
Formation of Phase Space Holes and Clumps

M. K. Lilley*

Physics Department, Imperial College, London SW7 2AZ, United Kingdom

R.M. Nyqvist
Department of Earth and Space Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden

(Received 30 January 2014; published 14 April 2014)

It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems
is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we
observe hole-clump generation from the edges of an unmodulated phase space plateau, created via
excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the
electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-
clump formation process for the first time. Holes and clumps develop from negative energy waves that arise
due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient
distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by
demonstrating that the formation of such nonlinear structures in general does not rely on a “seed” wave,
only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau
generation and erosion, the latter due to hole-clump formation and detachment, which appear to be
insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why
this continual regeneration occurs.
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Dissipative systems driven far from thermodynamic
equilibrium have been of considerable interest over the
years, due to their tendency to spontaneously reorganize
themselves [1–3]. An important example is a magnetically
confined, burning deuterium-tritium plasma, in which
fusion born alpha particles maintain a nonthermal distribu-
tion that allows them to resonantly destabilize bulk plasma
waves that would otherwise be damped by dissipative
processes [4]. Such fluctuations are a critical concern since
they may subsequently redistribute and potentially eject the
fast particles from the plasma prematurely [5].
The nonlinear character of these instabilities plays a large

role in determining the fate of the fast particles. They may
saturate at low amplitude, in which case the overall effect
on the plasma is small, or be bursting in nature with larger
amplitude. The latter type is often associated with signifi-
cant losses of fast particles, cf. [6], and frequently exhibits
chirping patterns in the wave frequency away from the
normal modes of the bulk plasma. Extensive modeling over
the years, in simplified systems [7–10] and in more realistic
geometries [11], has revealed that the frequency shifts can
be attributed to the formation and subsequent evolution of
long-living structures in the fast particle distribution, so
called holes (a depletion of particles) and clumps (an excess
of particles). The holes and clumps form in the proximity of
the wave-particle resonances of a kinetically unstable bulk
plasma mode, and once firmly established, they represent
nonlinear waves of so-called BGK type [12] whose
frequencies are slightly up- and down-shifted with respect

to that of the initial instability. Their subsequent convective
motion in phase space is synchronized to the change in
wave frequency and has previously been successfully
described by adiabatic theory [13].
Despite all previous modeling efforts, two fundamental

questions have so far remained unanswered, namely, why
and how the holes and clumps form. Part of the reason
behind this knowledge gap lies in the previously reported
result, [7,14], that hole-clump formation only occurs when
the background dissipation processes are sufficiently large
to compete with the kinetic drive, i.e., when the initial seed
wave is only marginally unstable. However, the notion that
holes and clumps are near-threshold phenomena has
obscured the understanding of the role played by dissipa-
tion. In fact, this notion is simply not true. We show in this
Letter that any amount of background dissipation results in
bursting instabilities, meaning that holes and clumps can be
generated far from, as well as close to, the instability
threshold. The underlying physics is that holes and clumps
develop from negative energy waves, [15], which grow
rather than damp as a result of dissipation. Their existence
relies on the presence of a nearly unmodulated plateau in
the fast particle distribution, whose interface with the
surroundings is sharp enough to alter the dielectric response
of the fast particles as to support waves near the plateau
edge. Such plateau states may arise, e.g., as a result of
phase mixing and subsequent dissipative decay of an
initially unstable bulk plasma wave, as in experiments.
In general, though, an initial seed instability is not a

PRL 112, 155002 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

0031-9007=14=112(15)=155002(5) 155002-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.155002
http://dx.doi.org/10.1103/PhysRevLett.112.155002
http://dx.doi.org/10.1103/PhysRevLett.112.155002
http://dx.doi.org/10.1103/PhysRevLett.112.155002


requirement, it is only essential that the system has the
ability to generate a plateau.
A paradigm for the study of fast particle instabilities, and

one which we adopt for our analysis, is the one-
dimensional, electrostatic bump-on-tail model. Despite
the specifics of this idealized model, it captures resonant
particle physics in more general, multidimensional sys-
tems, [16], such as radial transport of fast particles in
tokamaks, [17]. The model considers a purely electrostatic
traveling wave, with a single wave number k and spatial
period λ ¼ 2π=k, in a uniform plasma of three species. The
bulk consists of static background ions and “cold” fluid
electrons. The latter respond linearly to the wave field E,
are subject to a dissipative, collisional, friction force and are
characterized by their mass me, equilibrium density ne, and
perturbed velocity V. The third species is a low density
population of collisionless fast electrons, whose distribu-
tion function F is treated kinetically. The resulting closed
system of equations is given by

∂F
∂t þ v

∂F
∂x − jejE

me

∂F
∂v ¼ 0; (1a)

∂V
∂t ¼ − jejE

me
− νcV; (1b)

∂E
∂t ¼ jej

ϵ0

�
neV þ

Z
ðF − F0Þvdv

�
; (1c)

where νc is the cold electron collision frequency and F0ðvÞ
is the unperturbed distribution of fast electrons. It is
assumed that νc ≪ ωp and that the perturbed fast particle
current is small as compared to that from the background,
so that E ¼ E1ðtÞ cos ðkx − ωptÞ is a good approximation,

where d lnE1=dt ≪ ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=meε0

p
(see Ref. [10] for

details).
The classic instability results from a positive slope,

∂F0=∂v > 0, at the resonant velocity v ¼ ωp=k, which
causes wave growth at a rate γL ¼ ðω3

pπ=2k2neÞ∂F0=∂v.
Adding weak dissipation, γd ≡ νc=2 < γL, merely reduces
the growth rate to γL − γd. After the initial growth,
however, the classic and dissipative behaviors diverge.
Whereas the classic case ends in wave saturation at
ωB ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ekE1=me

p
≈ 3.2γL, [18], the dissipative case leads

to hole-clump formation and frequency chirping as seen in
Fig. 1. Contrary to previous reports, cf. [7], where chirping
solutions were found only for γd=γL ≳ 0.4, Fig. 1 shows
frequency chirping for both large and small γd=γL, i.e., near
and far from the instability threshold. Moreover, we note
that holes and clumps are not transient phenomena, as
shown by the ongoing activity in both spectrograms.
Continuous hole-clump generation was previously
observed in near-threshold simulations, [10], and discussed
in [19], but its origin was never completely understood. We
return to this issue at the end of the present Letter. For now,

we focus on the first bursts in Fig. 1 and, in particular, the
important observation that in both cases, the chirping
initiates with noticeable shifts from ωp, i.e., with non-
vanishing δω≡ ω − ωp. This observation is crucial for
understanding the hole-clump formation process, as will be
described below.
First, consider the limit of small γd=γL. Slightly beyond

the initial linear growth phase, but prior to chirping, the
increasing electric field amplitude E1 reaches a maximum
where the energy released by phase mixing balances the
dissipated power. The associated phase space portrait for
the fast particle distribution exhibits an eye-shaped, flat-
tened trapping area [Fig. 2(a)], whose velocity width scales
as

ffiffiffiffiffiffi
E1

p
. During the subsequent dissipative decay, trapped

particles are released as the separatrix shrinks and begin to
stream freely. Since the time scale for the decay is long in
the limit of small γd=γL, one would expect the final state to
be fieldless and exhibit an unmodulated phase space
plateau in the fast particle distribution. This is, however,
not the case. The amplitude of the bulk mode does decay to
zero, but there are sideband oscillations, resulting from
incomplete phase mixing, whose amplitudes at first decay
but then begin to rise again [Fig. 2(b)] and eventually
evolve into chirping modes [Fig. 2(c)]. Although the
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FIG. 1 (color online). Fourier spectrogram of the electric field
amplitude E1, showing frequency chirping far from (a) and near
to (b) the instability threshold. Simulations performed using
BOT [10,20].
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distribution tends towards an unmodulated plateau, such a
state is actually unstable with respect to modes whose
phase velocities are shifted from the initial wave-particle
resonance towards the plateau edge, a claim that will be
justified shortly. An analogous story can be told for the near
threshold case, where dissipation acts overall to produce a
similar plateau, albeit in a more sophisticated way. The area
of phase space perturbed by the initial plasma wave is small
when γd=γL ≲ 1, so the sidebands formed from the incom-
plete phase mixing interact strongly with the bulk plasma
mode. The interaction results in several stages of rise and
fall in the wave amplitude, each successively larger, until
eventually a plateau establishes from which chirping modes
develop [as seen in Fig. 1(b)].
The unstable nature of an unmodulated phase space

plateau is demonstrated via linear stability analysis of the
shelflike distribution shown in Fig. 3. Following the
method of Landau, [21], the time asymptotic behavior of
the linearized system is of the form expð−iωtÞ, where ω is
the solution to

ε ¼ 1 − ω2
p

ωðωþ iνcÞ
− jej2
meε0k

Z
∞

−∞
∂F0=∂v
kv − ω

dv ¼ 0: (2)

The shelf half-width, Δv, is small compared to ωp=k,
meaning ωR ≈ ωp (where the subscripts R and I denote real
and imaginary parts). In this limit, the cold electron
contribution to ε simplifies, and the dispersion relation
takes the form

ε¼ 2

ωp

�
δωþ iγdþ

γL
π

�
log ½kΔv−δω�− log ½kΔvþδω�

þ 2δωkΔv
δω2− ðkΔvÞ2

��
¼ 0; (3)

where log denotes the complex logarithm.
A numerical investigation of Eq. (3) reveals three roots

with phase velocities within the plateau. The existence of
two extra roots beyond that of the classic instability is due,
in a beamlike fashion, to the discontinuities in the dis-
tribution at the shelf edges. In the absence of dissipation,
there is a critical width, given by kΔv ¼ 4γL=π, at which all
three roots coalesce at the origin. In fact, the dissipationless
case always has a root with δω ¼ 0. Below the critical
width, it is complemented by a stable-unstable conjugated
pair on the imaginary axis (Fig. 4). In this case, instability

FIG. 2 (color online). Snapshots of the resonant fast particle distribution function for γd=γL ¼ 0.1 that display (a) the initial phase
mixing followed by (b) the almost spatially uniform plateau with sideband trapping regions forming close to the edge, and finally (c) a
detaching hole-clump pair. Obtained using BOT [10,20].

FIG. 3 (color online). Model “shelf” distribution for the fast
particles.

FIG. 4 (color online). Motion of the two nontrivial roots of
Eq. (3) for γd ¼ 0 as the shelf width increases from below (red
dashed) to above (blue dotted) the critical value kΔv ¼ 4γL=π.
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reflects the fact that phase mixing from a small perturbation
at ω ¼ ωp is still a profitable energy release mechanism.
Beyond the critical width, phase mixing can no longer
support a growing plasma mode, so linear instability is
suppressed. More interestingly, the two roots complemen-
tary to the plasma mode now diverge along the real axis
(Fig. 4). These tendencies can be captured analytically via
an expansion around the critical width by setting
kΔv ¼ 4γLð1� δÞ=π, with 0 < δ ≪ 1. In addition to the
solution δω ¼ 0, one then finds two roots that have
δωR ¼ 0, δωI ¼ �i1.5γL

ffiffiffi
δ

p
for the lower and

δωR ¼ �1.5γL
ffiffiffi
δ

p
, δωI ¼ 0 for the upper sign. The diverg-

ing roots behave most interestingly when dissipation is
included. Whereas the plasma mode with δωR ¼ 0 damps
with δωI ∼ −γd, these modes actually destabilize weakly,
with 0 < δωI ≪ δωR. In the large plateau limit, the roots
approach the discontinuities in the distribution function,
jδωj=kΔv → 1, so this feature can be explicitly seen by
expanding Eq. (3) to lowest order in kΔv − δω, giving

δωR ≈�kΔv
�
1 − γL

π

kΔv
ðkΔvÞ2 þ γ2d

�
; (4a)

δωI ≈ γd
γL
π

kΔv
ðkΔvÞ2 þ γ2d

: (4b)

Further to the linear stability analysis, Fig. 5 displays
snapshots from a nonlinear simulation, initialized with a
large, shelflike plateau, where velocity modulations just
inside the plateau edges [at shifts predicted by Eq. (4a) to
within 3%] indeed evolve into chirping holes and clumps
on a time scale consistent with Eq. (4b). In this simulation,
the dissipation is large enough to completely suppress the

bulk plasma mode, γd=γL ¼ 2, emphasizing its lack of
involvement in the hole-clump formation process.
The physical reason for the instability of the edge modes

is that they are negative energy waves that grow in the
presence of dissipation rather than being abated. This can
be seen by evaluating the wave energy, which in the
electrostatic 1D case is [22],

W ¼ ε0
4
jEj2 ∂

∂ω ðωϵhÞ; (5)

where εh is the Hermitian part of the dielectric constant
evaluated at real frequency ω [i.e., ε from Eq. (3), without
iγd]. Then the condition for negative wave energy becomes
∂εh=∂ω < 0, or

kΔv
γL

�
1 − δω2

k2Δv2

�
2

<
4

π
: (6)

It can be verified that the shifted roots of the dispersion
relation [Eq. (3)] all satisfy Eq. (6). In particular, in the
large shelf limit, for which jδωj=kΔv → 1, Eq. (6) is clearly
satisfied. While one might naively expect the opposite for a
near-critical width, the scaling δω ∼

ffiffiffi
δ

p
in fact ensures that

the roots shift fast enough to maintain negative energy.
We are now in a position to address the nontransient

nature of the bursts in Fig. 1. In general, the first hole-
clump pair leaves behind a somewhat smaller plateau,
which is nevertheless still unstable. If it is large enough, a
secondary pair will develop and detach, much like in Fig. 5.
This process continues until nonlinear mode interaction
within the plateau can no longer be neglected, at which
point the system enters a phase during which a large plateau
is replenished. The rebuild phase is, however, sophisticated
and includes several stages that are outside the validity
range of the shelflike plateau model. Nevertheless, some
robust features can be extracted from the simulations and
interpreted by means of the model, and they depend
intrinsically on the value of γd. For γd=γL ≪ 1, the mode
interaction is sufficiently strong to destabilize the central
plasma mode. The ensuing phase mixing and dissipative
damping creates a slightly larger plateau, much as in
Fig. 2. This course of events then repeats, thereby gradually
enlarging the plateau until it is wide enough that the erosion
sequence can begin again [cf. Fig. 1(a), γLt < 1500]. Close
to the threshold, on the other hand, the linear shelf model
implies that the central mode is heavily damped and,
accordingly, seldom destabilizes. Rather, the reconstitution
process consists of several false starts where holes and
clumps attempt to peel off the small plateau but quickly
decay, thereby leaving behind a larger flattened area
[cf. Fig. 1(b), 220 < γLt < 400]. We speculate that the
holes and clumps are unable to fully develop because of the
strong interaction with the heavily damped central mode, a
feature that was also seen to be prominent during the
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FIG. 5 (color online). Spatially averaged distribution function
evolved using the BOT code [10,20] for γd=γL ¼ 2, kΔv=γL ¼
10 and initial normalized amplitude ω2

B=γ
2
L ¼ 10−6. The unstable

plateau generates holes and clumps that eventually completely
erode the plateau state.
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formation of the initial plateau. More work is however
required in order to assess whether it is possible to construct
a simple description of this nonlinear process.
In summary, we have explained the origin and continual

production of holes and clumps in terms of the sequential
formation and instability of phase space plateaus, arising
as a result of phase mixing and dissipative damping of an
unstable kinetic resonance. Both near and far from the
instability threshold, the holes and clumps develop from
negative energy modes that resonate with particles close to
the plateau edge, giving credence to the interpretation that
the considered mechanism is universal.

The authors wish to thank H. L. Berk for stimulating
discussions that helped inspire this Letter.
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