the lesser Green’s functions, G<, is given by

Gσ′A =
∑
l

fl(E)
∑
cldl

Gσ′clΓcldl (GAdl)
∗ (3.23)

and
GAσ′ =

∑
l

fl(E)
∑
cldl

GAclΓcldl (Gσ′dl)
∗ , (3.24)

where cl and fl(E) are the contact atoms belonging to, and the Fermi-
function of, contact l respectively.

Performance-wise, the bottleneck of the knitting-part is equation 3.16, which
requires a total of N vector-vector multiplications, scaling as O(NM2).
Here, M is the size of the interface α, and if the atoms are ordered in
such a way that M on average is much less than N , we have the same per-
formance as the slice-by-slice method, as stated earlier. The same applies
to the sewing-step, where the scaling of the bottlenecks [equations (3.18)-
(3.20)] scale as O(LNM2), where L is the number of neighbours to each
atom (L ≤ 3 in the case of graphene with nearest-neighbour hopping only).

Memory-wise, the big restriction is that we need to save a lot of data to be
able to perform the sewing-step. For each knitting-step, the vectors GA

aA and
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GA
Ab needs to be stored, which requires O(NM) in memory consumption.

Using double floating point precision, a single complex number requires 128
bits which generates a total memory requirement on the order of 128×NM .
Thus, 2 Gigabytes of RAM will be enough to store 62.5×106 elements, which
would be enough for a square rectangular grid of 400 × 400 atoms. If we
were to attach contacts on both sides of this square lattice, the size of M
would be three times larger, and the maximum grid size would be greatly
reduced to only 130 × 130 atoms, while the computational cost would be
nine times larger. Thus, practical restrictions on both memory and time
limits the maximum system size to a couple of hundred thousand atoms. As
mentioned in [60], there are ways to also recursively calculate the vectors
GA−1 from GA [by reshuffling (3.16)], reducing the memory consumption to
max(N,M2). This additional step is, however, a bit tedious to implement
and for the system sizes we are considering we are fine without modifiying
the algorithm.

In the following chapters, I will use the numerical algorithm to perform
tight-binding simulations. The simulations will serve both as ”numerical
labwork”, and as complements to our analytical results.

3.1.1 Implementation

To implement the knitting algorithm, I recommend using a fast program-
ming language such as C/C++ or Fortran. To handle the matrix and vector
operations required, great speed-up is achieved by using optimized packages
such as BLAS. In my work, I used Intel Fortran and Intel MKL [62], which
is highly optimized for the Intel CPU architecture, and also easily paralleliz-
able through the use of OpenMP [63, 64].

The system geometry is stored in linked lists, which allow for easy inser-
tion/removal of atoms, and the possibility to link blocks of atoms together.
Each atom contains a link to all of its neighbour atoms. The system setup
(such as atomic positions, onsite energies, hopping energies, which atoms
are neighbours, etc.) are stored in input files read by the Fortran program.
To generate these input files, a scripting language such as Python is highly
recommended. To define what atoms are neighbours, the easiest way is to
use their coordinates and define a distance cutoff, rc, such that all atoms
lying closer than rc together are considered neighbours. This can be done
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using a k-d tree [65].

Since the working matrices (that are only stored once, and updated regu-
larly), like GA

αβ and Ga′b′ , only contain a fraction of the N atoms at the same
time, we can not adress an atom by using its index number A. This because
the size of the working matrices are only α× α. This problem is solved by
giving each atom a new index (a knit-index, between 1 and the size of α),
and to make sure that two atoms appearing (at any time) in the same set
(α) do not have the same knit-index. My solution is to use an ”index-bank”.
When an atom is being added to the system (the contact atoms are added
first), it borrows an index from the index-bank. When the atom has been
fully connected, it will no longer appear in a set, and its index can then be
returned to the index-bank to be lended out to a new atom instead. If the
index-bank is constructed in a last in, first out (LIFO) way, this will make
sure that the number of required knit-indices are kept to a minimum, and
that no index-conflict arises.
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Chapter 4

Graphene nanoribbons

Graphene nanoribbons are created by cutting a sheet of graphene into the
shape of a ribbon. When doing so, the edges of the ribbon will have different
properties depending on in which direction the ribbon is cut out. As we have
defined our graphene lattice (recall Fig. 2.1 and see Fig. 4.1), cutting along
the x-axis would produces ribbons with zigzag edges, where as cutting along
the y-direction (or a direction rotated 30 degrees from the x-axis) would
generate what is called armchair edges. These are the two most common
edges available, and we will now see how the electronic properties and band
structure [66, 67, 68, 69] of the generated ribbons differ from each other
depending on the edges in question.

In the low-energy approximation, the wavefunction of any ribbon can be
taken as a combination of momenta around the two different K-points (or
Dirac points) �Kν , where ν = ±1:

�Ψ(�r) = ei
�K+·�r �ψ+(�r) + ei

�K−·�r �ψ−(�r), (4.1)

where �Kν = K(ν, 0), K = 4π/3a, and where

�ψν(�r) =

(
ψν
A(�r)

ψν
B(�r)

)
(4.2)

are the pseudospinors containing the contributions from the two sublat-
tices A and B. To find the wavefunctions, and the corresponding disper-
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Figure 4.1: The two most common edges in graphene nanoribbons: Zigzag
and Armchair.

sion/bandstructure, we must solve the eigenvalue problem

hν(�κ)�Ψν(�r) = ε(�κ)�Ψν(�r). (4.3)

Depending on what type of ribbon edge we select, we will have to impose
different boundary conditions and quantization of �κ.

4.1 Zigzag graphene nanoribbons (ZGNR’s)

A typical Zigzag graphene nanoribbon (ZGNR) is shown in Fig. 4.2. If we
by N mean the number of horisontal carbon chains (the ribbon in the figure
has N = 6), we see that the ribbon unit cell (the shaded rectangle in the
figure) will contain a total of M = 2N atoms. The distance between the
edge atoms (shown as crosses), or the width of the ribbon, is

W = (3N + 2)
a0
2
. (4.4)

By looking at the figure, we see that on one of the edges, all atoms belong to
the same sublattice. The proper boundary condition for the ZGNR is thus
that

ΨA(x, y = 0) = ΨB(x, y =W ) = 0. (4.5)
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Figure 4.2: A zigzag graphene nanoribbon (ZGNR) with N = 6. The unit
cell (the shaded box) contains 2N atoms. To make the wavefunction vanish
on the edges (marked with crosses), the A-lattice (B-lattice) component of
the wavefunction must be zero at y =W (xy0).

After putting this into (4.3) we find that (for a complete derivation, see
Appendix A.1) that the transverse momenta, κn, and the longitudinal mo-
menta, κx, are coupled and given by

νκx = − κn
tan(κnW )

. (4.6)

If κn is allowed to become imaginary, κn = iqn, we also have solutions where

νκx = − qn
tanh(qnW )

. (4.7)

Neither one of these equations are analytically solvabled, but we may use
numerics to find the dispersion, ελn(κx) = λh̄vf

√
κ2x + κ2n. The dispersion

for the ZGNR with N = 51, calculated using tight-binding, is shown in
Fig. 4.3a. The analytical solutions for low energies, around ν = 1, λ = 1
are shown in Fig. 4.3b, and we see that the overlap of the numerical and
analytical solutions are quite good for low energies.

The wavefunction pseudo-spinor are given by (see Appendix. A.1)

ΨA(�r) = 4iCν
Ae

iκxx cos(Kx) sin(κny) (4.8)

and

ΨB(�r) = 2iλCν
Ae

iκxx
[
e−iKx sin(κny + θ+(�κ)) + eiKx sin(κn + θ−(�κ))

]
,

(4.9)
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Figure 4.3: The dispersion of a Zigzag ribbon (N = 51), calculated using
a) tight binding and b) the Dirac approximation in the vicinity of the right
K-point (ν = 1, λ = 1). The real solutions are plotted as white dots, and
the imaginary solutions are plotted as gray dots.

where θν(�κ) = arg(νκx + iκn) and the normalization constant is given by

Cν
A =

1

2

√
κn

2κnW − sin(2κnW )
. (4.10)

The transversal part of the wavefunction components are plotted in Fig. 4.4
for a couple of different states on the lowest energy sub-band. We see that
each component vanishes on one side, and that when the solutions of κn
becomes imaginary the wavefunctions localizes on the other edge.

4.2 Armchair graphene nanoribbons (AGNR’s)

A ribbon created by cutting along the armchair direction is shown in Fig. 4.5.
In the figure, the coordinate axes has been flipped to make for an easier fit. If
the number of full carbon rings inside the ribbon unit cell (shaded rectangle)
is defined as N (the ribbon in the figure has N = 5), the unit cell will contain
M = 4N + 2 atoms, and the width of the ribbon will be

W = (N + 1)
√
3a0 = (N + 1)a. (4.11)

By inspection, we see that the boundary condition is now that the wave-
functions on both sublattices vanish on both edges (since each edge has both

34



CHAPTER 4. GRAPHENE NANORIBBONS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

2.3 2.4 2.5

0

0.1

0.2

Figure 4.4: Wavefunctions of a ZGNR (N = 41) in the lowest subband, for
different values of kx around K. Note how the imaginary solutions (shown
in black) localizes at one of the edges.

Figure 4.5: An armchair graphene nanoribbon (AGNR) with N = 5. The
unit cell (the shaded box) contains 4N + 2 atoms. To make the wavefunc-
tion vanish on the edges (marked with crosses), both the A- and B-lattice
components must be zero on both edges (at x = 0 and x =W ).
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Figure 4.6: The dispersion of an Armchair ribbon (N = 23, metallic), cal-
culated using a) tight binding and b) the Dirac approximation (λ = 1).

A- and B-atoms), i.e.,

�Ψ(x = 0, y) = �Ψ(x =W,y) = 0. (4.12)

As shown in Appendix A.2, insertion into and solving (4.3) gives us that

κn =
nπ

W
−K =

nπ

W
− 4π

3a
, (4.13)

and the longitudinal momentum κy is not coupled to the transverse momenta
κn (as were not the case for the zigzag ribbons). The dispersion, given by

ελn(κy) = λh̄vf

√
κ2n + κ2y, will have a gap at κy = 0 as long as κn 	= 0, and

the AGNR will be semiconducting. For certain values of N , we will, on the
other hand, have that κn = 0 and the ribbon will be metallic. The condition
for this to occur is that we can find an integer solution n to the equation

n =
4(N + 1)

3
. (4.14)

This is only possible if N + 1 is a multiple of 3, i.e., when N = 3m − 1.
Thus, depending on the width, the armchair ribbon may be either metallic or
semiconducting. The dispersions for the AGNR’s with N = 23 (metallic),
N = 24 (semiconducting) are shown (together with full numerical tight-
binding calculations) in Fig. 4.6 and Fig. 4.7.
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Figure 4.7: The dispersion of an Armchair ribbon (N = 24, semiconducting),
calculated using a) tight binding and b) the Dirac approximation (λ = 1).

The wavefunction pseudo-spinor is given by (see Appendix. A.2)

�Ψn(�r) =

(
i

λeiθ(�κ)

)
χn(x)e

iκyy, (4.15)

where θ(�κ) = arg(κy − iκn) the transverse wavefunctions are χn(x) =√
1/W sin(nπW x). These functions are zero on both edges, and the armchair

ribbon does not have the edge states found for the zigzag ribbon.

4.3 Electron propagators (Green’s functions)

Once the wavefunctions are known, the retarded electron propagator (or re-
tarded Green’s function), between the points �r ′ to �r (in the transverse mode
n), for a ribbon may be calculated by using the Lehmann representation

gn(�r,�r
′;E) =

∑
λ=±1

∫ ∞

−∞

dκy
2π

�Ψn(�r)�Ψ
†
n(�r ′)

E + iη − ελn(κy)
. (4.16)

Since the transverse and longitudinal momenta are coupled for the ZGNR,
we will not be able to perform the integral above. On the other hand, for the
AGNR, the momenta are uncoupled and we may calculate the Green’s func-
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tion above as (for a full derivation, the reader is referred to Appendix A.3)

gn(�r,�r
′;E) = χn(x)χn(x

′)
(
ΓAA
n (y, y′;E) ΓAB

n (y, y′;E)
ΓBA
n (y, y′;E) ΓBB

n (y, y′;E)

)
, (4.17)

where the transverse wavefunctions are χn(x) =
√

1/W sin
(
nπ
W x

)
and where

ΓAA/BB
n (y, y′;E) = −i |E|

(h̄vf )2
eisgn(E)μn(E)|y−y′|

μn(E)
(4.18)

and

ΓAB/BA
n (y, y′;E) = − 1

h̄vf

[
isgn (E) κn

μn
∓ sgn

(
y − y′

)]
eisgn(E)μn(E)|y−y′|,

(4.19)
where

μn(E) =

√(
E

h̄vf

)2

− κ2n. (4.20)

In the case where μn(E) becomes complex (if the mode n is evanescent), we
should use that μn → isgn (E) |μn|.

These Green’s functions were used in Paper II and Paper IV to calculate
the density of states, and the transmission, through different AGNR’s with
different impurities. To test the validity, I have performed a tight-binding
simulation of an AGNR and extracted the numerical propagators (found
using the techniques in Chapter. 3) between the different points shown in
Fig. 4.8a. The simulation is done both for a clean ribbon, using 40 evanescent
modes, and the results (shown in Fig.4.8b-d) reveal that the match between
the Green’s functions calculated using the Dirac approximation, and those
calculated numerically, is good for low energies.
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Figure 4.8: Propagators for an AGNR with N = 101, calculated both an-
alytically and with numerical tight binding. In all figures, a total of 40
evanescent modes were included, and we see that the Dirac-approximated
Green’s functions agree fairly well with the tight-binding for low energies.
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Chapter 5

Grain boundaries in
graphene nanoribbons

In Paper V , we investigated how grain boundaries (linear dislocations that
separate grains having different lattice orientations) can effect transport
properties in graphene, and in particular what happens if such systems are
used to perform Quantum Hall measurements. Such a problem formula-
tion excellently fits our numerical methods, but we had to overcome the
problem of actually generating an accurate grain boundary with arbitrary
misorientation angle between the two graphene grains.

5.1 Grain boundaries and the coincidence site lat-
tice model

As described by Carlsson et al (see [70] and the reference given there), a
grain boundary in graphene can be generated by using the coincidence site

lattice model, or CSL-model. The starting point of this model is to first
construct a new graphene unit-cell, which is done by placing two layers of
graphene on top of each other. After selecting on of the atoms as a fixed
point, we then start to rotate the two lattices relative to each other, and try
to find how far we need to go away from the fix-point to find new points
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that overlap, and in what directions we need to go (see Fig. 5.1a). Using

Figure 5.1: The CSL model. In a), the two CSL-lattice vectors span a new
CSL-unit cell having. In b), we use the CSL-lattice vectors to extract two
unit cells (one from each single layer of graphene), which will allow us to
construct a periodic grain boundary by putting the two unit cells togeter.
In the system shown, we have used m = 1, n = 3, which give Σ = 13 and
θ = 32.2◦

the graphene lattice vectors, �n1 = a0
2 (−

√
3,−3) and �n2 = a0

2 (
√
3,−3), we

can define a new CSL-unit cell spanned by the CSL-lattice vectors

�R1 = m�n1 + n�n2 and �R2 = −n�n1 + (m+ n)�n2, (5.1)

where m and n are integer indices. These vectors will point directly at the
neareast overlapping atoms, and they define a new unit-cell having area

ΩCSL = |�R1 × �R2| = |n2 +m(m+ n)||�n1 × �n2|. (5.2)

To compare this area to the one of graphene, Ω = |�n1 × �n2|, we define the
quota

Σ = ΩCSL/Ω = m2 + n2 +mn, (5.3)

which, together with the indices m and n allows us to classify series of
different grain boundaries. The example in Fig.5.1 uses m = 1, n = 3 and
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Figure 5.2: Grain boundary supercell, before force-field relaxation

have Σ = 13. The misorientation angle (i.e., the angle the two sheets of
graphene are rotated relative each other), is θ = 23.2◦.

When we have found the CSL-unit cell, we can extract one unit cell from
each single layer of graphene, as shown in Fig.5.1b. One cell is found directly
using the CSL-vectors �R1 and �R2, while the other one is found by rotating
these vectors θ relative to the others, giving a unit cell spanned by the
vectors �R′

1 and �R′
2.

In figure 5.2, we have taken the two unit cells shown in 5.1b, and rotated
them so that they fit together. In the figure, two of the cells drawn with
solid black lines (corresponding to �Ri) are first joined together, and then
positioned next to two of the cells drawn with dashed lines (corresponding
to �R′

i). The grain boundary is formed between the two different kind of
cells.

As seen in the figure, the grain oundary is still not very good looking. To
solve this problem, one has to rely on more advanced methods such as force-
field-relaxation, which wiggles the atoms around until the total energy of
the system is minimized. It may also be required to shift the different kind
of cells relative each other (along the grain boundary). This procedure has
been performed using the software Materials Studio [71], and the result is
shown in Fig. 5.3. Now, the grain boundary looks nice, and if we place many
of the new supercells together we get an extended grain boundary supercell
as shown in Fig. 5.4, a grain boundary made up from a repeating pattern of
pentagons and heptagons.
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Figure 5.3: Grain boundary supercell, after force-field relaxation and a rel-
ative shift along the grain boundary

Figure 5.4: Extended grain boundary supercell in graphene

5.2 Quantum Hall measurements

As stated in the beginning of this chapter, we are interested in how the grain
boundaries effects Quantum Hall measurements. The (integer) Quantum
Hall Effect (QHE) can easiest, with a bit of hand-waving, be described by
looking at Fig. 5.5. Here, a two-dimensional slab of material is placed in a
magnetic field �B, aligned perpendicularly to the plane of the slab. Using the
infamous right-hand rule, we know that an electron subject to a magnetic
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Figure 5.5: A simple schematic picture illustrating the Quantum Hall Effect
in two-dimensional systems in a magnetic field.

field will bend to the left if the magnetic field is aligned as in the figure. If
the field is strong enough, the electrons will bend enough as to form closed
orbitals. This is true at least for the electrons located in the middle of the
slab, far away from the edges. At the edges, however, an electron will not
be able to complete a full orbit (since it is not allowed to ”fall off the edge”).
Instead, the electron will follow so scalled skipping orbits along the edges.
Due to the magnetic field, and the geometric nature of the problem (that
all electrons rotate in the same direction), electrons travelling along the
edges will only be able to propagate in a certain direction, along the edge,
and this direction will be different depending on if the electron is travelling
along the left or right edge (as shown in the figure). These states, called edge

states, only exists at the edges of the sample, and if one attaches contacts
to the slab and tries to run current through it, only the electrons in these
edge states will be involved in the conductance (since the bulk electrons are
occupied with going around in circles). The word ”quantum” enters the
title since the energy of the orbitals will be quantized [72, 73], according to
En = h̄ωc(n+1/2), where the cyclotron frequency is defined as c = e|B|/m,
and the orbital radius are related to the magnetic length lB =

√
h̄/(e|B|).
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Figure 5.6: Quantum Hall bar measurement setup. For clean material,
the current only flows along the edges. Impurities or defects, such as grain
boundaries, may open channels connecting opposite edges, allowing the elec-
tron current to take short-cuts across the sample, as shown inside the dashed
oval.

When doing QuantumHall measurements, the slab discussed earlier is formed
into the shape shown in Fig. 5.6, and contacts are attached to the different
arms. If the material used is clean (free from e.g. impurities), the presence
of the edge states will make the current only run along the edges as is seen
in the figure. The specific geometry is usually referred to as a Quantum Hall

bar. If one injects a current I1 into contact 1 (in Fig. 5.6), and measures the
voltage V26 over contacts 2 and 6, one can extract the transversal resistivity
ρxy = V26/I1. If one uses the same current, but instead measures the voltage
V23 across contacts 2 and 3, one would measure the longitudinal resistivity
ρxx ∝ V23/I1.

Since current is only allowed to travel along the edges, and since the direction
of current is fixed, one expects current to flow without dissipation along the
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edges, since there are no way for them to scatter back except if they manage
to move to the opposite edge. Thus, if contact 4 is grounded, one would
expect to measure the same voltage V on the contacts 1, 2 and 3, while zero
voltage would be measured on the contacts 4, 5 and 6. The longitudinal
resistance, ρxx would then be zero since V23 = V2 − V3 = V − V = 0. The
current flowing along the edges is carried by the edge states, and depending
on how many modes (or edge channels) that are open this current will be
quantized as I1 = nGcV1, where Gc = e2/h is the Hall conductivity, and n
an integer. The resistivity ρxy ∝ V26/I1 = V/I1 = 1/(nGc) will then also be
quantized, since n is an integer.

5.3 Attenuation of the Quantum Hall Effect

At the end of this chapter, we now put the two previous sections together
trying to answer one currently important question: why does the Hall Effect,
when measured in graphene, break down? With ”break down”, I here mean
that the predicted features discussed recently, the plateaus and quantization
of ρxy, and the zero value of ρxx on said plateaus, is not observed experimen-
tally (for a nice review, see [74]). As we have seen in the previous section,
one reason may be that there is something in the experimental sample that
connects two opposite edges together, allowing the electrons to scatter back,
and thus causing the nice quantization of the current to break down. As we
have shown in Paper V , a grain boundary in the graphene, extending from
one edge to the other, may be exactly the underlying reasons (among others
[75, 76]) for the experimental observations and then especially in graphene
grown using CVD (chemical vapour deposition) on for, e.g., cupper, where
the formation of graphene grain boundaries is very common (see, e.g., [77]).
If a metallic state is formed along the grain boundary, the grain boundary
works as a channel connecting the two edges together, and the interested
reader is referred to the attached Paper V for more information and refer-
ences.
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Chapter 6

Summary

In this thesis we have studied transport related phenomena in the ma-
terial graphene, using both analytical analysis and numerical simulations
based on recursive, atomistic tight-binding simulations. We have shown how
graphene, due to its two-dimensional structure, can serve as contact mate-
rial for molecules, and how a graphene nanogap bridged by such molecules
can result in a transistor effect if the system is backgated. We have also
shown that edge roughness of the graphene leads, and impurities, do not
cancellate this effect.

By investigating, both analytically and numerically, how impurities in nanorib-
bons interplay with the effects of size quantization, we have shown how the
characteristic features of the Fourier transformed local density of states can
be understood in terms of electrons scattering between different transverse
modes (sub-bands). Using the same system setup, we have also analyzed how
the impurities present in the ribbon can effect transport through the ribbon,
and pointed out how quasi-bound states at the impurity causes character-
istic dips in the transmission function where a full quantum of conductance
is lost, and that, at the opening of a new propagating channel, this loss is
completely gone rendering a perfectly conducting channel again.

By constructing, simulating and analyzing transverse grain boundaries in
graphene ribbons, we have shown how such grain boundaries can render a
metallic state, actively creating a shortcut between the edges of the ribbons.
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This added channel, which allows electrons to move from one edge to an-
other, even in a magnetic field when electrons otherwise are forced to travel
only in edge channels, can attenuate and even destroy the quantum Hall
effect. This may explain the origin of non-zero longitudinal resistivity, and
non-quantized transverse resistivity, in quantum Hall bar measurements, es-
pecially in graphene grown on metal substrates where grain boundaries are
more common.

We have also contributed a pedagogical description of how recursive tight-
binding methods may be used to effeciently simulate quantum coherent
electron transport. As promised in the introduction, it is hoped that the
chapters in this thesis have given the reader a better understanding, and a
general basic introduction to, the field of graphene, and that the reading of
the attached papers are thus facilitated.

The numerical framework we have implemented and/or developed are flexi-
ble, and with the possibility to add extra degrees of inner freedom it is well
suited for future studies of more complex systems and physics, such as spin
or superconductivity.

50



Acknowledgements

During the time I have spent as a Ph.D. student (and a Master’s student) at
Chalmers, MC2 and the Applied Quantum Physics Laboratory, I have come
into contact with an extensive number of people to whom I am grateful.

First of all, I would like to thank my supervisor, Tomas Löfwander, for all
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Appendix A

Wavefunctions and electron
propagators in graphene
nanoribbons

A.1 Zigzag nanoribbons (ZGNR)

Let κy → −i∂y. The boundary condition is that ΨA(x, y = 0) = ΨB(x, y =
W ) = 0, and we can rewrite the pseudo-spinors as

�ψν(�r) = eiκxx�φν(y) = eiκxx

(
φνA(y)
φνB(y)

)
(A.1)

which, after inserting in (4.1) and applying the boundary condition, gives
us that

eiKxeiκxxφ+A(0) + e−iKxeiκxxφ−A(0) = 0, (A.2)

eiKxeiκxxφ+B(W ) + e−iKxeiκxxφ−B(W ) = 0. (A.3)

By inspection, we find that the two equations (A.2) and (A.3) are solved if
φνA(0) = φνB(W ) = 0. The transverse functions should also be eigenfunctions
of the Dirac Hamiltonian:

hν(�κ)�φν(y) = ε(�κ)�φν(y), (A.4)
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or,

h̄vf

(
0 νκx − ∂y

νκx + ∂y 0

)(
φνA(y)
φνB(y)

)
= ε(�κ)

(
φνA(y)
φνB(y)

)
. (A.5)

This gives us two coupled equations

h̄vf (νκx − ∂y)φ
ν
B(y) = ε(�κ)φνA(y) (A.6)

and
h̄vf (νκx + ∂y)φ

ν
A(y) = ε(�κ)φνB(y). (A.7)

Multiply the second equation with h̄vf (νκx − ∂y) to get

h̄2v2f (κ
2
x − ∂2y)φ

ν
A(y) = ε(�κ) h̄vf (νκx − ∂y)φ

ν
B(y)︸ ︷︷ ︸

=ε(�κ)φν
A(y)

= ε2(�κ)φνA(y). (A.8)

This is solved by making the ansatz

φνA(y) = Cν
Ae

iκny +Dν
Ae

−iκny (A.9)

leading to

h̄2v2f (κ
2
x − ∂2y)φ

ν
A(y) = h̄2v2f (κ

2
x + κ2n)φ

ν
A(y) = ε2(�κ)φνA(y), (A.10)

and ε(�κ) = λh̄vf
√
κ2x + κ2n where λ = ±1. The first boundary condition,

φνA(0) = 0, tells us that

φνA(0) = Cν
A +Dν

A = 0 → Dν
A = −Cν

A, (A.11)

so that
φνA(y) = Cν

A

(
eiκny − e−iκny

)
= 2iCν

A sin (κny) . (A.12)

The B-component is found from (A.7),

φνB(y) =
h̄vf
ε(�κ)

(νκx + ∂y)φ
ν
A(y)

=
h̄vfC

ν
A

ε(�κ)

[
(νκx + iκn)e

iκny − (νκx − iκn)e
−iκny

]
= {if κn is real} = 2iλCν

A sin [κny + θν(�κ)] ,

(A.13)

where θν(�κ) = arg (νκx + iκn).

Using the second boundary condition, φνB(W ) = 0, we find that

e2iκnW =
νκx − iκn
νκx + iκn

, (A.14)
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which we can rewrite as

νκx = − κn
tan(κnW )

. (A.15)

We can also have solutions where κn is imaginary, i.e., κn = iqn and E =
h̄vf

√
κ2x − q2n, which changes equation (A.15) to

νκx = − qn
tanh(qnW )

. (A.16)

The solutions are localized edge-states.

We note that, for Zigzag ribbons, the transversal momentum κn is depending
on the longitudinal momentum as seen in equations (A.15) and (A.16). None
of these equations allow for analytical solutions, but we can always solve
them numerically.

Normalization

The coefficient Cν
A can be found by requiring that∫ W

0
dy |φνA(y)|2 =

1

4
, (A.17)

which gives us the wanted total of unity if we sum the wavefunctions over
both valleys and both sublattices. We find that, for real κn,∫ W

0
dy |φνA(y)|2 = 4Cν

A

∫ W

0
dy sin2 (κny) =

=
(2Cν

A)
2

2

∫ W

0
dy [1− cos (2κny)] = . . .

= (Cν
A)

2 2κnW − sin (2κnW )

κn
=

1

4
,

(A.18)

or, that

Cν
A = Cν

A(κn) =
1

2

√
κn

2κnW − sin (2κnW )
. (A.19)

For imaginary κn = iqn, we have that

CA
ν (qn) =

1

2

√
qn

sinh (2qnW )− 2qnW
. (A.20)
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A.2 Armchair nanoribbons (AGNR)

Let κx → −i∂x. The boundary condition is that �Ψ(x = 0, y) = �Ψ(x =
W,y) = 0, that is, both sublattice components must vanish on both edges.

We rewrite the spinor as

�ψν(�r) = eiκyy�φν(x) = eiκyy

(
φνA(x)
φνB(x)

)
(A.21)

and

−ih̄vf
(

0 ν∂x + κy
ν∂x − κy 0

)(
φνA(x)
φνB(x)

)
= ε(�κ)

(
φνA(x)
φνB(x)

)
. (A.22)

After insertion into (4.1), and after applying the boundary condition, we get
that

�ψ+(0) + �ψ−(0) = 0, (A.23)

eiKW �ψ+(W ) + e−iKW �ψ−(W ) = 0. (A.24)

Repeating the ansatz, φνA(x) = Cν
Ae

iκnx +Dν
Ae

−iκnx, we get that

C+
A +D+

A + C−
A +D−

A = 0, (A.25)

ei(K+κn)WC+
A +Di(K−κn)WD+

A + e−i(K−κn)WC−
A + e−i(K+κn)WD−

A = 0.
(A.26)

By inspection, one solution is to set C+
A = −D−

A and C−
A = D+

A = 0, leading
to

C+
A

(
ei(K+κn)W − e−i(K+κn)W

)
= 2iC+

A sin [(K + κn)W ] = 0. (A.27)

We thus find that the condition for κn is that (K + κn)W = nπ, or

κn =
nπ

W
−K =

nπ

W
− 4π

3a
. (A.28)

and that the energy dispersion is ε(�κ) = ±h̄vf
√
κ2y + κ2n. We have that

φνA(x) = νCν
Ae

iνκnx, (A.29)

56



APPENDIX A. WAVEFUNCTIONS AND ELECTRON. . .

and, following the same procedure as for the zigzag ribbon, we find that

φνB(x) =
−ih̄vf
ε(�κ)

(ν∂x − κy)φ
ν
A(x)

=
−iνh̄vfCν

A

ε(�κ)
(iκn − κy)e

iνκnx

= iλνCν
Ae

iθ(�κ)eiνκnx,

(A.30)

where θ(�κ) = arg(κy − iκn).

Normalization

Due to the symmetry between the A- and B-lattice, we require that the
wavefunction on each sublattice is normalized so that

∫ W

0
dx
∣∣ΨA/B(x)

∣∣2 = 4|Cν
A|2

∫ W

0
dx sin2

(nπ
W
x
)
= 2|Cν

A|2W =
1

2
, (A.31)

from which we see that Cν
A =

√
1/4W .

A.3 Green’s functions

Look at the armchair case, where we can find transverse (κn) momentum
independent of the longitudinal (κy) momentum. Using the Lehmann repre-
sentation [78, 79], the electron propagator in mode n, energy E, from point
�r ′ to �r is given by

gn(�r,�r
′;E) =

∑
λ=±1

∫ ∞

−∞

dκy
2π

�Ψ(�r)�Ψ†(�r ′)
E+ − εnλ(κy)

=
∑
λ=±1

∫ ∞

−∞

dκy
2π

1

E+ − εnλ(κy)

(
ΨA(�r)Ψ

∗
A(�r

′) ΨA(�r)Ψ
∗
B(�r

′)
ΨB(�r)Ψ

∗
A(�r

′) ΨB(�r)Ψ
∗
B(�r

′)

)
,

(A.32)
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where E+ = E + iη, εnλ(κy) = h̄vf

√
κ2y + κ2n and κn = nπ/W − K. If we

separate this expression into an x- and y-dependent part, we have that

gn(�r,�r
′;E) =

1

2πW
sin

(nπ
W
x
)
sin

(nπ
W
x′
)(gAA

n (y, y′;E) gAB
n (y, y′;E)

gBA
n (y, y′;E) gBB

n (y, y′;E)

)
.

(A.33)

Diagonal parts

The diagonal (y-dependent) parts of equation (A.33) are

gAA
n (y, y′;E) =

∫ ∞

−∞
dκy

eiκy(y−y′)(κ2y + κ2n)

κ2y + κ2n

∑
λ=±1

λ2

E+ − εnλ(κy)

= 2E+

∫ ∞

−∞
dκy

eiκy(y−y′)

(E+)2 − (h̄vf )2(κ2y + κ2n)

= − 2E+

(h̄vf )2

∫ ∞

−∞
dκy

eiκy(y−y′)

κ2y −
[
(Ẽ+)2 − κ2n

]
︸ ︷︷ ︸

=(μ+
n )2

= − 2E+

(h̄vf )2

∫ ∞

−∞
dκy

eiκy(y−y′)

(κy + μ+)(κy − μ+n )︸ ︷︷ ︸
=In(y,y′;E)

(A.34)

and

gBB
n (y, y′;E) =

∫ ∞

−∞
dκy e

iκy(y−y′)
∑
λ=±1

1

E+ − εnλ(κy)

= ...

= gAA
n (y, y′;E),

(A.35)

where Ẽ+ = E+/(h̄vf ).

To solve the integral in the expression for g
AA/BB
n (y, y′;E), we first note
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Figure A.1: Integration contour(s) in the complex plane.

that

μ+n =

√
(Ẽ+)2 − κ2n =

√
Ẽ2 − κ2n + 2iẼη̃ +O(η̃2)

≈
√
Ẽ2 − κ2n︸ ︷︷ ︸
=μn

√
1 + i

2Ẽη̃

Ẽ2 − κ2n
≈ μn + isgn (E) ζ.

(A.36)

This tells us that the integrand has poles (let κy → z) at z = ±(μn +
isgn (E) ζ), and we integrate using the contours shown in figure A.1. The
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residues of the four possible poles are given by

Res(z = μn + iζ) =
eiμn(y−y′)−ζ(y−y′)

2(μn + iζ)
, (A.37)

Res(z = −μn − iζ) =
e−iμn(y−y′)+ζ(y−y′)

−2(μn + iζ)
, (A.38)

Res(z = μn − iζ) =
eiμn(y−y′)+ζ(y−y′)

2(μn − iζ)
, (A.39)

Res(z = −μn + iζ) =
e−iμn(y−y′)−ζ(y−y′)

−2(μn − iζ)
. (A.40)

If y − y′ > 0, we integrate along the contour Γ1 in the upper half plane in
figure A.1 and we find that

In(y, y′;E) = isgn (E) π
eisgn(E)μn(y−y′)−ζ(y−y′)

μn + isgn (E) ζ
. (A.41)

If y − y′ < 0, we use the lower contour Γ2 instead and

In(y, y′;E) = isgn (E) π
e−isgn(E)μn(y−y′)+ζ(y−y′)

μn + isgn (E) ζ
. (A.42)

In general, we have that

In(y, y′;E) = isgn (E)π
eisgn(E)μn|y−y′|−ζ|y−y′|

μ+ isgn (E) ζ
, (A.43)

and

gAA/BB
n (y, y′;E) = −2πisgn (E)

(E + iη)

(h̄vf )2
eisgn(E)μn|y−y′|−ζ|y−y′|

μn + isgn (E) ζ
. (A.44)

The diagonal elements of the full unperturbedGreen’s function are therefore,
in the limit where η, ζ → 0+,

gn(�r,�r
′;E)AA/BB = −i |E|

W (h̄vf )2
sin

(nπ
W
x
)
sin

(nπ
W
x′
) eisgn(E)μn|y−y′|

μn
.

(A.45)
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Off-diagonal parts

The off-diagonal (y-dependent) parts of equation (A.33) are

gAB
n (y, y′;E) = −i

∫ ∞

−∞
dκy e

iκy(y−y′) (κy + iκn)√
κ2y + κ2n

∑
λ=±1

λ

E+ − εnλ(κy)

= −i
∫ ∞

−∞
dκy e

iκy(y−y′) (κy + iκn)√
κ2y + κ2n

2h̄vf

√
κ2y + κ2n

(E+)2 − (h̄vf )2(κ2y + κ2n)

=
2i

h̄vf

∫ ∞

−∞
dκy e

iκy(y−y′) (κy + iκn)

(κy − μ+n )(κy + μ+n )

=
2i

h̄vf

⎡
⎢⎢⎢⎢⎣iκnIn(y, y′;E) +

∫ ∞

−∞
dκy

κye
iκy(y−y′)

(κy − μ+n )(κy + μ+n )︸ ︷︷ ︸
=Jn(y,y′;E)

⎤
⎥⎥⎥⎥⎦ .
(A.46)

The integral Jn(y, y′;E) is evaluated using the same contour as earlier. Since
the poles are located at the same places, the residues will be

Res(z = μn + iζ) =
eiμn(y−y′)−ζ(y−y′)

2
, (A.47)

Res(z = −μn − iζ) =
e−iμn(y−y′)+ζ(y−y′)

2
, (A.48)

Res(z = μn − iζ) =
eiμn(y−y′)+ζ(y−y′)

2
, (A.49)

Res(z = −μn + iζ) =
e−iμn(y−y′)−ζ(y−y′)

2
. (A.50)

If y − y′ > 0, integrating along the upper contour gives us that

Jn(y, y′;E) = iπeisgn(E)μn(y−y′)−ζ(y−y′), (A.51)

and if y − y′ < 0, we find (using the lower contour) that

Jn(y, y′;E) = −iπe−isgn(E)μn(y−y′)+ζ(y−y′). (A.52)

In general,

Jn(y, y′;E) = isgn
(
y − y′

)
πeisgn(E)μn|y−y′|−ζ|y−y′| (A.53)
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and the off-diagonal parts are

gAB/BA
n (y, y′;E) =

2πi

h̄vf

[
−sgn (E)

κn
μn + isgn (E) ζ

± isgn
(
y − y′

)]
× eisgn(E)μn|y−y′|−ζ|y−y′|,

(A.54)

and, in the limit η, ζ → 0+, we find that the full, unperturbed, off-diagonal
propagator elements are

gAB/BA
n (y, y′;E) = − 1

Wh̄vf

[
isgn (E) κn

μn
± sgn

(
y − y′

)]
× sin

(nπ
W
x
)
sin

(nπ
W
x′
)
eisgn(E)μn|y−y′|.

(A.55)
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Appendix B

Recursive method for the
computation of lead Green’s
functions

When calculating the lead/contact surface Green’s functions (the starting
point for the knitting algorithm), we use a version of the slice-by-slice
method where we, instead of adding a single slice at a time, double the
amount of slices for each step. This improves the convergence exponen-
tially, and in a couple of runs, we can accurately simulate surface Green’s
functions of semi-infinite ribbons (leads).

The different steps are shown in Fig. B.1. The example is using a rectangular
lattice, but works just as well for any type of ribbon that can be divided
into repeating unit-cells (or slices) in the longitudinal direction.

Step 1. Calculate g for a single slice, gaa = (E + iη −H0)
−1.

Step 2. First doubling. Set gbb = gaa and calculate

Gaa = (1− gaaVabgbbVba)
−1gaa, (B.1)

Gbb = (1− gbbVbagaaVab)
−1gbb, (B.2)

Gab = gaaVabGbb, (B.3)
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Figure B.1: Section-doubling algorithm for the calculation of surface Green’s
functions

Gba = gbbVbaGaa. (B.4)

Step 3. Section doubling. Set gaa = Gaa, gbb = Gbb, gab = Gab and gba =
Gba. Add another copy of the two slices, gcc = gaa, gdd = gbb, gcd = gab and
gdc = gba. Calculate

Gba = (1− gbbVbcgccVcb)
−1gba, (B.5)

Gcd = (1− gccVcbgbbVbc)
−1gcd, (B.6)

Gbd = gbbVbcGcd, (B.7)

Gca = gccVcbGba, (B.8)

Gad = gabVbcGca, (B.9)

Gda = gdcVcbGba, (B.10)

Gaa = gaa + gabVbcGca, (B.11)

Gdd = gdd + gdcVcbGbd. (B.12)

Step 4. Set gaa = Gaa, gab = Gad, gba = Gda and gbb = Gdd. Go back and
repeat Step 3.

Step 5. When convergence is reached (that is, when Gaa and Gdd does not
change), we have the lead surface Green’s functions.
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The functions Gaa and Gdd are our surface Green’s functions, on the left
and right side of the lead respectively. These can be directly used in the
knitting-algorithm. To calculate the Γ-matrices at the surface atoms, we
use the equation

Γa = i
[
Σa − Σ†

a

]
, (B.13)

where the self-energy matrices Σ are given by

Σa = Vaa′Ga′a′Va′a. (B.14)

Here, a′ corresponds to the single slice next to a. To find Ga′a′ , we simply
just add a single slice at both ends of our infinite ribbon, and change indices
so that the new slice gets index a, and the one that previously were a now
is a′.
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