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On the Performance of MIMO-ARQ Systems with
Channel State Information at the Receiver

Behrooz Makki, Thomas Eriksson

Abstract—This paper investigates the performance of multiple-
input-multiple-output (MIMO) systems in the presence of auto-
matic repeat request (ARQ) feedback. We show that, for a large
range of performance metrics, the data transmission efficiency of
the ARQ schemes is determined by a set of parameters which are
scheme-dependent and not metric-dependent. Then, the results
are used to study different aspects of MIMO-ARQ such as the
effect of nonlinear power amplifiers, large-scale MIMO-ARQ,
adaptive power allocation and different data communication
models. The results, which are valid for various forward and
feedback channel models, show the efficiency of the MIMO-ARQ
techniques in different conditions.

I. I NTRODUCTION

Multiple-input-multiple-output (MIMO) transmission [1]–
[19], combined with the space-time coding (STC) [20]–[23],
is among the best approaches for exploiting the spatial di-
versity, particularly over rich scattered environments. MIMO
has revolutionized the modern wireless communications, is
a key part of most current standards such as WiFi (IEEE
802.11) and WiMax (IEEE 802.16) [24], [25], and is expected
to be the core technology for the next generation broadband
wireless communication systems. The performance of the
MIMO channels, however, depends strongly on the amount
of channel state information (CSI) at the transmission end-
points. Channel estimation at the receiver is relatively simple
and incurs negligible loss in the transmission rate, particularly
when the channel experiences slow variations. On the other
hand, due to the signaling load caused by reporting the
channel information, assuming perfect channel knowledge at
the transmitter is an overly optimistic assumption. Therefore,
it is important to study the MIMO channels in the presence
of limited-feedback schemes.

Hybrid automatic repeat request (ARQ) is a well-established
approach for wireless networks [1]–[19], [26]–[33]. From
an information-theoretic point of view, the ARQ systems
can be viewed as channels withsequentialfeedback where,
utilizing both forward error correction and error detection, the
system performance is improved by retransmitting the data
which has experiencedbad channel conditions. Therefore, the
combination of MIMO and ARQ improves the performance of
wireless systems. This is the main motivation for the current
MIMO-ARQ techniques such as [1]–[19] and this paper as
well.

The performance of ARQ schemes in single-input-single-
output (SISO) setups has been studied by, e.g., [27]–[34].
The MIMO-ARQ related works can be divided into three

The authors are with Department of Signals and Systems, Chalmers
University of Technology, Gothenburg, Sweden, Email:{behrooz.makki,
thomase}@chalmers.se

(partly overlapping) categories. The first group are papers
focusing on precoder design [35]–[39]. Here, considering
different modulations, the optimal linear precoders minimizing
the distortion or the bit error rate have been obtained in the
presence of (im)perfect CSI at the transmitter (CSIT).

The second group are the papers that, following the
outstanding work by Zheng and Tse [40], have stud-
ied the diversity-multiplexing-tradeoff (DMT) or diversity-
multiplexing-delay-tradeoff (DMDT) of the MIMO-ARQ se-
tups, e.g., [1]–[6]. These metrics establish the necessarytrade-
off between reliability and throughput in outage-limited fading
channels. However, DMDT and DMT are metrics mostly for
the high signal-to-noise ratio (SNR) regime and do not provide
a complete picture for evaluating the performance of ARQ
schemes operating at finite transmission rates and powers.

The last category of the MIMO-ARQ papers are the ones
that have studied the theoretical and practical aspects of the
channel at finite SNR. Here, the effect of non-orthogonal
space-time block codes (STBCs) [7], Bell-Labs layered space-
time (BLAST) systems [8], bit-interleaved coded modulation
[9], quadrature amplitude modulation (QAM) [10]–[12] or
using adaptive modulation [13] on the throughput [8], the
bit error rate [9]–[11], the packet error rate [7], [12] or the
spectral efficiency [13] of the MIMO-ARQ channels have
been investigated. Studying the high but finite SNR DMDT of
multihop MIMO-ARQ relay networks, low-complexity ARQ
techniques in a two-user MIMO broadcast channel, the average
rate of MIMO-ARQ schemes utilizing linear dispersion codes
(LDCs) and adaptive coding by different STCs have been
considered by [14]–[17], respectively. Finally, [18] developed
a parallel ARQ model in correlated MIMO channels and [19]
studied the outage minimization problem in MIMO channels
when at each ARQ round the data is sent by only a single
transmit antenna.

Reviewing [1]–[19], [26]–[33], it is clear that there is large
diversity in selection of the performance metrics and fading
models. This has led to repeating conceptually similar analysis
for each performance yardstick individually. Also, a large
effort has been undertaken to compare the ARQ schemes
from different points of view and for various fading models.
Thus, a natural question is whether it is necessary to study the
ARQ schemes for each fading model/metric individually. The
answer this paper establishes is negative.

Here, we show that, for a large range of performance
metrics, the data transmission efficiency of the ARQ schemes
is determined by a set of intermediate parameters which
are scheme-dependent and not metric-dependent. This point,
which is illustrated in Fig. 1, indicates that there is a specific
set of parameters, referred to as accumulated mutual informa-
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Figure 1. Illustration of the scheme-dependent parametersin ARQ ap-
proaches.

tion (AMI), from which the data transmission efficiency of
ARQ schemes can be analyzed. Then, we use this result to
study different aspects of the MIMO-ARQ techniques such
as 1) the effect of nonlinear power amplifiers, 2) large-scale
MIMO-ARQ, 3) temporal and spatial power allocation, 4)
unreliable feedback channel, 5) fading channel variability and
6) different data transmission models. Also, as side-results, we
present comparisons between different MIMO-ARQ schemes
and show mappings between the MIMO- and SISO-ARQ
setups. The mapping simplifies the performance analysis of
MIMO-ARQ and makes it possible to extend many theoretical
results of SISO-ARQ setups to MIMO-ARQ. Finally, we
obtain the empirical probability density function (pdf) ofthe
received SNR for different data communication models and
investigate the effect of variable-length coding and different
STCs on the data transmission of the MIMO-ARQ systems.

It is worth noting that the idea of utilizing intermediate
parameters for performance analysis of ARQ schemes have
been implicitly used by, e.g., [1] and [27], [29] where the
DMDT and the throughput have been studied, respectively.
Thus, this paper is the generalization of [1], [27], [29] to a
wider range of performance metrics and for different forward
and feedback channel conditions. Also, compared to the liter-
ature, we present new analysis on different aspects of MIMO-
ARQ transmission which, to the best of authors’ knowledge,
have not been studied before. The results show the efficiency
of the MIMO-ARQ techniques in different conditions.

II. SYSTEM MODEL

In this section, we present the definitions and the system
model on which the analytical/numerical analysis is based.
The following notation is used throughout the paper:

• A packet is defined as the transmission of a sub-codeword
along with all its possible retransmission rounds. A max-
imum of M ARQ retransmission rounds is considered,
i.e., the data is (re)transmitted a maximum ofM + 1
rounds.

• lm (in channel uses) is the length of the sub-codeword
(re)transmitted in them-th (re)transmission round and
l(m) =

∑m
n=1 ln represents the total channel uses up to

the end of them-th (re)transmission round.
• R(m) (in nats-per-channel-use (npcu)) denotes theequiv-

alentdata rate at the end of them-th round, i.e., the ratio
of the transmitted information nats and the total channel
uses up to the end of roundm. Thus, denoting the number
of information nats considered for a packet byQ, we have
R(m) =

Q
l(m)

. Also, to simplify the equations, we define
R(0)

.
=∞ andR(M+2)

.
= 0.

• We defineC(m) as the AMI of the MIMO-ARQ model at
the end of them-th round. That is,C(m) is the maximum

equivalent rate that can be decoded at them-th round
of the considered ARQ scheme. As seen in the sequel,
the AMIs are determined based on the encoding/decoding
procedure of the ARQ schemes and are random variables
depending on the channel realization(s).

• Am represents the event that the codeword is decodable
at the end of them-th round. Also,A0 = ∅ denotes the
empty set.

• The matrices are represented by bold capital letters.
Finally, Tr(X), |X|, XT and Xh represent the trace, the
determinant, the transpose and the Hermitian of the
matrix X, respectively.

General system model.We study the system performance
for three different fading conditions:

• Fast-fading. Here, it is assumed that a finite number of
channel realizations are experienced within each ARQ
retransmission round.

• Slow-fading. In this model, the channel is supposed to
change between two successive retransmission rounds,
while it is fixed for the duration of each sub-codeword.

• Quasi-static. The channel is assumed to remain fixed
within a packet period.

Fast-fading is an appropriate assumption for fast-moving users
or users with long codewords compared to the channel co-
herence time [41]. On the other hand, slow-fading is a good
model for the users with moderate speeds [3]–[6], [36]–[39].
Finally, the quasi-static case can properly model the channel
characteristics in slow-moving or stationary users, e.g.,[1],
[14], [16], [17], [19], [28], [30]–[32], [39].

In Sections III-VI, we consider the quasi-static fading con-
dition, unless otherwise stated. As stated in [1], the quasi-static
model makes it possible to decouple the ARQ gain from the
temporal interleaving gain. That is, from the diversity point of
view, the quasi-static condition corresponds to the worst case
scenario since no time diversity can be exploited by the ARQ.
Also, we note that the quasi-static model is justified in practice
by considering, e.g., time-division multiple access (TDMA)
systems where the channel is allocated to a transmitter-receiver
pair sporadically and (at least) one packet is sent in each slot
[1]; if the channel coherence time is larger than the maximum
length of the packet, but it is smaller than the idle time
between two consecutive active times, the quasi-static model
accurately describes the channel. Also, compared to the slow-
and fast-fading models, the quasi-static assumption matches
better with the assumption of perfect CSI at the receiver, which
is considered in the paper. Later, in Section VII, we show
that 1) many conclusions of the paper are valid independent
of the fading model and 2) there are cases where the quasi-
static, slow- and fast-fading conditions can be mapped to
each other when studying the performance of ARQ schemes.
Finally, the simulation results are presented for independent
and identically distributed (iid) fading conditions. However, as
illustrated in Section IV, the qualitative discussions also hold
for the temporally-correlated fading models, unless otherwise
stated.

For different fading conditions, the channel coefficients are
assumed to be known at the receiver, in harmony with [1]–
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[6], [30]–[33], [41]. The ARQ feedback bits are sequential
signals increasing the CSI at the transmitter; using ARQ, the
transmitter considers some initial transmission rate and power
with no pre-knowledge about the channel quality. Then, with
the help of ARQ, the transmitter CSI is refined based on the
message decoding status, and the transmission rates/powers
are adapted. Finally, although not considered in the paper,the
same procedure as in [27], [42] (with optimistic assumptions
on the feedback delay) can be used for sending quantized CSI
at the beginning of each ARQ packet, and all theory developed
here is still valid since the channel with quantized CSIT can
be modeled as a channel with no CSIT and a modified fading
pdf, e.g., [30]. Moreover, with a slow-fading condition, [34]
studies the combination of ARQ and delayed CSI feedback
schemes where, as it also deals with the maximum achievable
rates in different conditions, our analysis can be useful inthat
case as well.

The ARQ feedback bits are initially supposed to be received
delay- and error-free, while we later investigate the system per-
formance for erroneous feedback signals as well (Section VII).
Also, we initially consider thebursty communication model
[28], [31], [32] where there is an idle period between two
successive packet transmissions. However, in Section IV the
results are compared with the ones achieved with continuous
communication, where the data is sent continuously.

MIMO-ARQ model.The MIMO-ARQ setup is represented
as follows. LetH ∈ CLr×Lt denote the channel matrix where
Lt and Lr are the number of transmit and receive anten-
nas, respectively. Selecting a messagew from a set of uni-
formly distributed messagesW , the encoder of a MIMO-ARQ
scheme produces amother codewordX(w) ∈ CLt×l(M+1) .
Then, the codeword is divided intoM + 1 sub-codewords
Xm ∈ CLt×lm , with length of lm channel uses, such that
X(w) = [X1 . . .XM+1]. At the m-th (re)transmission round,
the sub-codewordXm is sent by the transmitter. Thus, defining
X(m) = [X1 . . .Xm] as the total signal transmitted up to the
end of them-th round, we have

Y(m) = HX (m) + Z(m),Z(m) ∈ CLr×l(m) , (1)

whereY(m) = [Y1 . . .Ym] is the total signal received up to
the end of them-th round andZ(m) denotes the iid complex
Gaussian noise matrix whose elements followCN (0, 1).

The ARQ schemes are normally divided into three cate-
gories, Types I-III [43]. Type I is the simplest version of
hybrid ARQ, where both the error-detecting and the forward
error correction information are added to each message and the
receiver disregards the previous messages, if received in error.
In Types II and III, however, the successive retransmissions are
combined to improve the system performance. The difference
between Types II and III protocols is in what is retransmitted
in each retransmission. In this work, we consider the following
examples of hybrid ARQ:

• Incremental redundancy (INR) protocols. Here, new
sub-codewords are transmitted in the (re)transmissions
and in each round the receiver combines all signals
received up to the end of that round (Type II hybrid
ARQ).

• Repetition time diversity (RTD) protocols. Using the
RTD, the same data is repeated in the (re)transmission
rounds and, in each round, the receiver performs maxi-
mum ratio combining (MRC) of all received signals (Type
III hybrid ARQ).

• STC-based protocols. With STC, a permuted version
of the initial sub-codeword is sent in the retransmis-
sions. That is, the original STC, which is produced by
combining the permutations of an initial sub-codeword,
is divided into a number of sub-codewords. The sub-
codewords are then sent in the retransmissions, until the
message is successfully decoded or the maximum number
of retransmissions is reached. Here, we study the system
performance for the Alamouti, the cyclic delay diversity
(CDD), the spatial multiplexing with repetition (SMR) or
the antenna switching (AS) kinds of STCs.

In the literature, it is common to use an isotropic Gaussian
input distribution over all transmit antennas, i.e.,

Km =
φ

Lt
ILt , ∀m, (2)

where Km denotes the input covariance matrix in them-th
round,φ is the total transmission power,φ

Lt
is the transmission

power per transmit antenna andILt represents theLt × Lt

identity matrix. This is because the problem of finding the
optimal covariance matrix that maximizes the capacity with
no CSIT is still open. In all simulations, except Figs. 8 and
9, we use (2) as the input covariance matrix. Section VI,
however, investigates the effect of power allocation on the
system performance, and the corresponding simulation results
are presented in Figs. 8 and 9.

III. PERFORMANCE ANALYSIS AS A FUNCTION OFAMI S

This section is devoted to clarifying the relationship in
Fig. 1. The final conclusion of the section is that to analyze
many performance metrics in ARQ protocols it is enough to
study their AMIs, which are scheme-dependent and not metric-
dependent. Along with simplifying the mathematical analysis,
this point leads to a number of outcomes such as:

• It allows us to compare the ARQ schemes based on their
AMIs and not for a specific metric.

• As the system performance depends only on the AMIs,
many closed-form/approximate expressions previously
derived for MIMO and SISO setups can be applied in
the MIMO-ARQ channels directly. As some examples,
we study the effect of nonlinear power amplifiers and
large-scale MIMO on the performance of MIMO-ARQ
protocols (For more details, see Examples 1 and 2).

• The performance of ARQ protocols with different tem-
poral fading variations, such as quasi-static, slow- and
fast-fading, can be mapped to each other (See Section
VII).

• Finally, we can elaborate on the properties of an opti-
mal ARQ protocol which outperforms every other ARQ
scheme, for all studied performance metrics. Then, as a
side-result, we show that there is no ARQ protocol that
can reach the channel ergodic capacity with bursty data
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communication in quasi-static channels (See Section IV
for more details).

A. On the definition of performance metrics

Here, we study a number of performance metrics that are
commonly used for evaluating ARQ protocols and show that
they can be expressed as functions of the AMIs. Note that the
considered metrics are only examples for clarifying the main
conclusion, and we concentrate on no specific metric through-
out the paper. Also, the metrics are obtained independentlyof
the ARQ protocol and the fading channel.

Let us first find the long-term (LT) throughput (in npcu)
which, based on the renewal-reward theorem, is defined as
[27]–[32], [44]

η =
E{Q̃}
E{L̃}

. (3)

Here,Q̃ and L̃ represent the number of successfully decoded
information nats and the number of channel uses during a
packet period, respectively, and E{.} denotes the expectation
operator. The LT throughput is found as follows.

Outage occurs if the data is decodable in none
of the (re)transmission rounds. Thus, according to
the definition of Am (see Section II), we have
Pr(Outage) = Pr(Ā1, . . . , ĀM+1). If the data is decoded at
any (re)transmission round, all information nats are received
by the receiver. Hence, the expected number of received
information nats in each packet is

E{Q̃} = Q (1− Pr(Outage)) = Q
(
1− Pr(Ā1, . . . , ĀM+1)

)
.

(4)

If the data is decoded at the end of them-th round, the total
number of channel uses isl(m). Also, the total number of
channel uses would bel(M+1) if an outage occurs, where
all possible retransmission rounds are used. Therefore, the
expected number of channel uses is obtained by

E{L̃} =
M+1∑

m=1

l(m) Pr(Ā0, . . . , Ām−1, Am)

+ l(M+1) Pr(Ā0, . . . , ĀM+1). (5)

Here,Pr(Ā1, . . . , Ām−1, Am) is the probability that the data
is decoded at the end of them-th (re)transmission round while
it was not decoded before.

The data is decoded at the end of them-th round (and not
before) iff 1) all previous equivalent data rates are higherthan
the maximum decodable rates, i.e.,C(n) < R(n), ∀n < m,

and 2) using them-th retransmission round, the data can be
decoded, i.e.,C(m) ≥ R(m). Thus, with some manipulations
on the probabilities, we havePr(Ā0, . . . , Ām) = Pr(C(m) <

R(m)) and (5) can be rewritten as

E{L̃} =
M+1∑

m=1

lm Pr(Ā0, . . . , Ām−1)

=

M+1∑

m=1

lm Pr(C(m−1) < R(m−1)). (6)

Intuitively, (6) is based on the fact that them-th retransmission
round, with lengthlm, is used if the data has not been decoded
before. In this way, usinglm = Q

R(m)
− Q

R(m−1)
, (3)-(6)

and Pr(Ā1, . . . , ĀM+1) = Pr(C(M+1) < R(M+1)), the LT
throughput and the outage probability are rephrased as

η =
1− Pr(C(M+1) < R(M+1))

∑M+1
m=1 ( 1

R(m)
− 1

R(m−1)
) Pr(C(m−1) < R(m−1))

(7)

and

Pr(Outage) = Pr
(
C(M+1) < R(M+1)

)
, (8)

respectively. Also, for ARQ protocols with fixed-length coding
we have lm = l, ∀m, which leads toR(m) = Q

ml
= R

m
,

Pr(Outage) = Pr(C(M+1) <
R

M+1 ) and

η = R
1− Pr(C(M+1) <

R
M+1 )

1 +
∑M

m=1 Pr(C(m) <
R
m
)
, (9)

whereR = Q
l

is the initial sub-codeword rate andl is the
length of the sub-codewords.

With the same procedure as in (6), the expected num-
ber of ARQ-based retransmission rounds, which is of in-
terest in terms of complexity [30], is found ass = 1 +
∑M

m=1 Pr(C(m) < R(m)). Moreover, the feedback load de-
fined as the expected number of feedback bits transmitted in
a packet period is obtained by

b = 1 +

M−1∑

m=1

Pr(C(m) < R(m)) (in bits per packet) (10)

which is based on (6) and the fact that no ARQ feedback is
sent at the end of the packet. Finally, as another metric of
interest, the average rate [16], [31] of an ARQ approach is
obtained by

r =

M+1∑

m=1

R(m) Pr(Ā1, . . . , Ām−1, Am)

=

M+1∑

m=1

R(m) Pr(C(m−1) < R(m−1), C(m) ≥ R(m))

=

M+1∑

m=1

(R(m) −R(m+1)) Pr(C(m) ≥ R(m)) (in npcu),

(11)

which follows from the fact that the achievable rate isR(m) if
the data is decoded at them-th round (and not before). Also,
the last equality in (11) is obtained with the same procedure
as in (6).

Note that in (6)-(11) we have considered no specific ARQ
protocol. For the performance analysis of different MIMO-
ARQ protocols, the readers are referred to Section V.

B. On the effect of AMIs

Let us start the discussions on the AMIs with the following
lemma which has been implicitly used by, e.g., [1], [27], [29].

Lemma 1: If a performance metric of an ARQ protocol
is a monotonically increasing function of the probabilities
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Pr(C(m) < R(m)), ∀m, the dominance of the cumulative
distribution functions (cdf)1 of the AMIs is a sufficient (but
not necessary) condition for increasing the metric.

Proof. Let C(m) andC′
(m), m = 1, . . . ,M +1, be two sets of

AMIs and defineθ(Pr(C(m) < x), ∀m) as a metric which
is a monotonically increasing function of the probabilities
Pr(C(m) ≤ x), ∀x,m. With FC(m)

(x) ≤ FC′

(m)
(x), ∀x,m, we

havePr(C(m) ≤ x) ≤ Pr(C′
(m) ≤ x) and, as stated in the

lemma,θ(Pr(C(m) < x), ∀m) ≤ θ(Pr(C′
(m) < x), ∀m).

Considering (6)-(11), it is found that many performance
metrics of ARQ protocols are monotonic functions of the prob-
abilities Pr(C(m) < R(m)), ∀m. This is because the system
performance2 depends on the retransmission round in which
the codewords are correctly decoded. Moreover, the interesting
point is that the probabilityPr(C(m) < x) is directly linked
to the AMI C(m) which is a random variable and function of
the fading realizations experienced in roundsn = 1, . . . ,m.

That is, as soon as the AMIsC(m),m = 1, . . . ,M + 1,
are determined as functions of channel realization(s), their
corresponding pdfsfC(m)

,m = 1, . . . ,M+1, are found, from
which the probabilitiesPr(C(m) < R(m)) and, consequently,
the considered performance metrics are obtained. Therefore,
instead of concentrating on different performance metrics,
we can study the data transmission efficiency of the ARQ
protocols via analyzing the AMIs. In other words, as illustrated
in Fig. 1, the performance of the ARQ protocols can be
determined by a set of intermediate parameters which are
scheme-dependent and not metric-dependent.

Note that the relations of the AMIs to the fading channel
are determined based on the encoding/decoding procedure of
the considered ARQ protocol. Also, the AMIs are not known
by the transmitter, because there is no CSI at the transmitter
except the ARQ feedback bits. Moreover, since we are always
dealing with the probabilitiesPr(C(m) < R(m)), the distri-
butions ofC(m)’s are of interest and not their instantaneous
realizations. However, determining the AMIs as functions of
the channel realization(s) we can find their corresponding
pdfs and the probabilitiesPr(C(m) < R(m)). This conclusion
which is in harmony with intuition, indicates that 1) the
only difference in performance between the different ARQ
protocols is in their AMIs and 2) for every given set of data
rates, the system performance is independent of the selected
ARQ protocol if the distributions of AMIs are given. Finally
note that 1) the conclusion is derived for the set of metrics (6)-
(11) and it is not proved for every possible utility function.
However, the arguments on the effect of the AMIs hold for
every other metric that we have checked, e.g., the expected
transmission energy per packet [46, eq. 4], the transmission
throughput [1, eq. 11] and the diversity gain [1, eq. 14]. Also,
2) up to now, the results are general in the sense that they are
independent of the ARQ protocol and the fading model (For
more details see Sections V and VII where different ARQ

1The pdf and the cdf of a random variableΛ are represented byfΛ(.) and
FΛ(.), respectively. The random variable∆ dominates the random variable
Λ if FΛ(x) ≤ F∆(x), ∀x [45].

2Throughout the paper, by the performance we mean any of the metrics
obtained in (6)-(11), unless otherwise specified.

schemes and temporal variations of the fading channel are
discussed). In the following, we provide various examples that
demonstrate the importance of the arguments.

Remark 1:Let Cp
(m), ∀m, andθp be, respectively, the AMIs

and a utility function, e.g., (6)-(11), for the ARQ protocol“p”.
Also, defineθq ≺ θp as scheme p outperforms the scheme q,
in terms of metricθ. Then,θq ≺ θp if C

q
(m) ≤ C

p
(m), ∀m,H,

which is becausePr(Cp
(m) < R(m)) ≤ Pr(Cq

(m) < R(m))

if C
q
(m) ≤ C

p
(m), ∀m,H, i.e., with the same transmission

parameters there is higher chance for scheme p, compared to
scheme q, to decode the message in the earlier rounds. Thus,
to compare two ARQ protocols we can verify if the AMIs
of one of them exceeds the AMIs of the other one for every
possible channel realization (sufficient condition), instead of
deriving the cdfs; this is usually much simpler.

Examples of sorting the ARQ schemes based on their AMIs
are given in Section V. Note that 1) the remark introduces a
sufficient (but not necessary) condition for comparing ARQ
protocols and 2) it is useful when all AMIs of a protocol
exceed the corresponding AMIs of the other scheme for
every channel realization(s), which is the case for all ARQ
comparisons that we tested (see Section V). Also, 3) the
remark is of interest as it frees us from the necessity of
calculating the pdfsfC(m)

, ∀m.
Definition 1: (Optimal ARQ protocol)As we know, the

decodable rate of any communication channel is limited to the
maximum achievable mutual information accumulated during
data transmission. Thus, for a given set of (re)transmission
rates and powers, we haveC(m) ≤ C(m),max, ∀m,H, where
C(m),max is the maximum achievable AMI up to the end
of roundm, maximized over all possible encoding/decoding
procedures and input pdfs. Therefore, following Remark
1, we refer to an ARQ protocol asoptimal, if C(m) =
C(m),max, ∀m,H. For instance, with an input covariance matrix
K , the maximum achievable mutual information of a MIMO
setup experiencing fading realizationH is log |ILr + HKH h|,
whereILr is theLr×Lr identity matrix [47]. Thus, a MIMO-
ARQ protocol is optimal ifC(m) = log |ILr +HKH h|, ∀m,H.
As seen in the sequel, the INR and some STC-based MIMO-
ARQ protocols are optimal. Also, examples of non-optimal
ARQ schemes are seen in Section V. Finally, note that in the
definition the optimality condition is on theC(m)’s via proper
selection of the encoding/decoding procedure and the input
pdf. Meanwhile, as seen in the following, we can still im-
prove the system performance by optimizing the transmission
rates/powers, in terms of the considered metric.

Example 1: (Nonlinear power amplifiers in MIMO-ARQ
protocols)In [48], the effect of nonlinear power amplifiers on
the performance of the open-loop systems is studied where,
for a given channel realizationH, the maximum decodable
rate of a multiple-input-single-output (MISO) channel is upper

bounded bylog
(

1 + ‖H‖2F ζ2
(√

φ
Lt

))

. Here, ‖.‖F is the

Frobenius norm operator andζ(.) is a function representing
the amplitude-to-amplitude mapping of a nonlinear power
amplifier.

Now, according to the above discussions, the results of
[48] can be applied to the MIMO-ARQ schemes. Specifically,
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we can use the same procedure as in [48, Section III.D] to
show that the AMIs of a MISO setup using an optimal ARQ
protocol, such as the INR, are bounded by

C(m) ≤ log

(

1 + ‖H‖2F ζ2

(√

φ

Lt

))

, ∀m. (12)

In this way, from (9), the LT throughput of the fixed-length
MISO-INR is bounded by

η ≤ R

1− FU (
e

R
M+1 −1

ζ2(
√

φ
Lt

)
)

1 +
∑M

m=1 FU (
e

R
m −1

ζ2(
√

φ
Lt

)
)

(13)

whereFU is the cdf of the random variableU = ‖H‖2F . Also,
(13) is based on (9) and the fact that the LT throughput is a
decreasing function ofPr(Cm < R(m)), ∀m. Hence, an upper
bound (resp. a lower bound) of the LT throughput is obtained
if C(m) is replaced by its upper bound (resp. lower bound).
Finally, note that with a linear power amplifierζ(x) = x we

haveC(m) = log
(

1 + φ
Lt
‖H‖2F

)

, ∀m, as in Definition 1.
Considering a solid-state power amplifier (SSPA) with

ζ(x) = x

(1+( x
Aos

)2τ )
1
2τ

[48] and typical constantsAos = 5

andτ = 1, Fig. 2 demonstrates the effect of nonlinear power
amplifiers on the LT throughput of4 × 1 MISO-INR setup
with Rayleigh-fading channels3. Here, the SNR is defined as
10 log10(φ) in dB. Note that, according to [48, Fig. 6] and
the considered parameter setting, the bound is very tight for
the AMIs and, consequently, the LT throughput. As seen in
the figure, the performance of the MIMO-ARQ protocols is
substantially affected by the efficiency of the amplifiers when
the input SNR increases. However, the numerical results of
the example should not be overemphasized because we have
considered no compensation for the nonlinear power amplifier
(of course, we can apply the same mathematical procedure for
the cases with compensation of the nonlinear power amplifier).
Finally, as a side-result, the figure indicates that, compared to
the open-loop communication setup, considerable throughput
increment is achieved by a limited number of ARQ-based
retransmissions.

Example 2: (Large-scale MIMO-ARQ)Recently, the im-
plementation of very large antenna arrays at the transmitters
and/or receivers, referred to as large-scale MIMO, has become
a hot research topic, because it offers large degrees of freedom,
the possibility for simultaneous transmission to several users,
etc. [49], [50]. One of the main bottlenecks of the large-scale
MIMO is the CSI acquisition, specially at the transmitter,
which has limited the large-scale MIMO to an academic
research topic [49]. This is the place where ARQ is of great
value, leading to substantial feedback load reduction. Thus, it
is expected to see many works dealing with large-scale MIMO-
ARQ in the future. This example is devoted to provide some
hints for studying the large-scale MIMO-ARQ. Specifically,
it is seen that the properties of the AMIs let us map a large-

3All simulation results are given for iid Rayleigh-fading channels where
each element of the channel matrixH follows CN (0, 1).
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Figure 2. LT throughput in different power amplifier models,MISO channel
Lt = 4, optimal (INR) ARQ protocol, isotropic input distributionKm =
φ

Lt
ILt , ∀m. The input SNR is defined as10 log10(φ) dB. For each SNR, the

initial rate R is optimized, to maximize the LT throughput.

scale MIMO-ARQ into an equivalent SISO-ARQ setup, which
simplifies the performance analysis considerably.

Consider a MIMO transmission scheme utilizing an optimal,
e.g., INR, ARQ protocol. We can use the results of [51, Section
II.A] to show that the random variableC(m) = log |ILr +
φ
Lt

HHh|, ∀m, i.e., the AMIs of the ARQ protocol, converges in
distribution to a Gaussian random variableY which, depending
on the number of transmit/receive antennas, has the following
characteristics

Y ∼







N (Lt log(1 +
Lrφ
Lt

), Lt
Lr
) if largeLr, fixedLt

N (Lr log(1 + φ), Lrφ
2

Lt(1+φ)2 ) if largeLt, fixedLr

N (Lrφ,
Lr
Lt
φ2) if largeLr&Lt, smallφ

N (µ̆, σ̆2) if largeLr&Lt, largeφ
µ̆ = Lmin log(

φ
Lt
) + Lmin(

∑Lmax−Lmin

i=1
1
i
− γ)

+
∑Lmin−1

i=1
i

Lmax−i
, γ = 0.5772 . . .

σ̆2 =
∑Lmin−1

i=1
i

(Lmax−Lmin+i)2 + Lmin(
π2

6 −
∑Lmax−1

i=1
1
i2
),

Lmax = max(Lt, Lr), Lmin = min(Lt, Lr).
(14)

Using (14), we havePr(C(m) ≤ R(m))→ FY(R(m)) which
let us to investigate the performance of large-scale MIMO-
ARQ protocols with very high accuracy4. For instance, setting
Lr = 1, Fig. 3 shows the LT throughput and the average rate
of an optimal ARQ approach which is obtained via (14) and
compares the results with exact ones obtained byC(m) =

log |ILr + HKH h|, ∀m. The figure indicates the accuracy of
the approximation in (14). Therefore, assuming iid Rayleigh-
fading channels, the data transmission efficiency of large-scale
MIMO-ARQ can be studied via a SISO-ARQ setup following
(14), for which many results have been previously derived
[27]–[32].

4According to [51], the approximations in (14) are very accurate even for
moderate values ofLt andLr.
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maximum ofM = 1 retransmission. For each number of transmit antennas,
the initial rateR is optimized, to maximize the LT throughput/average rate.

IV. ON THE EFFECT OF BURSTY COMMUNICATION

ARQ protocols are normally studied in two different data
communication models, namely, bursty [27], [28], [31] and
continuous [30], [31]. In contrast to the bursty model where
there is an idle period between two successive packet trans-
missions, the continuous model is based on the assumption
that a new packet transmission starts as soon as the previous
packet transmission ends. Continuous communication is an
appropriate model for the cases where there is a large pool
of information nats to be sent to the receivers. On the other
hand, the bursty communication model is more accurate for
cases where the spectrum is used sporadically, for instancein
random access, cognitive radio, spectrum sharing or TDMA-
based networks [27], [28], [31], [52], [53]. Particularly,the
bursty model is of interest when we remember that, according
to Federal Communications Commission (FCC), temporal
and geographical variations in the utilization of the assigned
spectrum range from15% to 85% with a high variance in time
[53].

From the discussions of the previous section, the goal of
this part is to evaluate the effect of bursty communication
on the performance of the MIMO-ARQ setup. Along with
deriving the empirical fading pdf, two interesting conclusions
of the section are 1) a MIMO-ARQ setup can be mapped
to an equivalent SISO-ARQ model, in the sense that the
same performance is achieved in the two schemes, and 2)
depending on the fading condition, there may be no ARQ
protocol that can reach the channel ergodic capacity in a
bursty communication model. Also, as a side-result, we show
that to maximize the LT throughput and for largeM , the
equivalent data rates of an optimal ARQ protocol should
follow a geometric sequence.

Let us first illustrate the following example.
Example 3: (Equivalent ARQ models)As explained before,

the performance of an ARQ protocol is independent of the
fading model as soon as the pdfs of the AMIs are given.

Also, for an optimal MIMO-ARQ with non-adaptive input
covariance matrixK we haveCMIMO

(m) = log |ILr +HKH h|, ∀m.
On the other hand, the AMIs of the optimal ARQ scheme
in a SISO channel isCSISO

(m) = log(1 + Υ) where Υ is
the channel SNR random variable. Therefore, the perfor-
mance of the MIMO and the SISO setups are the same if
FΥ(x) = F|ILr+HKH h|−1(x), ∀x, which leads toPr(CMIMO

(m) ≤
x) = Pr(CSISO

(m) ≤ x), ∀x (Note that |ILr + HKH h| ≥ 1).
In simple words, using optimal ARQ it is possible to map
a MIMO channel to a SISO setup, in the sense that the
same performance is obtained in these schemes. Finally, the
discussions were presented for the optimal ARQ schemes.
However, as also seen in the following, the same arguments
are valid for the non-optimal ARQ protocols, e.g., the RTD.

In contrast to Example 2 on large-scale MIMO-ARQ,
there is no approximation in Example 3. Also, it should be
mentioned that the concept of mapping the open-loop MIMO
(without feedback) to a SISO channel has been previously
indicated by, e.g., [54]. In Example 3, however, the main point
is that the performance of the ARQ-based approach is fully
characterized byC(m)’s which lets us derive the conclusion
for the MIMO-ARQ protocols. Moreover, the example has
interesting outcomes such as:

• Recently, several theoretical analysis/comparisons for the
ARQ protocols have been presented in SISO systems
where the assertions are valid independent of the channel
distribution [27], [30], [31]. In this way, Example 3 shows
that all results previously proved by, e.g., [27], [30], [31]
for the SISO channels also hold for the MIMO setups, as
they can be mapped to an equivalent SISO model.

• The example helps us to 1) analyze different power allo-
cation methods, 2) discuss about the optimal equivalent
data rates of the ARQ protocols and also 3) find the
empirical pdf of the channel quality in a MIMO-ARQ
setup. The first item is covered in Section VI. The two
last items are studied here as follows.

The key difference between the bursty and continuous
models returns back to the way the fading channel is observed
at the transmission endpoints. Clearly, the empirical channel
distribution matches the true one under the continuous com-
munication model. This is because all channel uses of a fading
block are utilized for data transmission. Under the bursty
communication model, however, the channel is seen asworse
than what it is in reality. The reason is that if the channel is
good, the packet transmission ends at the first (re)transmission
round(s). However, many channel uses are utilized for sending
a packet when the channel isbad. Hence, a large portion
of the data (re)transmission is carried out when the channel
experiences low quality, while the transmitter is mostly off
when the channel is good.

To be more specific, we find the empirical channel quality
distribution in the bursty model; Assuming non-adaptive power
allocation, let fΥ(υ) be the true channel quality pdf as
explained in Example 3. With the same procedure as in (5),
the number of channel uses for different channel qualities is
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l(υ) =

{
l(m) if eR(m) − 1 ≤ υ < eR(m−1) − 1, m = 1, . . .M
l(M+1) if υ < eR(M) − 1.

(15)

Considering the number of fading blocksN → ∞, the total
number of channel uses in which the channel SNRΥ = υ

is observed isNl(υ)fΥ(υ). Moreover, the total number of
channel uses inN fading blocks isN

∑

∀υ l(υ)fΥ(υ). Hence,
the empirical channel quality pdf and cdf in the bursty model
are respectively found as

f
emp
Υ (υ) = l(υ)fΥ(υ)

∑

∀υ

l(υ)fΥ(υ)

=







l(m)fΥ(υ)

E{L̃}
if eR(m) − 1 ≤ υ

< eR(m−1) − 1, m = 1, . . . ,M
l(M+1)fΥ(υ)

E{L̃}
if υ < eR(M) − 1

F
emp
Υ (υ) =

υ∫

0

f
emp
Υ (x)dx

=







FΥ(e
R(M)−1)

R(M+1)Ω
+
∑m−1

n=1
FΥ(e

R(M−n)−1)−FΥ(e
R(M+1−n)−1)

R(M+1−n)Ω

+FΥ(υ)−FΥ(e
R(M+1−m)−1)

R(M+1−m)Ω

if eR(M+1−m) − 1 ≤ υ

< eR(M−m) − 1, m = 1, . . . ,M
FΥ(υ)

R(M+1)Ω
if υ < eR(M) − 1,

Ω = E{L̃}
Q

=
M+1∑

m=1

FΥ(e
R(m−1)−1)−FΥ(e

R(m)−1)
R(m)

+ FΥ(e
R(M+1)−1)
R(M+1)

.

(16)

With R(m) =
R
m
, R = 1 and Rayleigh-fading condition, Fig.

4 compares the empirical channel quality cdf with the true
one when implementing a fixed-length optimal ARQ protocol,
e.g., fixed-length INR. Again, note that the empirical SNR
cdf matches the true channel SNR cdf in the continuous
communication model (black dashed curves in the figure). In
harmony with the discussions, we observe that the empirical
cdf is worse in the bursty model (the curve has shifted to
the left). Moreover, with0dB input SNR andM = 1, Fig. 5
demonstrates the throughput versus the initial transmission rate
in different data communication models5. As it can be seen,
there is a gap between the LT throughput of the two models at
moderate values ofR. Importantly, the maximum throughput
achieved in these models is considerably different. With low
(resp. high) rates, however, the two models lead to the same
LT throughput, because the data is always decoded at the first
round (resp. it is almost never decoded and the LT throughput
converges to zero.). Finally, how much the cdf curve is shifted
to the left and the LT throughput decreases due to bursty
communication depends on the number of transmit/receive
antennas, equivalent data rates, number of retransmissions, etc.

To further clarify the differences between the bursty and
continuous models, we study their asymptotic behavior as
follows.

With M → ∞ retransmissions and a quasi-static fading
channel, Shen, et. al, have shown that the LT throughput of the
variable-length coding INR protocol converges to the channel

5The LT throughput is obtained by (7) in the bursty model. Under
continuous communication model, however, [30], [31] showed that the LT
throughput (3) degenerates to the average rate (11), i.e.,η = r. That is, the
solid lines (resp. dashed lines) of Fig. 5 are obtained by (7)(resp. (11)).
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ergodic capacityE{C} =
∫∞

0
fΥ(υ) log(1 + υ)dυ if the data

is transmitted continuously [31, lemma 2]6. However, using
(16) and because of the worse fading distribution, it can be
easily proved that there is no ARQ scheme that can reach the
channel ergodic capacity, if the data is transmitted in a bursty
fashion and the channel is quasi-static. This point, which is
because the good channels are not fully utilized with the bursty
model, is further elaborated in Example 4.

Example 4: (Feedback load versus LT throughput)Shown
in Fig. 6 is the feedback load (10) versus the LT throughput
(9) for the2× 2 and3× 3 MIMO setups utilizing an optimal
ARQ and bursty communication. The results are obtained for
different number of retransmissions when the initial rateR

goes from zero to infinity. Also, the pointsηmax,2 and ηmax,3

show the maximum LT throughput withLt = Lr = 2 andLt =
Lr = 3, respectively, and a maximum ofM = 1 retransmission

6In [31], the SISO model is considered. But, the same argumentas in [31,
lemma 2] is valid for the MIMO setup too.
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round, for which the feedback load isb = 1, ∀R. Considering
the maximum LT throughput in each curve of the case with,
e.g., Lt = Lr = 3, it is found that increasing the number
of retransmissions leads to marginal LT throughput increment
at the cost of considerable feedback load increment. This is
one of consequences of the bursty communication model; with
the bursty model, the system performance is more affected
by the bad channel qualities ifM increases. Thus, there is
a tradeoff between increasing the number of retransmissions
and deteriorating the empirical channel quality and, as a result,
the maximum achievable LT throughput increases withM

marginally. Finally, as a side-result, Fig. 6 shows that with a
given feedback load increasing the number of transmit/receive
antennas results in substantial LT throughput increment.

Motivated by Fig. 6, the rest of the simulation results are
given with a maximum ofM = 1 retransmission round, i.e,
a maximum of two (re)transmission rounds, unless otherwise
stated. Also, we do not consider the continuous communica-
tion model any further. Finally, talking about large number
of retransmissions, we use the results of Example 3, on the
equivalence of SISO- and MIMO-ARQ models, to determine
the equivalent data rates of an optimal ARQ protocol, when
M increases. The result, which is presented in Theorem 1, is
interesting when we remember that depending on the fading
pdf and number of retransmissions there is no general closed-
form solution for the equivalent data rates maximizing the LT
throughput [27], [31], [32], [55].

Theorem 1: Consider non-adaptive power allocation over
the retransmissions,Km = K , ∀m, in an optimal MIMO-
ARQ model defined in Definition 1. For high values ofm,
the optimal (in terms of LT throughput) equivalent data rates,
i.e., the set ofR(m)’s, can be approximated by the geometric
sequenceR2

(m) = R(m−1)R(m+1).

Proof. See the appendix.

Note that the conclusion of the theorem is independent of
the fading pdf and the total transmission power.

Finally, it is worth noting that, with the bursty communi-
cation model, the empirical pdf matches the true one if the

channel is temporally-independent slow-fading. The reason is
that an independent channel realization is experienced in each
sub-codeword transmission, independently of the ARQ process
and the message decoding status. However, the empirical and
the true channel quality pdfs differ in the practical cases
of temporally-correlated fast- and slow-fading channels,for
instance, in the indoor ultra wideband (UWB) channels [41],
[56], where the channel quality varies slowly and smoothly
in successive fading blocks. This is because of the ARQ ran-
dom packet length which, with temporally-dependent fading
condition, affects the total number of channel uses in which
different fading realizations are observed.

V. EXAMPLES OF MIMO-ARQ PROTOCOLS

The goal of the section is to provide more insight into the
effect of AMIs on the performance of MIMO-ARQ setups.
Thus, we show how the encoding and decoding procedures
change the AMIs of the RTD, INR and STC-based MIMO-
ARQ schemes. Also, the results are used to sort ARQ schemes
based on their AMIs.

A. RTD MIMO-ARQ protocol

Utilizing RTD, we haveXm = X1, ∀m, and the receiver
performs MRC of the received signals. In other words, each
round of RTD is equivalent to addingLr antennas at the re-
ceiver [11], [12], [16], [17]. Therefore, the equivalent channel
model at the end of them-th round, i.e., (1), is rephrased as

YRTD
(m) = HRTD

(m)X1 + ZRTD
(m),

HRTD
(m) = [HT . . .HT

︸ ︷︷ ︸

m times

]T, YRTD
(m),Z

RTD
(m) ∈ CmLr×1 (17)

which is anmLr × Lt MIMO channel. Thus, according to
the capacity of the MIMO channels [47], the AMI, i.e., the
maximum decodable rate, at the end of them-th round of the
RTD protocol is obtained by

CRTD
(m) =

1

m
log
∣
∣
∣ImLr + HRTD

(m)K(HRTD
(m))

h
∣
∣
∣ . (18)

Here, the term 1
m

is due to that as the data is repeatedm

times the maximum decodable rate is divided bym [29]–[31].
Finally, note that, as the RTD is a fixed-length coding ARQ
scheme, we haveR(m) =

R
m

.

B. INR ARQ protocol

Using INR, new sub-codewords are (re)transmitted in the
(re)transmissions and in each round the receiver combines
all signals received up to the end of that round. Following
the discussions in [57, chapter 15], [58, chapter 7], [59],
the maximum decodable data rate of the INR protocol with
different sub-codewords of lengthslm and input covariance
matricesKm is obtained by the TDMA-type equation

C INR
(m) =

∑m
n=1 ln log |ILr +HKnH

h|
∑m

n=1 ln

= R(m)

m∑

n=1

(
1

R(n)
− 1

R(n−1)

)

log |ILr +HKnH
h|.

(19)
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Specifically, with non-adaptive input covariance matrixKm =
K , ∀m, (19) is simplified to

C INR
(m) = log |ILr +HKH

h|, ∀m. (20)

Thus, from (19)-(20) and as stated before, the INR is an op-
timal ARQ protocol (review Definition 1 introducing optimal
ARQ protocol).

Although having high LT throughput and low outage prob-
ability, variable-length coding INR results in highpacketing
complexity [27], [30], [31]. In order to reduce the complexity,
fixed-length coding INR scheme can be considered where
settinglm = l, ∀m, in (19) leads to

C
INR,fixed-length
(m) =

1

m

m∑

n=1

log |ILr +HKnH
h|. (21)

Shown in Fig. 7 is the LT throughput of the MIMO-
INR protocol for fixed- and variable-length coding schemes.
According to the figure, variable-length coding is of less
interest in the cases with small input SNR or number of
transmit/receive antennas. However, sizable performanceim-
provement is achieved by variable-length coding when the
transmission power or the number of antennas increases.

The superiority of the INR over the RTD has been shown
by [16], [27], [30], [31] for different performance metrics,
and can be proved by comparing the AMIs as well. However,
settingR(m) = R

m
and non-adaptive input covariance matrix

Km = ǫK ′, ∀m, whereǫ→ 0, (20) is rephrased as

lim
ǫ→0

C INR
(m) = ǫTr(HK

′
H

h) (22)

which is the same as in the RTD, where using (17) and (18)
it can be written

lim
ǫ→0

CRTD
(m) =

1

m
ǫTr(HRTD

(m)K
′(HRTD

(m))
h) = ǫTr(HK

′
H

h). (23)

Thus, from Remark 1, the RTD and fixed-length INR lead to
the same performance at low SNRs.

C. STC-based MIMO-ARQ protocols

Different kinds of STCs are normally used in MIMO-ARQ
protocols, e.g., [16], [17]. Here, settingM = 1, we obtain the
AMIs when the Alamouti, the CDD, the SMR or the AS codes
are utilized in a2 × 1 MISO-ARQ channel. Our reasons for
selecting the2 × 1 MISO setup are 1) the analytical results
are tractable and 2) many STCs, such as the Alamouti code
[20], were first designed for the2× 1 MISO channel.

While the AMIs of the considered STCs are summarized
in Table 1, because of the mathematical similarity, we only
explain the procedure for deriving the AMIs of the CDD code;
with a 2 × 1 MISO setup, the mother code of the CDD is

X =

[
x1 x2

x2 x1

]

. In the original CDD, the codewordX is sent

to the receiver via two channel uses. Using ARQ, however,
the data is sent in two rounds as follows. In the first round,
X1 = [x1 x2]

T is sent via one channel use. Thus, the received
signal isY(1) = [h1h2][x1 x2]

T+Z(1) and the AMI is obtained
by CCDD

(1) = log(1 + φ
2 [h1 h2][h1 h2]

h) = log(1 + φ
2χ2). Here,

the last equality is for Rayleigh-fading channels, on whichwe
focus, andχk =

∑k
i=1 |hi|2 is a random variable following the

Chi-square distribution with2k degrees of freedom. If the data
is not decoded at the end of the first round, one more channel
use is used to sendX2 = [x2 x1]

T and the receiver combines
the two received signals. Hence, the equivalent channel is

Y(2) = [h1 h2]

[
x1 x2

x2 x1

]

+ Z(2) ≡
[

h1 h2

h2 h1

] [
x1

x2

]

+ Z(2).

(24)

In simple words, using CDD in two channel uses is equivalent
to transmitting the codewordX1 = [x1 x2]

T in the2×2 MIMO

with channel matrix

[
h1 h2

h2 h1

]

. Thus, the AMI of the second

round is

CCDD
(2) =

1

2
log

∣
∣
∣
∣
∣
I 2 +

φ

2

[
h1 h2

h2 h1

] [
h1 h2

h2 h1

]h
∣
∣
∣
∣
∣

=
1

2
log

∣
∣
∣
∣
∣
I 2 +

φ

2

[
χ2 2Re{h1h

∗
2}

2Re{h1h
∗
2} χ2

]
∣
∣
∣
∣
∣

=
1

2
log((1 +

φ

2
χ2)

2 − φ2Re{h1h
∗
2}2). (25)

The results for the other STCs considered in Table 1 are
obtained with the same procedure. The effect of power allo-
cation on the performance of STC-based MIMO-ARQ setups
is studied in Section VI.

Finally, it is worth noting that withLt × 1 MISO channel
H = [h1 . . . hLt ] and Rayleigh-fading condition the AMIs of
the RTD and INR protocols, i.e., (18) and (20) are rephrased
as

CRTD
(m) =

1

m
log(1 +

mφ

Lt
χLt), χLt =

Lt∑

i=1

|hi|2, (26)

and

C INR
(m) = log(1 +

φ

Lt
χLt), (27)

respectively, wherefχLt
(x) = 1

Γ(Lt)
xLt−1e−x, x ≥ 0, andΓ(.)

is the Gamma function. Here, (26) follows from (18) and|In+
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Table I
THE EQUIVALENT CHANNEL MODELS AND THE AMI S OF DIFFERENTSTC-BASED ARQ SCHEMES.

Mother STC method Codeword in round# 1 Equivalent channel model AMI of round # 1

AS:

[

x1 0

0 x1

] [

x1

0

]

[h1 0] CAS
(1) = log(1 + φχ1)

SMR:

[

x1 x1

x2 x2

] [

x1

x2

]

[h1 h2] CSMR
(1) = log(1 + φ

2 χ2)

Alamouti:

[

x1 − x∗

2

x2 x∗

1

] [

x1

x2

]

[h1 h2] CAlamouti
(1) = log(1 + φ

2 χ2)

CDD:

[

x1 x2

x2 x1

] [

x1

x2

]

[h1 h2] CCDD
(1) = log(1 + φ

2 χ2)

Mother STC method Codeword in round# 2 Equivalent channel model AMI of round # 2

AS:

[

x1 0

0 x1

] [

x1 0

0 x1

]

[h1 h2] CAS
(2) = 1

2 log(1 + φχ2)

SMR:

[

x1 x1

x2 x2

] [

x1 x1

x2 x2

] [

h1 h2

h1 h2

]

CSMR
(2) = 1

2 log(1 + φχ2)

Alamouti:

[

x1 − x∗

2

x2 x∗

1

] [

x1 − x∗

2

x2 x∗

1

] [

h1 h2

h∗

2 − h∗

1

]

CAlamouti
(2) = log(1 + φ

2 χ2)

CDD:

[

x1 x2

x2 x1

] [

x1 x2

x2 x1

] [

h1 h2

h2 h1

]

Eq. (25)

xJn| = 1+nx whereJn is then×n ones matrix. Interestingly,
(26) indicates that the same performance is achieved by the
MISO-RTD and a SISO-RTD model with fading pdffχLt

.
Remark 2: (Sorting the ARQ protocols)Using Table 1, we

can write
{

CRTD
(1) = CSMR

(1) = CCDD
(1) = CAlamouti

(1) = C
INR,fixed-length
(1) , ∀H

CRTD
(2) = CSMR

(2) ≤ CCDD
(2) ≤ CAlamouti

(2) = C
INR,fixed-length
(2) , ∀H

(28)

which, according to Remark 1, leads to

θRTD = θSMR ≺ θCDD ≺ θAlamouti = θINR,fixed-length (29)

with ≺ defined in Remark 1 (Clearly,θINR,fixed-length ≺
θINR,variable-length). However, lettingφ→ 0 (low SNRs) in Table
1, (29) is simplified to

θRTD = θSMR = θCDD = θAlamouti = θINR,fixed-length. (30)

The remark demonstrates the usefulness of the STC tech-
niques; as also seen in Table 1, the developed STC methods
are mainly based on repeating a permuted version of the initial
sub-codeword. Thus, their encoding and decoding complexity
is comparable with the ones in the RTD protocol, and less
than the complexity in the INR. On the other hand, proper
selection of the STC approach (for instance, the Alamouti
code) results in appropriate performance of the MIMO-ARQ
scheme, comparable with performance in the INR protocol.

Finally, the simulation results for different MIMO-ARQ
techniques are presented later in Section VI, where the system
performance is obtained for both adaptive and non-adaptive
power allocation approaches. The results, which are presented
in Fig. 8, emphasize the validity of Remark 2.

VI. ON THE EFFECT OF POWER ALLOCATION

With imperfect CSIT, the optimal power allocation for the
MIMO channels is still an open problem. For the MIMO-
ARQ systems power allocation can be done within the

(re)transmissions (temporal power allocation), between the
antennas (spatial power allocation) or both. We present some
discussions on the two first cases. As demonstrated, the dis-
cussions on the AMIs are useful for deriving the (sub)optimal
power allocation strategies.

A. Temporal power allocation

Let the input power in them-th (re)transmission round be
φm. If the data is decoded at the end of them-th round, and
not before, the total consumed energy isξ(m) =

∑m
n=1 lnφn.

Also, the consumed energy is found asξ(M+1) =
∑M+1

n=1 lnφn

if an outage occurs. In this way, (6) can be used to find the
average transmission powerΦ = E{ξ̃}

E{L̃}
[27]–[31], [59], i.e.,

the ratio of the expected consumed energy and the expected
number of channel uses, by

Φ =
1

E{L̃}

(M+1∑

m=1

(
m∑

n=1

lnφn) Pr(Ā0, . . . , Ām−1, Am)

+ (

M+1∑

n=1

lnφn) Pr(Ā0, . . . , ĀM+1)

)

(a)
=

∑M+1
m=1 φm( 1

R(m)
− 1

R(m−1)
) Pr(C(m−1) < R(m−1))

∑M+1
m=1 ( 1

R(m)
− 1

R(m−1)
) Pr(C(m−1) < R(m−1))

.

(31)

Here, (a) is obtained with the same procedure as in (6).
Considering (31), an average power constraintΦ ≤ φ and (6)-
(11), we can optimize different metrics, e.g., outage probability
and LT throughput, via power allocation.

More specifically, the equivalent channel matrix of
the RTD protocol in (17) is rephrased asHRTD

(m) =

[
√
φ1HT . . .

√
φmHT]T, if the input signal is scaled in the

retransmissions. For instance, with a temporally-adaptive
isotropic Gaussian input distributionKm = φm

Lt
ILt the AMI

(18) is found asCRTD
(m) = 1

m
log |ImLr +Θm⊗HHh| where for
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Figure 8. The LT throughput for different STCs. MISO channelLt = 2, M =
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ILt

(resp.Km = φ

Lt
ILt , m = 1, 2). The termsφm,m = 1, 2, are optimized

based on the average power constraint (31). The same LT throughput as in
the Alamouti code (resp. SMR code) is achieved by the MISO-INR (resp.
MISO-RTD) with M = 1.

theLt×1 RTD-based MISO setup we haveCRTD
(m) = 1

m
log(1+

(
∑m

n=1 φn)χLt). Here,Θm(i, j) =
√
φiφj , i, j = 1, . . . ,m,

and⊗ denotes the Kronecker product.
For INR, we have C INR

(m) =

R(m)

∑m
n=1 (

1
R(n)
− 1

R(n−1)
) log |ILr +

φn

Lt
HHh| if

adaptive isotropic Gaussian input distribution is
considered in (19). Moreover, considering the
Lt × 1 MISO-INR system the AMI is rephrased as
C INR

(m) = R(m)

∑m
n=1 (

1
R(n)
− 1

R(n−1)
) log(1 + φn

Lt
χLt). Also,

we can scale the columns of the mother codes of Table 1
with terms

√
φm and use the same procedure as before to

determine the AMIs of the considered STCs in the presence
of temporal power allocation. Finally, note that many results
such as [60, eq. (23)] and [61, eq. (16),(18)] can be extended
to bound the AMIs of the MIMO-ARQ and, consequently,
the system performance, in the presence of temporal power
allocation. However, due to space limits, we do not go into
details.

Fig. 8 demonstrates the LT throughput of different MISO-
ARQ techniques in the presence of temporally-adaptive and
non-adaptive power allocation. The results emphasize the
validity of Remark 2 where, for each SNR, we haveηAS ≤
ηSMR ≤ ηCDD ≤ ηAlamouti and the difference between the LT
throughput of different schemes decreases at low SNR. Also,
adaptive power allocation is observed to be effective for the
Alamouti and CDD codes while its effect is negligible in the
SMR and AS codes.

B. Spatial power allocation

Instead of power allocation over time, the adaptation can
be between the antennas where, while the overall transmit
power is constant in different retransmissions, in each round
the antennas experience different transmit powers. This isstill
a difficult problem to solve analytically. However, the AMI

discussions are helpful for numerical solution of the problem
as follows.

Lemma 2: Consider two possible input covariance matrices
K and K ′. The matrixK outperformsK ′, in terms of AMIs
and, consequently, in performance metrics such as (6)-(11), if
FΥ(x) ≤ FΥ′(x), ∀x > 0. Here,Υ andΥ′ are the equivalent
SISO channel SNR random variables, defined in Example 3,
that are obtained fromK andK ′, respectively.

Proof. Lemma 2 is a consequence of Lemma 1; for simplicity,
the proof is given for an optimal ARQ protocol, e.g., INR, with
C(m) = log |ILr + HKH h|, ∀m = 1, . . . ,M + 1, while the
same arguments hold for non-optimal ARQ protocols as well.
With FΥ(x) ≤ FΥ′(x), ∀x > 0, we havePr

(
C(m) = log(1+

Υ) ≤ R(m)

)
≤ Pr

(
C′

(m) = log(1 + Υ′) ≤ R(m)

)
, ∀R(m).

Therefore, since the performance of the ARQ schemes is a
decreasing function ofPr(C(m) ≤ R(m)), the lemma is proved
immediately.

According to Example 3 on equivalent SISO- and MIMO-
ARQ models and Lemma 2, the iterative optimization algo-
rithm stated in Algorithm 1 can be utilized to determine the
sub-optimal covariance matrix optimizing the system perfor-
mance. The algorithm, which roots from machine learning
concepts [30], is simple and very efficient compared to ex-
haustive search. Also, although it has been described for a
constant covariance matrix, it can be adapted in a greedy
fashion for the cases with different covariance matrices inthe
(re)transmissions. Finally, the sub-optimality of the derived
results is due to structure of the considered covariance matrices
(see Step I of the algorithm) and the fact that Lemma 2 pro-
vides a sufficient but not necessary constraint for optimizing
the input covariance matrix.

Algorithm 1 Sub-optimal power allocation

I. For a given power constraint Tr(K) = φ, considerJ ,
e.g. J = 20, randomly generated covariance matrices
K j ,Tr(K j) = φ,K j(n,m) = 0, n 6= m, whereK j(n,m)
is the (n,m)-th element ofK j .

II. For each matrix, find the cdf of the AMIs, e.g.,Cj

(m) =

log |ILr + HK jHh|, denoted byF
C

j

(m)
.

III. Find the covariance matrix which results in the best
AMI cdf, i.e., K i whereFCi

(m)
(x) ≤ F

C
j

(m)
(x), ∀j =

1, . . . , J, x. Keep the best cdf of the previous iteration, if
such a matrix is not found.

IV. K1 ← K i.
V. Generateb ≪ J , e.g., b = 5, matricesK j,new, j =

1, . . . , b aroundK1. These matrices, which are generated
by adding small random numbers toK1, should also
satisfy the constraints introduced in I. Then,K j+1 ←
K j,new, j = 1, . . . , b.

VI. Regenerate the remaining matricesK j , j = b + 2, . . . , J
randomly such that the constraints in I are satisfied.

VII. Go to II and continue until convergence (when no im-
provement is observed after many, e.g.,104, iterations).

SettingR = 1, Fig. 9 shows the effect of power allocation
on the LT throughput of MIMO-INR scheme. For temporal
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Figure 9. LT throughput vs the input SNR. MIMO-ARQ setupLt =
Lr = 2, M = 1, fixed-length INR ARQ protocolR = 1. With temporal
(resp. isotropic input distribution) we haveKm = φm

Lt
ILt (resp. Km =

φ

Lt
ILt , m = 1, 2) andφm’s are related together via (31). With sub-optimal

spatio-temporal power allocation, we have Tr(Km) = φ,m = 1, 2,K(i, j) =
0, i 6= j, i.e., the sub-optimal diagonal matricesKm,m = 1, 2, are obtained
through Algorithm 1 when it is adapted in a greedy fashion. The results are
for fixed (non-optimized) initial rateR = 1.

power allocation, we haveKm = φm

Lt
ILt where φm’s are

related together through (31). For the sub-optimal spatio-
temporal power allocation we have adapted Algorithm 1 in
a greedy fashion such that Tr(Km) = φ,m = 1, 2. Com-
pared to isotropic Gaussian input distribution, substantial LT
throughput increment is achieved by temporal power alloca-
tion at low SNRs. With Rayleigh-fading and the considered
parameters, however, the sub-optimal spatio-temporal power
allocation of Algorithm 1 is only marginally useful. At high
SNRs, an isotropic Gaussian input distribution is optimal,in
harmony with the literature. Finally, the gain of adaptive power
allocation decreases if, along with the powers, the rateR is
optimized as well.

VII. R ELAXING THE SYSTEM MODEL ASSUMPTIONS

Throughout the paper, the results were obtained for a noise-
free feedback channel and under the quasi-static channel
assumption where the fading coefficients remain fixed during
a packet period. In this section, we relax these assumptions.
We illustrate that the techniques developed previously canbe
used in many cases with different forward/feedback channel
models. Also, it is shown that the performance of MIMO-
ARQ protocols with different temporal fading variations can
be mapped to each other, under certain conditions.

A. On temporal variations of the fading coefficients

Suppose the fast-fading condition whereT different fading
realizationsH(t), t = (m− 1)T +1, . . . ,mT, are experienced
during them-th (re)transmission round. In this case, the same
procedure as in (21) can be used to obtain the AMIs of an

optimal (INR) ARQ protocol as7

C
INR, fast-fading
(m) =

1

mT

m∑

n=1

nT∑

t=(n−1)T+1

log |ILr + H(t)KnH(t)h|.

(32)

Also, note that settingT = 1 (resp. H(t) = H, ∀t =
1, . . . , (M + 1)T,) in (32) provides the results with slow-
fading (resp. quasi-static) channel condition (see Section II).
Here, the important point is that the discussions of SectionIII
are independent of the fading model. In other words, the only
parameters that are affected by the fading model are the AMIs
while the performance metrics, e.g., (6)-(11), are independent
of the fading model as soon as the pdfs of the AMIs are
given. Thus, the discussions on using the AMIs as intermediate
scheme-dependent parameters for the analysis of MIMO-ARQ
protocols are also valid for the slow- and fast-fading models.

It is well-known that with the same fading pdf the perfor-
mance of ARQ protocols improves as the channel temporal
variation increases, because more time diversity is exploited
by the ARQ. In the following, however, we compare the
performance of ARQ protocols in different fading conditions.
The results are of interest because they provide connections
between the papers considering one of the quasi-static, slow-
or fast-fading models.

Theorem 2: Assume non-adaptive power allocation. The
performance of an optimal (INR) ARQ scheme in the fast-
fading channel withT fading realizations in a (re)transmission
round is worse than the performance in a slow-fading channel
which follows the average characteristic of the fast-fading
channel in each round. However, the difference between the
two cases diminishes at low SNRs.

Proof. See the appendix.

In practice the channel does not remain constant, even at low
speeds, although it is approximated to be fixed. The theorem
shows that such theoretical approximations overestimate the
data transmission efficiency of practical schemes. Finally,
while Theorem 2 connects the fast- and slow-fading models,
we close the discussions with Theorem 3 that deals with quasi-
static and slow-fading models.

Theorem 3: A MIMO-ARQ protocol with a slow-fading
channel leads to the same performance as the one with a quasi-
static channel using random power allocation and a different
average power which is found by averaging on the random
power allocation.

Proof. See the appendix.

In words, the theorem means that, although the channel
remains fixed during a packet period of the quasi-static
channel, we can use random power allocation to provide the
same randomness as the one which is experienced in each
(re)transmission round of the slow-fading channel. However,
the average transmission power should be scaled appropriately.

7For simplicity, the results are given mainly for an optimal (INR) ARQ
protocol, while they can be extended for many other schemes as well.
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B. ARQ with an unreliable feedback channel

Suppose an unreliable feedback channel where the error
probability for decoding the ARQ feedback bits ispb. With
the same procedure as in, e.g., (3)-(8), the outage probability
and the LT throughput are obtained as

Pr(Outage) = pb

M∑

m=1

(1− pb)
m−1 Pr(C(m) < R(m))

+ (1− pb)
M Pr(C(M+1) < R(M+1)), (33)

η =
1

αM

(

1−
{

pb

M∑

m=1

(1− pb)
m−1 Pr(C(m) < R(m))

+(1− pb)
M Pr(C(M+1) < R(M+1))

})

,

αM =

M∑

m=1

(1 − pb)p
m−1
b

R(m)
+

pMb
R(M+1)

+ (1 − pb)
M−1(2pb− 1)(

1

R(M)
− 1

R(M+1)
) Pr(C(M) < R(M))

+ (2pb − 1)

M−1∑

m=1

(

(1 − pb)
m−1 Pr(C(m) < R(m))×

(
1

R(m)
−
{

M∑

j=m+1

(1− pb)p
j−(m+1)
b

R(j)
+

pM−m
b

R(M+1)

}
))

.

(34)

Here, to derive (33)-(34) we have used the fact that the data is
correctly decoded at the end of them-th round (and not before)
if 1) all previous feedback bits have been correctly decodedby
the transmitter (with probability(1− pb)

m−1), 2) the receiver
has not decoded the data before, i.e.,C(n) < R(n), ∀n < m,
and 3) (re)transmitting the data in them-th slot, the receiver
can decode the codeword, i.e.,C(m) ≥ R(m). Also, the data
(re)transmission is, either successfully or not, stopped at the
m-th round with probability

Pr(Sm) =

m∑

n=1

(1− pb)
npm−n

b Pr(Ā1, . . . , Ān−1, An)

+ Pr(Ā1, . . . , Ām)pb(1− pb)
m−1,m = 1, . . . ,M

Pr(SM+1) =

M+1∑

n=1

(1− pb)
n−1pM+1−n

b Pr(Ā1, . . . , Ān−1, An)

+ Pr(Ā1, . . . , ĀM+1)(1 − pb)
M , (35)

and the number of channel uses isl(m) in that case8. Thus,
as shown in, e.g., (33)-(34), the main conclusions of the
paper are valid for noisy ARQ schemes as well, because
for a given set of rates and powers the system performance
is only dependent to theC(m)’s. Finally, Fig. 10 shows the
outage probability for different feedback and forward channel
conditions. Better system performance and less robustnessto
feedback channel noise is observed when the fading channel
temporal variability increases. Also, although not seen inthe
figure, the sensitivity to feedback channel noise increaseswith
the number of transmit/receive antennas.

8The other metrics are obtained with the same procedure as in (33)-(34).
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M = 1, fixed-length INR ARQ protocol,R = 1, Km = φ

Lt
ILt , m = 1, 2.

For the fast-fading scenario, the results are obtained withT = 2 different
channel realizations in each sub-codeword transmission.

VIII. C ONCLUSION

We showed that the data transmission efficiency of the
MIMO-ARQ protocols can be computed as a function of
parameters which are scheme-dependent, and not metric-
dependent. Then, the results were used to study various
aspects of the MIMO-ARQ in different forward/feedback
channel models. We showed that the empirical pdf of the
channel SNR may be different from the true one and no
ARQ protocol reaches the channel ergodic capacity, if the
data is transmitted in a bursty fashion and the channel is
quasi-static. The performance of ARQ protocols can be sorted
based on their AMIs and MIMO-ARQ can be mapped to an
equivalent SISO-ARQ setup. Better system performance and
less robustness to feedback channel noise is observed when
the fading channel temporal variability increases. Also, the
performance of MIMO-ARQ protocols with different temporal
fading variations can be mapped to each other, under certain
conditions.

Along with studying the effect of feedback delay, the
following points would be interesting extensions of the paper;
1) data transmission with partial CSIT is still an open-problem
for large-scale MIMO. Therefore, further analysis on large-
scale MIMO-ARQ is a topic which is expected to result in
outstanding outcomes. 2) Many optimization problems of the
MIMO-ARQ setup are nonconvex problems. Thus, lineariza-
tion techniques and AMIs approximations can be used to make
the problem convex. Here, the results of, e.g., [60], [61] can be
of great help. 3) Compensating the effect of nonlinear power
amplifiers in MIMO-ARQ is an attractive problem for which
the results of [48], [62] can be supportive. 4) Finally, we
showed the variable-length coding to be an efficient technique
improving the performance of the MIMO-ARQ setups at high
SNRs/number of antennas. Therefore, DMDT analysis in the
presence of variable-length coding ARQ techniques is an
interesting issue which, to the best of authors’ knowledge,
has not been studied yet.
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IX. A PPENDIX

A. Proof of Theorem 1

Defining F (x) = Pr(C(m) ≤ x), C(m) = log |ILr +

HKH h|, ∀m, as the cdf of the AMIs in an optimal, e.g., INR
or the Alamouti STC, ARQ model, the LT throughput (7) can
be rewritten as

η =
1− F (R(M+1))

∑M+1
m=1

1
R(m)

(
F (R(m−1))− F (R(m))

)
+

F (R(M+1))

R(M+1)

.

Therefore, setting ∂η
∂R(m)

= 0, we have

F (R(m))−F (R(m−1))

R2
(m)

− f(R(m))

R(m)
+

f(R(m))

R(m+1)
= 0

(y)⇒ −R(m−1)

R2
(m)

+ 1
R(m+1)

= 0⇒ R2
(m) = R(m−1)R(m+1).

(36)

Thus, for highm’s, the optimal equivalent data rates can
be approximated by a geometric sequence. Note that(y)
follows from the approximation(F (R(m)) − F (R(m−1))) →
f(R(m))(R(m) −R(m−1)) whenm increases and the equiva-
lent data ratesR(m) =

Q
∑

m
i=1 li

decrease. Then, from (36), the
equivalent ratesR(m) can be used to approximate the optimal,
in terms of LT throughput, values oflm and the transmission
rate in each round9.

B. Proof of Theorem 2

The proof follows from the following (in)equalities

C
INR, fast-fading,H(t)
(m) =

1

mT

m∑

n=1

nT∑

t=(n−1)T+1

log
∣
∣ILr + H(t)KH (t)h

∣
∣

(b)
=

1

mT

m∑

n=1

nT∑

t=(n−1)T+1

log (1 + Υ(t))

(c)

≤ 1

m

m∑

n=1

log(1 + Vn) = C
INR, slow-fading,Vn

(m) ,

Vn =
1

T

nT∑

t=(n−1)T+1

Υ(t). (37)

Here, (b) is obtained by defining the random variable
Υ(t), FΥ(t)(x) = F|ILr+H(t)KH (t)h|−1(x), ∀x, (the same as in
Example 3 on equivalent SISO- and MIMO-ARQ models)
and (c) comes from the Jensen’s inequality [57] and the
concavity of the functionlog(1+x). Finally,C INR, slow-fading,Vn

(m)
is the AMI in a slow-fading channel in which the channel
quality follows the distributionfV , V = 1

T

∑T
t=1 Υ(t), i.e.,

the average of the fast-fading channel quality variations during
a (re)transmission round. Then, according to Remark 1 and
(37), better performance is observed in theaveragedmodel.
However, aslog(1+x)→ x for smallx, the inequality in (37)
changes to equality and, consequently, the low-SNR system
performance is the same in two models.

9For discussions on variable-length coding ARQ in slow-fading condition,
see [55].

C. Proof of Theorem 3

For simplicity, we prove the theorem for an optimal MIMO-
ARQ protocol with non-adaptive power allocation in the slow-
fading channel case; the only difference between the two
considered cases is in their AMIs which are obtained by

C
slow-fading, non-adaptive power
(m) =

1

m

m∑

n=1

log |ILr + HnKH h
n| (38)

C
quasi-static,random power
(m) =

1

m

m∑

n=1

log |ILr + HK nHh|. (39)

Thus, the performance of the two cases is the same if the ran-
dom powers (Kn in (39)) are selected via a specific distribution
Fε such thatF|ILr+HnKH h

n|
(x) = F|ILr+HK nHh|(x), ∀x, i.e., the

same randomness is experienced in the channel quality of the
two cases. Here, the only point is that, representing the power
term associated withKn in (39) byφn, the average power in
the second case is found as

Φquasi-static, random power= Eε

{∑M+1
m=1 φm Pr(C(m−1) < R(m−1))
∑M+1

m=1 Pr(C(m−1) < R(m−1))

}

(40)

which is different from the transmission power in the first case,
i.e.,Φslow-fading, non-adaptive power= Tr(K). In (40), Eε denotes the
expectation onFε.

REFERENCES

[1] H. El Gamal, G. Caire, and M. O. Damen, “The MIMO ARQ channel:
Diversity-multiplexing-delay tradeoff,”IEEE Trans. Inf. Theory, vol. 52,
no. 8, pp. 3601–3621, Aug. 2006.

[2] T. Holliday, A. J. Goldsmith, and H. V. Poor, “Joint source and channel
coding for MIMO systems: Is it better to be robust or quick?”IEEE
Trans. Inf. Theory, vol. 54, no. 4, pp. 1393–1405, April 2008.
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