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Abstract 

In vehicle design it is desirable to model the loads by describing the load environment, the customer usage and the vehicle 
dynamics.  In this study a method will be proposed for detection of curves using a lateral acceleration signal. The method is 
based on hidden Markov models (HMMs) which are probabilistic models that can be used to recognize patterns in time series 
data. In an HMM, ‘hidden’ refers to a Markov chain where the states are not observable, however what can be observed is a 
sequence of data where each observation is a random variable whose distribution depends on the current hidden state. The idea 
here is to consider the current driving event as the hidden state and the lateral acceleration signal as the observed sequence. 
Examples of curve detection are presented for both simulated and measured data. The classification results indicate that the 
method can recognize left and right turns with small misclassification errors. 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of CETIM, Direction de l'Agence de Programme. 
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1. Introduction 

For fatigue design the loads need to be assessed. One approach is to describe the load environment and the 
customer usage, which together with the vehicle dynamics define the load conditions. The characteristics of driving 
events used for describing customer usage can be defined using measurements obtained from specially equipped 
vehicles on a test track. On the other hand, measuring on vehicles in service is difficult and expensive and in general 
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there is no access to measurements dedicated to durability. Thus, for on-board logging of events we need to use the 
information which is available for all vehicles by means of CAN (Controller Area Network) bus data.  

A data set is available from Volvo Trucks, and the important events have been defined based on dedicated test 
track measurements. The problem is to identify the events from CAN-data and their frequencies. In this study we 
propose a method using hidden Markov models (HMMs) to detect curves based on a lateral acceleration signal. The 
idea is that we can consider the driving events, i.e. straights and curves, as the hidden states and construct the model 
based on them.  

The HMMs have been widely used in signal processing to recognize the events and also to predict them in the 
future, see e.g. the overview by Rabiner [8] with applications to speech recognition. Mitrović [6, 7] and Berndt and 
Dietmayer [2] used HMMs to detect driving events. They constructed one HMM for each type of driving event such 
as left and right curves, left, right and straight on roundabout. They created a training set by identifying events 
manually to build the models and evaluate them. Then for a new observation sequence, they computed the 
observation likelihoods based on all models and chose the driving event type with respect to the highest likelihoods.  

The parameters in an HMM are the transition probability matrix, the emission matrix and the initial state 
distribution. They must be estimated to characterize the model. In our suggested method, we have used a single 
HMM for describing all events instead of constructing several different models where each HMM describes a single 
event. It should be simpler to estimate the parameters of one model than lots of parameters of different models.  

In an HMM, a training set is used to estimate the parameters of the model, while a test set is used to validate the 
model. A training set consists of all necessary information for estimating the model parameters. In our study, the 
training set contains all history about the curves such as the start and stop points of them. We have simulated 
different lateral acceleration signals with different lengths and different number of curves (events) to have some 
controlled training and test sets.  

In Section 2 we describe the concept of HMMs and present two methods for detection of curves. For method 1 
the parameters of the HMM is estimated from the training set, while for method 2 the transition matrix is re-
estimated based on the test set. Examples and their results for simulated and measured data are shown in Section 3. 
Conclusions are presented in Section 4.  

2. Hidden Markov models 

Hidden Markov models are probabilistic models that can be used for detection of patterns or events in a signal. 
The setup is that there are two processes. The interesting process tZ  that describes the events is not possible to 

measure. It is thus called hidden and modelled as a Markov chain. However, what can be observed is a process tY  

whose statistical properties depend on the value of tZ . The problem at hand is to estimate the parameters of the 

HMM. Based on an observation of tY , it is then possible to reconstruct the most probable hidden process and 
identify events.  

In this study, three events right turn (RT), left turn (LT) and straight forward (SF) have been considered. The idea 
is that one can see these three events as three hidden states and construct the HMM based on them. Fig. 1 illustrates 
three hidden states and a sequence of observations that can be generated based on the probability distribution of 
observation symbols. 

Let 1ttZ  be a Markov chain where tZ denotes a hidden state at time t and has possible values 

NSSSS ,…, , 21 . The transition probabilities between the hidden states are defined by the matrix ijaA , 
called transition matrix, where 

itjtij SZSZPa 1    (1) 

for Nji ,...,2,1,  and 1
1

N

j
ija . 

Further, there is another process 1ttY  denoting the observation symbol at time t. The sequence of observations  
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Fig. 1. The hidden state sequence is modeled by a Markov chain and the observation sequence is modeled by the emission probabilities. 

has possible values MVVVV ,…, , 21 and it is observable for us. The probability distribution of observation 
symbols in each state is given by the emission matrix, )( kj VbB , where 

jtktkj SZVYPVb )(    (2) 

and 1)(
1

N

j
kj Vb . 

The state where the hidden process will start is modeled by the initial state probabilities that are denoted by 

N,…, , 21  where  

ii SZP 1    (3) 

for Ni ,...,2,1  and 1
1

N

i
i . 

It has been demonstrated that a discrete HMM can be good in pattern recognition, see Rabiner [8]. We have also 
used a discrete HMM ),,( BA  where  represents model parameters which contain the transition matrix, the 
emission matrix and the initial state distribution. .  

As mentioned before, we have three hidden states LTSF,RT,S  denoting the three events right turn, straight 
forward and left turn, respectively. In order to estimate the parameters of the HMM, we have used the lateral 
acceleration signal where we also have an observation of the hidden process tZ . This will be our training data that 

contains observation of both the Y -process and the hidden Z -process. We have considered lateral acceleration 
values as our data and thus we need to translate this continuous feature into predefined classes. Here, three classes 
will be used, CB,A,V , that are defined as follows:  

 2sm 0.2on"accelerati lateral"A ,   
22 sm 0.2on"accelerati lateral"sm 0.2B ,  (4) 

  2sm 0.2on"accelerati lateral"C  . 
This kind of clustering will create a sequence of observation symbols which has been used to estimate the 

emission matrix in our model.  
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To estimate the transition probabilities, we have just counted the number of transitions between the three states 
and normalized each row of the transition matrix to one. To estimate the emission matrix, we have counted the 
number of times that each observation symbol has been seen in each state. 

2.1. Model Evaluation 

The aim of this study is to find a probabilistic model to recognize the curves. We have estimated the parameters 
of the model by using a training set and evaluated it by using different new sequences of observations as our test set. 
To identify the curves for a new lateral acceleration signal, we have considered two different methods as following:  
 Method 1: Use the estimated transition and emission matrices from the training set.  
 Method 2: Use the emission matrix from the training set but re-estimate the transition matrix based on the new 

signal. 
The main reason for considering method 2 is the differences between roads that can affect on the transitions 

between states. The emission matrix describes the property of the curves given certain hidden states, however, the 
transition matrix describes the duration of the events. Thus, it could be reasonable to update the transition matrix for 
a new signal to find the hidden states. 

2.1.1.  Method 1 
Here, we have used a training set to estimate the parameters ),,( BA  of the HMM. The Viterbi algorithm, 

see Viterbi [9] and Forney [4], has been used to find the most probable sequence of hidden states for a new signal. 
Suppose that we have classified the new lateral acceleration values with length n and we got an observation 

sequence nyyy ,...,, 21 . We would like to find driving events for this new observation. It means that we want to find 
a sequence of hidden states which maximizes the probability of observing this specified observation. The Viterbi 
algorithm finds the state sequence nzzz ,...,, 21 out of the n3 possible sequences of length n  that maximizes 

;,...,,..., 1111 nnnn zZzZyYyYP .  (5) 

In fact, the Viterbi algorithm gives a state sequence nzzz ,...,, 21  that maximizes the conditional probability of 
the observation sequence for given parameters ),,( BA . The result will give the most likely sequence of 
hidden states from which it is possible to identify the driving events.  

2.1.2. Method 2 
In this approach, we have fixed the emission matrix from the training set and re-estimated the transition matrix 

from each new signal. To estimate model parameters based on an observation sequence, we have used the Baum-
Welch algorithm which was introduced by Baum et al. [1]. It is equivalent to the EM (expectation-maximization) 
algorithm, see Dempster et al. [3]. The Baum-Welch algorithm is one of the well known methods to estimate the 
model parameters in HMMs. It is an iterative maximum likelihood method and starts with initial parameters that in 
our case are set based on training data. The algorithm uses a forward-backward procedure to estimate the model 
parameters for a given sequence of observations. See Rabiner [8] where the general EM algorithm in HMMs is 
described.  

In method 2, we didn't update the probabilities )( kj Vb in the Baum-Welch algorithm since we have fixed the 

emission matrix trainingBB . We have just re-estimated the transition matrix and the initial state distribution for a 
given observation sequence. Then, we have used Viterbi algorithm to find the most likely hidden states based on 
given parameters.  

3. Examples 

We have tested our models with simulated and measured data sets. In the first example, we have simulated 
different lateral acceleration signals as our training and test sets and evaluated the detection of driving events. In the 
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Fig. 2. Simulated lateral acceleration signal and the corresponding hidden states. 

second example, we have used measured data which is dedicated field measurements from a Volvo Truck.  

3.1. Simulated lateral acceleration signal 

We need a training set to estimate the parameters and a test set to evaluate the model. For this purpose, we have 
simulated different lateral acceleration signals. Fig. 2 shows an example of the simulated lateral acceleration signal 
and the corresponding hidden states. These two simulated signals will be our training set. Next, we will describe 
how the simulation has been performed. 

At first we have generated the events by using a Markov chain in our simulation. We supposed that the 
probabilities of going from a right turn to a left turn and vice versa are quite small. Most often we will have straight 
forward after a right turn or a left turn. Thus, we have considered a transition matrix such as: 

09.01.0
5.005.0
1.09.00

P ,   (6) 

and simulated a Markov chain with three states which represent our sequence of events. 
Since we are going to model the length of each straight and each curve, we have chosen the start and stop points 

of each kiievent ,...,2,1),(  as follows: 
 )1(for point  Stop=)(for point Start ieventievent ,   

iLieventievent )(for point Start )(for point  Stop .  (7) 

where 0=)1(for point Start event . The length (duration) of each event iL  is random according to specified 
distributions, namely 
 If )(ievent  is a curve (right or left turn), then )8,2(~ ULi  since each turn may take between 2-8 seconds.  
 If )(ievent  is straight, then )(~ ExpLi  where 20  shows the average duration of each straight.  

The result will be our simulated hidden process tZ . To generate a lateral acceleration signal, we have used a 
model suggested by Karlsson [5]. The measured lateral acceleration can be split into two load processes which are 
the centripetal acceleration and a residual. To get the tY  process, we have translated lateral acceleration values into 
the symbols CB,A,V  as described in Eq.(4). 
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3.1.1. Estimate of parameters from training set 
Recall that in this example the signal in Fig. 2 will be our training set. The signal contains 500 events and we 

have considered the value 20  to get the duration of each straight. Fig. 2 illustrates only the first 1000 time 
points of the training set. 

To estimate the transition matrix, we have counted the number of transitions between the three states. Finally, we 
have counted the number of times that each observation symbol A, B and C has been seen in each state to estimate 
the emission matrix. The transition matrix is: 

0.8980.0920.010
0.0110.9760.013
0.0160.0830.901

A .   (8) 

The emission matrix is:  

0.9660.0230.011
0.1820.6360.182
0.0150.0200.965

B .   (9) 

3.1.2. Model evaluation 
To recognize the curves for a new simulated lateral acceleration signal, we have considered two different 

methods. We have generated a new lateral acceleration signal as our testing set to compare the two methods. The 
new signal is shorter than the training set and we have changed the value 205  which means that we get long 
straights. The simulation contains 28 curves.  

Method 1: Here, we have estimated both transition and emission matrices from the training set. Then, the Viterbi 
algorithm has been used to find the most probable sequence for the new signal. Fig. 3 shows the true and detected 
states based on our model. It can be seen that, for this signal, the method can recognize left turn and right turn with 
small misclassification error. 

 

 

Fig. 3. Detection of events using method 1. 
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Fig. 4. Detection of events using method 2. 

Method 2: Here, we have used the estimated emission matrix from the training set, but we have estimated the 
transition matrix from the new signal based on the EM algorithm. The re-estimated transition matrix is: 

0.8520.1340.014
0.0030.9920.005
0.0320.0880.880

A .   (10) 

The true and detected states for the new signal are shown in Fig. 4, where we can see that the misclassification 
error rate in this case is higher than for method 1. 

Comparison between method 1 and 2: To get the misclassification error rates, we have calculated both type I 
(false positive) and type II (false negative) errors. If we find an event that does not exist, we get a false positive 
error. However, if we can't detect the true event, the false negative error will happen. 

Most of the time, the duration of the detected events are not the same as the real events. Therefore, we have 
considered the middle time of each detected event and we have compared its label with the true label (hidden state) 
at that time. The number of times that we got different labels divided by the number of events will be the false 
positive error rate. Further, to get the false negative error, we have considered the true label of each event at the 
middle and we have compared it with the detected label. 

We did 1000 simulations to get an average of error rates. At first we have simulated 1000 signals with 100 events 
as our test sets, where the parameters of the model are the same as the ones in the training set. Therefore, 20  
and the transition probabilities for Markov chain is: 

09.01.0
5.005.0
1.09.00

P .   (11) 

The average false positive error based on method 1 is 0.025 and the average false negative error is 0.046. 
For method 2, the average false positive error is 0.048 and the average false negative error is 0.034. The results 

are summarized in Table 1. 

     Table 1. Type I and Type II errors, where the training and test sets have the same parameters. 

Error Type I Type II 

Method 1 0.025 0.046 

Method 2 0.048 0.034 
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Finally, we have changed the parameters for the test sets to check how much they will affect on the results. We 
have considered long straights by setting 205 . The modified transition matrix for the Markov chain is: 

095.005.0
4.006.0
15.085.00

P .   (12) 

Table 2 shows the error rates regarding to the new parameters, where it can be seen that the difference between 
method 1 and 2 is small. Compared to Table 1, for method 1, the false positive error increases while the false 
negative decreases, whereas for method 2 the result is almost the same 

     Table 2. Type I and Type II errors, where the training and test sets have different parameters. 

Error Type I Type II 

Method 1 0.051 0.031 

Method 2 0.047 0.038 

 
If the parameters of the test set is similar to the ones in the training set, then method 1 should be preferred. The 

emission matrix is expected to be similar for all road types. However, the transition matrix should depend on the 
type of the road. This motivates the use of method 2. For example if we have a lateral acceleration signal from a city 
road as our training set and we want to detect events based on a lateral acceleration signal from a highway, then the 
transition matrix from the training set can not be good and it could be re-estimated from the new signal. 

The simulation study indicates that method 1 is still quite robust to changes in the transition matrix, since it 
detects the events equally accurate as method 2, even though the transition matrix in training and test sets are 
different. 

3.2. Measured lateral acceleration signal 

The measured data that we have used is a field measurement coming from a Volvo Truck. We have used measured 
signals from the CAN bus and we have manually detected the events by looking at video recordings from the truck 
cabin to see what had happened during the driving. By having the start and stop points of each event, we have 
created the hidden Z -process. For the Y -process, we need a lateral acceleration signal which we have computed 
by using the following formula: 

..Yaw Rate)/=(Speedcelerationlateral Ac 63   (13) 
To remove the high frequency noise, we have used a Butterworth low-pass filter with 0.5 Hz cut-off frequency. 

To reduce the amount of data, we have split the data into frames (the duration of each frame is 0.5 sec) and 
calculated the mean value for each frame. We have translated the continuous feature (mean value) into the 
predefined symbols in each frame by three classes A, B and C where 

 2sm 0.5on"accelerati lateral"A ,   
22 sm 0.5on"accelerati lateral"sm 0.5B ,  (14) 

      2sm 0.5on"accelerati lateral"C . 
Compared to Eq. (4), we have changed the threshold from 0.2 to 0.5 in our clustering in order to improve the 

detection results. 
The signal that is considered has the length 3800 seconds, which we have divided into two parts as our training 

and test sets. The training set contains 2000 seconds and the test set contains 1800 seconds.  Fig. 5 shows the 
training part of the signal and the corresponding manually detected hidden states. 

Method 1: At first, we have used method 1 and estimated transition and emission matrices from the training set, 
resulting in the transition matrix: 
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Fig. 5. Training part of measured lateral acceleration signal and the corresponding manually detected hidden states. 

,
0.9520.0480.000
0.0020.9970.001
0.0000.0550.945

A    (15) 

and the emission matrix is:  

0.6370.3630.000
0.0120.9570.031
0.0000.5820.418

B .   (16) 

The detected states based on method 1 for the test set is shown in Fig. 6, where we can compare them with the 
manually detected states. It can be seen that the misclassification error rate is high. In all cases, the method can 
recognize the manually detected curves. However, we have a false positive error since the method has found five 
right turns that are not in the manual detection. One reason could be that the manual detections are not completely 
correct because of the visual errors and the low quality of videos. There is also a sharp left turn which could not be  

 

Fig. 6. Detection of events in the measured signal using method 1. 



434   Roza Maghsood and Pär Johannesson  /  Procedia Engineering   66  ( 2013 )  425 – 434 

detected since the speed is low (about 10 km/s) at that part which makes it hard to recognize the curve correctly. 
Method 2: In method 2, the transition matrix has been re-estimated based on the EM algorithm resulting in the 

estimated transition matrix: 

0.9670.0330.000
0.0010.9950.004
0.0000.1050.895

A .   (17) 

The results of method 2 are the same as for method 1. Since the road type of the test set is similar to the one in 
the training set, method 1 and 2 performed similarly to detect the events.  

4. Conclusion 

The examples in this study indicate that the HMMs can be used to recognize the curves based on a lateral 
acceleration signal. We have considered three driving events (right turn, left turn and straight forward) as the hidden 
states and constructed the model based on them. The parameters of the model have been estimated by considering 
two different methods. In method 1, we have estimated the transition and emission matrices from the training set, 
while in method 2 the emission matrix has been fixed from the training set and the transition matrix has been re-
estimated based on the test set.  

The results of the simulation study show that method 1 should be preferred if the parameters of the test set is 
similar to the ones in the training set, i.e. the characteristics of the roads are likely to be similar. The emission matrix 
is expected to be similar for all road types, however, the transition matrix should depend on the type of the road. 
This motivates the use of method 2. If we have a lateral acceleration signal from a city road as our training set and 
we want to detect events based on a lateral acceleration signal from a highway, then the transition matrix from the 
training set can not be good and it could be re-estimated from the new signal. 

The method can be extended to detect more events, such as braking and static steering, by considering more 
signals which contain useful information about the events. One approach can be to combine the essential signals and 
increase the number of classes in Y -process. It could then be possible to detect more events. 
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