
DTail: A Flexible Approach to DRAM Refresh Management

Zehan Cui†‡, Sally A. McKee§, Zhongbin Zha†‡, Yungang Bao†, Mingyu Chen†

†State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS
‡University of Chinese Academy of Sciences

§Chalmers University of Technology
{cuizehan,zhazhongbin,baoyg,cmy}@ict.ac.cn mckee@chalmers.se

ABSTRACT
DRAM cells must be refreshed (or rewritten) periodically
to maintain data integrity, and as DRAM density grows, so
does the refresh time and energy. Not all data need to be
refreshed with the same frequency, though, and thus some
refresh operations can safely be delayed. Tracking such in-
formation allows the memory controller to reduce refresh
costs by judiciously choosing when to refresh different rows.

Solutions that store imprecise information miss opportu-
nities to avoid unnecessary refresh operations, but the stor-
age for tracking complete information scales with memory
capacity. We therefore propose a flexible approach to re-
fresh management that tracks complete refresh information
within the DRAM itself, where it incurs negligible storage
costs (0.006% of total capacity) and can be managed easily
in hardware or software. Completely tracking multiple types
of refresh information (e.g., row retention time and data va-
lidity) maximizes refresh reduction and lets us choose the
most effective refresh schemes. Our evaluations show that
our approach saves 25-82% of the total DRAM energy over
prior refresh-reduction mechanisms.

1. INTRODUCTION
Main memory systems are commonly composed of cheap,

dense Dynamic Random Access Memory (DRAM) devices.
DRAM devices store data as charges on cell capacitors, and
these charges leak over time. Data thus must be periodically
refreshed — read and rewritten — to maintain integrity.

The storage cells are arranged in banks of rectangular ar-
rays indexed by row (wordline) and column (bitline). DRAM
accesses open a row by loading its entire contents into a
bank of sense amplifiers (or a row buffer) from which data
may be read or written. When data in a different row are
needed, the memory controller closes the row by writing the
contents back to the storage array and precharging the row
buffer. Refresh simply opens and closes rows without servic-
ing intervening accesses. We find that, on average, refresh
operations on current 4Gb DRAMs impose performance and
energy overheads of 7.2% and 18.9%, respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’14, June 10–13 2014, Munich, Germany.
Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597663.

Since the length of the DRAM wordlines is constrained
by the energy required to drive the bitlines and to open and
close the row, memory designers increase density by adding
more rows to each bank [13, 14]. This, in turn, requires that
more rows be refreshed before data values degrade, causing
the refresh time and energy to increase, as well.

DRAM memory systems already account for up to 40% of
total system power, which represents up to 60% of the power
for each processor-node (CPUs and DRAMs) [18, 3]. For ex-
ascale systems, DRAM is predicted to consume about 75% of
processor-node power budgets [4]. Within four generations,
almost half the memory’s contribution to system power will
come from refresh instead of useful accesses [20]. This means
that even small refresh reductions will be more significant
as memory power grows to dominate system power.

A smart memory controller can avoid unnecessary refreshes
based on certain information: rows that maintain data in-
tegrity longer can be refreshed less often, and rows without
meaningful data need not to be refreshed. Since completely
tracking such information — termed refresh data (RD) —
incurs significant costs, previous smarter-refresh approaches
compromise by storing imprecise refresh data [20, 2], which
reduces their opportunities to optimize refresh. In addition,
the ways in which these prior approaches track refresh data
make it difficult to leverage multiple types of RD informa-
tion. For instance, Bloom filters [20] work well for tracking
the long tail distribution of retention time variation, but
they are impractical for tracking data validity.

We aim to build a smart-refresh memory system that:

1. stores refresh data with negligible cost,
2. tracks multiple types of refresh data,
3. coordinates the memory controller and all levels of

software stack, and
4. performs necessary refreshes efficiently.

To this end, we propose DTail1, a flexible, low-overhead
DRAM refresh management scheme. The key idea of DTail
is to store refresh data in the DRAM itself. Doing so greatly
reduces the storage cost because DRAM capacity is much
larger and cheaper than either SRAM or registers. Since
DRAM data can be accessed with normal memory instruc-
tions, the memory controller can collaborate with all lev-
els of the software stack to track and leverage the RD. The
row-by-row behavior of refresh makes simple prefetching and
caching mechanisms effective for masking access latencies.
We further leverage the RD to dynamically select either au-
tomatic refresh or explicitly controlled refresh, whichever is
likely to perform better. Our contributions are:

1
We choose this mnemonic because we try to“dovetail”different types

of refresh data to create a strong, stable, smart refresh mechanism.

43

...

...

...

...

...

...

...
...
...
...
...

...

wordlines

bitlines

columns

R
o

w
 D

ec
o

d
er

ro
w

s

Column Decoder

Sense Amplifiers

addr bus

cmd bus transistor

capacitor

I/O gating

Column Address

R
o

w
 A

d
d

re
ss

Cell Array

Figure 1: Bank Structure

• We propose DTail, which can completely track multi-
ple types of refresh data and coordinate with all levels
of the software stack. DTail introduces negligible stor-
age cost for refresh data — 0.006% of memory capacity
— and maximizes refresh reduction;

• We propose to dynamically select among different re-
fresh implementations by predicting the most effective
way to perform necessary refreshes;

• We find that by tracking complete refresh data, DTail
respectively saves 23.3% and 9.05-41.7% (depending
on memory utilization) DRAM energy over two prior
mechanisms; and

• We find that by tracking and combining multiple types
of refresh data, DTail respectively saves between 25.9-
40.0% and 24.6-81.9% (depending on memory utiliza-
tion) of the DRAM energy over two prior mechanisms.

2. BACKGROUND AND MOTIVATION
We briefly outline DRAM organization and operation. Fig-

ure 1 shows the typical organization of a DRAM bank. Each
bank comprises a two-dimensional array of cells, sense am-
plifiers, row and column decoders, and peripheral circuits.
To access a bit in the array, the memory controller (MC)
sends a row address strobe (RAS)2 that loads the row into
the row buffer (sense amplifiers). The memory controller
then sends one or more column address strobes (CASs) to
access specific bits. When the memory controller finishes
accessing a row, it sends a precharge (PRE) command to
write the values back to the storage array and prepare the
row buffer for the next access. Multiple banks, which can be
accessed in parallel, are organized into ranks, and channels
connect one or more ranks to the MC.

2.1 Refresh Operation
To simplify hardware design, refresh operations are tradi-

tionally performed for all rows within a period short enough
to guarantee data integrity for the most leaky cells3. In-
stead of refreshing all rows sequentially in a burst, refresh
operations are usually staggered across the period to avoid
blocking normal memory accesses. Each operation may af-
fect one or more rows, depending on the implementation.

JEDEC makes auto refresh (AR) a standard for DDRx
SDRAMs. The DRAM chip internally maintains a row ad-
dress counter (RAC) pointing to the next row to refresh.
The MC issues a refresh command every tREFI cycles, at
which point all DRAM banks simultaneously refresh a num-
ber of rows — making the rank unavailable for tRFC cycles

2
The name RAS is now commonly replaced by ACT for activate, but

we choose RAS for historical consistency.
3
For DDRx SDRAM, the period is respectively 64ms and 32ms at

normal (0-85 ◦C) and extended (85-95 ◦C) temperature ranges.

4 8 16 32

DRAM Density (Gb)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

AR

ROR

higher is better

(a) Performance

4 8 16 32

DRAM Density (Gb)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

AR

ROR

lower is better

(b) Energy

Figure 2: Performance and energy overheads for us-
ing auto refresh (AR) and RAS-only refresh (ROR)
for various DRAM densities. Results are normalized
to an ideal system that omits refresh entirely.

— and increase their RAC accordingly. The number of rows
to refresh at a time depends on density.

In RAS-only refresh (ROR) [24], the MC issues a row ad-
dress strobe to load the specified row into the row buffer.
The row is eventually written back to the DRAM array by a
subsequent precharge command. In this case the MC main-
tains its own RAC. The controller periodically increments
the RAC and issues a row address strobe. Refresh proceeds
one row at a time, but the MC chooses which refreshes to
schedule when. Note that the granularity of auto refresh is
much larger than that of RAS-only refresh.

2.2 Performance and Energy Overheads
Table 1 shows refresh timing parameters (auto refresh) for

x8/x16 width devices in the JEDEC DDR4 specification [14]
at extended temperature ranges. (Devices of x4 width have
twice the number of rows.) The interval between two con-
secutive auto refresh commands, tREFI, remains constant.
Thus, the number of rows per refresh command doubles
each generation. However, the increase in the refresh delay,
tRFC, is only 1.3× because modern DRAM banks comprise
multiple subarrays [17] that can refresh multiple rows in par-
allel. The portion of time that a rank is unavailable is 8.97%
for 8Gb chips and 16.4% for 32Gb chips.

If refresh blocks too many normal memory accesses, the
MSHRs (miss status holding registers) or load/store queue
slots fill, preventing the issue of other memory access in-
structions. Delaying critical loads needed by instructions
in flight quickly stalls the pipeline. Figure 2 shows perfor-
mance and energy overheads for a system using auto refresh
or RAS-only refresh compared to a system that omits re-
fresh entirely: these overheads grow as density increases,
e.g., auto refresh incurs 23.8% performance overhead and
114% energy overhead versus a 32Gb refresh-less system.

Figure 2 omits data for RAS-only refresh at 32Gb because
at this density it fails to refresh all rows in our evaluated
DRAM organizations. Table 1 shows that 512 rows need to
be refreshed every 3.9µs for 32Gb DRAMs, which requires a

Table 1: JEDEC DDR4 Refresh Timing Parameters
of x8/x16 Devices at Extended Temperature Range

Density
#rows per

refresh command
tREFI tRFC tRFC/tREFI

2Gb 16×2a 3.9µs 160ns 4.10%
4Gb 16×4 3.9µs 260ns 6.67%
8Gb 16×8 3.9µs 350ns 8.97%

16Gb 16×16 3.9µs 480nsb 12.3%

32Gb 16×32 3.9µs 640nsb 16.4%
a DDR4 has 16 banks, with multiple rows per bank refreshed each time.
b We use the projection from Mukundan et al. [27] for 16Gb and 32Gb.

44

RAS command to be issued every six cycles (3.9µs/1.25ns/512).
A subsequent precharge command is required to write the
row back to the DRAM array, which means the address bus
would need to transmit two commands every six cycles for
each device. This is not possible in our DRAM organization
with four ranks sharing one bus.

2.3 Limitations of RAS-only Refresh
RAS-only refresh allows fine-grained control of selective

refreshes, and it outperforms auto refresh for lower density
devices (4Gb/8Gb) due to DRAM bank-level parallelism.
However, it must adhere to the DRAM timing constraints.
Specifically, the MC must observe tRRD (the activate-to-
activate command delay) and tFAW (four activate window).
The former defines the minimum interval between two con-
secutive RAS commands to the same DRAM device, and
the latter specifies a sliding window during which no more
than four RAS commands can be issued to the same DRAM
device.

As DRAM density increases, the number of rows that
need to be refreshed doubles with each generation (Table 1),
which means more RAS-only refreshes must be issued. Con-
strained by tRRD and tFAW , RAS-only refresh hurts per-
formance and energy efficiency at higher DRAM densities.
Since auto refresh can operate on multiple rows simultane-
ously, it becomes relatively more efficient at higher densities.
Figure 2 shows that auto refresh exhibits higher performance
and energy efficiency at a 16Gb density. This suggests that
it may be better to dynamically choose between auto re-
fresh and RAS-only refresh, depending on the number and
location of rows needing to be refreshed.

3. RELATED WORK
Memory systems incorporating intelligent refresh must de-

cide: 1) when to schedule refresh operations with respect to
other memory commands, and 2) which rows to refresh. We
briefly survey approaches to making the former decision be-
fore treating solutions to the latter in more detail.

3.1 Deciding When to Schedule Refreshes
Refresh schedulers can be classified according to how they

schedule refresh operations [35] and whether they sched-
ule regular accesses around [27] or within them (for multi-
row refresh granularities) [28]. Stuecheli et al. propose
Elastic Refresh [35] to dynamically fit the refresh period
to the currently executing workload. To prevent the MC
queue from stalling useful accesses when filled with com-
mands to a bank being refreshed, Mukundan et al. [27] pro-
pose Dynamic Command Expansion (DCE) and Preemp-
tive Command Drain (PCD). The former delays commands
to banks under refresh, and the latter proactively sched-
ules commands to banks about to undergo refresh. Nair et
al. [28] call for pausable refresh operations that allow regular
accesses to proceed with less delay.

3.2 Deciding What Not to Refresh
Intelligent refresh schemes can also be classified accord-

ing to the kinds of refresh data on which they base their
scheduling decisions: cell retention time (R), error toler-
ance of the data (T), access recency (A), and row validity
(V), i.e., whether the OS has allocated the physical pages
containing those cells. We use this RTAV RD taxonomy

to survey the rich prior work in DRAM refresh reduction, a
summary of which is shown in Table 2.

Retention. Retention time refers to the period during
which cells hold valid values as charge gradually leaks. Pro-
cess variation [10][16] causes the retention time of DRAM
cells to vary across the chip. Note that approaches that ex-
ploit R information are insensitive to system workloads and
global memory usage, which makes them attractive compo-
nents for a refresh-optimized memory subsystem.

In hardware, R-based approaches can employ multi-period
schemes to refresh cells with long retention times less fre-
quently, as in the Variable Refresh Architecture (VRA) of
Ohsawa et al. [29] and the Retention-Aware Intelligent DRAM
Refresh (RAIDR) of Liu et al. [20]. VRA stores each row’s
expected refresh period in registers inside the DRAM. RAIDR
exploits the fact that very few rows need a high refresh rate,
and it tracks these inside the MC.

In software, the OS can increase the refresh period of
the device by only allocating addresses that map to cells
with sufficent retention. The Retention-Aware Placement
in DRAM (RAPID) of Venkatesan et al. [36] and Refresh
Incessantly but Occasionally (RIO) of Baek et al. [2] are two
such R-based solutions that lower the device refresh rate by
isolating physical page frames that require frequent refresh.

Tolerance. Applications like games, media processing,
machine learning, and unstructured information analysis tol-
erate errors in portions of their data and still produce ac-
ceptably accurate results. Approximate computation [31, 8]
exploits this approximate data to realize tradeoffs among
performance, energy, and accuracy. Cells containing such
error-tolerant T data need not be refreshed as often as those
containing critical data. How many cells fall into this cate-
gory depends on application characteristics.

Liu et al. [22] partition DRAM banks into critical and non-
critical regions and extend the self-refresh time to refresh
non-critical regions less frequently. Their solution, Flikker,
targets smartphones, which keep DRAM in self-refresh mode
when (frequently) idle, but a similar technique could be ap-
plied to auto refresh in operating mode. If workload char-
acteristics change such that more data become critical, the
DRAM must be repartitioned. This partitioning is coarse-
grained (e.g., it requires regions to be 1/4, 1/2, or 3/4 the
capacity), which simplifies hardware and reduces area over-
head but misses opportunities for finer optimization.

Access Recency. DRAM accesses imply refresh opera-
tions, and so a subsequent refresh to the same row can be
postponed. The number of rows affected depends on how
many different rows are accessed within the maximum re-
fresh period, which may be few for many workloads. Ghosh
et al. [9] propose Smart Refresh, which divides the refresh
period into phases and maintains a per-row timeout counter
in the MC. The MC decrements the counters each phase and
issues a RAS-only refresh when a counter hits zero.

Emma et al. [7] create smarter refresh policies for em-
bedded DRAM caches: ECC provides error-tolerance and
time stamps guide scheduling selective refreshes. Agrawal
et al. [1] similarly target eDRAM caches with Refrint, em-
ploying eager writeback for seldom used lines in addition
to tracking access recency. Since the number of rows in
eDRAM is limited, overheads for tracking A information
are much more tolerable than they are for main memory.

Validity. If the OS has not allocated the page frame, its
data are meaningless, and refreshes to it are wasteful. Sev-

45

Table 2: Summary of Intelligent Refresh Approaches

Information Technique
Information Tracked

Implementation
acquisition storage

R (retention time)

T. Ohsawa et al. [29] (VRA)

profiling

DRAM DRAM skips refresh
J. Liu et al. [20] (RAIDR) MC MC skips refresh
R. Venkatesan et al. [36] (RAPID)

OS OS deletes pages
S. Baek [2] (RIO)

T (tolerance to data errors) S. Liu et al. [22] (Flikker) programer annotations page number DRAM is split into two refresh regions

A (access recency)
M. Ghosh and H. Lee [9] (smart) MC tracking MC MC skips refresh
P. Emma et al. [7]

cache controller tracking cache controller cache controller skips refresh
A. Agrawal et al. [1] (refrint)

V (validity of row data)
T. Ohsawa et al. [29] (SRA)

OS tracking
DRAM DRAM skips refresh

C. Isen and L. John [12] (ESKIMO)
S. Baek et al. [2] (PARIS) MC MC skips refresh

eral software approaches thus attempt to trigger refreshes
only for rows with valid data. The effectiveness of schemes
using such V refresh information is sensitive to the total
memory usage of the system.

In addition to VRA, Ohsawa et al. [29] propose a Selective
Refresh Architecture (SRA) that uses an A bit per row to
decide whether to refresh it. This scheme modifies the ISA
so that the compiler, OS, or MC can prevent refreshes to
dead data. In their combined hardware/software ESKIMO
approach, Isen and John [12] adapt SRA to track data sig-
nificance (e.g., the values of uninitialized data in a newly
allocated memory region are insignificant). The OS main-
tains information on allocation and deallocation of virtual
addresses. Baek et al. [2] extract physical memory usage
information from the OS instead of monitoring virtual ad-
dresses. Their Placement-Aware Refresh In Situ (PARIS)
improves SRA by maintaining RD bits in the memory con-
troller. Storage overheads can be reduced by tracking V bits
for larger row granularities, but this imprecision increases
unnecessary refreshes.

3.3 Implementation Issues
Not only do intelligent refresh schemes differ with respect

to what refresh information they track — they differ in how
they acquire that data, where they store them, and how they
use them to decide when to skip refreshes (see Table 2).

The main drawback of most of these methods is that RD
storage costs are proportional to memory capacity, poten-
tially adding megabytes of SRAM to the cache controller or
memory controller [9, 2] (as shown in Figure 3) or adding up
to 20% area overhead to DRAM dies [29]. The economics of
manufacturing commodity DRAMs may hinder adoption of
such solutions.

In general, R-based approaches have the potential to per-
form well regardless of system load or application behav-
ior, but their implementation poses challenges. R-based
software solutions fragment memory, which can hurt perfor-
mance and limit adoptability, since modern operating sys-
tems use physical superpages for the kernel, framebuffer,
device drivers, and some application data regions. RIO [2]
thus restricts deleted pages to be fewer than 0.1% of all page
frames, which in turn limits its impact. Current R-based
hardware solutions (ours included) statically measure reten-
tion distributions, but basing refresh-period lengths on of-
fline information may hurt reliability because retention time
fluctuates with time and temperature [37, 30, 19]. Obvious
solutions are to somehow monitor retention times dynam-
ically or to adopt overly conservative refresh periods (re-
ducing the benefit of these optimizations). T, A, and V
approaches are more reliable, but less broadly effective, de-
pending on application behavior. A approaches grow less ef-

4 8 16 32 64

DRAM Density (Gb)

4K

16K

64K

256K

1M

4M

16M

64M

256M

S
R

A
M

 S
iz

e
 (

B
y

te
s

)

RAIDR-2

RAIDR-3

PARIS-1 Smart Refresh

PARIS-32

four channels, four ranks per channel, sisteen x4 chips per rank

Figure 3: Comparative Storage Costs (instances of
approaches from Table 2). RAIDR-n maintains n bloom
filters; PARIS-m represents m rows per bit.

fective as DRAM density increases, since relatively few rows
are likely to be accessed during any refresh period. Our
study therefore does not address the use of A information.

4. DTAIL OVERVIEW
Here we describe DTail, a framework that supports multi-

ple refresh reduction techniques. We can mitigate the stor-
age costs of refresh data by acting on two observations:

• only a small part of the RD collection is useful at any
refresh decision point, and those points occur infre-
quently compared to normal memory accesses; and

• RD accesses exhibit high spatial locality, since most
refresh schemes rely on a row address counter (RAC)
to sequentially cycle through rows of a DRAM bank.

Based on the first observation, we choose not to store RD
information within specialized registers or buffers within the
memory controller because paying such high overheads for
infrequently used data wastes area and power. We instead
store the data within the DRAM itself, where, based on
the second observation, we employ prefetching to hide the
latency of accessing slower storage.

Figure 4 depicts the logical building blocks of DTail: the
software and hardware negotiate a contiguous physical mem-
ory space in which to store RD entries for all rows. The
refresh data must be acquired through software or hard-
ware and then written to the RD space in main memory.
As always, the memory controller periodically generates re-
fresh commands, but here it uses the RAC of a potential
refresh operation to access the RD entry for that row (al-
ready prefetched into the memory controller) to compute
whether the potential refresh can be squashed. DTail can
make use of any of the RTV information types discussed
above, either alone or in combination.

Placing refresh information in DRAM avoids the need for
a separate device or new interface, and it facilitates hard-
ware/software coordination by allowing the memory con-

46

RD Configuration
Interface

Software

Hardware

DRAM Main
Memory

Refresh
Decision

RD space

<Row number, RD>

RD

Main
Memory

Refresh Command

Refresh
Generation

RAC

RD: Refresh Data
PPN: Physical Page Number
VPN: Virtual Page Number
RAC: Row Address Counter

Page Tables

Retention Profiling,
Page (De)Allocation,

...

JVM heap, libc heap,
user hints,

...

<PPN, RD> <PID, VPN, RD>

Hardware
tracking

<Row number,
RD>

RD Fetch Path

RD Configure Path

Figure 4: Building Blocks of DTail

troller, OS, compiler, and even the user to participate in
refresh management.

The refresh decision logic in Figure 4 can take advan-
tage of prefetched RD to predict the gain of different refresh
methods and make the most efficient choice4.

5. DESIGN DETAILS
In this section, we discuss the design of DTail, including

changes to the OS, MC, and DRAM devices.

5.1 Maintaining Refresh Data

5.1.1 Refresh Data Acquisition
Prior work discusses how to acquire the RTV refresh data.

For example, gathering retention time information requires
profiling to determine which DRAM cells hold their data
at several discrete refresh rates [2, 19]. The programmer
must identify error-tolerant data to guide OS page alloca-
tion [22]. Given this requirement, we do not consider data
error-tolerance in the current study.

Note that the refresh data may exist in any layer of the
software stack. For example, an application (e.g., mem-
cached or JVM) may allocate large chunks of memory at
startup and then self-manage it (possibly with garbage col-
lection). The OS may consider a page valid even if it is
not currently assigned to an object. Figure 5 shows JVM
heap usage for several Java applications (profiled every five
seconds). Total execution times range from 50 seconds to
300 seconds, and each application’s time is normalized to its
total execution time. On average, the “true” valid data only
account for 34.6-58.3% of the heap size.

5.1.2 Configuration Interface
DTail provides an easy RD configuration interface to store

aquired refresh data of different types from various layers.
Refresh data acquired by the OS (e.g., from page alloca-
tion/deallocation) can be tagged by the physical page num-
ber (PPN). This makes it straightforward to configure the
RD space in memory, given the address mapping between
rows and pages. If refresh data are acquired from upper lay-
ers (e.g., the JVM GC or user hints), a system call passes the
process ID (PID) and virtual page number (VPN) to the OS.
The OS indexes the page table to translate the tuple <PID,

4
We do not address global scheduling of memory operations here, but

DTail supports intelligent scheduling schemes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

10
0

terasort
pagerank

kmeans
data‐analytics

Normalized Execution Time

JV
M
 H

e
ap

 U
sa

ge
 (

%
) hive‐select

hive‐join
hive‐aggregation

Figure 5: JVM Heap Usage

VPN> into the PPN. In case the virtual-to-physical trans-
lation is not yet established5, we add a few bits to the page
table entry (PTE) to temporarily store the RD while the OS
maps the page.

5.1.3 Refresh Data Storage
The RD entries for all rows can be stored in simple tables.

Retention and validity information can be represented by the
expected refresh period and a valid bit, respectively. Repre-
senting data error-tolerance as the expected refresh period
simplifies the refresh decision logic; critical data require the
normal period, but non-critical data are assigned relaxed
refresh periods according to their error-tolerance levels.

Since both the expected refresh period and validity are
seldom updated (at system boot time and upon events such
as page allocation and garbage collection), we merge them,
as in Table 3. These RD tables should be stored in con-
tiguous physical memory that the OS allocates at boot time
and for which it configures the MC (with physical addresses
and lengths). This simplifies MC circuitry: simple state
machines can control accesses to these dense structures.

Table 3: Refresh Data (RD) Format
RD (four bits) expected refresh period

0 X X X no refresh

1 0 0 0 64ms
1 0 0 1 2×64ms
1 0 1 0 4×64ms

...
1 1 1 1 128×64ms

5.2 Deciding When to Refresh
The DTail hardware uses information in the RD tables

to support different refresh reduction techniques: retention-
aware multi-period refresh, validity-aware selective refresh,
and tolerance-aware multi-period refresh. The MC generates
both auto refresh and RAS-only refresh synchronously, and
DTail dynamically selects which refresh method to use based
on gain prediction. Figure 6 shows the decision process.

5.2.1 Per-Row Refresh Decisions
Since each RD entry is four bits, each RD access (typi-

cally 64 bytes) fetches multiple entries and buffers them in
a FIFO within the MC. Simple next-line prefetching helps
mask lookup latency.

When a RAS-only refresh command is generated, the re-
fresh decision logic decides whether it will be issued based
on the RD entry. If the refresh is not squashed, the expected
refresh period (assumed here to be N×64ms) indicates how
often a row must be refreshed. The decision logic in Figure 6
ensures that a refresh occurs once every N periods. The hash
function avoids “refresh bursts” by distributing refresh oper-

5
Linux uses demand paging, which allocates a physical page only

when the virtual page is accessed.

47

AR/ROR Gain
Computation

FIFO
RD

Exp_period=N

<RAC,
Channel, Rank> Hash %N

==?

Valid_bit AND MUX

AR
Gen

ROR
Gen

REF/sREF/
RAS

CmdQ

Period_counter %N

AR_enable

AR: Auto Refresh
ROR: RAS-only Refresh

ROR_enable

Figure 6: DTail Decision Process

ations for different rows over N periods and by distributing
refreshes across the channels, ranks, and banks.

5.2.2 Refresh Choice
DTail can choose between RAS-only refresh and auto re-

fresh. Table 1 shows that multiple rows across all banks —
termed a super-row to simplify further dicussion — are re-
freshed on each auto refresh command. DTail predicts the
most efficient way to refresh a super-row, issuing either one
auto refresh command (refreshing all rows) or multiple RAS-
only refresh commands (refreshing rows selectively). As per
Section 2.3, auto refresh is more efficient when many rows
need to be refreshed in high density DRAMs.

Whenever an RD entry is fetched into the MC, the DTail
logic uses it to predict which type of refresh will generate the
least overhead. Upon reaching the boundary of a super-row,
the gain computation block in Figure 6 computes whether
auto refresh should be enabled to refresh the current super-
row, and it clears its internal state to compute the choice
for the next super-row. If RAS-only refresh is indicated, the
per-row RD entries are used to further decide which rows
need refreshing. The FIFO depth is equal to the size of a
super-row, so FIFO entries will not be consumed until the
choice of refresh mode has been made.

This gain computation function can be arbitrarily com-
plex. Our initial implementation checks whether the number
of RAS-only refreshes exceeds a given threshold, and if so, it
switches to auto refresh. Deriving a smarter algorithm that
considers workload characteristics like memory intensiveness
and bank-level parallelism is part of ongoing work.

5.2.3 Refresh Issue
If the gain computation indicates that auto refresh is bet-

ter, a REF command is issued. Otherwise, RAS-only re-
freshes are used. Each DRAM maintains its own row ad-
dress counter (RAC), so simply omitting the REF command
leaves the RAC in DRAM pointing to the current row.

Here we propose a new refresh command — silent refresh,
or sREF — to be added to the DDRx protocol. Upon
receiving an sREF , the DRAMs increase their RACs, but do
not perform the refresh. This synchronizes the RAC values
between the MC and the DRAMs. For RAS-only refresh, an
unnecessary refresh can be eliminated by omitting the issue
of the RAS command.

5.3 Overhead Analysis
DTail incurs storage overheads for the tracked refresh data

and fetch-latency and traffic overheads for accessing the data.
Storage Overheads. DTail stores refresh data within

the DRAM, which is much cheaper than SRAM or special-
purpose registers. For RAS-only refresh, we keep one entry
per row in the RD table. In our investigations, we assume
four bits suffice to record RTV refresh data information for

each 8KB DRAM row (1KB per chip and eight chips per
rank). The capacity overhead is thus 4bits/8KB = 0.006%.

Fetch Overheads. The small size and high locality of
RD table entries trigger minimal fetch traffic. For example,
each memory read typically accesses 64 bytes containing 128
RD table entries. For a four-rank system using 4Gb devices
at extended temperature ranges, 256 RD table entries are re-
quired (for all rows in a super-row per rank) every tREFI,
which results in two memory reads every 3.9µs. These RD
reads account for 0.77% of the total memory accesses, on av-
erage. As density increases, the traffic overhead may grow to
5.61% at 32Gb density. (Average traffic overhead is 3.51%
for all but our least memory-intensive workloads.) Nonethe-
less, evaluation results show that DTail still performs better
and saves more energy than prior mechanisms that access
RD in SRAMs inside the MC. Sending more reads for each
prefetch further reduces the fetch overhead by exploiting row
buffer locality to save RAS operations.

Other Runtime Overheads. RD acquisition incurs a
few other runtime overheads. For instance, the overhead of
paging amounts to checking the status of several (OS) pages
in the DRAM row and updating the row’s RD, which in-
volves several (but not a great many) memory accesses. For
upper-layer RD collection mechanisms, the overheads are a
system call to do virtual-to-physical mapping and then sev-
eral memory accesses to update the RD in DRAM. (We have
the kernel do the RD update for security.) The execution
overhead depends on how frequently such events happen,
and here we assume them to be infrequent. Nonetheless,
runtime overheads must be managed properly. For instance,
JVM divides the heap into young, old, and permanent gener-
ations. Tracking RD for the young generation would require
frequent (kernel) address translations: an obvious optimiza-
tion is to track RD only for the other generations. Address-
ing the young generation is ongoing work.

6. EVALUATION METHODOLOGY
We briefly describe our tools and workloads.

6.1 Simulation Setup
We evaluate our design space by running traces on the

USIMM cycle-accurate memory simulator [5]. The origi-
nal processor model considers only the reorder buffer and
issue/retire widths. To generate reasonable access rates,
we augment USIMM to model the load/store queue, multi-
ple load/store ports, a three-level cache hierarchy (including
MSHRs), and dependences between memory instructions.

We use Pin [23] to generate memory instruction traces
with data dependence hints. We capture the read-after-write
(RAW) relationships between non-memory instructions and
pass the dependences through the CPU registers to gener-
ate memory instruction dependences (similarly to Zsim [32]).
We omit write-after-read, write-after-write, and control de-
pendences, and instead assume that ideal register renaming
and branch prediction can fully resolve them. The original
USIMM memory model uses DDR3 SDRAM. We minimally
modify it to model the new features of the JEDEC DDR4
specification (such as bank groups).

Table 4 details the system configuration in our evalua-
tions. We choose a 4:1 core-to-channel ratio, a likely config-
uration in contemporary high-end and future systems. Ta-
ble 5 shows timing parameters from the JEDEC DDR4 spec-
ification, and Table 1 shows refresh-related parameters.

48

Table 4: System Configuration
Parameter Detail

Number of cores 4
Core frequency 3.2GHz
ROB size 128
Issue/retire width 4/2
Pipeline depth 10
Load/store queue size 48/32
Load/store ports 2/1
L1 private Dcache 64KB per core, 4-cycle
L2 private cache 256KB per core, 10-cycle
L3 shared cache 4MB, 40-cycle
MSHR 8 entries per core
Read/write queue size 32/24
Scheduling policy FC-FRFS, open page
Address mapping row:rank:bank:column:offset
DRAM frequency 800MHz (DDR4-1600)
DRAM device width x8
DRAM device density 4Gb/8Gb/16Gb/32Gb
Channels 1
DIMMs per channel 2
Ranks per DIMM 2
Banks per rank 16
Rows per bank 32768/65536/131072/262144
Columns per bank 8192

We enhance the Micron power model [25] to derive energy
numbers. The model reflects the activating power supply
(VPP) and Pseudo-Open Drain (POD) termination [33] of
JEDEC DDR4. Table 6 shows the IDD/IPP currents of a
4Gb DDR4 DRAM device according to the Micron docu-
ment [26]. We project the IDD/IPP currents of higher den-
sity devices: all IDD/IPP currents except IDD5B/IPP5B
(burst refresh current) remain the same, assuming that tech-
nology scaling compensates for the costs of increasing device
density and that the current consumed by auto-refresh in-
creases 1.3× as device density doubles. (tRFC grows much
less than 2×, which means more rows are refreshed in the
same amount of time, which increases current.)

Each simulation models a 1024ms execution (about 3.28
billion cycles at 3.2GHz). We adopt a constant-threshold-
based low-power mode management method [6] that incurs
less than 2% performance overhead and reduces background
power by 35%. We report results at extended temperature
ranges since the DRAM operating temperature is usually
greater than 85 ◦C in servers and data centers [21].

6.2 Workloads
To create multiprogrammed workloads from the SPEC

CPU2006 benchmark suite [11], we first classify the 29 appli-
cations according to memory intensity. We consider an ap-
plication memory-intensive if the last-level cache misses per
kilo instructions (MPKI) is over five. We randomly generate
twelve four-program workloads for five intensity categories
(based on the number of memory-intensive benchmarks in
the mix), creating 60 workloads in total.

To evaluate retention-aware refresh, we extract the reten-
tion distribution for a 50nm technology node from Kim and
Lee [16] and randomize the physical position of weak cells [2].
Table 7 shows the retention distribution for our evaluated
DRAM system using 4Gb devices.

To evaluate validity-aware refresh, we allocate dummy
pages in the simulator to model five memory capacity uti-
lization levels. By allocating the desired memory on a real
server with 32GB DRAM and scanning the Linux kernel’s
mem map structure, we obtain the distribution of allocated
pages for a 32GB capacity, and on this we base our deriva-
tions of distributions for other capacities.

Table 5: DDR4 Timing Parameters
Timing parameter Valuea Timing parameter Value

tRCD 11 tWTR S 2
tRP 11 tWTR L 6
tCAS 11 tRTP 6
tRC 39 tCCD S 4
tRAS 28 tCCD L 5
tRRD S 4 tCWD 5
tRRD L 5 tRTRS 2
tFAW 20 tXP 5
tWR 12 tBURST 4
a All timing parameters are in DRAM cycles.

Table 6: DDR4 Power Parameters of 4Gb Devices
Power parameter IDD IPP

Supply voltage (VDD/VPP) 1.2V 2.5V
One bank active-precharge current (IDD0/IPP0) 40mA 3mA
Precharge standby current (IDD2N/IPP2N) 30mA 1.8mA
Precharge power-down current (IDD2P/IPP2P) 17mA 1.8mA
Active standby current (IDD3N/IPP3N) 37mA 1.8mA
Active power-down current (IDD3P/IPP3P) 25mA 1.8mA
Burst read current (IDD4R/IPP4R) 125mA 1.8mA
Burst write current (IDD4W/IPP4W) 120mA 1.8mA
Burst refresh current (IDD5B/IPP5B) 110mA 15mA

Table 7: Retention Time Distribution of Evaluated
DRAM System

Retention time Probability of cells Number of rows @ 4Gb

64-128ms 2.93E-10 40
128-256ms 7.78E-09 1069
256-512ms 1.53E-06 200078
512-1024ms 1.91E-05 1353119
1024-2048ms 3.42E-04 542846

>2048ms ˜1.00 0

6.3 Metrics
We use Weighted Speedup (WS) [34] to measure the sys-

tem performance of multi-programmed workloads. We nor-
malize each benchmark IPC to that of the solo execution
IPC and calculate weighted speedup as the sum of all nor-
malized benchmark IPCs. Since we run each simulation
a fixed number of cycles, higher performing mechanisms
execute more memory instructions and thus expend more
energy. For a fair comparison, we use Energy Per Access
(EPA) to report DRAM system power.

7. RESULTS
We compare the following mechanisms:

• RL: refresh-less, in which no refresh is performed.
• AR: the auto refresh method.
• ROR: the RAS-only refresh method.
• RAIDR: the Retention-Aware Intelligent DRAM Re-

fresh method proposed by Liu et al. [20]. We track
retention information in two Bloom filters (at reason-
able storage costs — see Figure 3).

• PARIS: the Placement-Aware Refresh in Situ method
proposed by Baek et al. [2], which skips refreshes for
rows with invalid data. We use one bit per 32 rows (64
pages), which results in acceptable storage costs and
an average performance overhead of 7.95%.6

• DTail-R: DTail with retention information.
• DTail-V: DTail with validity information.
• DTail-RV: DTail with combined retention and validity

information.

6
Defined as missed opportunities for refresh reduction. Representing

more rows per bit reduces storage costs but increases the performance
overhead to 14.8% for 64 rows and 28.2% for 128 rows, on average.

49

10 30 50 70 90

Memory Capacity Utilization (%)

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f
S

a
v
e
d

 R
e
fr

e
s
h

e
s
 (

%
)

PARIS

DTail-V

RAIDR

DTail-R

DTail-RV

Figure 7: Refresh Reduction of Various Methods

All performance (weighted speedup) and power (energy per
access) results in this section are normalized to those of a
refresh-less (RL) system. Recall that Figure 2 shows results
for AR and ROR.

7.1 Overview of Refresh Reductions
Figure 7 gives an overview of the number of refreshes saved

(compared to a system that always refreshes all rows) by
various methods for 4Gb DRAMs under different memory
utilization rates. Both RAIDR and DTail-R are based on the
process variation of the DRAMs themselves, and thus their
behaviors are independent of the utilization rate. RAIDR
eliminates 75.0% of total refreshes, and DTail-R eliminates
87.9%. The additional 12.9% comes from DTail-R’s storing
complete per-row refresh data.

The number of refreshes saved by both PARIS and DTail-
V decreases when more memory rows store valid data. DTail-
V avoids more refreshes than PARIS, again because it stores
complete per-row refresh data. The advantage of DTail-V
is more significant at low memory utilization, e.g., an addi-
tional 24.0% and 8.45% of refreshes are saved at 10% and
30% memory utilization, respectively. Note that the default
Linux buddy page allocator preserves a certain amount of
continuity among allocated physical pages, and thus using
one bit to represent a small number of pages (rows) results
in modest overhead at high memory utilization. However,
some advanced page allocation mechanisms [15] may break
the continuity, increasing the overhead of PARIS.

By taking advantage of both retention and validity infor-
mation, DTail-RV saves the most refreshes, from 88.2% at
high memory utilization to 98.9% at low memory utilization.

7.2 Retention-Aware Methods
We compare DTail-R with RAIDR [20] to evaluate the

retention-aware methods. Figure 8 and Figure 9 show the
normalized weighted speedups and energy per access of both
methods at 4Gb together with projections for higher densi-
ties. Results in the projected figures are averaged across all
five categories of memory-intensiveness.

Figure 8(a) shows that RAIDR and DTail-R perform sim-
ilarly to the ideal refresh-less configuration at 4Gb. RAIDR
has already cut down 75% of the refreshes, and the perfor-
mance impact of the remaining refreshes is negligible, espe-
cially when RAS-only refresh can utilize the DRAM bank-
level parallelism. DTail-R saves an additional 12.9% of the
refreshes, which makes its performance advantage grow as
DRAM density increases (Figure 8(b)).

Although the “small” number of refreshes saved by DTail-
R compared to RAIDR has little performance impact, the
benefit in energy savings is apparent. Figure 9(a) shows
that DTail-R consistently saves more energy: compared to

0 1 2 3 4

of Memory Intensive Programs

0.98

0.99

1.00

N
o

rm
a
li
z
e
d

W

e
ig

h
te

d
 S

p
e
e
d

u
p

RAIDR DTail-R

(a) 4Gb

4 8 16 32

DRAM Density (Gb)

0.96

0.97

0.98

0.99

1.00

N
o

rm
a
li
z
e
d

W

e
ig

h
te

d
 S

p
e
e
d

u
p

RAIDR

DTail-R

(b) All Densities

Figure 8: Performance Comparison between
RAIDR and DTail-R (higher is better)

0 1 2 3 4

of Memory Intensive Programs

1.00

1.05

1.10

1.15

N
o

rm
a
li
z
e
d

E

n
e
rg

y
 P

e
r

A
c
c
e
s
s

RAIDR DTail-R

(a) 4Gb

4 8 16 32

DRAM Density (Gb)

1.00

1.10

1.20

1.30

1.40

1.50

N
o

rm
a
li
z
e
d

E

n
e
rg

y
 P

e
r

A
c
c
e
s
s

RAIDR

DTail-R

(b) All Densities

Figure 9: Power Comparison between RAIDR and
DTail-R (lower is better)

RAIDR, DTail-R reduces the energy overhead by an aver-
age of 3.54% (up to 8.53%) at 4Gb. Figure 9(b) shows that
the benefit grows with DRAM density: from 3.54% energy
savings at 4Gb to 23.3% at 32Gb. DTail-R saves about half
the refreshes that RAIDR does, but the energy reduction
is a bit more than half. For example, at 32Gb the energy
overheads of RAIDR and DTail-R compared to a refresh-
less system are 40.0% and 16.7%, respectively. This addi-
tional energy savings comes from two factors: first, more
refreshes force the DRAMs to exit the low power state for
low-intensity workloads, increasing background power; sec-
ond, refresh may unnecessarily precharge open rows that will
be reused in the near future, increasing the number of RAS
operations and the corresponding energy consumption.

7.3 Validity-Aware Methods
To evaluate the validity-aware methods, we compare DTail-

V with PARIS [2]. Figure 10 and Figure 11 show the nor-
malized weighted speedup and energy per access of the two
methods at different memory utilizations for various den-
sities. Results are again averaged across all five memory-
intensity categories (60 workloads). PARIS fails to work at
32Gb because there is insufficient time to issue all the com-
mands for RAS-only refresh.

Performance decreases and energy consumption increases
as the portion of valid DRAM rows grows. For example,
Figure 10(c) and Figure 11(c) show that at the 16Gb density
the normalized weighted speedup decreases by 14.2% and
energy per access increases by 65.2% for PARIS when we go
from 10% to 90% memory utilization.

Figure 7 shows that DTail-V saves more refreshes when
memory utilization is low (10-30%) because it stores com-
plete refresh data. This contributes to higher performance
(Figure 10) and lower energy consumption (Figure 11) at low
memory utilization. However, Figure 10(c) and Figure 11(c)
show that DTail-V also performs better at high memory
utilizations for higher density DRAMs. For example, with
90% memory utilization at 16Gb, DTail-V improves perfor-
mance by 4.44% and saves energy by 41.7% compared to
PARIS. This is because DTail-V dynamically detects the
system page placement behavior and chooses between auto

50

10 30 50 70 90

Memory Capacity Utilization (%)

0.98

0.99

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

PARIS

DTail-V

(a) 4Gb

10 30 50 70 90

Memory Capacity Utilization (%)

0.97

0.98

0.99

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

PARIS

DTail-V

(b) 8Gb

10 30 50 70 90

Memory Capacity Utilization (%)

0.80

0.85

0.90

0.95

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

PARIS

DTail-V

(c) 16Gb

10 30 50 70 90

Memory Capacity Utilization (%)

0.75

0.80

0.85

0.90

0.95

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

DTail-V

(d) 32Gb

Figure 10: Performance Comparison between PARIS and DTail-V for Various Densities (higher is better)

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.05

1.10

1.15

1.20

1.25

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

PARIS

DTail-V

(a) 4Gb

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.10

1.20

1.30

1.40

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

PARIS

DTail-V

(b) 8Gb

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.20

1.40

1.60

1.80

2.00

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

PARIS

DTail-V

(c) 16Gb

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.20

1.40

1.60

1.80

2.00

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

DTail-V

(d) 32Gb

Figure 11: Power Comparison between PARIS and DTail-V for Various Densities (lower is better)

refresh and RAS-only refresh. DTail-V’s lack of performance
improvement at 50%, 70%, and 90% utilization for 32Gb
density is due to our heuristic switching mechanism.

7.4 Combining R and V Information
DTail is easy to reconfigure to adopt both retention and

validity information. We call this implementation DTail-RV.
Figure 12 and Figure 13 show the performance and energy
benefits of DTail-RV at different memory utilizations for var-
ious densities. We compare to RAIDR [20] for retention-
awareness and to PARIS [2] for validity-awareness. Results
are averaged across all five memory-intensivity categories
(60 workloads). Recall that PARIS fails to work for 32Gb.

Figure 12 shows that RAIDR and DTail-RV perform close
to an ideal refresh-less system. DTail-RV is slightly better
than RAIDR, especially at higher densities.

Figure 13 shows that DTail-RV can save significantly more
energy than RAIDR and PARIS. Compared to RAIDR and
PARIS, DTail-RV reduces energy by 15.8-23.8% and 24.6-
81.9% (depending on memory utilization), respectively, for
16Gb DRAMs. For 32Gb DRAMs, the energy savings of
DTail-RV relative to RAIDR ranges from 40.0% at 10%
memory utilization to 25.9% at 90% memory utilization.

8. CONCLUSION
We have introduced DTail, a low-overhead DRAM refresh-

management scheme that stores refresh information within
the DRAM itself. This small, intuitive innovation delivers
high payoff. The capacity overhead is negligible compared
to growing DRAM capacities, and the latency of relatively
infrequent accesses is easily masked by prefetching.

Technology trends make frameworks like DTail that store
refresh data at negligible cost increasingly attractive. Con-
sider emerging high-density 3D-Stacked DRAM technologies
whose (many) more rows greatly increase the amount of re-
fresh data to track. Furthermore, 3D-stacked technologies
face thermal challenges that increase leakage, which in turn
increases the required refresh frequency (e.g., an 8ms refresh
period at 95-115 ◦C). This raises the performance and en-
ergy overheads of performing refresh.

Finally, storing the data in regular memory makes it ac-
cessible to all levels of the software stack: making it easier

for hardware and software to collaborate to minimize refresh
performance and energy overheads opens up an interesting
design space of hybrid refresh approaches.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feed-

back. This work is supported by the National Natural Sci-
ence Foundation of China (NSFC) under grant number 61221062,
61272132, and 61331008, the National Basic Research Pro-
gram of China (973 Program) under grant number 2011CB302502,
the Strategic Priority Research Program of the Chinese Academy
of Sciences under grant number XDA06010401, and Huawei
Research Program under grant number YBCB2011030. Yun-
gang Bao is partially supported by a CCF-Intel Young Fac-
ulty Research Program (YFRP) grant.

10. REFERENCES
[1] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas. Refrint:

Intelligent refresh to minimize power in on-chip
multiprocessor cache hierarchies. In High-Performance
Computer Architecture, pages 400–411, Feb 2013.

[2] S. Baek, S. Cho, and R. Melhem. Refresh now and then.
IEEE Transactions on Computers, 2013.

[3] L. Barroso and U. Hölzle. The datacenter as a computer:
An introduction to the design of warehouse-scale machines.
Synthesis Lectures on Computer Architecture, 4(1):1–108,
2009.

[4] S. Borkar. The exascale challenge. In Keynote of Parallel
Architectures and Compilation Techniques, Sep 2011.

[5] N. Chatterjee, R. Balasubramonian, M. Shevgoor,
S. Pugsley, A. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and
Z. Chishti. USIMM: the utah simulated memory module.
University of Utah, Techincal Report UUCS-12-002, 2012.

[6] V. Delaluz, M. Kandemir, N. Vijaykrishnan,
A. Sivasubramaniam, and M. Irwin. DRAM energy
management using software and hardware directed power
mode control. In High-Performance Computer
Architecture, pages 159–169, Jan 2001.

[7] P. Emma, W. Reohr, and M. Meterelliyoz. Rethinking
refresh: Increasing availability and reducing power in
DRAM for cache applications. IEEE Micro, 28(6):47–56,
2008.

[8] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Architecture support for disciplined approximate
programming. In Architectural Support for Programming
Languages and Operating Systems, pages 301–312, Mar
2012.

51

10 30 50 70 90

Memory Capacity Utilization (%)

0.98

0.99

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

RAIDR

PARIS

DTail-RV

(a) 4Gb

10 30 50 70 90

Memory Capacity Utilization (%)

0.97

0.98

0.99

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

RAIDR

PARIS

DTail-RV

(b) 8Gb

10 30 50 70 90

Memory Capacity Utilization (%)

0.80

0.85

0.90

0.95

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

RAIDR

PARIS

DTail-RV

(c) 16Gb

10 30 50 70 90

Memory Capacity Utilization (%)

0.95

0.96

0.97

0.98

0.99

1.00

N
o

rm
a
li
z
e
d

W
e
ig

h
te

d
 S

p
e
e
d

u
p

RAIDR

DTail-RV

(d) 32Gb

Figure 12: Performance Comparison between RAIDR, PARIS and DTail-RV for Various Densities (higher is
better)

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.05

1.10

1.15

1.20

1.25

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

RAIDR

PARIS

DTail-RV

(a) 4Gb

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.10

1.20

1.30

1.40

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

RAIDR

PARIS

DTail-RV

(b) 8Gb

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.20

1.40

1.60

1.80

2.00

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

RAIDR

PARIS

DTail-RV

(c) 16Gb

10 30 50 70 90

Memory Capacity Utilization (%)

1.00

1.10

1.20

1.30

1.40

1.50

N
o

rm
a
li
z
e
d

E
n

e
rg

y
 P

e
r

A
c
c
e
s
s

RAIDR

DTail-RV

(d) 32Gb

Figure 13: Power Comparison between RAIDR, PARIS and DTail-RV for Various Densities (lower is better)

[9] M. Ghosh and H. Lee. Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3D
die-stacked drams. In MICRO, pages 134–145, Dec 2007.

[10] T. Hamamoto, S. Sugiura, and S. Sawada. On the retention
time distribution of dynamic random access memory
(DRAM). IEEE Transactions on Electron Devices,
45(6):1300–1309, 1998.

[11] J. Henning. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[12] C. Isen and L. John. ESKIMO: Energy savings using
semantic knowledge of inconsequential memory occupancy
for DRAM subsystem. In MICRO, pages 337–346, Dec
2009.

[13] JEDEC. JESD79-3E: DDR3 SDRAM specification, 2010.
[14] JEDEC. JESD79-4: DDR4 SDRAM specification, 2012.
[15] R. Kessler and M. Hill. Page placement algorithms for large

real-indexed caches. ACM Transactions on Computer
Systems, 10(4):338–359, 1992.

[16] K. Kim and J. Lee. A new investigation of data retention
time in truly nanoscaled DRAMs. IEEE Electron Device
Letters, 30(8):846–848, 2009.

[17] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A case
for exploiting subarray-level parallelism SALP in DRAM.
In International Symposium on Computer Architecture,
pages 368–379, Jun 2012.

[18] C. Lefurgy, K. Rajamani, F. Rawson, M. Kistler, and
T. Keller. Energy management for commercial servers.
IEEE Computer, 36(12):39–48, 2003.

[19] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu. An
experimental study of data retention behavior in modern
DRAM devices: Implications for retention time profiling
mechanisms. In International Symposium on Computer
Architecture, pages 60–71, Jun 2013.

[20] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR:
Retention-aware intelligent DRAM refresh. In International
Symposium on Computer Architecture, pages 1–12, Jun
2012.

[21] S. Liu, B. Leung, A. Neckar, S. Memik, G. Memik, and
N. Hardavellas. Hardware/software techniques for DRAM
thermal management. In High-Performance Computer
Architecture, pages 515–525, Feb 2011.

[22] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn.
Flikker: Saving DRAM refresh-power through critical data
partitioning. In Architectural Support for Programming
Languages and Operating Systems, pages 213–224, Mar
2011.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In Programming Language
Design and Implementation, pages 190–200, Jun 2005.

[24] Micron. TN-04-30: Various methods of DRAM refresh,
1999.

[25] Micron. TN-41-01: Calculating memory system power for
DDR3, 2007.

[26] Micron. DRAM memory in high-speed digital designs.
http://www.home.agilent.com/upload/cmc_upload/All/
5Micron.pdf, 2013.

[27] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and
J. Mart́ınez. Understanding and mitigating refresh
overheads in high-density DDR4 DRAM systems. In
International Symposium on Computer Architecture, pages
48–59, Jun 2013.

[28] P. Nair, C. Chou, and M. Qureshi. A case for refresh
pausing in DRAM memory systems. In High-Performance
Computer Architecture, pages 627–638, Feb 2013.

[29] T. Ohsawa, K. Kai, and K. Murakami. Optimizing the
DRAM refresh count for merged DRAM/logic LSIs. In
International Symposium on Low Power Electronics and
Design, pages 82–87, Aug 1998.

[30] P. Restle, J. Park, and B. Lloyd. DRAM variable retention
time. In International Electron Devices Meeting, pages
807–810, Dec 1992.

[31] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. EnerJ: approximate data types
for safe and general low-power computation. In
Programming Language Design and Implementation, pages
164–174, Jun 2011.

[32] D. Sanchez and C. Kozyrakis. Zsim: fast and accurate
microarchitectural simulation of thousand-core systems. In
International Symposium on Computer Architecture, pages
475–486, Jun 2013.

[33] J.-H. Shin, S.-I. Kim, Y.-M. Ahn, Y.-K. Han, and S.-J. Seo.
Methodology on power estimation of memory modules with
pseudo-open drain and center-tab termination type
termination schemes. In Open Server Summit, Nov 2011.

[34] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous mutlithreading processor. ACM SIGPLAN
Notices, 35(11):234–244, 2000.

[35] J. Stuecheli and D. Kaseridis. Elastic refresh: Techniques to
mitigate refresh penalties in high density memory. In
MICRO, pages 375–384, Dec 2010.

[36] R. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware
placement in DRAM (RAPID): software methods for
quasi-non-volatile DRAM. In High-Performance Computer
Architecture, pages 155–165, Feb 2006.

[37] D. Yaney, C. Lu, R. Kohler, M. Kelly, and J. Nelson. A
meta-stable leakage phenomenon in DRAM charge
storage—variable hold time. In International Electron
Devices Meeting, pages 336–339, Dec 1987.

52

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140415162122
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 5

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140415162122
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 1
 AllDoc
 5

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 qi2base

