
Chalmers Publication Library

Using Short Synchronous WOM Codes to Make WOM Codes Decodable

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Communications (ISSN: 0090-6778)

Citation for the published paper:
Bitouze, N. ; Graell i Amat, A. ; Rosnes, E. (2014) "Using Short Synchronous WOM Codes
to Make WOM Codes Decodable". IEEE Transactions on Communications, vol. 62(7), pp.
2156-2169.

http://dx.doi.org/10.1109/TCOMM.2014.2323308

Downloaded from: http://publications.lib.chalmers.se/publication/200620

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1109/TCOMM.2014.2323308
http://publications.lib.chalmers.se/publication/200620

1

Using Short Synchronous WOM Codes to Make

WOM Codes Decodable
Nicolas Bitouzé, Alexandre Graell i Amat, Senior Member, IEEE, and Eirik Rosnes, Senior Member, IEEE

Abstract—In the framework of write-once memory (WOM)
codes, it is important to distinguish between codes that can
be decoded directly and those that require the decoder to
know the current generation so as to successfully decode the
state of the memory. A widely used approach to constructing
WOM codes is to design first nondecodable codes that approach
the boundaries of the capacity region, and then make them
decodable by appending additional cells that store the current
generation, at an expense of rate loss. In this paper, we propose an
alternative method to make nondecodable WOM codes decodable
by appending cells that also store some additional data. The key
idea is to append to the original (nondecodable) code a short
synchronous WOM code and write generations of the original
code and of the synchronous code simultaneously. We consider
both the binary and the nonbinary case. Furthermore, we propose
a construction of synchronous WOM codes, which are then used
to make nondecodable codes decodable. For short-to-moderate
block lengths, the proposed method significantly reduces the rate
loss as compared to the standard method.

Index Terms—Coding theory, decodable codes, flash memories,
synchronous write-once memory (WOM) codes.

I. INTRODUCTION AND DEFINITIONS

The write-once memory (WOM) model was introduced in

[1] to study storage devices consisting of q-ary (q ≥ 2)

memory cells whose values cannot be decreased. It was

originally introduced to model the behavior of optical disks

and study coding schemes that would allow one to write data

several times on a disk even though each bit can only be

written once. By allowing data from a previous write to be

“forgotten” when a new write occurs, one can show that the

total amount of information that can be stored on such a disk

is greater if several small pieces of information are stored

and forgotten one after the other than if the whole disk is

written at once. The model is now mainly studied because of

its similarity with flash memories, on which the value of a

cell can be decreased, but at an extremely high cost. Since the

original paper by Rivest and Shamir [1], several other works on

this topic have appeared, both in terms of code constructions,

A. Graell i Amat was supported by the Swedish Research Council under
Grant #2011-5961. E. Rosnes was supported by Simula@UiB. The material
in this paper was presented in part at the 2012 IEEE International Symposium
on Information Theory, Cambridge, MA, July 2012.

N. Bitouzé was with the Department of Electronics, Institut Télécom-
Télécom Bretagne, CS 83818 - 29238 Brest Cedex 3, France. He is now
with the Department of Electrical Engineering, University of California, Los
Angeles (UCLA), Los Angeles, CA 90095-1594. E-mail: bitouze@ucla.edu.

A. Graell i Amat is with the Department of Signals and Systems,
Chalmers University of Technology, Gothenburg, Sweden. E-mail: alexandre.
graell@chalmers.se.

E. Rosnes was with Ceragon Networks AS, Kokstadveien 23, N-5257 Kok-
stad, Norway. He is now with the Selmer Center, Department of Informatics,
University of Bergen, N-5020 Bergen, Norway, and the Simula Research Lab.
E-mail: eirik@ii.uib.no.

capacity, and error-correction. See, for instance, [2–13] and

references therein. Recently, lattice-based constructions have

been proposed. For instance, in [14, 15] lattice-based t-write

codes for multilevel cells were presented. For applications to

flash memories, see [16–18].

The fundamental problem in the WOM model is, consid-

ering an array of n empty q-ary cells, to know how much

information one can store using exactly t writes (also called

generations). The coding schemes that are used to fulfill this

goal are called t-write WOM codes. The following definition

is taken from [11].

Definition 1: An [n, t : M1, . . . ,Mt]q t-write q-ary WOM

code C is a coding scheme for n q-ary WOM cells, which

consists of t pairs of encoding and decoding maps Ei and Di

(1 ≤ i ≤ t) such that

1) E1 : {1, . . . ,M1} → {0, . . . , q − 1}n.

2) For 2 ≤ i ≤ t:

• Ei : {1, . . . ,Mi} × Im(Ei−1)→ {0, . . . , q − 1}n,

• ∀(m,b) ∈ {1, . . . ,Mi} × Im(Ei−1),
∀j ∈ {1, . . . , n}, (Ei(m,b))j ≥ (b)j .

3) For 1 ≤ i ≤ t, Di : {0, . . . , q − 1}n → {1, . . . ,Mi},
and

• ∀m ∈ {1, . . . ,M1}, D1(E1(m)) = m,

• for 2 ≤ i ≤ t, ∀(m,b) ∈ {1, . . . ,Mi} × Im(Ei−1),
Di(Ei(m,b)) = m.

For simplicity, in the remainder of the paper, we will refer

to WOM codes simply as codes. The rate of the above code,

referred to as the WOM-rate, or sometimes just as the rate of

the code, is defined as follows [11].

Definition 2: The rate of generation i ∈ {1, . . . , t} of an

[n, t : M1, . . . ,Mt]q q-ary code C is

Ri(C)
∆
=

log2 Mi

n

and the WOM-rate of C is defined as

R(C)
∆
=

t
∑

i=1

Ri(C) =

∑t

i=1 log2 Mi

n
.

The fundamental problem of the WOM model is therefore

to find a code of maximum WOM-rate given t and q, and

sometimes n.

For some codes, the state of the cells is enough to determine

the current generation (i.e., how many times the memory has

been written). However, some codes have a structure such

that the same state of the memory can appear at different

generations. This is not a problem if the same state of the

memory at different generations corresponds to the same

message, but when it is not the case, the decoder has to

2

be given the knowledge of the current generation in order

to successfully decode the memory. We say that a code is

decodable if for any state of the cells b and any i1 and

i2 with b ∈ Im(Ei1) ∩ Im(Ei2), Di1(b) = Di2(b). A code

that does not satisfy this property is called nondecodable. A

stronger property is given in [1]: a code is called synchronous1

if the current state of the memory provides enough information

to know the current generation, i.e., the sets Im(Ei) are

disjoint for 1 ≤ i ≤ t. Synchronous codes are decodable.

However, the reverse does not always hold. The work in [1]

also considers a way to guarantee synchronousness: laminar

codes are codes such that the weight of the cells, defined as

the L1-norm of the q-ary cell vector, is an injective function

of the generation, i.e., for b1 ∈ Im(Ei1) and b2 ∈ Im(Ei2),
w(b1) = w(b2) ⇒ i1 = i2. In the binary case, the weight

reduces to the standard Hamming weight. The authors of [1]

give a construction of laminar codes for n = t being a power

of two, with WOM-rate log2(t)/2. However, synchronous

codes have not been extensively studied in the literature. Note

that nonsynchronous codes can still be directly decoded if,

when the decoder cannot determine the current generation,

the choice of Di has no impact on the decoded symbol. In

Section II, we give examples of laminar, synchronous (but

nonlaminar), and decodable (but nonsynchronous) codes.

A nondecodable [nnd, tnd : M1, . . . ,Mtnd]2 binary code C
can be made decodable (and even synchronous) by simply

concatenating k instances of C with a block of tnd−1 cells that

store the current generation (by being filled one by one at each

write, starting at the second generation). The resulting code is

a synchronous code with parameters [knnd + tnd − 1, tnd :
Mk

1 , . . . ,M
k
tnd

]2. As k goes to infinity, the WOM-rate of this

code approaches the WOM-rate of the original code, R(C).

Most of the state-of-the-art high-rate codes are not directly

decodable. Indeed, a common approach in the literature is

to design (nondecodable) codes that approach the boundaries

of the capacity region (see, e.g., [11, 12]), and then make

them decodable using the method above. However, for short-

to-moderate block lengths, making a nondecodable code de-

codable by appending tnd − 1 cells containing no data can

significantly degrade its WOM-rate. For instance, consider

n = 6 and t = 4, and assume that we do not know a decodable

code of length 6. In this case, we could select a nondecodable

4-write code of length 3, and append 3 cells to store the current

generation. The resulting WOM-rate is half the original one,

as the additional cells only carry information about the current

generation.

In this paper, we propose a different approach to make a

nondecodable tnd-write code C decodable. Our main focus is

on binary codes, but we also extend our results to q > 2. The

key idea is to append (for a tnd-write nondecodable binary

code of length nnd) tnd − 1 additional cells which store not

only the current generation but also new data, by using a

tnd-write synchronous code with length tnd − 1, and writing

generations of C and of the synchronous code simultaneously.

Since synchronous codes are at the basis of the proposed

1Our concept of a synchronous code is equivalent to the concept of an
almost-synchronous code from [1].

method, we consider first the construction of synchronous

codes. Our main focus is on laminar codes. The construction

of synchronous (laminar) codes was already addressed in [1].

However, [1] only considered the case where n = t and t is a

power of 2. Here, we construct small laminar codes for both

n = t and n > t, and propose a construction for synchronous

codes of higher values of t. Lifting the constraint n = t allows

to achieve higher WOM-rates. The obtained codes are then

used to make nondecodable codes decodable. Whereas the

main focus of this paper is on unrestricted-rate codes [12],

i.e., we allow the individual writes to use a different number of

inputs, we also extend our construction to fixed-rate codes, i.e.,

codes for which all writes store the same number of messages.

The remainder of this paper is organized as follows. In

Section II, we introduce the main idea to turn nondecodable

codes into decodable ones, and provide some examples. In

Section III, we consider a simple family of laminar codes with

n = t, as well as very short codes from this family. We also

give bounds on the sizes of their generations, and construct

better laminar codes with n > t by local manipulations of the

codes with n = t. In Section IV, we propose a construction of

synchronous codes with good properties to reach higher values

of t by concatenating instances of a synchronous code using a

second synchronous code to decide, at each generation, which

of the instances of the first code are going to be modified.

In Section V, we study the case of fixed-rate codes, and we

extend our results on the binary case to nonbinary scenarios in

Section VI. Finally, in Section VII, we compare our method

of making nondecodable codes decodable with the method

that only adds cells containing no data. Some conclusions are

drawn in Section VIII.

II. MAIN IDEA AND EXAMPLES

Let C be a nondecodable code with parameters [nnd, tnd :
M1, . . . ,Mtnd]2, and WOM-rate Rnd. The standard approach

to turn C into a decodable code is to append tnd−1 cells that

store the current generation, thus obtaining a code of length

n = nnd + tnd − 1. This incurs a rate loss

γbasic =
Rnd −Rnd

nnd

n

Rnd
=

tnd − 1

n
. (1)

The main idea in this paper is very simple: instead of

adding cells that do not contain information, we append to

the original code cells that also store actual data. This is

achieved by appending to C a tnd-write synchronous code

of length nsync = tnd − 1, and writing generations of C
and of the synchronous code simultaneously. Appending a

synchronous code to C results in an overall decodable (and

also synchronous) code (the synchronousness of the appended

code guarantees that by observing the tnd − 1 new cells, the

decoder can always determine the current generation, and use

this knowledge to decode the overall code), while allowing to

store extra data.

Let Rsync > 0 be the WOM-rate of the synchronous

code that we append to the nondecodable code. The rate loss

3

introduced by this method, denoted by γsync, is

γsync =
Rnd − (Rnd(n− nsync) +Rsyncnsync) /n

Rnd

=
nsync

n

(

1−
Rsync

Rnd

)

(2)

which is smaller than γbasic, since we can choose nsync =
tnd − 1 (or slightly above). Note that γsync is decreasing

with Rsync when n, nsync, and Rnd > 0 are fixed. The

main ingredient of the proposed technique is therefore a

tnd-write synchronous code of length tnd − 1. To increase

Rsync one may also consider synchronous codes with nsync

slightly larger than tnd− 1 (the length of the resulting overall

code would be slightly larger than that of the code obtained

applying the standard method. However, the increase in length

is compensated by a larger WOM-rate Rsync).

The following sections are devoted to the construction of

t-write synchronous codes of length n = t − 1 (or slightly

larger) to be used to make a nondecodable code decodable as

explained above. Ideally, we would like to design synchronous

codes that maximize the WOM-rate. However, this is overly

complex. Instead we first construct small laminar codes, and

then propose a construction method to construct synchronous

codes for larger values of t by concatenating smaller codes.

The use of laminar codes makes the computer search more

tractable.

The construction method in Section IV requires component

codes which do not contain the all-zero codeword. Therefore,

in Section III we construct small laminar codes which do not

contain the all-zero codeword. Note that for codes that do not

contain the all-zero codeword, the number of writes is limited

by the code length, t ≤ n. Thus, our approach is to construct

(t − 1)-write synchronous codes with length n = t − 1 from

component codes which do not contain the all-zero codeword,

and then obtain a t-write synchronous code with length n =
t − 1 by simply adding a generation that only contains the

all-zero codeword.

To ease the understanding of the paper, in the following

we clarify this and the concepts of synchronous, laminar,

and decodable (but not synchronous) codes with some exam-

ples. For later use, if an [n, t : M1, . . . ,Mt]q code is syn-

chronous, we will frequently use the superscript “sync”, [n, t :
M1, . . . ,Mt]

sync
q . Also, in the binary case, the cells that can

be written from 0 to 1 but not from 1 to 0 are called wits [1].

Example 1: An example of a binary [4, 4 : 4, 2, 2, 1]2
laminar code is depicted in Fig. 1 by a state diagram describing

all four writes. The four-bit vector in each state is the memory-

state. The different types of edges (solid, dashed, dotted, and

dash-dotted) correspond to different input data bits. As can be

seen from the figure, the weight of the cells uniquely identifies

the generation.

Example 2: An example of a quaternary [2, 4 : 2, 2, 3, 3]4
synchronous (but nonlaminar) code is depicted in Fig. 2 by

a state diagram describing all four writes. The two-symbol

vector in each state is the memory-state. The different types of

edges (solid, dashed, and dotted) correspond to different input

data symbols. As can be seen from the figure, the cells of the

memory can not be in the same state at different generations,

First write Second write Third write Fourth write

1100

0101

0011

1010

1101

0111

1110

1011

0100

0010

0001

1000

1111

Fig. 1. A binary [4, 4 : 4, 2, 2, 1]2 laminar four-write code. The different
types of edges (solid, dashed, dotted, and dash-dotted) correspond to different
input data bits.

which implies that the code is synchronous, but the weight (or

L1-norm) of the cell state (22) of the third generation and the

weight of the cell state (31) (or (13)) of the fourth generation

are the same. Thus, the weight is not an injective function of

the generation, and the code is not laminar.

23

32

31

13

33

30

12

21

22

03

02

11

20

10

01

Second writeFirst write Third write Fourth write

Fig. 2. A quaternary [2, 4 : 2, 2, 3, 3]4 synchronous (but nonlaminar) four-
write code. The different types of edges (solid, dashed, and dotted) correspond
to different input data symbols.

Example 3: A simple example of a decodable (but nonsyn-

chronous) binary code, taken from [1], that enables two bits

to be written into three memory cells twice, is given Table I,

which describes the encoding and decoding rules for the code.

The code is nonsynchronous, since for the second write, if the

information to be encoded does not change, then the state of

the memory does not change either. Thus, the current state of

the memory does not provide enough information to tell the

current generation.

TABLE I
A BINARY [3, 2 : 4, 4]2 DECODABLE (BUT NONSYNCHRONOUS) CODE.

Data bits First write Second write (if data changes)

00 000 111

10 100 011

01 010 101

11 001 110

Example 4: By adding a generation containing the all-zero

codeword prior to all other generations of the [4, 4 : 4, 2, 2, 1]2
code from Example 1 (and depicted in Fig. 1), the code is

turned into a [4, 5 : 1, 4, 2, 2, 1]2 code. The WOM-rate is the

4

same, but the number of writes is now the length plus one.

The code is depicted in Fig. 3.

Second write Third write Fourth write Fifth write

0010

First write

1100

0101

0011

1010

1101

0111

1110

1011

0100

0001

1000

11110000

Fig. 3. A binary [4, 5 : 1, 4, 2, 2, 1]2 code obtained from the code of
Example 1 by adding a generation prior to all other generations containing the
all-zero codeword only. The different types of edges (solid, dashed, dotted,
and dash-dotted) correspond to different input data bits.

III. SMALL LAMINAR WOM CODES

In this section, we construct small laminar codes. We first

consider codes with n = t that write exactly 1 wit at each

generation, and then construct codes with n > t.
An exhaustive search for laminar codes that maximize the

WOM-rate is unfeasible even for very short codes. Thus, to

simplify the search, we use a greedy algorithm that maximizes

the values of Mi generation by generation. Consider a code

C with n = t that writes exactly 1 wit per generation, and a

generation i > 1. Assuming that the previous generations are

already fixed, the condition we have on Mi is that for every

x ∈ Im(Ei−1), and for every m ∈ {1, . . . ,Mi}, there exists

y ∈ Im(Ei) such that x ≤ y and Di(y) = m (where x ≤ y

if xk ≤ yk for all k, 1 ≤ k ≤ n). Denote by E(n, i) the

set of binary vectors of length n and Hamming weight i. It

follows that at each generation i, Im(Ei) ⊆ E(n, i). We use

this set inclusion to make our maximization at each generation

completely independent from the other generations, at the cost

of optimality.

Let us define the equivalence relation ≡n
i on Im(Ei) by

y ≡n
i y′ if and only if Di(y) = Di(y

′). Let us refer to the

equivalence classes of this relation as the codeword classes of

C at generation i. Codeword classes are subsets Y ⊆ E(n, i)
for which, if we do not take the previous generations into

account, the following must hold

∀x ∈ E(n, i− 1), ∃y ∈ Y : x ≤ y. (3)

We are also interested in the partitions of E(n, i) as a set

of valid codeword classes. If Y denotes such a partition, we

want that

∀Y ∈ Y, ∀x ∈ E(n, i − 1), ∃y ∈ Y : x ≤ y. (4)

Each valid partition Y corresponds to a valid decoding map

(modulo reordering), and thus each cardinality |Y| to a valid

Mi. We are therefore interested in finding the maximum car-

dinality of such a partition. We make the following important

definition.

Definition 3: Let A(n, i) be the maximum cardinality of a

partition Y of E(n, i) satisfying (4).

We now give an upper bound on A(n, i).

Proposition 1: Let B(n, i) be defined by

B(n, i)
∆
=

(

n
i

)

min
Y s.t. (3) holds

|Y |

 .

Then, the maximum cardinality A(n, i) of a partition Y that

satisfies (4) is upper-bounded by A(n, i) ≤ B(n, i).

Proof: Let Y be any partition of E(n, i). Then,

|Y| ·

(

min
Y s.t. (3) holds

|Y |

)

≤
∑

Y ∈Y

|Y | = |E(n, i)| =

(

n

i

)

.

This holds in particular when Y is of maximum cardinality.

This bound can be computed using a computer search for

the smallest Y that satisfies (3). The search is relatively slow,

but notice that by lower-bounding |Y | by
⌈

|E(n,i−1)|
i

⌉

(each

element y ∈ E(n, i) covers exactly i elements x ∈ E(n, i −
1)), we obtain a closed-form bound,

A(n, i) ≤ B(n, i) ≤

(

n
i

)

⌈

|E(n,i−1)|
i

⌉

 =

(

n
i

)

⌈

(n

i−1)
i

⌉

.

While the closed-form bound can be computed efficiently

and is reached for some values of (n, i) (for instance, for

n ≤ 3, or for i ≤ 2, or i = n), even for relatively low

values of n and i, it can be strictly higher than A(n, i). For

instance, A(4, 3) = 1, while the closed-form bound is 2.

Indeed, E(4, 3) = {1110, 1101, 1011, 0111} and E(4, 2) =
{1100, 1010, 1001, 0110, 0101, 0011}, and while each element

of E(4, 3) covers 3 elements of E(4, 2), it is not possible to

pick two elements of E(4, 3) such that the subsets of E(4, 2)
that they cover are disjoint. Therefore, the codeword classes

in E(4, 3) have cardinality at least 3, and not
|E(n,i−1)|

i
= 2.

For very small values of n, the exact value of A(n, i) can be

computed by conducting a simple exhaustive search on the set

of codeword classes. Values of B(n, i) are also obtained with

an exhaustive search, but on the minimum size of codeword

classes, which is significantly faster. The results of the two

searches are reported for n ≤ 16 in Table II. The values in

bold font are A(n, i), the others are B(n, i). The few values

of A(n, i) that were computed exactly match B(n, i), so it is

unknown whether there are pairs (n, i) such that A(n, i) <
B(n, i). Note that these values are constructive. For instance,

a [4, 4 : 4, 3, 1, 1]sync2 and a [5, 5 : 5, 3, 2, 1, 1]sync2 code can be

obtained from the search. The upper bounds from Table II in

italics match the exact values of A(n, i) by Propositions 4, 5,

and 7, or by the lower bounds of Propositions 2 and 3, and

are also constructive (see Section III-A below).

A. Bounds on the Sizes of Generations

We give bounds on the sizes of the generations of the codes

defined above. In particular, we give lower bounds that are

constructive and allow us to effectively build codeword classes

for the corresponding generations.

5

TABLE II
UPPER BOUND B(n, i) ON A(n, i). VALUES IN BOLD ARE EXACT VALUES FOR A(n, i) FOUND BY COMPUTER SEARCH (A(n, i) = B(n, i) IN ALL

CASES). THE VALUES FOR B(n, i) IN ITALICS MATCH THE EXACT VALUES OF A(n, i) BY PROPOSITIONS 4, 5, AND 7, OR BY THE LOWER BOUNDS OF

PROPOSITIONS 2 AND 3.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n

1 1
2 2 1
3 3 1 1

4 4 3 1 1

5 5 3 2 1 1
6 6 5 3 2 1 1

7 7 5 5 2 2 1 1

8 8 7 5 5 2 2 1 1

9 9 7 6 5 3 2 2 1 1
10 10 9 6 5 4 3 2 2 1 1

11 11 9 7 6 5 4 3 2 2 1 1

12 12 11 8 6 6 5 3 3 2 1 1 1

13 13 11 10 7 6 5 4 3 3 2 2 1 1
14 14 13 10 9 7 6 5 5 3 3 2 2 1 1

15 15 13 13 9 9 6 5 5 4 3 3 2 2 1 1

16 16 15 13 13 9 9 7 6 5 4 3 3 2 2 1 1

For x = (x1, . . . , xn) ∈ {0, 1}
n and x′ = (x′

1, . . . , x
′
n) ∈

{0, 1}n
′

, we denote by x · x′ the vector of {0, 1}n+n′

that is

the concatenation of x and x′:

x · x′ = (x1, . . . , xn, x
′
1, . . . , x

′
n).

We also call Y a suitable partition of E(n, i) if (4) holds,

and we do not mind if the union of the elements of Y is only

a strict subset of E(n, i).
Proposition 2: For any n ≥ 2 and 2 ≤ i ≤ n, A(n, i) ≥

min(A(n− 1, i− 1), A(n− 1, i)).
Proof: Let Y be a suitable partition of E(n−1, i) and Z a

suitable partition of E(n−1, i−1) such that |Y| = A(n−1, i)
and |Z| = A(n − 1, i − 1). Consider two bijections fY :
{1, . . . , A(n−1, i)} → Y and fZ : {1, . . . , A(n−1, i−1)} →
Z . Now, define a suitable partition Y ′ of E(n, i) as the union

for all 1 ≤ k ≤ min(A(n − 1, i − 1), A(n − 1, i)) of the

codeword classes

(fY(k).0) ∪ (fZ(k).1) .

There is no collision between these codeword classes, since we

can sort their elements according to their last symbol, and for

a given last symbol, the first n− 1 symbols of the codewords

in a codeword class match a (suitable) partition of E(n−1, i)
or one of E(n−1, i−1). The cardinality of Y ′ is min(A(n−
1, i− 1), A(n− 1, i)).

Proposition 3: For n ≥ 1, A(2n, 2) ≥ 2A(n, 2) + 1.

Proof: Let Y be a partition of E(n, 2) with cardinality

A(n, 2) such that for all Y ∈ Y and for all x ∈ E(n, 1), there

is y ∈ Y such that x ≤ y. Notice that any y ∈ Y ⊆ E(n, 2)
can be written as the sum of two weight-one words of length

n. Let us denote by enj the word of length n whose only

nonzero coordinate is a 1 at index j. Then every y ∈ Y can

be written y = enj + enk . Let Y ′ ⊆ E(2n, 2) be defined by the

union of 3 sets of codeword classes as follows.

1) For each Y ∈ Y , the codeword class

{e2nj +e2nk |e
n
j +enk ∈ Y }∪{e2nj+n+e2nk+n|e

n
j +enk ∈ Y }.

2) For each Y ∈ Y , the codeword class

{e2nj +e2nk+n|e
n
j +enk ∈ Y }∪{e2nj+n+e2nk |e

n
j +enk ∈ Y }.

3) The codeword class

{e2nj + e2nj+n|1 ≤ j ≤ n}.

These codeword classes are trivially disjoint, and each of them

covers E(2n, 1). Thus, A(2n, 2) ≥ A(n, 2) + A(n, 2) + 1 =
2A(n, 2) + 1.

Proposition 4: For any n ≥ 1, A(n, 1) = n.

Proof: Partition E(n, 1) into n singletons {enj } for 1 ≤
j ≤ n.

Proposition 5: For any n ≥ 0, A(2n, 2) = 2n − 1.

Proof: We use A(2n, 2) ≥ 2A(n, 2) + 1 from Propo-

sition 3 and the simple bound A(n, i) ≤ n − i + 1, which

for i = 2 becomes A(n, 2) ≤ n − 1, and proceed by

induction. A(1, 2) = 0. Assuming A(2n, 2) = 2n − 1, we

have A(2n+1, 2) ≥ 2 · (2n − 1) + 1 = 2n+1 − 1, and we have

A(2n+1, 2) ≤ 2n+1 − 1.

Proposition 6: For any n ≥ 1, A(2n+ 1, 2) ≤ 2n− 1.

Proof: This is the bound A(n, i) ≤

(

n
i

)

⌈

(n

i−1)
i

⌉

applied

to i = 2.

Proposition 7: For any n ≥ 1, A(2n + 1, 2) = 2n − 1.

Proof: A(2n+1, 2) ≥ 2n− 1 comes from a direct use of

Proposition 2 on the results of Propositions 4 and 5. A(2n +
1, 2) ≤ 2n − 1 comes from Proposition 6.

B. Laminar WOM Codes with n > t

The constraint n = t results in relatively low WOM-rates.

Lifting this constraint allows to achieve higher WOM-rates.

Laminar codes with n slightly larger than t can easily be de-

rived from the codes with n = t above by merging several gen-

erations together: taking, as the new set of codeword classes,

the union of the sets of codeword classes of two or more

consecutive generations.2 For instance, the [4, 4 : 4, 3, 1, 1]sync2

2n should remain small, because we do not expect to find synchronous
codes of WOM-rate higher than nondecodable ones, thus a larger number of
cells should be reserved to the nondecodable code.

6

code can be turned into a [4, 3 : 4, 3, 2]sync2 code by merging

its third and fourth generations together. Instead of having one

codeword class at generation 3 ({1110, 1101, 1011, 0111}) and

one at generation 4 ({1111}), now the third generation has

two codeword classes: {1110, 1101, 1011, 0111} and {1111},
and there is no fourth generation anymore. Likewise, a [5, 3 :
5, 3, 4]sync2 code (of WOM-rate 1.181) can be derived from

the [5, 5 : 5, 3, 2, 1, 1]sync2 code by merging the last three

generations together. However, consider the codeword classes

of vectors of weight 4. These were constructed in order to

cover every word of weight 3, while they now only have to

cover every word of weight 2. The optimization also did not

allow codeword classes of mixed weights. We can reorganize

the set of vectors of weight 3 or more into a better balanced

set of codeword classes. In (5), we give the codeword classes

of the third generation of a [5, 3 : 5, 3, 6]sync2 code (of WOM-

rate 1.298) obtained by reorganizing the third generation of

the [5, 3 : 5, 3, 4]sync2 code,

{01111, 11001, 10110}, {10111, 11100, 01011},

{11011, 01110, 10101}, {11101, 00111, 11010},

{11110, 10011, 01101}, {11111}. (5)

For comparison, the 4 codeword classes of the third gener-

ation of the [5, 3 : 5, 3, 4]sync2 code are

{11100, 11010, 10101, 01011, 00111} (weight 3 only),

{11001, 10110, 10011, 01110, 01101} (weight 3 only),

{11110, 11101, 11011, 10111, 01111} (weight 4 only),

{11111} (weight 5). (6)

Other choices can be made regarding which generations to

merge to obtain a 3-write code from the [5, 5 : 5, 3, 2, 1, 1]sync2

code, but lower WOM-rates are obtained.

IV. A CONSTRUCTION FOR SYNCHRONOUS WOM CODES

OF HIGHER t

In this section, we propose a construction to obtain syn-

chronous codes for higher values of t by concatenating n′

instances of a synchronous code of length n, and using a

second synchronous code of length n′ to decide, at each

generation, which of the n′ instances of the first code are

going to be modified.

Theorem 1: Let C be a binary [n, t : M1, . . . ,Mt]2 syn-

chronous code of WOM-rate R, and C′ a binary [n′, t′ :
M ′

1, . . . ,M
′
t′]2 synchronous code of WOM-rate R′, both not

containing the all-zero codeword. Then there exists a binary

[nn′, tt′ : M1M
′
1, . . . ,M1M

′
t′ , . . . ,MtM

′
1, . . . ,MtM

′
t′]2 syn-

chronous code C1 of WOM-rate R1 = t′

n′
R+ t

n
R′.

This construction is based on three algorithms.

1) An algorithm to determine the current generation i of

C1 from the state of the nn′ memory cells.

2) An encoding algorithm, whose input range depends on

i.
3) A decoding algorithm.

For p ∈ {1, . . . , t} and l ∈ {1, . . . , t′}, we denote by

Ep and Dp the encoding and decoding maps, respectively,

of C at generation p, and by E ′l and D′
l the encoding and

decoding maps, respectively, of C′ at generation l. We also

write Im(E0) = {0n} (resp. Im(E ′0) = {0n′}) to denote the

fact that the state of a block prior to any write by C (resp.

C′) is the all-zero codeword of length n (resp. n′). We then

denote by g (resp. g′) the function that takes a codeword from

C (resp. C′) and returns the unique generation of C (resp. C′)

of which it is a codeword. Formally,

g :
⋃

p∈{0,...,t} Im(Ep) → {0, . . . , t}

b 7→ p s.t. b ∈ Im(Ep),
g′ :

⋃

l∈{0,...,t′} Im(E ′l) → {0, . . . , t′}

b′ 7→ l s.t. b′ ∈ Im(E ′l).

The fact that C and C′ are synchronous guarantees that p and

l are unique.

Algorithm 1 Algorithm to Recover the Current Generation

1: Input: b1, . . . ,bn′

2: Output: p, l, i, and b′

3: p← 0
4: for k ← 1 to n′ do

5: pk ← g(bk)
6: if pk > p then

7: p = pk

8: for k ← 1 to n′ do

9: b′k ← pk + 1− p ⊲ Should always be 0 or 1

10: if b′ = 1n′ or g′(b′) = t′ then

11: l ← 0
12: p← p+ 1
13: b′ ← 0n′

14: else

15: l ← g′(b′)

16: i← (p− 1)t′ + l

The key idea is that the nn′ wits of C1 are divided into

n′ blocks of n wits denoted by bk for k ∈ {1, . . . , n′}, and

the tt′ generations are divided into t stages of t′ generations.

For p ∈ {1, . . . , t} and l ∈ {1, . . . , t′}, generation i = (p −
1)t′ + l of C1 is the l-th generation of the p-th stage. At

this point, we guarantee that each of the n′ blocks of n wits

contains a codeword bk ∈ Im(Ep−1) ∪ Im(Ep). We call b′ =
(b′1, . . . , b

′
n′) ∈ Im(E ′l) the binary vector of length n′ with

entries b′k = g(bk)− p+1, k ∈ {1, . . . , n′}. Then, Algorithm

1 can take a codeword of C1, and use functions g and g′ to

determine the current generation i.
Both the encoder and the decoder first use this algorithm to

determine the current generation i (actually, they use p and

l). They also use the value of b′. Algorithm 2, described

below, is the encoding algorithm, which takes a message

m1 ∈ {1, . . . ,MpM
′
l+1} and encodes it. This message is

decomposed into a message m ∈ {1, . . . ,Mp} and a message

m′ ∈ {1, . . . ,M ′
l+1}. We then compute the new b′ as

E ′l+1(m
′,b′) and compare the positions at which it differs from

the old one. These positions are the indices k ∈ {1, . . . , n′}
of the blocks that will be written (hence switching from

generation p − 1 to generation p). The only requirement on

how these blocks will be written is that after this encoding

stage, the modulo Mp sum (in {1, . . . ,Mp}) of the Dp(bk)

7

for bk ∈ Im(Ep) is m. Algorithm 2 shows a simple way to

achieve this.

Algorithm 2 Encoding Algorithm

1: Input: b1, . . . ,bn′ , and b′, m1, p, and l
2: Output: b1, . . . ,bn′

3: m← 1 +
⌊

(m1 − 1)/M ′
l+1

⌋

4: m′ ← 1 + ((m1 − 1) mod M ′
l+1)

5: b̂′ ← E ′l+1(m
′,b′)

6: for k ← 1 to n′ do

7: if b′k = 1 then

8: m← m−Dp(bk)

9: else if b′k = 0 ∧ b̂′k = 1 then

10: k0 ← k

11: m← 1 + ((m− 1) mod Mp)
12: for k ← 1 to n′ do

13: if b̂′k = 1 ∧ b′k = 0 ∧ k 6= k0 then

14: bk ← Ep(Mp,bk)

15: bk0
← Ep(m,bk0

)

The messages m and m′ can be decoded by decoding b′

with the decoder of C′, and then decoding every block bk for

bk ∈ Im(Ep) with the decoder of C, and finally taking the

modulo Mp sum (in {1, . . . ,Mp}) of the decoded messages.

The original message m1 is then m1 = (m− 1)M ′
l +m′. See

Algorithm 3 for details.

Algorithm 3 Decoding Algorithm

1: Input: b1, . . . ,bn′ , and b′, p, and l
2: Output: m, m′, and m1

3: m′ ← D′
l(b

′)
4: m← 0
5: for k ← 1 to n′ do

6: if b′k = 1 then

7: m← m+Dp(bk)

8: m← 1 + ((m− 1) mod Mp)
9: m1 ← (m− 1)M ′

l +m′

Let us now establish the WOM-rate R1 of C1.

R1 =

∑t

p=1

∑t′

l=1 log2(MpM
′
l)

nn′

=
1

nn′

log2

(

t
∏

p=1

M t′

p

)

+ log2

t′
∏

l=1

(M ′
l)

t

=
1

nn′
(t′ · nR+ t · n′R′) =

t′

n′
R+

t

n
R′.

Example 5: Let C be the [4, 3 : 4, 3, 2]sync2 code defined by

1 2 3 4

D−1
1 {0001} {0010} {0100} {1000}
D−1

2 {1100, 0011} {1010, 0101} {1001, 0110} −

D−1
3

{0111, 1011,
1101, 1110}

{1111} − −

and C′ the [2, 2 : 2, 1]sync2 code defined by

1 2
(D′

1)
−1 {01} {10}

(D′
2)

−1 {11} −
.

The code C1 obtained with the construction is a [8, 6 :
8, 4, 6, 3, 4, 2]sync2 code. Consider that the eight cells are in

state (b1,b2) = (1100, 0010). Let us first consider the

decoding of the message following Algorithms 1 and 3. The

generation in C of the first block b1 is 2, and that of the

second block b2 is 1, thus p = 2 (the highest of the two) and

b′ = (10). The fact that C′ is synchronous guarantees that

only one encoding function of C′ has b′ in its range: here, it

is the encoding function for l = 1. Thus, we are at the first

generation (l = 1) of the second stage (p = 2), so the overall

generation is i = (p − 1)t′ + l = (2 − 1) × 2 + 1 = 3. The

flow of Algorithm 1 is illustrated in Fig. 4.

For the decoding part, we have m′ = D′
1(10) = 2 and

m as the modulo Mp sum (in {1, . . . ,Mp}) of Dp(bk) for

all indices k of a block at generation p of C. Here, there

is only one block at generation p = 2 for C: block b1 =
(1100), therefore m = (D2(b1) − 1) (mod 3) + 1 = 1. The

original message pair was therefore (1, 2). This can be mapped

to m1 ∈ {1, . . . ,MpM
′
l} by m1 = (m − 1)M ′

l +m′, which

gives m1 = 0 × 2 + 2 = 2. The flow of Algorithm 3 is

illustrated in Fig. 5.

For the encoding part, let us now encode a new message

m1 = 2 ∈ {1, 2, 3} for generation 4 following Algorithm 2.

Our new m and m′ are 2 and 1, respectively, so that (m −
1)M ′

l+1 +m′ = (2− 1)× 1 + 1 = 2. b′ = (10) will become

b′ = (11) because E ′2(1, 10) = (11). Therefore, the second

block is going to be written (because the second wit of b′

changes). We first decode all the blocks already at generation

p = 2: here, we only have one block at generation p = 2, and

D2(b1) = D2(1100) = 1. We therefore encode in the second

block b2 a message m0 = (m − D2(b1) − 1) (mod Mp) +
1, where Mp = M2 = 3 and m = 2. Thus, m0 = 1 and

b2 is replaced by Ep(1, 0010) = (0011). The state of the

cells is (1100, 0011) after this encoding phase. The flow of

Algorithm 2 is illustrated in Fig. 6.

We remark that the construction above requires that code C
does not contain the all-zero codeword. In that case, if the all-

zero codeword of C is written in a block, the generation of C1

would be improperly identified and the component m′ of the

message could not be written/decoded. The construction also

requires C′ to not contain the all-zero codeword, in which case

the component m of the message could not be written/decoded

when the all-zero codeword is chosen for C′.

As a final remark, note that the construction above re-

sembles a tensor-product code construction, but with some

important differences. For instance, it is required that the

different blocks contain codewords from C of neighboring

generations.

A. Results

Let us denote by F (C,C′) the code obtained by applying

the construction of Theorem 1 to C and C′. We can iterate the

8

1 01 00 10 0

b1 = 1100 b2 = 0010

g(b1) = 2 g(b2) = 1 p = 2

g() g()

1 0 b
′ = 10

l = g′(b′) = 1

g′()

i = (p− 1)t′ + l = 3

Input

Lines 4-7

Lines 8,9

Lines 10-15

Line 16

Fig. 4. Example of a run of Algorithm 1.

b1 = 1100 b2 = 00�0b′ = 10

gen. p = 2 gen. p− 1 = 1gen. l = 1

m′ = D′

1(b
′) = 2

D′

l
()

D2(b1) = 1 i������

Dp() ��n ���g p

∑
k D2(bk) = 1

m = 1

proj. to {1, . . . ,Mp}

m1 = (m − 1)M ′

l
+m′ = 2

Input

Line 3

Lines 4-8

Line 9

Fig. 5. Example of a run of Algorithm 3.

m1 = 2

m′ = 1 m = 2

b1 = 1100 b2 = 00�0

gen. p = 2 gen. p− 1 = 1

D2(b1) = 1 i������

Dp() ��n ���g p

m̃0 =
∑

k D2(bk) = 1

b
′ = 10

gen. l = 1

b̂
′ = E ′2(m

′,b′) = 11

E ′
l+1

()

k0 = 2

b′ = 10

b̂′ = 11

b2 ← E2(m ⊖ m̃0,b2) = 0011 (where ⊖ is the modulo Mp subtraction in {1, . . . ,Mp})

1 01 00 10 1

Input

Lines 3,4

Line 5

Lines 9,10

Lines 7,8,11

Lines 12-15

Output

Fig. 6. Example of a run of Algorithm 2.

9

above construction by choosing C and C′, and then defining

C0 = C and Cm = F (Cm−1, C
′) for all m > 0. This

generates codes with even higher values of t, which have to

be compared with a construction of synchronous codes from

[1] (where n = t is any power of two and the WOM-rate is

log2(t)/2). Notice that the two constructions happen to match

when we take as C = C′ the trivial [2, 2 : 2, 1]sync2 code.

First, we restrict ourselves to codes with n = t (which are

easier to compare) and we fix C′ = C. The WOM-rate of the

tm-write code Cm after m iterations of the construction is

R(Cm) = mR(C) = logt(tm)R(C) =
R(C)

log2(t)
log2(tm).

Therefore, for codes with n = t, the higher
R(C)
log

2
(t) is, the better

this iterated construction works. The code that maximizes this

ratio among those found by our computer search is the one

with n = t = 2 (with
R(C)
log

2
(t) = 1

2), making the codes from

[1] the best in terms of asymptotic WOM-rate until codes

for higher values of n = t are found. For instance, Table II

suggests that a [8, 8 : 8, 7, 5, 5, 2, 2, 1, 1]sync2 code could exist,

with a ratio of 0.519 (and even better synchronous codes could

exist even for n = t = 8, if we remove the added constraints

from Section III). However, when t is not a power of two, our

construction can yield codes where t has either 2, 3, or 5 as a

divisor, but no other prime divisors, i.e., the number of writes

is of the form 2a3b5c. This is achieved by mixing different

elementary codes C′ with 2, 3, and 5 generations, instead of

always using the t = 2 code. This is a much denser coverage

of the potential values of t. Furthermore, if we consider codes

with n slightly greater than t, we can reach higher WOM-rates

at equal values of t. Consider, for instance, the code F (C,C′)
with C the [4, 3 : 4, 3, 2]sync2 code and C′ the [2, 2 : 2, 1]sync2

code. The construction then yields a [8, 6 : 8, 4, 6, 3, 4, 2]sync2

code of WOM-rate 1.521 (larger than log2(t)/2 both for t = 6
and t = 8). This is the example code of Example 5.

V. FIXED-RATE WOM CODES

In Sections III and IV we did not impose any constraint on

the values {Mi}. Therefore, the obtained codes are in general

unrestricted-rate codes, i.e., the codes store in general a differ-

ent number of messages at different generations. Appending

these codes to a nondecodable code to make it decodable will

clearly result into an unrestricted-rate code.

In this section, given a fixed-rate nondecodable code, we

consider the problem of efficiently generating a fixed-rate

decodable code. Note that the standard method of appending

tnd− 1 cells to a tnd-write nondecodable code that only store

the current generation results in a fixed-rate code, since it

does not change the values of {Mi}. However, we can also

improve the WOM-rate of the overall code, by appending

a short synchronous code as in the previous sections, with

the additional constraint that the synchronous code must also

be fixed-rate. We are therefore interested in finding short

synchronous fixed-rate codes.

The main result of this section is that the construction of

Section IV yields a fixed-rate code when applied to two fixed-

rate codes. To find fixed-rate synchronous codes for many

values of t, one therefore only has to find a few such codes

for small values of t. In the following, we propose two such

codes.

• A [3, 2 : 2, 2]sync2 code of WOM-rate 2/3 given by

1 2

D−1
1 {001} {010}
D−1

2 {110, 101} {011}
.

• A [5, 3 : 4, 4, 4]sync2 code of WOM-rate 1.2 where the

classes are:

– At generation 1: {00001}, {00010}, {00100}, and

{01000}.
– At generation 2: {11000, 10100, 10010, 10001},
{01100, 00011}, {01010, 00101}, and

{01001, 00110}.
– At generation 3: the same codeword classes as in (6).

We remark that fixed-rate codes have not only lower WOM-

rate than unrestricted-rate codes, but when we add the con-

straint that the codes must be synchronous and with n = t−1,

this gets even worse as the last generation of a synchronous

code with n = t− 1 will always have size 1, forcing the size

of every generation to be 1 for a fixed-rate code, and making

its WOM-rate 0. This explains why the two codes that we give

have n larger than t− 1.

VI. EXTENSION TO q-ARY WOM CODES

The proposed method of Section II for making a nonde-

codable code decodable in the binary case can be extended to

the problem of making nondecodable q-ary codes decodable

for q > 2. The number of additional cells required to make

a q-ary tnd-write nondecodable code decodable is
⌈

tnd−1
q−1

⌉

.

Indeed, during each of the last tnd − 1 generations, the sum

of the values in the additional cells is increased by at least 1,

and this sum is at most q − 1 times the number of additional

cells. We consider the problem of building synchronous q-

ary (tnd − 1)-write codes with length
⌈

tnd−1
q−1

⌉

(or slightly

above) which do not contain the all-zero codeword, since,

as in the binary case, we can later add an extra generation

containing only the all-zero codeword, turning the code into

a tnd-write code of length
⌈

tnd−1
q−1

⌉

. If tnd ≤ q, then only

one additional cell is required. This case applies to the codes

in [11], for instance, with q = 8 and tnd = 2, 3, 4, 5, 6, 7,

or q = 4 and tnd = 2, 3, 4. Then, the WOM-rate of a code

is determined entirely by the assignment of the q possible

values of the cell to its generations. For instance, if q = 5 and

tnd = 3, we can choose Im(E1) = {0, 1}, Im(E2) = {2, 3},
and Im(E3) = {4}. The WOM-rate of the resulting code would

therefore be log2(2 × 2 × 1). Maximizing the WOM-rate of

the code is equivalent to maximizing the product
∏tnd

i=1 Mi

where the only constraints on the Mi’s are that they are

integers from {1, . . . , q} and that
∑tnd

i=1 Mi ≤ q. Maximizing

a product of integers given their sum is achieved by choosing

them as close to each other as possible, here by picking

Mi ∈ {⌊q/tnd⌋, ⌈q/tnd⌉} for all i. Let us consider the two

extreme regimes. If tnd = q/2 (resp. tnd > q/2), we pick

Mi ∈ {2, 2} (resp. Mi ∈ {1, 2}) and the resulting WOM-rate

10

TABLE III
Aq(n, i) IN THE TERNARY CASE (q = 3). THE VALUES ARE

CONSTRUCTIVE (I.E., THEY CORRESPOND TO ACTUAL CODES FOUND BY

AN EXHAUSTIVE SEARCH). VALUES IN ITALICS CAN ALSO BE TAKEN

FROM PROPOSITION 9.

i 1 2 3 4 5 6 7 8
n

1 1 1
2 2 2 1 1
3 3 3 2 1 1 1
4 4 4 3 3 1 1 1 1
5 5 5 - - - - - -

TABLE IV
Aq(n, i) IN THE QUATERNARY CASE (q = 4). THE VALUES ARE

CONSTRUCTIVE (I.E., THEY CORRESPOND TO ACTUAL CODES FOUND BY

AN EXHAUSTIVE SEARCH). VALUES IN ITALICS CAN ALSO BE TAKEN

FROM PROPOSITION 9.

i 1 2 3 4 5 6 7 8 9
n

1 1 1 1
2 2 2 2 1 1 1
3 3 3 3 2 1 1 1 1 1
4 4 4 4 3 - - - - -

is log2(2
q−tnd) = q − tnd (resp. log2(2

q−tnd) = q − tnd),

while if tnd is small compared to q, the optimal WOM-

rate can be closely approximated by log2

(

∏tnd
i=1 q/tnd

)

=

tnd log2(q/tnd).
If tnd > q, then several additional cells are required. Using

a computer search, we can find a few very short synchronous

codes for q > 2 under the same constraints as the codes from

Section III (laminar, with n =
⌈

t
q−1

⌉

, and where generation

i is built assuming that all codewords of weight (or L1-norm)

i−1 are used by generation i−1). Furthermore, in analogy with

the binary case, we make the following important definition.

Definition 4: Let Eq(n, i) be the set of q-ary vectors of

length n and weight i, and Aq(n, i) the maximum size of a

partition Y of Eq(n, i) so that

∀Y ∈ Y, ∀x ∈ Eq(n, i − 1), ∃y ∈ Y : x ≤ y.

As in the binary case, we would like to compute Aq(n, i)
for different values of n and i. Tables III and IV show the

results of such a search for q = 3, 4 and small values of n.

As an example, a [2, 6 : 2, 2, 2, 1, 1, 1]sync4 code of WOM-rate

3/2 (which corresponds to the second row of Table IV) given

by

1 2

D−1
1 {01} {10}
D−1

2 {11} {20, 02}
D−1

3 {21, 03} {12, 30}
D−1

4 {13, 31, 22} −
D−1

5 {23, 32} −
D−1

6 {33} −

was found.

A. Bounds on the Sizes of Generations

The bounds from Section III-A can also be extended to the

q-ary case for laminar codes with n =
⌈

t
q−1

⌉

and the size

of each generation maximized assuming no knowledge of the

previous generation.

Proposition 8: For any n ≥ 2, q ≥ 2, and 2 ≤ i ≤ n,

Aq(n, i) ≥ min(Aq(n− 1, i− 1), Aq(n− 1, i)).
Proof: The proof follows the same lines as the proof of

Proposition 2, with the suitable partition Y ′ of Eq(n, i) defined

as the union for all 1 ≤ k ≤ min(Aq(n−1, i−1), Aq(n−1, i))
of the codeword classes

(fY(k).0) ∪

q−1
⋃

s=1

(fZ(k).s) .

Proposition 9: For any n ≥ 1 and q ≥ 2, Aq(n, 1) = n.

Proof: Same proof as for Proposition 4.

Proposition 10: For n ≥ 1 and q ≥ 3, Aq(n, 2) ≥
A2(n, 2) + 1.

Proof: Consider a suitable partition Y of E2(n, 2) of car-

dinality A2(n, 2). Now consider Y ′ = Y ∪{2enk | 1 ≤ k ≤ n}.
The cardinality of Y ′ is A2(n, 2)+1, the words in its codeword

classes have weight 2, and they belong to Eq(n, 2). There is

no collision since Y has no collision, and the words we add

are not in E2(n, 2).
Proposition 11: For n ≥ 0 and q ≥ 3, Aq(2

n, 2) ≥ 2n.

Proof: It follows from direct application of Propositions 5

and 10.

Proposition 12: For n ≥ 0 and q ≥ 3, Aq(2n + 1, 2) ≥
2n+ 1.

Proof: The idea is to consider a codeword class whose

circular permutations do not overlap. For n = 3, such a

codeword class is {0002000, 0010100, 0100010, 1000001}.
Formally, let us consider the following codeword class Y0

of Eq(2n+ 1, 2):

Y0 = {en+1−k + en+1+k | 0 ≤ k ≤ n} .

Y0 covers Eq(2n + 1, 1). If Y = {Y0, Y1, . . . , Y2n} is the

family of the circular permutations of Y0, then Y is a suitable

partition of Eq(2n + 1, 2). Indeed, for a given right circular

permutation of (en+1−k + en+1+k), k can be identified as

follows.

• The vector has a 2 if and only if k = 0.

• Otherwise, it has two 1’s at indices i1 and i2 with i1 < i2.

If i2 − i1 is even, k = i2−i1
2 and we have permuted

(en+1−k + en+1+k) to the right i1 − n− 1+ k times. If

i2 − i1 is odd, k = 2n+1+i1−i2
2 and we have permuted

(en+1−k + en+1+k) to the right i2 − n− 1 + k times.

The cardinality of Y is 2n+1, which is a lower bound on the

maximum cardinality of a suitable partition of Eq(2n+ 1, 2).

Finally, we remark that the lower bounds of Propositions 8,

10, 11, and 12 match the exact values of Aq(n, i) from Tables

III and IV for several values of (n, i).

B. The Construction from Section IV

The construction of Section IV can be extended to q-ary

codes as follows.

Theorem 2: Let C be an [n, t : M1, . . . ,Mt]q syn-

chronous q-ary code of WOM-rate R, and C′ an [n′, t′ :

11

M ′
1, . . . ,M

′
t′]2 synchronous binary code of WOM-rate R′,

both not containing the all-zero codeword. Then there exists

an [nn′, tt′ : M1M
′
1, . . . ,M1M

′
t′ , . . . ,MtM

′
1, . . . ,MtM

′
t′]q

synchronous q-ary code C1 of WOM-rate R1 = t′

n′
R+ t

n
R′.

Proof: The proof that C1 is a valid synchronous q-ary

code is the same as in the binary case.

Notice that the code C′ in the construction is still binary:

the requirement is that C and C1 must have the same alphabet

size. Using a q′-ary code (with q′ > 2) instead of a binary code

is also possible regardless of C and C1. When C′ is binary,

the two values 0 and 1 will be matched, at each stage, to 2
successive generations p−1 and p of C. In the first stage they

are matched to generations 0 (i.e., empty memory) and 1, then

to generations 1 and 2, and so on. However, when C′ is q′-ary

with q′ > 2, each stage has q′ possible values to match to q′

generations. For instance, if q′ = 4, the values (0, 1, 2, 3) will

be matched to generations (0, 1, 2, 3) of C at stage 1, then

to generations (3, 4, 5, 6) at stage 2, generations (6, 7, 8, 9) at

stage 3, and so on.

If a nonbinary code C′ is to be used, then either C or C′

must have a suitable structure. The following conditions, for

example, would ensure this.

• A first sufficient condition is that each write of C′

increases the sum of the values of its cells by exactly one.

This prevents the following situation from happening.

Consider the case where at the first generation of a

nonbinary C′, a cell can go both from 0 to 1 and from 0
to 2 depending on which message we encode. Then, in

the corresponding block, we will write a codeword of C
of either generation 1 or generation 2. When encoding a

pair (m,m′) of messages, the number of messages among

which we can choose m therefore depends on m′, which

means that the encoder cannot predict how much data it

will be able to store at a given generation.

• Another possible condition to avoid the above issue is that

we choose a fixed-rate code C. In the previous example,

if M1 = M2, it does not matter if we do not know

whether we will be using generation 1 or generation 2
of C; we have the same number of messages to choose

from anyway.

As an example, a [4, 10 : 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]sync4 code

can be constructed in the following way. First, a [2, 4 :
2, 2, 3, 3]sync4 code can be made by merging together the

last three generations of the [2, 6 : 2, 2, 2, 1, 1, 1]sync4 code

displayed above in Section VI by taking as the new set of

codeword classes the union of the sets of codeword classes of

the three last generations, and reorganizing them, as explained

for the binary case in Section III-B. Also, if the codeword

classes are reorganized properly, then an additional codeword

class {22} can be added to the third generation, resulting in

the following [2, 4 : 2, 2, 3, 3]sync4 code

1 2 3

D−1
1 {01} {10} −
D−1

2 {11} {20, 02} −
D−1

3 {21, 03} {12, 30} {22}
D−1

4 {13, 32} {31, 23} {33}

of WOM-rate 2.5850.3 This is the example code of Exam-

ple 2. Obviously, a [2, 5 : 2, 2, 3, 2, 1]sync4 code can be made

by splitting the fourth generation into the two generations

{{13, 32}, {31, 23}} and {33}. Finally, by using the construc-

tion of Theorem 2, using the [2, 5 : 2, 2, 3, 2, 1]sync4 code as

C and the [2, 2 : 2, 1]sync2 code from Example 5 as C′, a

[4, 10 : 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]sync4 code of WOM-rate 3.5425
can be constructed.

VII. RESULTS AND COMPARISON WITH THE STANDARD

METHOD

In this section, we use the synchronous codes derived

in the previous sections to construct decodable codes from

nondecodable ones as explained in Section II (binary case)

and Section VI (nonbinary case). We compare the proposed

method with the basic method that adds
⌈

tnd−1
q−1

⌉

cells con-

taining no data. For this comparison, we consider two different

target code lengths, n = 64 and n = 256. We then assume for

each value of n and for some specific values of tnd, that there

exists a tnd-write code with WOM-rate equal to the best (i.e.,

of highest WOM-rate) codes from [11, 12], and with length

nnd = n−nsync, where nsync is the length of the synchronous

code. Note that we do not use the actual code lengths at which

these state-of-the-art WOM-rates are reached because they are

very large [19] and not explicitly stated in [11, 12]. However,

this gives a meaningful comparison, since the rate loss with our

approach (see (2)) is an increasing function of Rnd when n,

nsync, and Rsync > 0 are fixed. Since no code (for any block

length) of strictly higher WOM-rate than the ones reported

in [11, 12] is (as far as we can tell) currently known, and

considering a specific block length nnd will likely reduce the

WOM-rate of the best nondecodable code, the comparison is

a sort of worst-case scenario for our approach.

The results for the binary case are reported in Tables

V and VI. We consider values for tnd between 4 and 7.

The second column of each table reports the state-of-the-

art WOM-rate of nondecodable codes, for each value of

tnd. The third column shows the WOM-rate that is ob-

tained by appending tnd − 1 cells with no data to a length

nnd = n − (tnd − 1) code with WOM-rate equal to the

one reported in the second column. The next two columns

show, for various synchronous codes, the WOM-rate that we

obtain for the same target length. The [3, 4 : 1, 3, 1, 1]sync2 ,

[4, 5 : 1, 4, 3, 1, 1]sync2 , [5, 6 : 1, 5, 3, 2, 1, 1]sync2 , and [6, 7 :
1, 6, 5, 3, 1, 1, 1]sync2 codes are obtained by adding to the codes

[3, 3 : 3, 1, 1]sync2 , [4, 4 : 4, 3, 1, 1]sync2 , [5, 5 : 5, 3, 2, 1, 1]sync2 ,

and [6, 6 : 6, 5, 3, 1, 1, 1]sync2 from Section III a generation

containing the all-zero codeword.4 The [5, 4 : 1, 5, 3, 6]sync2

code is obtained in a similar manner from the [5, 3 : 5, 3, 6]sync2

code in Section III-B, and the [8, 7 : 1, 8, 4, 6, 3, 4, 2]sync2 code

3By adding a generation containing the all-zero codeword, we get a [2, 5 :
1, 2, 2, 3, 3]sync4 code of the same WOM-rate, which is significantly higher
than the corresponding worst-case WOM-rate of the synchronous lattice-based
code from [14, Table I].

4Note that from Table II, B(6, 4) = 2, which implies that a [6, 6 :
6, 5, 3, 2, 1, 1]sync2 code may exist. However, we have not been able to identify
such a code in a (nonexhaustive) computer search. The best code found was
a [6, 6 : 6, 5, 3, 1, 1, 1]sync2 code.

12

TABLE V
WOM-RATES OF BINARY DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTH n = 64. THE

NUMBERS IN THE PARENTHESES (IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES (COMPUTED FROM (1) AND (2), RESPECTIVELY) IN PERCENT,
WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code from [12, Table VI] with no data Sync. code Rate reduction factor

4 1.8566 1.7696 (4.69%)
[3, 4 : 1, 3, 1, 1]2 1.7943 (3.35%) 1.40
[5, 4 : 1, 5, 3, 6]2 1.8130 (2.35%) 2.00

5 1.9689 1.8458 (6.25%) [4, 5 : 1, 4, 3, 1, 1]2 1.9019 (3.41%) 1.84

6 2.1331 1.9665 (7.81%) [5, 6 : 1, 5, 3, 2, 1, 1]2 2.0431 (4.22%) 1.85

7 2.1723 1.9686 (9.38%)
[6, 7 : 1, 6, 5, 3, 1, 1, 1]2 2.0701 (4.71%) 1.99
[8, 7 : 1, 8, 4, 6, 3, 4, 2]2 2.0909 (3.75%) 2.50

TABLE VI
WOM-RATES OF BINARY DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTH n = 256. THE

NUMBERS IN THE PARENTHESES (IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES (COMPUTED FROM (1) AND (2), RESPECTIVELY) IN PERCENT,
WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code from [12, Table VI] with no data Sync. code Rate reduction factor

4 1.8566 1.8348 (1.17%)
[3, 4 : 1, 3, 1, 1]2 1.8410 (0.84%) 1.40
[5, 4 : 1, 5, 3, 6]2 1.8457 (0.59%) 2.00

5 1.9689 1.9381 (1.56%) [4, 5 : 1, 4, 3, 1, 1]2 1.9521 (0.85%) 1.84

6 2.1331 2.0914 (1.95%) [5, 6 : 1, 5, 3, 2, 1, 1]2 2.1106 (1.05%) 1.85

7 2.1723 2.1214 (2.34%)
[6, 7 : 1, 6, 5, 3, 1, 1, 1]2 2.1467 (1.18%) 1.99
[8, 7 : 1, 8, 4, 6, 3, 4, 2]2 2.1520 (0.94%) 2.50

is obtained by adding a generation with the all-zero codeword

to the [8, 6 : 8, 4, 6, 3, 4, 2]sync2 code from the construction of

Section IV.

To better quantify the gains of the proposed approach,

we have included in the tables the rate losses compared to

the nondecodable code, and also their fraction (the rate loss

reduction factor), which quantifies the reduction in rate loss

of the proposed approach compared to the basic approach of

appending tnd − 1 cells containing no data. For both lengths,

our technique yields higher WOM-rates compared to just

appending a block of tnd − 1 cells with no information. For

instance, for tnd = 7 and n = 64, the rate loss with the basic

approach is as high as 9.38%. With the improved approach the

rate loss is reduced to 3.75%, which is a reduction by a factor

of 2.5 (see the sixth column of Table V). As can be seen from

the tables, the rate loss of the basic approach grows with tnd.

In all cases we are able to demonstrate a rate loss reduction

factor of 1.8 to 2.5 using our approach, which is significant.

Furthermore, the tabulated WOM-rates are (to the best of our

knowledge) also higher than the best WOM-rates for binary

multiple-write codes (and hence better than the WOM-rates

of any directly decodable code) known prior to [12], which

justifies our approach.

The results for the nonbinary case with q = 4 are reported

in Tables VII and VIII for n = 64 and n = 256, respectively.

Here, we consider values for tnd between 5 and 11. As in the

binary case, the second column of each table reports the state-

of-the-art WOM-rate of nondecodable quaternary codes, for

each value of tnd that we consider. The third column shows the

WOM-rate that would be obtained by appending
⌈

tnd−1
3

⌉

cells

containing no data to a code of length n−
⌈

tnd−1
3

⌉

and WOM-

rate equal to the one reported in the second column. Note

that similar to the binary case, the codes that we have con-

structed in Section VI can be extended by a single generation

containing the all-zero codeword only. Thus, when we speak

below about codes that are constructed in previous sections,

we implicitly assume that they have been extended in this

way. Now, the codes [2, 7 : 1, 2, 2, 2, 1, 1, 1]sync4 and [3, 10 :
1, 3, 3, 3, 2, 1, 1, 1, 1, 1]sync4 are taken from Section VI (the sec-

ond and third rows of Table IV, respectively), the codes [3, 8 :
1, 3, 3, 3, 2, 1, 1, 3]sync4 and [3, 9 : 1, 3, 3, 3, 2, 1, 1, 1, 2]sync4 are

obtained by merging the last three (resp. two) generations of

the [3, 10 : 1, 3, 3, 3, 2, 1, 1, 1, 1, 1]sync4 code, and the codes

[2, 5 : 1, 2, 2, 3, 3]sync4 , [2, 6 : 1, 2, 2, 3, 2, 1]sync4 , and [4, 11 :
1, 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]sync4 are taken from Section VI-B.

Note that as in the binary case our technique yields higher

WOM-rates compared to just appending a block of
⌈

tnd−1
3

⌉

cells with no information, for both target lengths. Also, as in

the binary case, the rate loss of the basic approach grows

with tnd, and we demonstrate a rate loss reduction by a

factor between 1.5 and 4.0 in all cases considered, which is

significant.

For the ternary case, to the best of our knowledge, no tables

of the best possible WOM-rates have been presented in the

literature. There are however constructions that can be used.

See, for instance, [12, Theorem 7] for constructing q-ary 2-

write codes. Here, we will use a construction from [11] (which

was inspired by a similar idea proposed in [20]) giving a q-ary

2(q− 1)-write code of WOM-rate (q− 1)R2, where R2 is the

best possible WOM-rate of a 2-write binary code. Thus, there

exists a ternary 4-write code of WOM-rate (3− 1) · 1.4928 =
2.9856 where the WOM-rate of the 2-write code is taken from

[12, Table VI]. Now, from the second row of Table III, we

can see that there exists a [2, 3 : 2, 2, 2]sync3 code (by merging

13

TABLE VII
WOM-RATES OF QUATERNARY (q = 4) DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTH

n = 64. THE NUMBERS IN THE PARENTHESES (IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES (COMPUTED FROM (1) AND (2), RESPECTIVELY)
IN PERCENT, WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code with no data Sync. code Rate reduction factor

5 3.9328 [11] 3.8099 (3.13%) [2, 5 : 1, 2, 2, 3, 3]4 3.8907 (1.07%) 2.92

6 4.2594 [11] 4.1263 (3.13%) [2, 6 : 1, 2, 2, 3, 2, 1]4 4.1979 (1.44%) 2.17

7 4.3394 [11] 4.2038 (3.13%) [2, 7 : 1, 2, 2, 2, 1, 1, 1]4 4.2507 (2.04%) 1.53

8 4.5088 a 4.2975 (4.69%) [3, 8 : 1, 3, 3, 3, 2, 1, 1, 3]4 4.4121 (2.14%) 2.19

9 4.5836 a 4.3687 (4.69%) [3, 9 : 1, 3, 3, 3, 2, 1, 1, 1, 2]4 4.4743 (2.38%) 1.97

10 4.6932 a 4.4732 (4.69%) [3, 10 : 1, 3, 3, 3, 2, 1, 1, 1, 1, 1]4 4.5631 (2.77%) 1.69

11 4.7193 b 4.4243 (6.25%) [4, 11 : 1, 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]4 4.6457 (1.56%) 4.01

aObtained by applying Construction A from [11] to the WOM-rates from [12, Table VI].
bObtained by applying Construction A from [11] to the WOM-rates from the recursion for R′

t of Section VI in [12].

TABLE VIII
WOM-RATES OF QUATERNARY (q = 4) DECODABLE CODES OBTAINED BY CONCATENATING SYNCHRONOUS CODES, WITH TARGET CODE LENGTH

n = 256. THE NUMBERS IN THE PARENTHESES (IN COLUMNS THREE AND FIVE) ARE THE RATE LOSSES (COMPUTED FROM (1) AND (2), RESPECTIVELY)
IN PERCENT, WHILE THE RATE LOSS REDUCTION FACTOR IS THEIR FRACTION.

tnd Rate of nondec. Rate of dec. With data Rate loss
code with no data Sync. code Rate reduction factor

5 3.9328 [11] 3.9021 (0.78%) [2, 5 : 1, 2, 2, 3, 3]4 3.9223 (0.27%) 2.92

6 4.2594 [11] 4.2261 (0.78%) [2, 6 : 1, 2, 2, 3, 2, 1]4 4.2440 (0.36%) 2.17

7 4.3394 [11] 4.3055 (0.78%) [2, 7 : 1, 2, 2, 2, 1, 1, 1]4 4.3172 (0.51%) 1.53

8 4.5088 a 4.4560 (1.17%) [3, 8 : 1, 3, 3, 3, 2, 1, 1, 3]4 4.4846 (0.54%) 2.19

9 4.5836 a 4.5299 (1.17%) [3, 9 : 1, 3, 3, 3, 2, 1, 1, 1, 2]4 4.5563 (0.60%) 1.97

10 4.6932 a 4.6382 (1.17%) [3, 10 : 1, 3, 3, 3, 2, 1, 1, 1, 1, 1]4 4.6607 (0.69%) 1.69

11 4.7193 b 4.6456 (1.56%) [4, 11 : 1, 4, 2, 4, 2, 6, 3, 4, 2, 2, 1]4 4.7009 (0.39%) 4.01

aObtained by applying Construction A from [11] to the WOM-rates from [12, Table VI].
bObtained by applying Construction A from [11] to the WOM-rates from the recursion for R′

t of Section VI in [12].

the last two generations) that does not contain the all-zero

codeword. Assuming a block length of n = 64, our method

gives a WOM-rate of 2.9392, while the method of appending
⌈

4−1
3−1

⌉

= 2 cells with no data gives a WOM-rate of only

2.8923. This amounts to a rate loss reduction by a factor of

2.01.

VIII. CONCLUSION

In this paper, we proposed short synchronous WOM codes

as a basic tool to make nondecodable codes decodable while

preserving the WOM-rate as much as possible. We consid-

ered both binary and nonbinary codes, as well as the fixed-

rate and the unrestricted-rate setups. We constructed short

synchronous (laminar) codes for small values of t. We also

proposed a construction method to build synchronous codes

for higher values of t by concatenating shorter synchronous

codes. Compared to the construction by Rivest and Shamir,

which considers n = t with t being a power of 2, our

construction is more general, since it lifts both constraints.

Finally, we used the obtained synchronous codes to make some

nondecodable codes decodable. Compared to the standard

approach of appending cells containing no data, the proposed

approach achieves a significant reduction of the rate loss for

short-to-moderate block lengths.

ACKNOWLEDGMENTS

The authors wish to thank S. Kayser for valuable discussions

and the anonymous reviewers for their valuable comments and

suggestions that helped improve the presentation of the paper.

REFERENCES

[1] R. L. Rivest and A. Shamir, “How to reuse a “write-once” memory,”
Information and Control, vol. 55, no. 1-3, pp. 1–19, Oct./Nov./Dec.
1982.

[2] F. Merkx, “Womcodes constructed with projective geometries,” Traite-

ment du Signal, vol. 1, no. 2–2, pp. 227–231, 1984.
[3] A. Fiat and A. Shamir, “Generalized “write-once” memories,” IEEE

Trans. Inf. Theory, vol. 30, no. 3, pp. 470–480, May 1984.
[4] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.

Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.
[5] G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-

once memories,” IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 697–700,
Sep. 1986.

[6] G. Zémor and G. D. Cohen, “Error-correcting WOM-codes,” IEEE

Trans. Inf. Theory, vol. 37, no. 3, pp. 730–734, May 1991.
[7] F.-W. Fu and A. J. H. Vinck, “On the capacity of generalized write-once

memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

[8] E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple error-
correcting WOM-codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Austin, TX, Jun. 2010, pp. 1933–1937.

[9] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Efficient
two-write WOM-codes,” in Proc. IEEE Inf. Theory Workshop (ITW),
Dublin, Ireland, Aug./Sep. 2010.

14

[10] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple-
write WOM-codes,” in Proc. 48th Annual Allerton Conf. Commun.,

Control, and Computing, Monticello, IL, Sep./Oct. 2010, pp. 1062–1068.
[11] R. Gabrys, E. Yaakobi, L. Dolecek, P. H. Siegel, A. Vardy, and J. K.

Wolf, “Non-binary WOM-codes for multilevel flash memories,” in Proc.

IEEE Inf. Theory Workshop (ITW), Paraty, Brazil, Oct. 2011, pp. 40–44.
[12] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes

for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp.
5985–5999, Sep. 2012.

[13] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4520–4529, Jul.
2013.

[14] A. Bhatia, M. Qin, A. R. Iyengar, B. M. Kurkoski, and P. H. Siegel,
“Lattice-based WOM codes for multilevel flash memories,” IEEE J. Sel.

Areas Commun., vol. 32, no. 5, pp. 933–945, May 2014.
[15] A. Bhatia, A. R. Iyengar, and P. H. Siegel, “Multilevel 2-cell t-

write codes,” in Proc. IEEE Inf. Theory Workshop (ITW), Lausanne,
Switzerland, Sep. 2012, pp. 247–251.

[16] A. Jiang, “On the generalization of error-correcting WOM codes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nice, France, Jun. 2007, pp.
1391–1395.

[17] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), Toronto, ON, Canada, Jul. 2008, pp.
1741–1745.

[18] H. Mahdavifar, P. H. Siegel, A. Vardy, J. K. Wolf, and E. Yaakobi, “A
nearly optimal construction of flash codes,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), Seoul, Korea, Jun./Jul. 2009, pp. 1239–1243.
[19] S. Kayser, private communication.
[20] Q. Huang, S. Lin, and K. A. S. Abdel-Ghaffar, “Error-correcting codes

for flash coding,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6097–6108,
Sep. 2011.

