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Abstract 

In process automation, Industrial Wireless Sensor Networks (IWSNs) plays a tremendous 

role due to great number of advantages such as cable cost reduction, convenient installation, 
flexible deployment and maintenance. IWSNs have stringent requirements on reliability and 

real time performances. However, transmission of wireless signals over harsh industrial 

wireless channel is vulnerable to noise and interference which causes high risk of packet 
transmission failure. Consequently, packet loss in industrial automation leads to delay of 

process or control data which may terminate industrial applications and finally results in 

huge economic loss and safety problems. IWSNs commonly use error correcting mechanisms 
to increase communication reliability and improve real time performances.  

On a Media Access Control (MAC) layer, the existing protocol in IWSNs employs an 

Automatic Repeat Request mechanism to improve reliable packet delivery at the cost of real 
time performance. Forward Error Correction (FEC) coding scheme on a MAC layer is 

proposed to improve reliability and reduce latency by decreasing the number of packet 

retransmissions. In this thesis, several FEC coding schemes are studied and implemented in 
typical IWSN chip to evaluate its execution time and ensure that the strict acknowledgement 

timing requirement of the standard is preserved. In addition to that, the memory 

consumption of FEC schemes is evaluated as the embedded devices of IWSNs are memory 
constrained. The result of our evaluation shows that certain FEC coding schemes, such as RS 

code, are suitable to be implemented in IWSN node while the state of the art FEC codes, such 

as Turbo and LDPC codes, fail due to huge memory consumption and long execution time of 

their encoding and decoding algorithms.  
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Chapter 1 

Introduction 

Industrial automation is one category of automation widely used in industries to provide 

automated solutions. It consists of hardwares such as microcontroller, fieldbus, sensors and 

actuators, and softwares such as control and communication software. It is a technology that 

integrates the hardware and software solutions to automate repetitive manual tasks in order 

to have better productivity quality and expanded production. It also helps to eliminate 

human error which in turn reduces cost and increase quality. 

Reliability and real time performance of communication technologies are critical concepts 

that should be given more emphasis in automation applications. Reliability is a metric that is 

integrated with industrial monitoring and control systems. In communication systems, signal 

is degraded due to interference and random noise that can potentially bring a complete 

system malfunction, huge economic loss and safety problems in industries. Consequently, 

different techniques should be used to ensure a reliable wireless communication system. Real 

time performance is also very critical in industrial automation which refers to robust and low 

latency signal delivery within the communication systems. Therefore, reliability and real 

time capability are essential metrics that should be given more attention in industrial 

automations. 

In automotive industries, the medium of communication among different devices was 

traditionally wired, such as twisted pair cables, coaxial cables and fiber optics to mention 

few. Wired communication has a reliable and real time performance in which interference 

and network congestion are reduced. Currently, wired communication is not a good choice 

in industrial automation due to its cost, deployment complexity and maintenance 

constraints. As wireless technologies emerged, dealing with radio became interesting topic. 

Flexibility, low cost, robustness, low maintenance, monitoring and control are attractive 

benefits of wireless technologies which makes it invaluable option in industrial automation.  

Nowadays, Industrial Wireless Sensor Networks (IWSNs) are most widely using wireless 

technologies. However, industrial wireless channel has a very huge impact in wireless 

communication systems. In wireless communications, signals are easily deteriorated due to 

shadowing, interference, path loss and multipath fading and lead to packet loss or delay of 

control or process data, and system disturbance that results in termination of industrial 

applications which finally may result in huge economic loss and safety problems. Therefore, 

reliability and real time performance in IWSNs are extremely important requirements to deal 

with in industrial automation applications.  

1.1 Research Problem 

Currently, communication reliability and real time performance are very critical issues that 

should be given more emphasis in IWSNs. The industrial wireless channel is very harsh and 

degrades the transmitted signal due to interference, noise and multipath fading. Therefore, it 
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is very difficult situation to guarantee high reliable and low latency communications for 

IWSNs in such a harsh industrial environment.  

The existing IWSNs employ the IEEE 802.15.4 standard. It applies Automatic Repeat Request 

(ARQ) mechanism on a media Access Control (MAC) layer for error correction purpose to 

increase the link reliability at the expense of real time performance. Because of the harsh 

industrial channel, the failure in packet reception initiates the process of retransmission. The 

maximum number of retransmission when a sender failed to transmit successfully is allowed 

by the standard. For hundreds of sensor nodes that can operate in a harsh industrial channel, 

lots of packet retransmissions are required due to the channel behavior. The excessive 

number of retransmission brings communication latency to industrial applications. It also 

leads to exhaust the limited bandwidth resource due to many number of nodes trying to 

retransmit packets at the same time. The excessive retransmission does not only bring 

communication latency to industrial applications but also results in network congestion [11]. 

Consequently, industrial application process may halt and results in serious economic loss 

and safety problems.  

Therefore, more robust and advance solution for error correction mechanism on a MAC layer 

should be proposed that can address the above problems and improves both reliability and 

real time performance in IWSNs. Another problem is that, the application specific embedded 

devices in IWSNs has less memory compare to desktop computers and the error correction 

mechanism should be carefully chosen by taking this constraint into consideration. 

1.2 Approach to Problem 

In order to choose the most appropriate error correction mechanism on a MAC layer that 

improves reliability and real time performance in IWSNs, the strict timing requirement of the 

IEEE 802.15.4-based IWSN standard and the memory constraint of embedded devices should 

be fulfilled. Forward Error Correction (FEC) code is one of the appropriate approaches 

proposed to be implemented in typical IWSN nodes. In FEC code, redundancy bits are 

imposed on the transmitted data in order to recover the bits in error caused by the harsh 

wireless channel. The FEC code is the suitable approach to apply due to its capability to 

reduce bit error rates and results in decreasing the number of packet retransmission. 

However, the processing time of FEC code should be within the timing requirement of IEEE 

802.15.4 standard and have reasonable memory footprint, which is the amount of memory 

used by a program while running. Therefore, different FEC coding schemes are studied and 

proposed for further evaluation in terms of processing time and memory consumption. The 

software implementations of all the coding schemes are written in C programming language 

and an existing IWSN-chip is used as our platform. Finally, the performance of all FEC 

candidates is evaluated and followed by our discussion and analysis. 

1.3 Thesis Contribution 

The main contributions of this thesis project are 

1. A comprehensive survey of most commonly used Error Control Coding (ECC) 

schemes.  



 

3 
 

2. Evaluation of different FEC candidate algorithms using software implementation and 

comparison of their performances with each other interms of execution time and 

memory consumption.  

The FEC coding algorithms on a MAC layer suitable for IEEE 802.15.4-based IWSN standard 

are proposed. It is shown that some of the algorithms can fit into the IWSN standard to 

improve reliability and real time performance without violating the standard format, 

requirement and any connection with chip manufactures. 

1.4 Related Work 

In this section, previous research works related to our thesis are presented. As it was 

mentioned earlier, applying FEC mechanism on a MAC layer is proposed to improve 

reliability and real time performance in IWSNs.  

Significantly, many researches have been carried out regarding performance evaluation of 

FEC coding in Wireless Sensor Networks (WSNs). Many researches are performed on FEC 

for WSNs emphasis on energy efficiency of FEC coding schemes and FEC related methods. 

In [21], even though the use of ECC decreases the transmission power, the complex decoder 

needs processing energy, and therefore, exploring this trade off they found that applying 

ECC is more power efficient system and analog decoder implementation performed better 

than its digital counterpart. Authors in [22] examined the impact of error control 

mechanisms on packet size optimization and energy efficiency, and they identify that FEC 

scheme is found to be more energy efficient than retransmission mechanism although it 

introduces redundancy and requires additional energy for encoding/decoding process. 

Furthermore, it is found that Bose-Chaudhuri-Hocquengham (BCH) codes outperformed 

convolutional code by 15% in terms of energy efficiency [22]. Authors in [23] also evaluated 

FEC and infinite ARQ mechanism and compared in terms of energy efficiency. In this regard, 

FEC scheme is found to perform better than the infinite ARQ scheme. Due to the 

introduction of redundancy bits and encoding/decoding algorithms energy consumptions, 

the performance of FEC schemes in terms of energy efficiency became more interesting. 

Therefore, in [24], authors found out that LDPC codes are more energy efficient compared to 

BCH codes and convolutional codes. Authors in [25] identified that, after analyzing the 

performance of different FEC codes, BCH, Reed-Solomon (RS) and convolutional codes in 

terms of their BER and power consumption on different platform, binary-BCH codes with 

ASIC implementation are more suitable for WSNs. The authors in [26] analyzed the classical 

FEC and carried out an experiment that revealed FEC codes decrease BER in WSN and 

concluded that FEC algorithms empower WSNs which increase the area coverage of the 

nodes maintaining the same Signal to Noise Ratio (SNR). As a result, a few numbers of nodes 

tend to cover the given area which decreases the network costs. However, the 

encoding/decoding time of the algorithm seems to violate the standard requirement. The 

development of Physical layer – Media Access Control layer (PHY-MAC) cross layer 

approach is proposed in [27] to reduce the energy consumption through the use of FEC 

coding. This coding mechanism reduces retransmissions at the MAC layer, therefore, the 

nodes in the network go to sleep mode quickly which in turn saves energy.  
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Researches on adaptive FEC mechanism have also been done for various WSNs applications. 

Authors in [28] showed that adaptive FEC performs better than conventional FEC 

mechanisms in terms of transmission reliability and it can also reduce energy consumption 

and latency. The hybrid-ARQ-adaptive-FEC scheme in [29] is considered based on BCH 

codes and channel state information and is shown that there is significant improvement in 

performance compare to ARQ mechanism in terms of latency, packet loss and energy 

expenditure. In [30], an adaptive FEC erasure coding scheme is used based on multipath 

routing protocol and it is shown that reliable packet delivery has been improved in WSNs 

while reducing the network traffic. A hybrid-feedback mechanism is proposed in [31] where 

the sink sends ACK packets to the source and expected energy cost of data transmission is 

derived based on the ACK. In [31], it is shown that the hybrid mechanism improves the 

energy efficiency of multipath data transmission compared to the FEC-based mechanism 

under the same reliability constraint.  

A combination of FEC coding and routing mechanisms is another trend in FEC related 

works. A lightweight FEC coding algorithm which is XOR-based combined with a fault 

tolerant routing scheme is proposed in [32]. The FEC coding algorithm is based on multipath 

in which a data is fragmentized in to a number of packets and sent over multiple paths. The 

routing scheme makes the nodes aware of the failed path in order to choose the optimal path 

for routing. Authors in [33] showed that the efficient combinations of information 

redundancy like retransmission, FEC coding and alternative routing schemes effectively 

improve the reliability. 

    

1.5 Thesis Outline 

This report has the following structure. 

In chapter 2, an introduction to the concept of IWSNs, IEEE 802.15.4 standard and short 

explanation about the other IEEE 802.15.4-based standards are presented.  

In chapter 3, the preliminary section that presents the basic background of FEC codes and the 

introduction of our benchmarking platform are given.  

In chapter 4, the implementation and evaluation of FEC in IWSNs, the basic requirements of 

the IWSN standard and constraints of the embedded devices are presented. It also presents 

the complexity algorithm of the candidates, the source of the software implementation of the 

FEC coding algorithms, the measures and methods used for our evaluations. Finally, the 

evaluation results of our algorithms are presented. 

In chapter 5, the conclusions and future works are presented.  
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Chapter 2 

Industrial wireless sensor networks 

In the world of competitive industries, many companies encounter growing demand to 

improve process efficiencies, obey the environmental regulations and meet the corporate 

financial objectives. The rapid growth of industrial systems, dynamic industrial 

manufacturing markets, and intelligent and low cost industrial automation systems are 

highly required to improve the productivity and efficiency of the system. Traditionally, the 

medium for industrial communication in automation systems are wired. However, the wired 

systems require high cost of communication cable installation and maintenance, less flexible 

system, and thus, they are not widely employed in industrial plants due to high cost and 

inconvenient deployment process. Therefore, cost effective and flexible wireless automation 

systems are the urgent requirements in industrial automation systems.  

With the recent advances in WSNs, the realization of low cost embedded industrial 

automation systems have become feasible. WSN is built of spatially distributed sensor nodes 

and gateways. The sensor nodes are installed on industrial equipment to monitor the 

parameters critical to each equipment’s based on a combination of measurements such as 

vibration, pressure, temperature and power quality which are transmitted through the 

wireless channel to sink node that analyzes the data from each sensors. The IWSNs have 

several benefits over traditional WSNs (wired) in self organization, rapid deployment, 

flexibility and inherent intelligent processing capability. In traditional WSNs, power 

consumption is more critical than latency and reliability since a frequent change of batteries 

is challenging.  

The requirements for IWSNs are different compare to traditional WSNs. Centralized in case 

of management is more necessary than self-organization. The operators in center should 

have all information and be aware of the status of all the sensor nodes and should control the 

whole network system. The failure in data communication and missing the control deadline 

brings serious economic loss and safety problems. Therefore, WSNs play an important role 

in creating a highly reliable and self-healing industrial system that instantly respond to the 

real time phenomenon with appropriate actions. There are currently many global standards 

for IWSNs and it is very important to study them in order to bring an appropriate solutions 

for the problems encountered in IWSNs. It is also crucial to study the industrial wireless 

channel conditions due to its huge impact in the link quality of IWSNs.  

 

2.1 IWSN Structure  

A typical Industrial Wireless Sensor Network (IWSN) structure is shown in Figure 1 and it 

consists of the following components:  

Gateway – it connects the control system or the host applications to the wireless network. 
 
A Network Manager – this is normally part of the gateway responsible for configuring the 
wireless network and managing the communication devices.  
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Field Devices – these usually consist of devices such as pressure, temperature, position, or 

other instruments. All field devices are able to receive and transmit packets and also capable 

of routing packets on behalf of other devices within the network. 

A security manager – the authorized nodes are held to join the network by the security 

manager. It also manages and distributes security keys. 

Access point or sink – sometimes refer to as base station that connects the field devices to the 

other networks through the gateway.  

 

Figure 1. An industrial wireless sensor network structure 

The sensor nodes are part of the field devices which are used to monitor the environmental 

conditions such as temperature, pressure, motion, vibration, humidity and other variables. 

The sensor node is an autonomous device used for data acquisition from the physical 

environment, data storage, processing and transmission. It has specific hardware 

characteristics and limitations such as  

 Have limited energy source (it depends on batteries or energy harvesting techniques) 

 Small embedded system with few processing resources 

 Low bit rate 

 Cost and size limitations 

The main components of typical wireless sensor network (WSN) sensor node are 

communication device, sensor or actuator, power supply, memory and controller.  

The controller is used for processing data, running computational and analysis tasks. There 

are different modes of the controller such as idle, active and sleep modes to decrease the 

power consumption. It can decide upon the transmission of signals and keeps information 
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about its neighboring nodes to decide the routing path and communicate the routing 

information to other nodes in the network.  

Sensors are used to gather data (eg. temperature, light, accelerations, vibrations or 

radiations) by sensing the environment and gives signal in order to alert the controller from 

its sleeping mode when a predefined threshold level is exceeded. The actuators manipulate 

the environment and take necessary action such as initiating an alarm or closing valves in a 

plant system following the centralized decision processes or local measurements [63]. The 

sensing units usually consist of sensors and analog-to-digital converters (ADCs). The sensors 

produce the analog signals and fed to ADC to convert it into digital signals, and then used as 

an input of the processing unit. The memory is a temporary data storage and during the data 

processing.  

Power supply is important as the sensor nodes are geographically distributed and may 

experience difficulty to get access. Sensor nodes are coupled to energy harvesting solutions 

from ambient energy sources such as temperature gradients, light, pressure variation, air or 

liquid flow and vibrations. The communication devices guarantee the exchange of messages 

with other nodes in the network or the sink.  

2.2 IWSN Standards 

Industrial wireless network equipment is available that supports different industrial wireless 

standards. Therefore, several standards of wireless communication have been applied across 

the world, depending on to the application scenarios. In industrial automation, a long range 

wireless link has been used for long distance communication that covers broad geographical 

area. Wireless Local Area Network (WLAN) based on IEEE 802.11 standard is applied for 

medium range industrial wireless communication. However, wireless technologies for short 

range communication are the main concern on fieldbus level in industrial automation. 

Recently, the standardized WLAN/IEEE 802.11, Zigbee/IEEE 802.15.4, Bluetooth/IEEE 

802.15.1 have become dominant wireless technologies for industrial applications. Bluetooth 

is an already applied wireless technology standard in industrial automation without IEEE 

802.15.4 standard. It is for short range communication operating in ISM band (2400 – 2480 

MHz). High data throughput and high level of security are the main advantage of Bluetooth. 

However, Bluetooth which is often used for peer to peer communication and WLAN IEEE 

802.11 standard are not more successful in large scale of network with many sensor nodes 

compared to IEEE 802.15.4 based standards[10]. Therefore, most of the standards applied in 

industrial automation are IEEE 802.15.4 based standards. The main IEEE 802.15.4 based 

standards used in industrial automation are Zigbee [12], WirelessHart [13], ISA 100.11a [14] 

and WIA-PA [15]. 

  

2.2.1 IEEE 802.15.4 

The IEEE 802.15.4 standard specifies both PHY and MAC layer for low data rate, limited 

power and low complexity short range radio frequency (RF) transmissions in wireless 

personal area networks (WPAN) [16]. The PHY layer provides services for PHY data and 

management. It is also responsible for tasks such as data transmission and reception, 

activation and deactivation of radio transceiver, channel frequency selection, energy 



 

8 
 

detection, link quality indicator (LQI) calculation for received packets, clear channel 

assessment for carrier sense multiple access with collision avoidance (CSMA-CA) to access 

the medium [16]. It can operate on three different frequency bands specified by the standard: 

868 MHz with data rate of 20 kbps, 915 MHz with data rate of 40 kbps and 2.4 GHz with a 

data rate of 40kbps. The PHY transmission scheme in all these bands is based on Direct 

Sequence Spread Spectrum (DSSS) technique. The modulation techniques and spreading 

formats adopted, and achievable data rate of available PHYs are summarized in Table 1 [16]. 

The data frame of IEEE 802.15.4 is depicted in Figure 2. The synchronization header (SHR) 

consists of a preamble sequence to let the receiver acquire and synchronize to the incoming 

signal. It also contains the start of the frame delimiter that shows the end of the preamble 

sequence. The physical header (PHR) section contains the frame length which shows the 

length of the PHY Service Data Unit (PSDU). The PHY Protocol Data Unit (PPDU) is the 

combination of SHR, PHR and PSDU. The PSDU carries the MAC header (MHR) which 

consists of two frame control octets, one data sequence number octet and 4 to 20 address 

information octets. The MAC Service Data Unit (MSDU) contains the data frame payload 

with maximum capacity of 104 octets and it also contains the MAC Footer (MFR) with 2 

octets of Frame Check Sequence. 

  

                           Octets:  2                1             4 to 20                  n                2 

Frame 

Control 

Data 

Sequence 
Number 

Address 

Information 

Data 

Payload 

FCS 

 

 

 

Octets:     4             1      1    5 + (4 to 20) + n 

Preamble 

Sequence 

Start of 

Frame 

Delimiter 

Frame 

Length  

MPDU 

 

      11 + (4 to 20) + n 

PPDU 

Figure 2. IEEE 802.15.4 data frame [61] 

The MAC layer handles the access to physical radio channel and perform the following tasks 

[16]: generating network beacons for coordinator device, supporting personal area network 

(PAN) association and disassociation, handling the security of nodes, employing CSMA-CA 

mechanism, synchronizing nodes to network beacons, employing Guaranteed Time Slot 

(GTS) mechanism, creating reliable communication link between two peer MAC entities. The 

MAC layer specifies two different channel access mechanisms: 1) non beacon-enabled mode 

where nodes use unslotted CSMA/CA; 2) beacon-enabled mode that employs a slotted 

MAC 

Sublayer 

PHY 

Layer 

MFR MSDU MHR 

SHR PHR PSDU 
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CSMA/CA with superframe structure formed by coordinator in which nodes use the beacon 

signal to connect with coordinator and identify the network.  

Table 1. Frequency bands and data rate of IEEE 802.15.4 [16] 

PHY 

(MHz) 

Frequency 

band (MHz) 

Spreading parameters Data parameters 

Chip rate 

(kchip/s) 

Modulation Bit rate 

(kb/s) 

Symbol rate 

(ksymbol/s) 

Symbols 

868/915 868 – 868.6 300 BPSK 20 20 Binary 

902 – 928 600 BPSK 40 40 Binary 

868/915 
(optional) 

868 – 868.6 400 ASK 250 12.5 20-bits PSSS 

902 – 928 1600 ASK 250 50 5-bits PSSS 

868/915 

(optional) 

868 – 868.6 400 O-QPSK 100 25 16-ary 

Orthogonal 

902 – 928 1000 O-QPSK 250 62.5 16-ary 
Orthogonal 

2450 2400 – 2483.5 2000 O-QPSK 250 62.5 16-ary 

Orthogonal 

 

The IEEE 802.15.4 standard provides acknowledgement and retransmission mechanism in 

order to improve reliable communication for IWSNs and it is shown in Figure 3. The figure 

shows the transmission of single data frame from transmitter to receiver node with an 

acknowledgement. The transmitter sends a data frame to receiver with its acknowledgement 

subfield activated. The sender has to wait for a MacAckWaitDuration symbols till it receives 

the corresponding acknowledgement frame from the receiver. The receiver MAC layer gets 

the data frame, transmits an acknowledgement to the sender and passes the data frame to 

the next higher layer of the receiver. If the sender receives the acknowledgment frame within 

the MacAckWaitDuration symbols, the sender consider data has received successfully and 

confirms a successful transmission to the next higher layer. Otherwise, if acknowledgement 

frame is not received within this duration, the sender concludes that a packet has lost and 

takes an action regarding retransmission. If the transmission fails, the sender retransmits the 

data frame and waits for an acknowledgement and the process continues for about 

MacMaxFrameRetries times. If the sender still does not receive acknowledgement after 

attempt of MacMaxFrameRetries retransmissions, it is assumed that transmission has failed 

and the next higher layer is notified the failure. 

In IEEE 802.15.4 standard, the macAckWaitDuration is given by a formula [16]:  

macAckWaitDuration  = aUnitBackoffPeriod aTurnaroundTime phySHRDuration                                                                           

                                   6ceiling phySymbolsPerOctet                 (1)                                                   

The parameters in (1) are defined and their values are given in Table 2. Therefore, 

macAckWaitDuration = 20 + 12+ 10+ 12 = 54 symbols and the data rate operating at 2.4 GHz 

center frequency is 250 kbps (62500 symbols per second). And then, the macAckwaitDuration 
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can be calculated as 54 symbols/ 62500 symbols per second = 0.864 ms. If the sender does not 

receive an acknowledgement within 0.864 ms time duration, data retransmission is initiated. 

If this process failed after maximum of 7 retries, the sender assumes transmission is failed 

and notify to the next upper layer. This ARQ error control mechanism is also applied in all 

the main IEEE 802.15.4 based IWSN standards.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: data transmission with acknowledgement [10] 

 

Table 2. Definitions of macAckWaitDuration Parameters and values [16] 

Parameter Definition Value (symbol) 

aUnitBackoffPeriod The number of symbols forming 

the basic time period used by the 

CSMA-CA. 

20 

aTurnaroundTime Rx-to-Tx or Tx-to-Rx maximum 
turnaround time 

12 

phySHRDuration The duration of synchronization 

header for current PHY. 

10 

phySymbolsPerOctet The number symbols per octet 
for current PHY. 

2 

macAckWaitDuration The number of symbols to wait 

for an acknowledgement after 
transmitted data frame. 

Equation 1 

macMaxFrameRetries The maximum number of 

retransmissions after 

transmission failure. 

0 - 7 

Sender next 

higher layer   

 layer 

Sender 

MAC layer 

Receiver     

MAC layer 

Receiver next 

higher layer 

Data request 

Data confirm 

Data 

Acknowledgement 

Data indication 
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2.2.2 IEEE 802.15.4-based standards 

As it was mentioned previously, the IEEE 802.15.4-based standards, namely, ZigBee, 

Wireless HART, ISA100a and WIA-PA are the main standards that have been used and will 

be used for the future in industrial automation applications. Therefore, the four standards 

are presented shortly as follows. 

 
ZigBee is a mesh-networking IEEE 802.15.4-based standard that serves for short range 

communication which is targeted at industrial monitoring and control, embedded sensing, 

home automation and energy system automation. The important characteristics of ZigBee 

are low data rate, low cost, low energy consumption and secure transmission which makes it 

good candidate for sensor network applications. However, author in [17] reported that due 

to lack of frequency diversity, path diversity and robustness, ZigBee is not appropriate to 

meet all the requirements for some industrial applications. 

 

Wireless HART is an extension of Highway Addressable Remote Transducer (HART) 

protocol that first approved open standard for IWSNs. Wireless HART specified based on 

HART protocol which is approved by HART Communication Foundation (HCF). It is 

primarily designed for industrial process monitoring and control systems by employing 

IEEE 802.15.4-based radio, redundant data paths, frequency hopping and retries mechanisms 

[18]. It utilizes time synchronized, self-organizing, self-healing, reliable and secured mesh 

architecture in which each node transmits its own data and relay information from other 

nodes. Wireless HART implementation is relatively simple and it has already been deployed 

in many industrial applications.  

                                                                                                                     
ISA100a is proposed by the International Society Automation (ISA) working group as a 

standard which defines a reliable wireless communication system for industrial monitoring 

and control applications. ISA100a has a feature of high security than Wireless HART at the 

expense of implementation complexity.  

 
WIA-PA is IEEE 802.15.4-based standard which is developed by Chinese Industrial Wireless 

Alliance (CIWA), which specifies wireless communication system for industrial automation. 

It is newly emerged standard with features of high security and medium implementation 

complexity compare to the ISA100a and Wireless HART.  

2.3 Industrial Wireless Channel Conditions 

It is obvious that wired communication is more reliable than wireless due to dynamic nature 

of the harsh wireless channel. The main factors for signal deterioration in wireless 

communication are path loss, attenuation, multipath fading, shadowing and so on.  In 

industrial and factory, due to the presence of electrical and mechanical machinery and highly 

reflective materials like metals, high temperature and vibrations in the environment make 

the industrial wireless channel becomes even more harsh, dynamic and unpredictable. 

Typically, the communication of nodes in the network is non-line-of-sight (NLOS).  

Most IWSNs operate in license-free ISM band at 2.4 MHz working frequency, and therefore, 

the signal of IEEE 802.15.4-based IWSNs encounter interference from other signals of 
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industrial wireless systems such as WLAN and Bluetooth. The impact of other wireless 

systems working in the same ISM frequency band on IEEE 802.15.4 leads to a time out of 

physical layer and enlarged packet error rate [19]. Apart from the electromechanical 

machinery and reflective environments, author in [20] also pointed out that the co-existing 

communication systems are the major source of disturbance in IWSN applications. Authors 

in [11] characterized the influence of industrial wireless channel by showing the performance 

of safety-critical communication in real plant with its environmental effect. Figure 6 shows 

photograph of the largest power plant in Sweden, at Mälarenergi’s premises in the district 

heating and power production plant in Västerås, Sweden, where an experiment in [11] has 

been carried out. Two measurement scenarios have been investigated in [11] by moving the 

wireless sensor devices into different locations to measure the received signal strength 

indicator (RSSI). In measurement scenario 1, an experimental sensor node continuously 

transmits data to another node for a certain time with a distance between the transmitter and 

receiver nodes is approximately 10 meter NLOS. The value of the RSSI is measured in the 

receiver node and shown in Figure 4. The measurement shows that the RSSI is estimated to -

65±5.0 dBm. That is, almost 90% of the RSSI values are concentrated between -65 dBm and -

55 dBm. However, almost 10% of the signal strength is less than -68dBm value which may be 

caused due to deep fading and shadowing from the hard wireless channel. In measurement 

scenario 2, it is similar to the first scenario with a difference that the two nodes are 30 meters 

apart from each other with NLOS and many obstacles are on the way [11]. From Figure 5 the 

RSSI values drop to -71±3.2 dBm and the minimum RSSI value reaches -79 dBm. In [59], 

temporal and frequency variations in link quality has been investigated and the 

measurement from an industrial factory has also shown that the fluctuations of the received 

signal strength are nearly 25 dBm. All these measurement results give two important facts in 

industrial channel conditions. Firstly, received signal strength may become deteriorated 

because of deep channel fading and shadowing from the harsh industrial environment. If the 

receiver node is not capable of picking up the weak signals, the output data will be in error. 

Secondly, we can also notice from the measurement that the RSSI values in industrial 

environments are distributed in a limited range and the RSSI values still indicate the link 

quality between two wireless sensor nodes.  

 

Figure 4. The measured RSSI of transmitted data in scenario 1 [11] 
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Figure 5. The measured RSSI of transmitted data in scenario 2 [11] 

 

 

Figure 6. Power plant [11] 
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Chapter 3 

Preliminaries on Error Control Coding and ARM Platform 

In this chapter, basic details about FEC coding schemes, its principles and some common 

FEC schemes, and introduction to ARM Platform will be given. 

 

3.1   Forward Error Correction Codes 
Channel coding deals with ECC techniques employed in transmitter and receiver for reliable 

communication systems. It is a process of adding redundant parity bits to information bits 

for error protection. As per Shannon’s noisy channel coding theorem, reliable communication is 

achievable by decreasing information rate (adding more redundancy bits) to decrease BER of 

the code without exceeding channel capacity.   

There are two methods of ECC used to address acceptable error rate, namely, ARQ and FEC 

[2]. In ARQ method, when a decoder detects an error, a feedback channel is used to request 

retransmission of block code received in error until it is detected correct. ARQ is suitable for 

systems where time delay is not an issue. FEC corrects the detected error without feedback 

transmission (only through forward transmission). A combination of the two classes of error 

control techniques are sometimes used to increase throughput efficiency, example, Hybrid 

ARQ-FEC scheme.  

The main focus of this chapter is on FEC methods. FEC applies mathematical algebra to 

achieve a certain probability of error rate given limited resources, such as bandwidth and 

signal power, in the channel [6]. FEC is classified in to two error control codes, namely, block 

codes and convolutional codes. A block code denoted by (n, k) code, an information symbols 

of length k are coded to obtain a block of n codeword symbols by adding n-k redundancy 

check symbols. While a convolutional code, denoted as (n, k, m), contains m memory 

registers, maps k-bits information symbols in to n-bits code block symbols which depends on 

m previous symbols. 

3.1.1 Linear Block Codes 

Basic Definitions 

A linear block code C, denoted as (n, k) code, has a code rate /cR k n . The code rate 

measures the relative amount of k-length message symbols transmitted in each n-length 

codeword symbols. The higher the codeword length, the lower the code rate and the unit of 

cR  is the information bits per transmission. In general, since n>k, we have 1cR  .  

For N-dimensional signal constellation of size M which is assumed to be power of 2, the 

number of M-ary symbols transmitted per a codeword is, 

2log

n
L

M
              (2) 
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For a given symbol time sT , the time to transmit an information of k bits is sT LT and the 

data transmission rate is, 

2 2log log
c

s s s

M Mk k
R R

LT n T T
     bits/s                   (3) 

The minimum bandwidth required is  

22 2 logs c

N RN
W

T R M
   bits/s         (4) 

The spectral bit rate r can be obtained from (3) and (4) and given by, 

22log
c

MR
r R

W N
                  (5) 

The above equations are used to indicate the difference of coded from uncoded systems with 

same modulation schemes. The spectral bit rate of coded system changed by a factor of cR

while bandwidth is changed by 1/ cR . 

Coding also has a significant effect on the energy required for transmission. The energy per a 

codeword E is, 

2log
av av

n
E LE E

M
             (6) 

Where avE is an average energy of the N-dimensional constellation. The energy required per 

component of the n codeword is, 

2log

av
c

EE
E

n M
   , and          (7) 

The transmitted bit energy bE  is, 

2log

av
b

c

EE
E

k R M
              (8) 

Analyzing the above two equations, we conclude that, 

c c bE R E              (9) 

The transmission power of a coded system is, 

2log

av av
b

s s c

E EE
P R RE

LT T R M
            (10) 
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The bandwidth and spectral bit rate of the modulation schemes that are frequently used with 

coding are given below: 

Binary Phase Shift Keying (BPSK): 
c

R
W

R
 , cr R . 

Quadrature Phase Shift Keying (QPSK): 
2 c

R
W

R
 , 2 cr R . 

Binary Frequency Shift Keying: 
c

R
W

R
 , cr R .          (11) 

3.1.1.1 General properties of Linear Block Codes 

A q-ary block code C contains a set of M vectors of length n represented as

1 2 ,...,m m m mnc c c c  , 1 m M  are called codewords whose elements are from q symbols. 

When the values in the code word consists of two symbols (q=2), 0 and 1, the code is called 

binary code. In binary block code expressed as (n, k) code, there are 2n  possible codewords 

of length n and 2kM  codewords of length n may be selected as k-bits blocks of information 

for k<n. In general for a block code of q symbol elements there are kq  codewords from nq  

possible codewords are used to transmit k-bits information blocks [6].  

A linear block code is a subset of block codes which is k-dimensional subspace of an n-

dimensional space called (n, k) code [6]. An important property of (n, k) binary linear block 

code, consists of 2k  binary sequences of length n, is if two codewords are elements of the 

code, their linear combination is also a codeword.  

1 Generator and parity check matrices 

An information sequence of length k is mapped to a codeword of length n using matrix G of 

k×n dimension called generator polynomial. For a message vector u, a codeword vector v is 

obtained by applying G matrix as, 

v uG .              (12) 

If a generator matrix G is represented as, 

kG I P  
 

 ,         (13) 

where kI  is a k×k identity matrix and P is a k×(n-k) parity check matrix, the linear blockcode 

is called systematic. In systematic linear codes the first k-symbols or elements of a codeword 

are message sequences and the rest n-k elements are redundant sequences called parity check 

bits used for error protection.  

For n-dimensional space of the binary code, there are n-k dimensional binary vectors 

orthogonal to the codewords of k-dimensional subspace C and it is defined as (n, n-k) code 

[6]. This code is called a dual code of C and represented asC . The G matrix of the dual code 
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is called (n-k)×n parity check matrix H. One of important properties of H matrix is that any 

codeword of C is orthogonal to the rows of H matrix, therefore, 

0TcH   , and         (14) 

as the rows of G matrix are also codewords, 

0TGH  .         (15) 

For systematic codes, the parity check matrix H is given by,  

T

n kH P I 
  
 

.        (16) 

Another important property of parity check matrix H is that the result of syndrome denoted 

by S. The syndrome S determines if a received codeword vector is a valid vector or not and is 

expressed as, 

     TS rH .         (17) 

The syndrome S is used for error detection and possibly error correction. 

2 Weight and Distance for Linear Block Codes 

Let 1v  and 2v  are valid codewords of C and the hamming distance, denoted as d ( 1v , 2v ), is 

defined as the number of elements between codewords of 1v  and 2v  at which they differ. The 

weight of a codeword, which is denoted as w(v), is defined as a number of nonzero elements 

of a codeword.  

Since 0 is a codeword for all linear block codes, every linear block code has a codeword of 

weight zero. An important feature of linear block code is, the minimum distance 

computation in a code is same as computing hamming weight of its nonzero codewords [5] 

and their relation is given by, 

     1 2 1 2 1 2, ,0d v v d v v w v v    .         (18) 

Therefore, for large dimension k, computing the hamming weight of 2k - 1 non-zero 

codewords is easier than to compute the minimum distance using (18).  

3 The Weight Distribution Polynomial 

The weight distribution is an important factor in order to calculate the probability of error. A 

binary linear (n, k) code has 2k  possible codewords with a weight from 0 to the block length 

n. In a linear bock code C the weight distribution is defined as, 

   iw C A ,           (19) 

where iA  is the number of nonzero codewords of with a weight i out of 2k codewords of C 

for 0 i n  . Except for the zero codeword (weight of zero), the weight of 2k -1 codewords 
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lays between mind  or Hamming weight w(v) and n. The weight distribution defined as 

polynomial is [6], 

 
min0

1
n n

i i

i i

i i d

A z A z A z
 

    .       (20) 

4 Error Probability of Linear Block Codes 

There are different ways to characterize the performance of error correcting and detecting 

capability of an employed linear block codes and error probability is one factor to deal with. 

Some of the error probabilities are given the Table 3.  

Table 3. Definition of error probabilities 

Error probability Definition 
 

decoder error probability,  P E  The probability of block code at the output of 
decoder is in error. 

bit error probability,  bP E  The probability of received bits in error, that is, the 
decoded bits are not same as the transmitted bits. 

undetected codeword error 

probability,  uP E  

The probability of undetected codewords that are 
in error. 
 

detected codeword error probability, 

 dP E  

The probability of one or more errors in a 
codeword is detected. 
 

undetected bit error probability, 

 
buP E  

The probability of a received bit of a message is in 
error and is contained in undetected codeword. 
 

detected bit error rate,  
bdP E  The probability of a message bit in error contained 

in a detected codeword. 

 

In order to define the above probabilities of error, a binary code transmission over Binary 

Symmetric Channel (BSC) with cross over probability p is considered. BSC occurs when a 

transmitter sends a bit (zero or one) and when it is received by receiver, there is a probability 

of error i.e, flipping of the bit. The probability of j errors from a codeword of C is  

 1
n jj

jA p p


 ,        (21) 

where jA  is the weighted distribution of weight j (number of codewords in a code C with 

weight of j). The undetectable probability of error in a given codeword is [3],  

   
min

1
n

n jj

u j

j d

P E A p p




  .        (22) 

The detected probability of error in a codeword of C is the probability of one or more errors 

occur minus the probability of undetected error, and is given by,  
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           
min

1 1 1
n

n j nn j

d j u u

j d

P E p p P E p P E




       .                          (23) 

The performance of the probabilities of error, bounded as the weighted distribution of a code 

C, is not always available. The detected probability of error pattern is upper bounded by the 

probability of error weighted greater or equal to the minimum distance and the error in j 

position can be changed out of n codeword length in  n

j
 different ways [3]. The bound to 

the probability of undetected and detected error is, 

     
min

1
n

n jn j

u j

j d

P E p p




  , and        (24) 

   1 1
n

dp E p   .                     (25) 

The probability of undetected BER can be upper-bounded assuming k message bits of 

undetcted codeword are in error and lower bounded considering only a single message bit 

corresponding to undetected codeword is in error as shown below, 

   
1

bu u uP E P P E
k

  ,         (26) 

And similarly the probability of detected bit error rate can be bounded as, 

   
1

bd d dP E P P E
k

  .            (27) 

Error correction performances can also be measured using probability of block codes and bit 

error rate with a bound of error correcting capability  min 1 2d    . Let j

lP  is the probability 

of a received codword r hamming distance l from a valid codeword weight j given by [3], 

    
22

0

1
l

n l j rj j n j j l r

l l r r

r

P p p
    





  ,      (28) 

Therefore, the probability of word error rate of binary (n, k) code is given by,  

 
 min

min

1 2

0

dn
j

j l

j d l

P E A P

  

 

   .         (29) 

To compute bit error probability based on the weight distribution of a code requires the 

weight of information bits and corresponding codewords.  This can be obtained as, denoted

j , number of total weight of information blocks associated with a codewords of weight j.  

 
 min

min

1 2

0

1
dn

j

b j l

j d l

P E P
k


  

 

   .            (30) 



 

20 
 

Since the weight distribution of a code is not always available, especially for large codes, the 

probability of codeword and BERs are bounded as, 

     
 min 1 2

1
n

n jn j

j

j d

P E p p


   

   , and       (31) 

     
1

bP E P E P E
k

  .          (32) 

3.1.1.2 Repetition Code 

In coding theory, the simplest and most basic error correcting block codes is repetition code. 

The idea of repetition code is the encoder repeats the message several times in order to 

reduce the possibility of transmitted information block in error over a wireless channel. The 

receiver can easily notice if an error has occurred or not by looking at the received codeword 

vector if it is a repetition of same symbol or not and possibly correct it by identifying the 

vector element occurred more often. Generally, message vectors with k bits encoded by 

repeating r times, creating codeword length of n = kr is called repetition code of type (n, k) 

[4]. 

Repetition encoding 

One method of repetition encoding of (n, k) code is to send a block of k information symbols r 

times over the channel. The code has codeword length of n=kr and code rate of /cR k n . 

Another method of repetition encoder is to use repetition (n, 1) code which is applied by 

encoding a single information symbol into a block of n - identical bits. In this case, there are 

only two codewords - message 0 bit with a sequence of n block length 0s and a message of 1 

bit with a sequence of n 1s. If u is a message length, the codeword v is given as,  

 , , ,...,v u u u u , n copies of message u.      (33) 

Repetition encoding can also be determined using a 1×n generator matrix G,  

 1 1 . . . 1G  ,        (34) 

and the encoded block word is given by 

    v uG .          (35) 

Repetition decoding 
Repetition decoding operation works based on majority decoding, that is, if the majority of 

the received code bits are 1, the decoder decide as 1 is received otherwise 0 is received. For 

instance, taking the repetition (11, 1) code and message bit u = 1, a codeword vector of r = [1 

1 0 1 0 1 1 0 1 0 1] is received. Since the number of 1s is 7 out of 11 bits, the decoded message 

value is u = 1. Generally, the repetition decoding is performed based on maximum likelihood 

decoding - if the received codeword consists of / 2n and more 1’s, the decoder decodes the 

message bit as 1 and 0 otherwise. 
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3.1.1.3 Hamming Code 

A block code technique with double error detection and single error correction capability is 

known as the famous Hamming code [39]. In this thesis work, a hamming code with code 

word length of 7 and message length 4 is considered. A linear hamming (n, k) code has 

parameters 2 1mn    and 2 1mk m    for 3m  . The code rate of a hamming code is, 

2 1

2 1

m

c m

m
R

 



.         (36) 

For a minimum distance mind , a hamming code can detect error patterns of weight min 1d   

and correct all error patterns of hamming weight, 

min 1

2

d
t


 ,          (37) 

Where t is an error correcting capability.  

Hamming Encoding 

For hamming (7, 4), the codeword of length 7 consists of 4 message bits and 3 parity bits, a 

function of the message bits in which the encoding operation is obtained using 4×7 generator 

matrix G. 

0 1 1 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

G

 
 
 
 
 
 

         (38) 

For a message vector u = [u1, u2, u3, u4], the code word is obtained as 

     v uG ,          (39) 

where, the encoding operation is performed by modulo 2 additions for every vector element.  

Hamming Decoding 

Every (n, k) code has a (n-k) × n parity check matrix H which has an important property that

0TvH  , for a valid codeword, v. The parity check matrix H is not unique [3] and for the 

above G matrix is given as, 

1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

H

 
 


 
  

         (40) 

The parity check matrix H plays an important role in the hamming decoding operation. Let 

the received code word vector of hamming (7, 4) is 

r v e  , (Modulo 2 addition operation),       (41) 
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where e is the error vector of length 7 and v is the valid codeword. One of the decoding 

operations is to compute syndrome in order to detect an error. 

 T T T T Ts rH v e H vH eH eH      .       (42) 

The syndrome determines if there is an error occurred in the received vector or not. If the 

vector s is all zeros, error has not been occurred and the received vector is the valid code 

word, otherwise, error occurred and has to be corrected. From the above syndrome Ts eH , 

if a single error has occurred, the error vector will be all zeros except 1 in the position where 

the error occurred. Therefore, the syndrome s will be the one of the ith column vector of the 

parity check matrix H where the error has occurred. Since all the column vectors of H have 

distinct combination of three bits none zero vector, it is easy to identify the error location 

based on the syndrome vector and corresponding H matrix column vectors. Generally, 

hamming (7, 4) decoding operation has three steps. 

Step 1. Compute the syndrome Ts rH from the received vector r and parity check matrix H. 

Step 2. Check the value of vector s . If 0s  then an error has not occurred and the received 

vector is the valid transmitted code word. Else if 0s  , error has occurred and need to be 

corrected.  

Step 3. Check if the value of vector s matches with the column vectors of H matrix and take 

the ith column position of the vector which is the position where an error has occurred. The 

estimated error pattern, let be n, will be a vector with the value of its ith position is one and 

the rest values are zero. 

Step 4. The decoded code word is v r n  , which is the transmitted code word. 

3.1.1.4 Classic Cyclic Code 

Cyclic codes are used for error detection and correction code by employing shift registers 

and combinational logical elements [4]. Cyclic codes are one subclass of linear block codes 

which utilizes an algebraic coding theory for efficient encoding and decoding algorithms and 

has less computational complexity. They are suitable for hardware implementation due to 

their rich algebraic structure possession [7].   

Cyclic Encoding 

For cyclic  ,n k code C , let u and v  are the corresponding message vector and codeword 

vector respectively. The codeword vector consists of k information bits and n k  parity bits 

and v  can be expressed as a polynomial form as shown below. 

 0 1 1,..., nv v v v                 1

0 1 1,..., n

nv x v v x v x 

    .        (43) 

A linear block code C is cyclic if a cyclic shift of a codeword is also a codeword [1], that is, 

 0 1 1, ,..., nv v v v C                
   1

1 0 2, ,...,n nv v v v C   .                    (44) 
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In polynomial form, cyclic shift by one position, which is denoted by    1
v x , is performed 

by multiplying it by x  and modulo  1nx  . 

 v x C                        1
mod 1nv x xv x x C                          (45) 

An important property of cyclic code is, all the codeword polynomials are multiplies of 

unique polynomial called generator polynomial   0 1 ,..., n k

n kg x g g x g x 

     with a degree 

of n k . One method of cyclic encoding is to use a systematic form of encoding and is given 

in the following three steps. 

Step 1. Multiply the message polynomial u(x) by xn-1.                                                                                          

Step 2. Divide the message polynomial u(x) xn-1 by generator polynomial of g(x) and the 

remainder, let b(x), is simply the parity check polynomial. 

Step 3. Finally, the code word polynomial is the combination of the parity check polynomial 

b(x) and u(x) xn-1, that is, v(x) = u(x) xn-1 + b(x).  

The systematic cyclic encoding can also be realized using shift registers and logical elements 

called shift register encoder. The encoder circuit is shown in the Figure 7 below. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Shift Register Encoder. 

In the beginning, the gate is ON and the k bits of message word are feed to the channel and 

then, gate OFF and the register values are shifted in to the channel to form a valid codeword.  

In general, the following procedures describe how shift register encoder operates. 

Step 1. The message words with a higher order bit enters to the register first and the output 

stage simultaneously. The gate is enabled in order to allow feedback for the message bits in 

bn-k-1 
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u1, u2 ….. uk 
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to n-k stage of encoding shift register during the operation and the switch, a gate to the n - 

stage output register, is connected to point B first to allow the message bits move to output 

register.  This process operates until kth shifts. 

Step 2. Right after kth shifts, the gate is disabled and the switch is disconnected from point B 

and connected to point A. the n-k parity bits in the shift registers are shifted n-k times and 

moved to the n – stage output registers.   

Step 3. The number of shifts is equal to n and the output shift register contains n-k parity bits 

along with k message bits. 

Therefore, the above operation requires n-k linear feedback shift registers and n shift 

operations to form a systematic codeword, linear combination of the information and parity 

check bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Meggitt Decoder for cyclic code [2]. 

Cyclic Decoding 

Cyclic decoding requires the same polynomial division using shift registers as cyclic 

encoding besides some additional circuitry to perform error correction and detection. The 

Syndrome calculation is an important stage in the process of decoding in error control codes 

including Meggitt decoder. Let the received codeword polynomial is, 

r(x) = r0 + r1x + r2x2 +, . . . , + rn-1xn-1 = v(x) + e(x),       (46) 

r(x) v(x) 

n-k syndrome shift register (SR) 

Error pattern detection   Gate 2 

S(x) 

Gate 1 n-stage input buffer 
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g1 gn-k-1 

rn-1 
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where   

v(x) = v0 + v1x + v2x2 +, . . . , + vn-1xn-1,          (47)           

and     

    e(x) = e0 + e1x + e2x2 +, . . . , + en-1xn-1.            (48) 

v(x) and e(x) are the valid codeword and error polynomials respectively and the syndrome 

polynomial is generated by dividing the received polynomial r(x) by g(x) [2]. This is done the 

same as the cyclic encoder, n-k shift register are required to perform the division operation of 

r(x) by g(x). The syndrome calculation of the meggitt decoder is illustrated in the Figure 8. 

Initially the syndrome register is reset (all shift registers are set to zero) and the received 

word in higher order (i.e, rn-1) is input first to the syndrome register for the operation to 

begin. After all the received words are cyclically shifted, the syndrome register contains the 

syndrome s(x) of received code word. The syndrome is zero if there are no errors in the 

received code word, otherwise, the decoder should correct the t correctable errors occurred 

in r(x). The error correction stage is performed by cyclically shifting the syndromes based on 

the cyclic decoding theorem. 

Theorem: s(x) is the syndrome of r(x) and then the remainder s'(x) is syndrome of r'(x), obtained 

dividing xs(x) by g(x), is cyclic shift of r(x) and the division of xs(x) is achieved by cyclically shifting 

the shift register with initial value of s(x).[2] 

This theorem describes that, for a given s(x) corresponding to r(x), the syndrome is cyclically 

shifted without input received codewords syndromes which corresponds to cyclic shift of 

r(x) are obtained.  Based on the syndrome, symbol error corresponding to r(x) symbol located 

at the end of n-shift register buffer can be corrected symbol by symbol. The decoding 

operation of meggitt decoder is discussed below.  

Step 1. Initially, gate 1 is ON and gate 2 is OFF, therefore, r(x) is shifted to syndrome shift 

register and n-shift register buffer simultaneously. The input clock in stops when r(x) fills in 

the buffer, where the symbol rn-1 is at the last stage of the buffer, and the syndrome s(x) of 

r(x) is formed [2]. 

Step 2. At this stage, gate 1 is OFF and gate 2 is ON for error correction performance. The 

error pattern detection circuit has to be in a position to search the error syndrome matches to 

the error occurred at high order position of the buffer. If the syndrome s(x) is zero, the 

symbol rn-1 is not in error and the cyclic shift of SR and buffer continues which results s'(x) a 

syndrome corresponds to r'(x). If s(x) is a syndrome corresponds to a correctable error t or 

less, error at symbol rn-1 has occurred and the error pattern detection generate e'n-1 = 1 to 

correct the symbol in error. The error corrected polynomial is  

   2 2 ' 1

0 1 2 2 1 1,..., n n

n n nr x r r x r x r x r e x 

         .                  (49) 

Step 3. Symbol rn-2 takes the buffer last stage for error correction and it will be corrected 

depending on the status of new syndrome. Decoding operation ends when all the received 

symbols are shifted out of the buffer.  
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In practice, the syndrome update in the Figure 8 above is not essential and if it is used the SR 

will be zero at the end of the decoding. If it is not considered, the SR will generally be non-

zero after the decoding even though the operation is still correct [2]. One of the advantages of 

meggitt decoder is, it computes the syndrome of all correctable error patterns and 

corresponding error syndromes, and avoids the required syndrome table. The best way to 

elaborate this is using example. 

A meggitt decoder of cyclic (15, 7) double error correcting code with a generator polynomial 

of g(x) = 1 + x4 + x6 + x7 + x8 can correct up to 15

1 15C   single errors and 15

2 105C  double 

errors. Total of 120 error patterns and their syndromes are required to be stored in case of 

syndrome table decoding. The decoder only needs 15 error patterns and corresponding 

syndromes as shown in the Table 4 and the rest error patterns and their syndromes can be 

determined by cyclic shift of the 15 error patterns. For instance, from the error pattern in the 

second row of Table 4 can be obtained using the following error patterns with two successive 

errors.  

(0000 0000 0000 110)                

(0000 0000 0001 100)                    

(0000 0000 0011 000) 

 

 

(0110 0000 0000 000)                

(1100 0000 0000 000)               

(1000 0000 0000 001)  

Table 4. Syndrome table of meggitt decoder for cyclic (15, 7) code 

No. Error pattern Error syndrome 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 

4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 

5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 

7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 

10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 

11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 

12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 

13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 

14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 

15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 
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The required error patterns of meggitt decoder cyclic (15, 7) double error correcting code can 

be further reduced by cyclic shifting an error pattern in order to obtain other error pattern. 

For example, the error pattern in the second row entry is cyclically shifted to the right to get 

error pattern in the last entry of the table. Applying in the same way, the 14 double error 

patterns can be simplified to 7 error patterns and corresponding error syndromes. Each and 

every error pattern requires its own syndrome detection circuit and one of the drawbacks of 

meggitt decoder is its complexity and cost as the error correcting capability t increases.   

3.1.1.5 BCH Codes 
BCH codes are subclass of cyclic codes that possess a rich algebraic structure for efficient 

algebraic decoding algorithms [6]. In this section, a binary BCH code with a block length of 

2 1mn    for integer 3m  is presented. A binary BCH code with error correcting capability 
12mt   and positive integer 3m  can be designed using the following relations [6], 

min

2 1

2 1

mn

n k mt

d t

 

 

 

                       (50) 

BCH (n, k, mind ) code with the above requirements which determines the block length n, 

bound on n-k parity check bits and the minimum error correcting capability t is called a t – 

error correcting BCH code.  

A BCH code fulfill the above specified relations is a cyclic code whose generator polynomial 

g(x) has 2t roots 2 3 4 2, , , ,..., t     . Therefore, a BCH (n, k, mind ) code has a generator 

polynomial of degree at most mt and divisible by minimum polynomial  i x

  for1 2i t   

given by [6], 

    ,1 2ig x LCM x i t

   .        (51) 

LCM represents the least common multiple of the minimum polynomials  i x

 .  

  

 

 

 

 

 

Figure 9. BCH decoder with  2mGF arithmetic operations [5]. 
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BCH encoding 

As BCH (n, k) code is a large class of cyclic codes, its encoding procedures are quite similar to 

the cyclic encoding discussed above. For a given generator polynomial g(x), the information 

polynomial u(x) is multiplied by n kx  , that is,  n kx u x . It is then divided by the generator 

polynomial where its reminder will be the parity check polynomial b(x). Finally the check 

polynomial b(x) is added to  n kx u x  in order to obtain the codeword polynomial v(x).  

BCH decoding 

Figure 9 is the block diagram of binary BCH decoder and it uses different digital circuits and 

processing elements to perform the following decoding procedures.                                                        

 

Step 1. Compute the required syndrome from received polynomial      r x v x e x  and 

the associated error polynomial is represented as 

 

  1 2

1 2
... z

z

j j j

j j je x e x e x e x    ,                                 (52) 

where z t  and the set  
1 2
, ,...,

zj j je e e  are the number of errors and the error values, 

respectively [5]. The syndrome is computed by  

                         i

iS r  ,  where 1,2,...,2i t                                                          (53) 

Step 2. Compute the error locator polynomial  x and its coefficients defined as 

    2

1 2

1

1 1 ...l

z
j z

z

l

x x x x x    


       ,       (54) 

where the set  1 2, ,..., zj j j    are the error positions.  

                          

1 1 2

2 2 3 1 1

2 1 2 1 1

. . .

. . .

. . . . . .

. . . . . .

. . . . . .

. . .

z z z

z z z

z z z z

S S S S

S S S S

S S S S









  

 

    
    
    
    

    
    
    
        
    

                   (55) 

The above key equation can be solved using different computationally intensive methods in 

BCH decoding. Berlekamp Massey Algorithm (BMA), Euclidean algorithm (EA) and direct 

solution are some of the methods [5]. BMA is used in software simulation or implementation 

while EA is mostly used in hardware implementations of BCH and RS decoders. The direct 

solution is also an efficient method in decoding non binary BCH (RS code) but works only 

for small values of error correcting capability t up to 5.  
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The BMA algorithm uses iterative procedure approach to build the Linear Feedback Shift 

Register (LFSR) structure with tabs 1 2, ,..., t   and output syndrome sequences S1, S2, . . . , 

S2t as shown in Figure 10 [5].  

 

 

 

 

 

 

 

 

Figure 10. Linear Feedback Shift Register (LFSR) 

The main target of BMA is to find a polynomial  1i x 
 of minimal degree that satisfies (56) 

[5]. 

1
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i

k j j

j

S 








 ,  1il k i   .         (56) 

(56) is equivalent to   1

1

1 1 1

11 ... i

i

li i i

lx x x   



      be the LFSR connection polynomial that 

gives partial sequence of syndromes [5]. 

The discrepancy at iteration i is given by,   

1 1 1...
i i

i i

i i i i l ld S S S       .                     (57) 

This discrepancy value contains a correction term to compute and modify 1i   in the next 

iteration. It is also used to measure how good the LFSR structure outputs the syndrome 

sequences. The algorithm works base on the following two conditions: 

If di = 0 then 

   1i tx x   , 1i il l   .        (58) 

If 0id  , the solution for iteration = b is let  b x such that 1 , 0bb i d    , and bb l  is 

maximal. And then  

     1 1i i i b b

i bx x d d x x      ,   

 

j = z+1, z+2, . . . , 2z 

 
 

 

+ + + 
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and  1 max ,i i bl l l i b    .                     (59) 

To begin the iteration procedure i = 0, the initial conditions of BMA algorithm are given by 

[5] 

   1
1x


 , 1 0l  ,  

1 1d  ,  

 and    0
1x  , 0 0l  ,  0 1d S .        (60) 

The computation of error location polynomial  1i x   continues such that the conditions

1 1ii l t    or 2 1i t  , or both conditions are fulfilled [5].  

Step 3. Calculate the inverses of the roots of  x , which is the errors location using chien 

search algorithm. So far, the syndrome is used to determine the error location polynomial 

 x  and now it is time to determine the roots of  x based on trial and error procedures. 

All non-zero elements of  2mGF  that is, the sequences 2 11, , ,..., n     are generated to 

evaluate the condition  1 0     [5]. The multiplicative inverse of the roots are used to 

identify the location of the errors, 1 2, ,..., zj j j   , therefore, once the exact error positions 

1 2, ,..., vj j j  are determined, the corresponding received bits in the buffer or delay RAM is 

complemented to correct the errors. 

3.1.1.6 Reed-Solomon code 

RS codes are interpreted as non-binary BCH codes in which the code coefficient values are 

obtained from  2mGF . The generator polynomial g(x) of RS code with t error correcting 

capability is given by the product of minimal polynomials of the elements i  where i = 1, 2, 

… , 2t,    2mGF . The elements 2 2, ,..., t    are the roots of generator polynomial g(x) 

and computed as, 

      2 2... tg x x x x              (61) 

Reed-Solomon encoding 

RS encoding follows the same procedure as BCH encoder does and is given as follows. 

Step 1. Multiply the information polynomials by 2tx  and yields  2tx u x                                                  

Step 2. Divide it by generator polynomial g(x)  

Step 3. Obtain the reminder of  2tx u x / g(x) which is the parity check polynomial and 

combine the product and check polynomial to get RS code word symbols. 

Reed-Solomon decoding 

The RS decoding procedure is similar to binary BCH decoding algorithms only the error 

values has to be computed in the case of RS code. The general decoding procedure of RS 

code is given in Figure 11.  
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Figure 11. RS decoder with  2mGF arithmetic operations [5]. 

Step  1. Compute the syndrome sequences using (equation form BCH). 

Step 2. Find the error location polynomial and its coefficient values applying the above 

computationally efficient methods, such as BMA, EA and Direct solution.  

Step 3. Use chien search procedure to find the error locators, that is, the roots of error 

location polynomials. 

Step 4. Compute the error values,
lj

e , 1 l z  , for z t . The error values can be evaluated 

below. 

   
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'

l l

l l
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j j
e

 

 






  ,         (62) 

Where  ˡ(x) is the derivation of error location polynomial  x with respect to x and the 

expression  x is called error evaluator polynomial given as, 

      2 1mod tx x S x x           (63) 

Step5. Correct the errors by adding the computed error values to the received symbols over

 2mGF .  

3.1.2 LDPC and Turbo Codes 

LDPC and Turbo codes are a high performance FEC codes which are applied to approach 

capacity channel, that is, by increasing the code rate, reliable communication is achievable in 

a given noise level. Nowadays, LDPC and Turbo codes are competing to each other due to 

their similar performance.   

3.1.2.1 LDPC Code 

LDPC is a forward error control code with a parity check matrix contains very small number 

of non-zero entries [59]. The sparseness property of H-matrix of LDPC code guarantees the 

complexity of the decoder and minimum distance which both increase linearly with the 
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length of codeword. The biggest difference of LDPC code from block codes is in its iterative 

decoding operation that uses graphical representation of H-matrix [59].  

 
LDPC Encoding 

For encoding technique, the generator matrix G can be found by first obtaining H matrix in 

the form of  

 , n kH A I   ,         (64) 

where A is a binary matrix of  n k k   dimension and n kI   is n k  identity matrix. 

Therefore, the generator matrix G is, 

    , T

kG I A               (65) 

The G matrix is not as sparse as the H matrix and it is very large in size. The encoder 

operation is performed simply by multiplying the information vector u with G matrix [59], 

    c uG            (66) 

 
LDPC Decoding 

There are two types of iterative decoding in LDPC code called hard and soft decision 

decoding. There are common LDPC decoding algorithms such as bit–flipping, sum-product 

and min-sum algorithm to mention a few. The bit-flipping algorithm is one of the LDPC 

decoding techniques, which is a hard decision message-passing algorithm [59]. This 

algorithm is the LDPC decoding technique that we focus on in our thesis. It is shown that 

parity check H matrix can be represented using a Tanner graph which has two classes of 

nodes. The first class, is called code nodes corresponds to bit nodes to columns of H. for 

instance, for (n – k) × n parity matrix H, we have n code nodes. The second class is called 

check nodes correspond to parity check equations to the rows of H matrix and we have n – k 

check nodes for (n – k) × n parity matrix H. 

The bit-flipping algorithm is given as follows, 

Step 1: messages of the check nodes are calculated based on the received codeword and 

information available in the check matrix. 

Step 2: the check node sends messages to the connected code nodes. 

Step 3: the bit node checks the messages from the check node and if the majority of message 

bits in the first bit node are different from the received bit, the bit node flips its value. And 

this procedure continues for all values of bit nodes. 

Step 4: the parity check equations are calculated, that is, all the check nodes are determined 

using modulo-2 sum and check if all satisfy the sum of the bit values is zero. If it is satisfied 

the algorithm halts, otherwise, the procedure is repeated till all the parity check equations of 

the check nodes are fulfilled or till the maximum iteration has reached.  

3.1.2.2 Turbo Code 

In this sub-section, we will concentrate on a Maximum A Posteriori (MAP) based turbo code. 

A turbo code with a rate of 1/3 is considered as shown in Figure 12. From Figure 12, the 
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upper case variables denote the binary numbers while the lower case variables denote the 

symbol values. In the transmitter part, a pair of convolutional encoders generates pair of 

parity bits for the corresponding message bits and mapped to symbols for transmission over 

Additive White Gaussian Noise (AWGN) channel.  

 

 

  

 

 

 

 

kX = message bits   2  = noise variance 

1kP  = encoder 1 parity bit  '

kx  = received message symbol 

2kP  = encoder 2 parity bit  '

1kp  = received encoder 1 parity symbol 

kx  = message symbols  '

2kp  = received encoder 2 parity symbol 

1kp = encoder 1 parity symbol   kL x  = decoder soft decision 

2kp = encoder 2 parity symbol 
^

kX = decoder hard decision 

Figure 12. Turbo code system [60] 
 

Turbo Encoding  

Two identical convolutional encoders are applied for the structure of turbo encoder with a 

rate of 1/3 as shown in Figure 13. The information bits are fed directly to the first 

convolutional encoder and it also go through a pseudo random permutation P before it is fed 

to the second convolutional encoder. The permutation block is used based on the state 

sequence of a maximal length shift register (PN sequence) and its benefit is to make the two 

constituent encoders be uncorrelated at the receiver side [60]. 

 

 

 

 

 

 

 

Figure 13. Turbo Encoder 
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Each convolutional encoder in Figure 13 is based on recursive systematic convolutional 

encoder and it is shown in Figure 14 with two memory registers and four states. 

 

 

 

 

 

 

 

 

Figure 14. Recursive systematic convolutional code 

Turbo Decoding 

The turbo decoder consists of a pair of decoders as shown in figure 15. The two decoders 

work cooperatively to enhance and improve the estimation of the original information bits. 

The decoders operate based on maximum aposteriori probability (MAP) algorithm which 

minimizes the probability of bit error by using the entire received sequence to identify the 

most probable bit at each stage of the trellis. In this case, the soft decision information 

learned from the noisy received parity bits.  

Initially, the first encoder begins without initialization information (apriori estimates are set 

to zero). In next iterations of the decoding process, the soft decision information of one MAP 

decoder is used as the apriori information to initialize the other MAP decoder. The decoder 

information is cycled around the loop until the soft decisions converge to a steady state 

solution (stable set of values). The latter soft decisions are then sliced to recover the original 

binary sequence.  

 

 

 

 

 

 

 

                                              Figure 15. Turbo decoder [60] 
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3.2 Introduction to ARM Platform 

ARM (Advanced RISC Machine) is world’s leading supplier of embedded microprocessors 

technology. It is a 32-bit architecture which offers a wide range of microprocessor cores to 

address high performance, low cost, low computing power consumption and small 

implementation size. The ARM processor architecture is the basis for every ARM processors 

and is evolved over time to include additional features in order to encounter the growing 

demand of new functionality, high performance and the need of new and emerging market.  

The ARM architecture incorporates the following similar features of Reduced Instruction Set 

Computer (RISC) architecture: 

 A large register file 

 A uniform register file load/store architecture, where the data processing operation is 

performed only on register contents, not directly on the memory contents 

 Uniform and fixed length instruction fields, a 16 × 32- bit register files 

 Simple addressing mode, all load/store addresses obtained from instruction fields 

and register contents only 

ARM enhances the basic features of RISC by enabling the processors to achieve the key 

attributes of ARM architecture [8]: 

 Good balance of high performance 

 Small code size 

 Low power consumption 

 Small silicon area 

ARM also provides a series of ARM core technologies, architecture extensions and system-

on-chip schemes. ARM CPU core includes a series of processor family, such as Cortex-A, 

Cortex-R, Cortex-M, ARM7, ARM9, ARM11 and SecurCore. The ARM Cortex-M is a group 

of 32-bit RISC processor cores upward compatible range of energy efficient, easy to use 

processors designed to achieve the demands of future embedded applications such as 

increase connectivity, better code reuse, lower cost and enhanced energy efficiency [8].  This 

family is optimized for cost and power sensitive embedded microcontrollers (MCU), and 

mixed signal devices applications, automotive and control systems, medical instrumentation 

and smart metering are few to mention.  

Cortex-M3 processor is a member of Cortex-M family; it is the industry leading 32-bit 

processor delivers high computational performance, energy efficiency, rich connectivity and 

execution of instruction set for optimal performance and code size. It is developed to 

increase the demand of developing high performance low cost platform for devices 

including wireless sensor networks, microcontrollers, industrial control and automotive 

systems. The processor clock speed is configurable to 12MHz or 24MHz when using the 

crystal oscillator and 6MHz or 12MHz when the integrated high frequency RC oscillator is 

used.  
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In this thesis project, the STM32W108cb, IEEE 802.15.4 standard radio, development board 

from IAR system is used for our evaluation platform and is shown in Figure 16. 

STM32W108cb is a complete System-on-Chip from STMicroelectronics that integrates 

2.4GHz IEEE 802.15.4-compliant transceiver, 32-bit ARM Cortex-M3 microprocessor, 

128Kbytes embededd flash memory 8Kbytes RAM memory for data and program storage, 

and peripherial of use to designers of 802.15.4 based systems [8].   

The STM32W108cb tranceiver architecture is chosen for robust co-existance with other 

devices in 2.4GHz ISM band channel, namely IEEE 802.11 (WiFi) and Bluetooth, by adopting 

channel hopping strategy and minimize power consumption. The timing requirement 

imposed by ZigBee and IEEE 802.15.4 standards is maintained by the STM32W108108cb 

MAC function which interfaces the on-chip RAM to the receiver and transmitter baseband 

modules. The MAC hardware controls automatic ACK transmission and reception, back off 

delay, clear channel assessment for transmission, automatic packet level filtering [8].  

The STM32W108cb provides advanced power management features to maintain long battery 

life time. A high frequency 24MHz external crystal oscillator, 12MHz internal RC oscillator, 

32.768KHz external crystal oscillator and 10KHz internal RC oscillator are available. In order 

to support user-defined applications a general purpose timers, SPI (master or slave), I 2 C 

(master only), UART operations, general purpose ADC and 24 highly configurable  GPIOs 

are included on chip peripherals. Deep sleep modes to reduce power consumption, 

intergrated voltage regulators, 32-bit sleep are also available [9].  

The STM32W108cb implements ARM serial wire and JTAG debug interfaces which both 

provide real time and debugging capabilities. It also support the standard ARM system 

debug capabilities such as Patch and Breakpoint, Data Watchpoint and Trace, and 

instrumentation Trace Macrocell application [9].  

Due to the above important features, the STM32W108cb is suitable for a wide range of 

applications such as, 

 Smart energy. 

 Home automation and control. 

 Building automation and control. 

 Security and monitoring. 

 6LoWPAN and custom protocols. 

 RF4CE products and remote controls. 

 ZigBee pro wireless sensor networking.  
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Figure 16. STM32W108 application board (MB954) 
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Chapter 4 

Implementation and Performance Evaluation 

In this section, the FEC codes in IWSNs, the strict requirements that we need to follow, 

complexity algorithms of FEC codes, the measurement setup and evaluation results followed 

by analysis and discussions will be presented.  

4.1 Applying FEC codes in IWSNs 

As it is described in the previous chapter, FEC code is an error detection and correction 

mechanism used to recover the corrupted data by adding redundancy bits. The redundant 

bits are added to original data to form a codeword and correct the erroneous bits caused by 

harsh environment. The code rate of FEC code is used to evaluate its transmission efficiency. 

FEC code is implemented in IWSN by applying it on top of IEEE 802.15.4 MAC layer. FEC 

can be applied on top of PHY layer but we need to have direct interaction to the 

manufacturers. Therefore, our task is to concentrate on applying FEC code on top of MAC 

layer in an efficient way.  

In our project, the feasibility of applying FEC code in IWSNs depends on three important 

issues that we need to focus on, namely, the way to properly apply FEC code to a MAC 

frame, the encoding and decoding time of FEC codes required to meet the acknowledgement 

timing requirement of IEEE 802.15.4 standard and the memory usage of the algorithms in a 

resource limited embedded device.  

4.1.1 FEC in MAC Layer 

In this sub-section, the IEEE 802.15.4 data frame at MAC layer is used as shown in figure 17. 

It consists of three main parts: MAC header (MHR), MAC payload and Frame check 

sequence (FCS) [10]. 
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Figure 17: IEEE 802.15.4 Data Frame Structure [10] 

 

We propose to encode the frame with FEC code excluding FCS field to encode. The FCS field 

contains the cyclic redundancy check (CRC) in order to detect bit errors but not correct them. 

The reason not to apply FEC code in FCS field is, firstly, due to the compatibility issue of the 

IEEE 802.15.4 as the introduction of redundancy change the packet structure. If the FCS field 

is encoded, the calculated FCS value over the whole packet in the standard will not be the 

right checksum value, since the packet will be changed after it is encoded. Therefore, nodes 

with no FEC code implemented will calculate and obtain different FCS value which will 
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assume that the packet is corrupted even if it is not. Secondly, it is very convenient when the 

receiver decodes the packet if only FCS check is failed in order to avoid unnecessary 

computation. If FCS is not encoded, it can be used first to check if the packet is corrupted or 

not since its computation is faster than the FEC decoding operation. Moreover, if FCS check 

confirms that error is not occurred, the packet decoding is avoided and the receiver fitches 

the necessary packet efficiently depending on the encoded packet structure. 

For FEC code algorithms, systematic code is the proposed approach. In this case, the code 

word consists of original data and additional redundancy which are stored separately in the 

payload field without changing the original packet. Furthermore, it is important to add a flag 

in the frame control field in the MAC header to indicate that if a packet is encoded or not. In 

the systematic approach, if error does not occur, the nodes can easily parse the packet 

without applying FEC code. Nodes without FEC scheme implemented can also understand 

the content of the encoded packet. 

4.1.2 Timing Requirement  

The combination of FEC code and ARQ approach is called Hybrid ARQ and used to 

guarantee communication reliability and real time performance. If this mechanism is applied 

in IWSNs, the timing requirement of the IEEE 802.15.4 standard should be fulfilled. That is, 

the macAckWaitDuration is the timing limitation of acknowledgement defined in the 

standard. According to the standard, the macAckWaitDuration is 0.864ms and the decoding 

time duration of FEC code should reside within this time interval, otherwise, it is not 

compatible with the standard. Even in a complicated scenario where the acknowledgement 

packet is encoded, the sum of encoding and decoding time should be less than 0.864ms. 

Therefore, the encoding and decoding times of FEC algorithms are very essential to meet the 

acknowledgement timing requirement of IEEE 802.15.4 standard. This timing requirement is 

the key point for the proposed FEC algorithms to be applied in IWSNs and is the metric to be 

strictly followed in order to evaluate and compare the algorithms based on the performance.   

4.1.3 Memory Resource 

The embedded devices in IWSNs are memory resource limited. The microcontroller device 

used is integrated with 128Kbyte embedded flash memory and 8Kbyte RAM memory for 

data and program storage. Therefore, the FEC algorithms that are going to be implemented 

in IWSNs should be feasible in terms of memory resource consumption.  

4.2 Complexity Algorithms 

The complexity Algorithm is used to determine the amount of resources (time and memory) 

consumed to execute certain algorithms that are designed to operate for a given input length. 

It is a cost measured in run time (time complexity) or memory (space complexity) required 

by an algorithm to solve one of computational problems. In general, the complexity analysis 

allows us to measure speed of a program and memory allocation when it performs 

computation. In this thesis work, we will only focus on time complexity to analysis the 

performance of different FEC schemes. 
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4.2.1 Time Complexity  

Time complexity is the measure of running time of a given algorithm as a function of size of 

the input. The time complexity of an algorithm is determined using big O notation which 

finds a certain bound that the algorithm cannot exceed by excluding factors such as 

coefficients and lower order terms. The big O notation is an asymptotic notation used to 

express algorithm’s performance as the size of the input tends to infinity. For instance, for 

inputs of size n, if the required running time of an algorithm is 43 2 3n n  , the asymptotic 

time complexity of the algorithm is O  4n . 

4.3 Measurement Setup 

For our evaluation purpose, the implementation tools and settings used, the software 

implementation sources and the methods applied to measure processing time and memory 

footprint of each FEC coding algorithms will be introduced.  

4.3.1 Implementation Tools and Settings 

The IAR embedded Workbench IDE 6.4 is used as our evaluation tool. The IAR Embedded 

Workbench provides powerful integrated development environment that allows developing 

application projects for embedded systems.  

The IAR embedded Workbench IDE is a frame work where all the tools required to build the 

application such as, the highly optimizing IAR C/C++ Compiler, assembler, linker, library 

tools, editor, project manager and the IAR C-SPY Debugger are integrated.  

Except the optimization settings in the C/C++ compiler, the most common default settings 

of IAR Embedded Workbench are used. The ARM IAR C/C++ compiler provides you with 

an option to optimize the generated code in size, speed or balance in order to reduce code 

size (memory) and improve the execution speed performance. This can be fulfilled according 

to settings specified in the selectable optimization levels. There are several optimization 

levels such as none, low, medium and high (maximum optimization). At each optimization 

level, there are different transformations, such as common sub-expression elimination, loop 

unrolling, function inlining, code motion, type-based alias analysis, static clustering, 

instruction scheduling. In our evaluation, all the transformations are enabled for high level 

optimization. 

The STM32W108cb supports maximum 24MHz clock frequency and is set to be used for the 

evaluation. In the hardware environment set up, the board is connected with a PC using USB 

cable through USB connector J2 to give power source to the board and communicate with 

hypertherminal use as an output tool. The hypertherminal is configured: word length of 8 

bits, one stop bit, no parity, baud rate of 115200 bits per second and disable flow control.   

4.3.2 Implementation Sources 

A pure C programming software implementation is applied for our evaluation. Neither 

assembly nor hardware implementation is performed and an existing demo implementation 

project is adapted from ST microcontroller. This demo is an RF application that demonstrates 

point-to-point 802.15.4 wireless communication runs on STM32W108cb microcontroller. 
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4.3.3 Methods for Measurement 

In our evaluation, memory consumptions and processing time (execution time) performance 

are the two main features used to be determined for each error control coding algorithms 

and evaluate their performances. The methods used to measure these two features are 

discussed as follows.  

4.3.3.1 Memory 

In embedded systems, memory (flash and RAM memories) is very precious resource. 

Understanding and evaluating how our program allocates variables in memory is an 

important task to use memory wisely in the area of embedded systems. Memory in a C 

program includes code, typically read only and executable instruction, and data which is 

non-executable and can be read-only or read-write. The code and read-only data are stored 

in flash memory whereas; the read-write data is stored in RAM.  

There are two methods used to measure the memory footprint of each error control coding 

algorithms. The first method: the IAR Embedded Workbench IDE is set to generate an output 

of list file for each C program file whenever the project is compiled. The memory usage of 

each algorithm is stated at the end of each list file in three memory types namely, code 

memory, const code memory and data memory. The code memory represents the footprint 

of executive program in the flash memory and const code memory represents the size of the 

initialized constant values of variables in our C program file. The data memory denotes the 

size of RAM consumed by our C program file. The second method is the IAR Embedded 

Workbench IDE is set in order to generate one of the output files called map file when the 

project is compiled. The map file differs from the list file in terms of the memory footprint 

and the name of the memory types it represents. It shows the total footprint of the whole 

project with different names of memory types from the names in the list file. The memory 

types obtained in the map files are; read-only code memory, read-only data memory and 

read-write data memory which correspond to memory type in the list file code memory, 

const code memory and data memory respectively.  

In the first method, each footprint of a particular algorithm can be obtained by reading out 

directly from the list files. When the second method is used we have to read the memories in 

the map file first before the algorithm of interest is added into the project and read the file 

once again after the algorithm is included into the project. Subtracting the memory obtained 

after our algorithm is added by the value of corresponding memory before it is added, we 

obtain the memory size of our algorithm. The first method seems more convenient and easy 

to read the values than the second one. However, the second method is more accurate than 

the first one. It is because of not all codes of the algorithm are included in one C file and even 

the algorithm includes several C files the size of the algorithm is not obtained by adding up 

all the memories obtained from the list files involved. Applying the second method yields 

more accurate result as it can obviously be seen when one or more algorithms are added to 

the project how much memory it consumes. Therefore, the memory consumption of each 

error control coding algorithm is measured using the second method. 
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4.3.3.2 Processing Time 

In our evaluation, a system timer (systick) is used to measure the processing time of each 

algorithm. System timer is a 24-bit count down timer made available in ARM Cortex-M3 

MCU that the processor uses it as a real time operating system tick timer or as a simple 

counter. Systick is suitable and very simple to generate ticks for operating system or delay 

measurement. When MCU runs a program, an instruction is executed at a given speed by the 

system clock. Some execution of instruction may take one clock cycle and others may take 

more to complete the execution. Systick can be used to determine the elapsed time by setting 

the timer to start down counting. The measured units in systick method are number of ticks 

not CPU cycles.  

Therefore, the performances of our algorithms are measured using systick timer by first 

initializing and starting the systick timer. The systick timer source clock in STM32W108cb is 

specified to two clock frequencies, 12MHz and 24MHz. The 24MHz frequency is used as a 

clock source and some extra line of codes for measurement applying systick timer. The 

systick values are read out before and after the test point of our interest and take their 

difference to get the tick values. The time consumption is calculated by dividing the tick 

values with the clock speed frequency.  

In order to guarantee the systick timer measurement is accurate, an oscilloscope is used to 

verify which shows the method is correct. For instance, the delay of one second between two 

blinking LEDs is measured using systick timer with the above procedures. And an 

oscilloscope is used to check the one second delay to blink the two LEDs in the board, and 

their voltage and time is shown in the Figure 18.  

 

Figure 18. Voltage of LEDs 
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4.4 Performance Evaluation 

In this subsection, the results of our evaluation are presented. The purpose of our evaluation 

is to measure the processing time of FEC codes and identify an appropriate algorithm for 

IWSNs. The evaluation of footprint of the algorithms is also crucial factor to be considered as 

the IWSN nodes are memory resource limited embedded devices. Therefore, processing time 

and memory consumptions are two important factors to be measured in our evaluation 

using the two techniques introduced previously in order to identify the feasible FEC 

algorithms applicable in IWSNs. Some block codes are proposed for our evaluation purpose 

as they are suitable for data link layer compared to convolutional codes due to their 

memoryless property. Turbo and LDPC codes are also considered to show their performance 

in IWSNs and compare with block codes.  

In our evaluation, we use a development kit from STMicroelectronics with high performance 

32-bit ARM Cortex-M3 microprocessor operating at 24MHz frequency. The IAR Embedded 

Workbench 6.4 compiler that supports four optimization levels uses high level of 

optimization in order to achieve better performance interms of processing time and memory 

consumptions. A pure C language software is applied for our implementation and is not 

optimal. One can further optimize to improve the perfromance interms of execution time and 

memory footprint. In IWSNs the maximum payload of IEEE 802.15.4 standard is 128 bytes 

and, therefore, the maximum data length is considered in order to assess at the worst case 

senario: maximum latency and memory consumption. the encoded data length using FEC 

algorithms must be less than 128 bytes and the orginal message length should even be 

shorter. The maximum packet size of the original message depends on the code rate of FEC 

code which is caluculated as, max 128L R  . 

The memory usages of each FEC algorithms are presented and classified into three memory 

regions, that is, Read-Only (RO) code memory, RO data memory and Read-Write (RW) data 

memory. As we discussed in the previous subsection, RO code memory represents the size of 

executable program, RO data memory represents the size of initialized constant values and 

RW data memory represents the size of RAM the algorithm uses. The memory footprint of 

our algorithms is measured using different compiler optimization options such as high 

speed, high size, high balance and none optimizations.  

The processing time of our evaluation is also presented in three different sections: encoding 

time, decoding time without error and decoding time with maximum correctable error. The 

maximum correctable error means that a packet encounters the maximum number of errors 

that the corresponding FEC algorithm can correct them. Hence, the execution time of FEC 

decoding without error and with maximum errors are not the same and should be presented 

separately. Each sections are also measured by applying different optimization levels such as 

high speed, high size, high balance and none optimzation options.   

The evaluation results are categorized into two parts, namely, evaluation results of block 

codes and evaluation results of LDPC, turbo and block codes each followed by analysis and 

discussions of the results.  



 

44 
 

4.4.1 Evaluation Result of Block Codes 

For our evaluation, different block coding algorithms are proposed and implemented. The 

processing time and memory consumption of the proposed candidates will be presented and 

their performance will be compared. Due to memory constraint and restricted packet size, 

the block length of our FEC algorithms is ranged from 3 to 31 and maximum packet size of 

70 bytes is used for evaluation. For our performance analysis and discussions, the code rates 

and error correcting capabilities of our algorithms are summarized in Table 5 and algorithms 

with better performance are further compared with LDPC and turbo codes in subsection 

5.4.2. 

 
Table 5. Code rates and Error correcting capability of Block codes 

Block Code Algorithms 
 

Code rate Error correcting capability 

Cyclic (15, 7) code 0.4667 2/15 = 0.1333 

Hamming (7, 4) code 0.5714 1/7 = 0.1429 

Repetition (3, 1) code 0.3333 1/3 = 0.3333  

BCH (15, 5) code 
 

0.3333 3/15 = 0.2000 

BCH (15, 7) code 
 

0.4667 2/15 = 0.1333 

BCH (31, 21) code 
 

0.6774 2/31 = 0.0645 

RS (15, 5) code 
 

0.3333  5/15 = 0.3333 

RS (15, 9) code 
 

0.6000 3/15 =  0.2000 

RS (15, 11) code 
 

0.7333 2/15 = 0.1333 

 

Processing Time 

The execution time of the block coding algorithms with different optimization options are 

given in Tables 6,7,8 and 9.  

Table 6. Execution time of Block Codes with None Optimization. 

Block Codes  
 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

4.0433 6.6600 42.7667 

Hamming (7, 4) code 
 

9.8116 7.1633 7.9333 

Repetition (3, 1) code 
 

2.4267 3.1967 4.2467 

BCH (15, 5) code 
 

8.2320 13.9953 37.2867 
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BCH (15, 7) code 
 

7.0967 5.3700 16.2233 

BCH (31, 21) code 
 

8.9741 3.3356 9.4185 

RS (15, 5) code 
 

4.2280 10.8395 30.7020 

RS (15, 9) code 
 

2.1613 3.8107 9.3040 

RS (15, 11) code 
 

1.6813 2.4245 4.9362 

 

Table 7. Execution time of Block Codes with High Speed Optimization 

Block Code 
Algorithms 

 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

1.6333 3.0067 35.6833 

Hamming (7, 4) code 
 

2.4500 2.4908 3.1383 

Repetition (3, 1) code 
 

0.5133 1.5167 2.8000 

BCH (15, 5) code 
 

2.0020 5.9033 16.9027 

BCH (15, 7) code 
 

1.4633 2.8333 8.1267 

BCH (31, 21) code 
 

2.4424 1.7044 4.4854 

RS (15, 5) code 
 

1.4268 4.6025 13.9965 

RS (15, 9) code 
 

0.6333 1.6220 4.3787 

RS (15, 11) code 
 

0.5953 0.9582 2.3454 

 

Table 8. Execution time of Block Codes with High Size Optimization 

Block Code 
Algorithms 

 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

2.3600 7.4967 33.7533 

Hamming (7, 4) code 
 

6.4867 5.6642 6.1192 

Repetition (3, 1) code 
 

1.7733 2.3100 3.2667 

BCH (15, 5) code 
 

3.7287 11.3260 21.0047 

BCH (15, 7) code 
 

3.1833 3.8033 9.1500 
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BCH (31, 21) code 
 

3.3356 2.5099 5.7825 

RS (15, 5) code 
 

1.8515 5.9827 16.7242 

RS (15, 9) code 
 

0.9440 2.0153 4.9333 

RS (15, 11) code 
 

0.7665 1.2323 2.8047 

 

Table 9. Execution time of Block Codes with High Balance Optimization  

Block Code 
Algorithms 

 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

1.7200 3.3033 35.9900 

Hamming (7, 4) code 
 

2.5083 2.6425 3.2550 

Repetition (3, 1) code 
 

0.7233 1.6567 2.8000 

BCH (15, 5) code 
 

2.1233 7.2147 19.0213 

BCH (15, 7) code 
 

1.6000 2.7533 8.6600 

BCH (31, 21) code 
 

2.4547 1.8675 5.2121 

RS (15, 5) code 
 

1.8725 5.9442 17.3763 

RS (15, 9) code 
 

0.8680 1.9453 5.0853 

RS (15, 11) code 
 

0.7502 1.0947 2.6942 

 

Memory Consumption 
The memory footprints of the candidates with maximum message length are given in 

Figures 19 - 22. The footprint of the algorithms with packet sizes ranged from 5 to 70 bytes is 

also presented in the appendix.  
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Figure 19. Footprint of Block Codes using None Optimization 

 

 

 

Figure 20. Footprint of Block codes using High Size Optimization 
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Figure 21. Footprint of Block Codes using High Speed Optimization 

 

 

 

Figure 22. Footprint of Block Codes using High Balance Optimization 
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Time complexity of block codes 

The encoding and decoding time complexity of different block coding algorithms with M 
number of blocks, codeword length n, message length k and error correcting capability t are 
presented below. 
 
Time complexity of Cyclic encoder algorithm 
 

Algorithm                             Cost           Time 

1:   for all m such that 0 m M              
1C   M         

         begin to encode individual blocks 

2: initialize the shift register values           

3:           for all i  such that 1 i k                    2C   M k   

4:                perform the cyclically shift register operation                    3C    1M k   

       For a given generator polynomial           

5:  end for loop            

6: add the parity bits and information bits          4C   M   

7:   end for loop 

 

The total cost is given by, 

Total cost =    1 4 2 3C C M C C M k        

The time complexity of Hamming encoding algorithm is  O M k .  

 
Time complexity of Cyclic decoder algorithm 

 

Algorithm                                     Cost           Time 

1: if FCS == received FCS                   1C                 1 

2:      Successful receiving, return         

3: else if FEC flag set in FCF             2C                1 

4:      Calculate FEC field and number of blocks of the frame        3C                 1  

          and get payload into data field and FEC field     

5:      for all m such that 0 m M               4C               M  

         Begin to decode individual blocks    

6:           Initial syndrome              5C            1M    

7:           for all i such that 1 i n  , syndrome computed         6C            1M n   

8:           end for loop 

8:           if syndrome == 0             7C            1M     

9:                Successful receiving, return      

10:           else 

11:                for all i such that 1 i n               8C        1M n     

12:                     for all j such that 0 j n               9C        M n n   

13:                          if syndrome == error pattern syndrome          10C       M n n    
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14:                               Error occurred at position n – i,            11C      M n n   

            error variable set    

15:                         else  

16:                               Continue         

17:                     end for loop 

18:                       if error variable == 1             12C      M n    

19:                          error corrected in that position                        13C      M n  

20:                     else 

21:                          Receiving failed, return 

22:    end if       

23:                     Syndrome computation continue            14C     M n   

24:                end for loop 

25:                Successful receiving, return 

26:     end if 

27:     end for loop 

28: else 

29:     receiving failed, return 

30: end if 

 

Each operation in the above algorithm has a cost and takes a certain execution time to 
operate. The time cost of the algorithm is given by, 

 Total time cost = 1 2 3C C C   4 5 7C C C M     6 8 12 13 14C C C C C n M         

                       2

9 10 11C C C n M       

 Therefore, the cyclic decoding algorithm requires computation time proportional to 2Mn  

and its time complexity is represented as  2O Mn . 

 
Time complexity Hamming encoder algorithm 
 

Algorithm            Cost           Time 

1:   for all m such that 0 m M             1C   M         

         begin to encode individual blocks           

2:           for all i  such that 0 i n                    2C   M n   

3:                Initialize the codeword variable          3C      1M n    

4:       for all j  such that 0 j k             4C               M n k   

5:                     Encode using generator matrix         5C   1M n k    

6:       end for loop 

7:  end for loop 

8:   end for loop 

 

The total cost is given by, 

   1 2 3 4 5C M C C M n C C M n k            
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The time complexity of Hamming encoding algorithm is  O M n k  .  

 
Time complexity of Hamming decoder algorithm 

 

Algorithm                                          Cost           Time 

1: if FCS == received FCS                  
1C               1  

2:      Successful receiving, return         

3: else if FEC flag set in FCF                 2C               1   

4:      Calculate FEC field and                             3C   1 

         number of blocks of the frame    

         get payload into data field and FEC field    

5:      for all m such that 0 m M                   4C               M    

              begin to decode individual blocks 

              syndrome detection          

6:           for all i such that 0 i k                    5C   M k    

7:                initialize syndrome                6C               1M k    

8:                for all j such that 0 j n                  7C   M k n            

9:                     syndrome calculation                8C   1M k n     

10:              end for loop 

11:         end for loop 

12:         for all i such that 0 i k                   9C   M k    

13:               syndrome checked                10C   1M k    

14:         end for loop 

15:         if syndrome == 1                 11C   1M    

              error occurred and proceed to correct 

16:              for all j such that 0 j n                  12C                     M n   

17:                   detect error position                13C              1M n    

18:              end for loop 

19:              if error position n                  14C               M  

20:                    error correction                15C               1M    

21:              else 

22:                  error uncorrectable, receiving failed, return 

23:        end if 

24:         else 

25:              successful receiving, return 

26:         end if 

27:      end for loop 

28:           successful receiving, return 

29: else 

30:      receiving failed, return 
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31: end if 

 

Total cost =  1 2 3 4 11 14 15C C C C C C C M        5 6 9 10C C C C M k       

             12 13 7 8C C M n C C M k n            

 

The decoder algorithm requires an execution time proportional to Mkn . The time complexity 

is denoted as  O Mkn . 

 
Time complexity of Repetition encoder algorithm 

 

Algorithm             Cost           Time 

1:   for all m such that 0 m M             1C   M         

         begin to encode individual blocks           

2:           for all i  such that 0 i n                     2C   M n   

3:                repeat the input bits           3C               1M n   

4:  end for loop            

5:  end for loop 

 

The total cost is given by,                                                                                                                                   

Total cost =  1 2 3C M C C M n                                                                                                    

Therefore, the time complexity of the repetition encoding algorithm is  O M n . 

 

Time complexity of Repetition decoder algorithm 

 

Algorithm                                          Cost          Time 

1: if FCS == received FCS       1C   1  

2:      Successful receiving, return         

3: else if FEC flag set in FCF       2C    1 

4:      calculate FEC field and number of blocks of the frame             3C   1 

         and get payload into data field and FEC field 

5:      for all m such that 0 m M                                                         4C                   M  

              Begin to decode individual blocks 

6:           for all i such that 0 i n          5C              M n   

7:                error detection       6C              1M n    

8:           end for loop 

9:           if error detected       7C              1M    

10:              error corrected       8C              1M    

11:         end if 

12:         successful receiving, return 

13:    end for loop 
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14:         successful receiving, return 

15: else 

16:     receiving failed, return 

17: end if 

 

Total cost =    1 2 3 4 7 8 5 6C C C C C C M C C M n            

 

The decoding algorithm requires a computation time proportional to Mn , therefore, the time 

complexity is represented as  O Mn . 

 
Time complexity BCH encoder algorithm 

 

Algorithm                         Cost     Time 

1:   for all m such that 0 m M               1C       M         

         begin to encode individual blocks           

2:           for all i  such that 0 i n k              2C        M n k    

3:                Initialize the redundancy coefficients         3C          1M n k    

4:  end for loop            

5:  for all i  such that 0k i              4C       M k   

6:       feedback = index of  input i  XOR  1redundancy n k     5C       1M k   

7:                if feedback 0              6C        1M k    

8:            for all j  such that 0n k j             7C         M k n k    

9:                 the output is computed using-          8C         1M k n k     

     Generator polynomial 

10:            end for loop 

11:       else 

12:             output computed          9C           1M k   

13:       end if 

14:         end for loop 

15: end for loop 

 

The total cost is  

         1 2 3 4 5 6 9 7 8C M C C M n k C C C C M k C C M k n k                   

The time complexity of BCH encoding algorithm is   O M k n k   . 

 

Time complexity of BCH decoder algorithm 

In BCH coding algorithm given below, t2 is two times the error correcting capability, t, of 

BCH code and DELP stands for degree of error locator polynomial. 

 

Algorithm                      cost                Time 
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1:  if FCS == received FCS                      1C    1  

2:       Successful receiving, return         

3:  else if FEC flag set in FCF          2C                 1 

4:       calculate FEC field and number of blocks of the frame               3C   1 

           and get payload into data field and FEC field    

5:       for all m such that 0 m M                            4C                 M   

               Begin to decode individual blocks 

               form syndrome 

6:           for all i such that 1 2i t             5C   2M t   

7:                 initialize syndrome                                 6C   2 1M t    

8:                 for all j such that 0 j n                                                      7C                 2M t n     

9:                    syndrome calculation         8C   2M t n   

10:               end for loop 

11:               if syndrome 0            9C    2M t   

12:                    error flag set, error detected                    10C                2 1M t    

13:               else 

14:                    successful receiving, return   

15:               end if 

16:         end for loop 

              error detected and to be corrected 

17:         if error           11C     M    

                   compute error location polynomial using  

                   Berlekamp iterative algorithm 

18:              while ( 2iteration t  and DELP t )                   12C        2M t    

19:                   compute error locator polynomial       13C     2M t  

20:              end while 

21:              if DELP t                                 14C      1M    

                   error can be corrected   

22:              for all i such that 0 i DELP           15C      M t   

23:                    register the ELP         16C      1M t    

24:              end for loop 

                   perform chien search to find roots of ELP        

25:              for all i such that 1 i n           17C      M n   

26:                   for all j such that 1 j DELP           18C                  M n t    

27:                        compute roots and error location indices       19C                  M n t    

28:                   end for loop 

29:              end for loop 

30:              if number of roots == DELP        20C      1M    
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31:              for all i such that 0 i DELP           21C                   M t  

                        received bits correspond to error location       22C       1M t    

            are complemented                        

32:              else 

33:                   uncorrectable error, receiving failed, return               

34:              end if 

35:         else 

36:              uncorrectable error detected, receiving failed, return 

37:         end if 

38:     else 

39:          successful receiving, return 

40:     end if 

41:  end for loop 

42: else 

43:      receiving failed, return 

44: end if 

 

Total cost =    1 2 3 4 11 14 20 15 16 21 22C C C C C C C M C C C C M t               

                        5 6 9 10 12 13 2 17C C C C C C M t C M n            18 19C C M n t       

                        7 8C C M n t       

The time complexity of the algorithm is given as  2O Mnt . 

 
Time complexity RS encoder algorithm 

 

Algorithm        Cost      Time 

1:   for all m such that 0 m M       1C        M         

         begin to encode individual blocks           

2:           for all i  such that 0 i n k        2C          M n k    

3:           Initialize the output       3C           1M n k    

4:  end for loop            

5:  for all i  such that 0k i        4C         M k   

6:       feedback = index of  input i  XOR  1output n k    5C          1M k   

7:                if feedback 1         6C         1M k    

8:            for all j  such that 0n k j       7C               M k n k    

9:                 the output is computed using-    8C               1M k n k     

     Generator polynomial 

10:            end for loop 

11:       else 

12:             output computed     9C         1M k   
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13:       end if 

14:         end for loop 

15: end for loop 

 

The total cost is given by,

         1 2 3 4 5 6 9 7 8C M C C M n k C C C C M k C C M k n k                    

Therefore, the time complexity of the RS encoder algorithm is   O M k n k   . 

 
Time complexity of RS decoder algorithm 

 

Algorithm                                   Cost        Time 

1:  if FCS == received FCS           1C            1  

2:       Successful receiving, return         

3:  else if FEC flag set in FCF           2C            1  

4:       calculate FEC field and number of blocks of the frame      3C            1  

           and get payload into data field and FEC field    

5:       for all m such that 0 m M             4C           M   

               begin to decode individual blocks 

               syndrome detection 

6:            for all i such that 0 i n                                   5C           M n   

7:                 index the received data          6C           1M n    

8:            end for loop 

9:            for all i such that 1 i n k                            7C            M n k    

10:               syndrome initialized           8C             1M n k     

11:               for all j such that 0 j n                 9C            M n k n     

12:                    syndrome computed          10C            M n k n    

13:               end for loop     

14:               if syndrome 0            11C             M n k    

15:                    error flag set, error detected         12C             1M n k     

16:               else 

17:                    successful receiving, return 

18:               end if 

19:               syndrome indexed                     13C             1M n k     

20:          end for loop 

21:          if error detected, proceed error correction       14C   M  

        compute error location polynomial Berlekamp 

                    using iterative algorithm  

23:               initialize table entries and parameters        15C   M  

                    necessary to compute ELP 
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24:               while ( iteration n k   and DELP t )        16C            M n k    

25:                    increment iteration          17C             1M n k     

26:                    ELP computation continue          18C             1M n k    

27:               end while loop 

28:               iteration incremented          19C      M  

29:               if DELP t , error can be corrected, proceed                       20C                  M  

30:                    for all i such that 1 i DELP           21C           M t   

31:                         ELP in index form          22C           1M t    

32:                    end for loop 

33:                    initialize counter for number of roots                               23C         M  

34:                    for all i such that 1 i n                        24C           M n   

35:                         compute and store the roots and        25C           1M n    

                              error location number indices 

36:                    end for loop 

37:                    if counter == DELP, error can be corrected,                    26C                  M  

 proceed 

38:                         for all i such that 1 i DELP           27C            M t   

39:                              form polynomial for error values                   28C            1M t    

40:                              for all j such that 1 j i           29C            M t t    

41:                                   form polynomial for error values                   30C            1M t t     

42:                              end for loop 

43:                              index the polynomial form        31C            1M t    

44:                         end for loop 

                              evaluate errors at locations detected 

45:                         for all i such that 0 i n           32C            M n   

46:                              convert received data to polynomial       33C            1M n    

47:                         end for loop 

48:                         for all i such that 0 i DELP            34C            M t   

49:                              for all j such that 1 j DELP                                35C            M t t    

50:                                     compute error and correct it                   36C            1M t t     

51:                              end for loop 

52:                         end for loop 

53:                    else 

54:                         error cannot be corrected, receiving failed, return 

55:                    end if 

56:               else 

                         error cannot be corrected, receiving failed, return 

57:               end if 
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58:          else 

59:               receiving failed, return 

60:          end if 

61:     end for loop 

62: else 

63:      receiving failed, return 

64: end if 

 

Total cost of decoder algorithm is,  

 1 2 3 4 14 15 19 20 23 26C C C C C C C C C C M          

 21 22 27 28 31 34C C C C C C M t         2

29 30 35 36C C C C M t      

 5 6 24 25 32 33C C C C C C M n         

        7 8 11 12 13 16 17 18 9 10C C C C C C C C M n k C C M n k n                   

The time complexity of RS decoding algorithm is   O M n k n . 

 
The time requirements and complexities for a maximum message length of the block coding 

algorithms are summarized in Table 10. 

Table 10. Time complexity of block coding algorithms 

Coding Schemes Encoding time 
complexity 

Decoding error free 
time complexity 

Decoding with max. 
error time complexity 

Cyclic (15, 7) code  O M k   O M n    2O M n   

Hamming (7, 4) code  O M n k    O M k n     O M k n   

Repetition (3, 1) code  O M n   O M n    O M n   

BCH (15, 5) code   O M k n k     2O M t n     2O M t n   

BCH (15, 7) code   O M k n k     2O M t n     2O M t n   

BCH (31, 21) code   O M k n k     2O M t n     2O M t n   

RS (15, 5) code   O M k n k   .   O M n n k       O M n k n    

RS (15, 9) code   O M k n k   .   O M n n k       O M n k n    

RS (15, 11) code   O M k n k   .   O M n n k       O M n k n    
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Analysis and Conclusions 
As mention in previous section, the successful packet transmission in IWSN is achieved by 

strictly following the timing requirement (acknowledgement waiting time) from IEEE 

802.15.4 standard and constrained memory resource of the embedded devices. The memory 

footprint of block coding algorithms is shown in the Figures 19, 20, 21 and 22 with different 

optimization options. The execution time is also shown in the Tables 6 - 9. We can notice 

from the tables that, the encoding and decoding time are different due to different input 

data. The decoding time without error and with maximum correctable error is also different 

as the error bits introduced in the message significantly influence the processing time. The 

decoding time without an error bit is much less than the decoding time with maximum error 

because of the extra time required detecting the errors and correcting them. For our analysis 

and conclusion of FEC algorithms, the measured execution time with high speed 

optimization and memory consumption with high size optimization are taken in to 

consideration. The results also show that the algorithms with the proposed optimization 

options perform better than the other options.   

Among the proposed block codes, BCH and RS algorithms with different parameters, such as 

error correcting capability, block length, code rate and original message length are evaluated. 

From Table 6, the execution times of RS (15, 11) and BCH (31, 21) are much faster than their 

corresponding algorithms. That is, the performance of RS (15, 11) is better than RS (15, 9) and 

RS (15, 5), but it has a relatively less error correcting capability. The same is true for BCH (31, 

21) code, compared to BCH (15, 7) and BCH (15, 5) algorithms; its execution time is faster but 

with small error correcting capability. The RS (15, 11) and BCH (31, 21) algorithms have 

higher code rate and, therefore, are transmission efficient compare to their corresponding 

candidates. From Figure 20, the RS (15, 11) code has less memory consumption than RS (15, 

9) and RS (15, 5) codes. It is noticeable that for the same block length used, the algorithm 

with high error correcting capability consumes larger memory and execution time. The BCH 

(31, 21) requires large amount of memory compare to BCH (15, 5) and BCH (15, 7) codes due 

to high block length. Therefore, BCH (31, 21) and RS (15, 11) codes perform better in terms of 

processing time, memory and transmission efficiency from the proposed BCH and RS codes. 

They are also selected for further comparison with the other proposed block codes, namely, 

cyclic, hamming and repetition codes. 

The classic cyclic (15, 7) code performs worst in processing time and memory consumption. 

It takes 35 ms to decode a packet with maximum correctable error which is not feasible for 

the timing requirement of the standard. It also requires huge amount of memory, almost 6K 

bytes of RAM memory. The maximum RAM size for our platform is 8K bytes which is not 

suitable to use it in memory limited embedded devices and impractical to apply in industrial 

automation purpose. The cyclic (15, 7) has also less code rate relative to the other algorithms 

and less error correcting capability. The repetition (3, 1) and hamming (7, 4) algorithms are 

the second and third best candidates in terms of processing time, respectively. The memory 

consumption of repetition (3, 1), nearly 5.6K bytes in RAM, is less compare to Hamming (7, 

4) which requires almost 6K bytes of RAM memory. Repetition (3, 1) has higher error 

correcting capability than hamming (7, 4). The drawback of repetition (3, 1) is; it has low 

code rate compare to the other candidates which performs less in transmission efficiency. 
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BCH (31, 21), compare to Repetition (3, 1) and hamming (7, 4), has higher code rate but it has 

slower processing time and require higher amount of memory.  

Generally, RS (15, 11) is found to be the best candidate in terms of the memory it requires 

and the execution time. RS (15, 11) has also the highest code rate and best error correcting 

capability; it corrects 2 symbols in error out of 15 symbols. Since RS codes are multi-burst 

error correcting codes, 8 consecutive bit errors can be corrected by applying RS (15, 11). The 

transmission of data over a noisy wireless channel suffers from channel degradation, such as 

burst errors. Therefore, the RS (15, 11) has a remarkable performance in wireless 

communication compare to the other block codes. 

The time complexity of decoding algorithms is evaluated in a worst case scenario analysis 

and summarized in Table 10. The encoding and error free decoding time complexity of the 

algorithms are also present in the table. It helps to compare and verify with the execution 

time implemented in real time scenario. Some of the coding schemes are used for fair 

comparison with the real implementation in the evaluation board. For example, cyclic (15, 7) 

took a largest decoding time with maximum correctable errors compared to the other 

schemes. The time complexity of cyclic (15, 7) code is also greater than the other schemes as 

shown in Table 10. The RS (15, 11) code and repetition (3, 1) code have better performance in 

time complexity compare to the other algorithms and verified with the real implementation. 

In Hamming (7, 4) code and some of the BCH codes, namely, BCH (15, 7) and BCH (31, 21), 

the encoding time is greater than the decoding time and can also be elaborated using the 

complexity algorithm. From Hamming codes, the encoding complexity is approximately 

28n k  time unit and the decoding without error is   21n k n    time unit which is 

reasonable from the results but as it is optimized using high speed and balance optimization 

levels, the encoding time is less than the decoding one. The BCH (15, 7, t = 2) has encoding 

time complexity of roughly 56 time unit and decoding of 45 time unit. In case of BCH (31, 21, 

t = 2), encoding complexity is 210 time unit and the decoding complexity is roughly 93 time 

unit which has big difference and, therefore, the encoding time is appears to be greater than 

the error free decoding time.  

4.4.2 Evaluation Result of LDPC, Turbo and Block Codes 

LDPC and Turbo codes are also considered to evaluate their performance in IWSNs. In this 

section, the above FEC block codes are presented in addition to LDPC and Turbo codes for 

evaluation and comparison purpose. The aim of this section is to evaluate the performance of 

capacity approaching codes: LDPC and turbo codes in IWSNs and compare with the block 

codes presented previously. For our analysis and discussion the performance of LDPC, 

Turbo, Block codes and other coding schemes is presented in figure 23 for decoding bit error 

rate of 410 . The figure indicates the bandwidth versus power efficiency of the coding 

schemes and compares them with capacity bound. The performances of the FEC algorithms 

are evaluated using none optimization, high speed optimization, high size optimization and 

high balance optimization options. The memory consumption and processing time of LDPC 

and Turbo coding algorithms for packet size ranged 5 to 70 bytes are also included in the 

appendix. 
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Figure 23. FEC performance relative to capacity bound. 

Processing Time 
Applying the same experimental setup described above, the processing time consumption of 

FEC algorithms are listed in the Tables 11, 12, 13 and 14.  

Table 11: Execution time of FEC with None Optimization 

Error control coding 
schemes 

 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

4.0433 ms 6.6600 ms 42.7667 ms 

Hamming (7, 4) code 
 

9.8116 ms 7.1633 ms 7.9333 ms 

Repetition (3, 1) code 
 

2.4267 ms 3.1967 ms 4.2467 ms 

BCH (31, 21) code 
 

8.9741 ms 3.3356 ms 9.4185 ms 

RS (15, 11) code 
 

1.6813 ms 2.4245 ms 4.9362 ms 

LDPC (12, 4) code 
 

30.4208 ms 68.7983 ms 95.0308 ms 

TURBO (24, 8) code 
 

11.1533 ms 10.3848 sec  10.4141 sec 
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Table 12: Execution time of FEC with High Speed Optimization 

Error control coding 
schemes 

 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

1.6333 ms 3.0067 ms 35.6833 ms 

Hamming (7, 4) code 
 

2.4500 ms 2.4908 ms 3.1383 ms 

Repetition (3, 1) code 
 

0.5133 ms 1.5167 ms 2.8000 ms 

BCH (31, 21) code 
 

2.4424 ms 1.7044 ms 4.4854 ms 

RS (15, 11) code 
 

0.5953 ms 0.9582 ms 2.3454 ms 

LDPC (12, 4) code 
 

2.3858 ms 25.4625 ms 37.1817 ms 

TURBO (24, 8) code 
 

1.9308 ms  0.7032 sec  0.7021 sec  

 

Table 13: Execution time of FEC with High Size Optimization 

Error control coding 
schemes 

 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

2.3600 ms 7.4967 ms 33.7533 ms 

Hamming (7, 4) code 
 

6.4867 ms 5.6642 ms 6.1192 ms 

Repetition (3, 1) code 
 

1.7733 ms 2.3100 ms 3.2667 ms 

BCH (31, 21) code 
 

3.3356 ms 2.5099 ms 5.7825 ms 

RS (15, 11) code 
 

0.7665 ms 1.2323 ms 2.8047 ms 

LDPC (12, 4) code 
 

7.8750 ms 28.5717 ms 41.5683 ms 

TURBO (24, 8) code 
 

2.6950 ms  0.7369 sec  0.7393 sec 
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Table 14: Execution time of FEC with High Balance Optimization 

Error control coding 
schemes 

 

Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max errors (ms) 

Cyclic (15, 7) code 
 

1.7200 ms 3.3033 ms 35.9900 ms 

Hamming (7, 4) code 
 

2.5083 ms 2.6425 ms 3.2550 ms 

Repetition (3, 1) code 
 

0.7233 ms 1.6567 ms 2.8000 ms 

BCH (31, 21) code 
 

2.4547 ms 1.8675 ms 5.2121 ms 

RS (15, 11) code 
 

0.7502 ms 1.0947 ms 2.6942 ms 

LDPC (12, 4) code 
 

2.4617 ms 23.9692 ms 36.8025 ms  

TURBO (24, 8) code 
 

2.2633 ms 0.6972 sec  0.7048 sec  

 

Memory Consumption 

The memory consumption of LDPC and Turbo codes are measured and compared with the 

block code algorithms that are evaluated in previous section as shown in Figures 24 – 27. 

  

 

Figure 24. Footprint of FEC using None Optimization 
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Figure 25. Footprint of FEC using High Size Optimization 

 

Figure 26. Footprint of FEC using High Speed Optimization 
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Figure 27. Footprint of FEC using High Balance Optimization 

Time complexity of LDPC and Turbo codes 

The time complexity of our LDPC and Turbo coding algorithms are presented as follows. 
 
Time complexity of Turbo encoder algorithm 

 

Algorithm        Cost         Time 

1:   for all m such that 0 m M        1C           M         

         begin to encode individual blocks  

         encoder#1 

2:           for all k  such that 0 2k N        2C             2M N    

                   Encoder#1 operates      

3:       Parity bits of first encoder generated        3C             2 1M N    

4:  end for loop     

5:  if 0state          4C            1M    

6:       Error has occured, could not terminate encoder#1                

7:       return 

  endif    

  permute data bits for encoder#2     

8:  for all k  such that 0 k N       5C             M N   

9:       data bits permuted      6C            1M N    

10:  end for loop 

  Encoder#2 
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11:  for all k  such that 0 k N                7C             M N   

12:       encoder#2 operates      

13:       parity bits of second decoder generated          8C             1M N    

14:  end for loop  

15: end for loop 

 

The total cost of the algorithm is given by 

Total cost =          1 2 3 42 2 1 1C M C M N C M N C M               

               5 6 7 81 1C M N C M N C M N C M N                

The time complexity of the algorithm is represented by  O MN . 

  
Time complexity of Turbo decoder algorithm 

 

Algorithm          Cost     Time  

1:  if FCS == received FCS          1C          1  

2:       Successful receiving, return         

3:  else if FEC flag set in FCF          2C          1  

4:       Calculate FEC field and number of blocks of the      3C          1  

          Frame and get payload into data field and FEC field                           

5:       for all m such that 0 m M           4C         M    

               Begin to decode individual blocks                       

6:      for all k  such that 0 k N           5C      M N   

        zero apriori information for first  

                    iteration of BCJR            6C      1M N     

7:   end for loop 

8:   for all iter  such that 0 iter Niter         7C      M Niter  

9:        modified BCJR algorithm (MAP decoder)           

10:        for all k  such that 0 k N          8C      M Niter N   

             for each trellis stage 

11:             for all n  such that 0 n P          9C      M Niter N P    

12:                         for all i  such that 0 2i          10C     2M Niter N P     

13:                              map databit to PAM symbol       11C     2M Niter N P     

14:                              map parity bit to PAM symbol       12C     2M Niter N P     

15:           compute parameter gamma using-      13C      2 ^ 2M Niter N P      

         exponential operation, 

16:           compute parameter gammae using-      14C      2 ^ 2M Niter N P     

                      exponential operation 

17:      end for loop 

18:             end for loop 
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19:               end for loop 

                    calculate state alpha’s 

20:               initialize state 0      15C  M Niter  

21:               for all n  such that 0 n P      16C  M Niter P   

22:                    initialize alpha      17C  1M Niter P    

23:               end for loop 

24:               for all k  such that 0 k N      18C  M Niter N   

25:             total sum initialized     19C  1M Niter N    

26:                    for all n  such that 0 n P                  20C  M Niter N P    

27:                         compute alpha     21C  1M Niter N P     

28:                         compute total sum     22C  1M Niter N P     

29:                    end for loop 

30:             for all n  such that 0 n P                   23C  M Niter N P    

31:                         normalize alpha                  24C  1M Niter N P     

32:                    end for loop 

33:               end for loop 

                    calculate state beta’s 

34:               if trellis terminated      25C  M Niter  

35:             final state is zero, first beta value set to 1   26C  1M Niter   

36:             other values set to zero 

37:               else 

38:             for all n  such that 0 n P        27C  M Niter P   

39:                           beta values are equally likely    28C  1M Niter P    

40:             end for loop 

41:               end if 

                    Iterate backwards through trellis 

42:               for all k  such that 0N k       29C  M Niter N   

43:             total sum initialized     30C  1M Niter N    

44:             for all n  such that 0 n P                  31C  M Niter N P    

45:                  compute beta     32C  1M Niter N P     

46:                  compute total sum     33C  1M Niter N P     

47:             end for loop 

48:             for all n  such that 0 n P      34C  M Niter N P    

49:                           normalize beta                              35C  1M Niter N P     

50:             end for loop 

51:               end for loop 

                    calculate extrinsic likelihood 

52:               for all k  such that 0 k N      36C  M Niter N   
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53:             for all n  such that 0 n P               37C  M Niter N P    

54:                         compute extrinsic components using-  38C  1M Niter N P     

                  gammae and beta parameters  

55:                    end for loop 

56:                    calculate overall extrinsic likelihood-               39C   log M Niter N   

            using logarithmic operation 

57:               end for loop 

                    end modified BCJR algorithm 

58:               for all k  such that 0 k N                  40C  M Niter N   

59:                    Permute decoder#1 likelihoods to-   41C  1M Niter N    

                         match decoder#2 

60:               end for loop 

61:               repeat modified BCJR algorithm       cost and time of BCJR algorithm  

62:               for all k  such that 0 k N                   42C  M Niter N   

63:                    inverse permute decoder#2 likelihoods to-  43C  1M Niter N    

            match decoder#1 

64:               end for loop 

65:   end for loop 

   calculate overall likelihoods and then slice them 

66:   for all k  such that 0 k N      44C  M N  

67:        soft decision performed                 45C  1M N   

68:        hard decision performed                 46C  1M N   

69:   end for loop 

70:      end for loop 

71: end if 

 

The total cost of the algorithm is, 

   

 

 

 

1 2 3 4 5 6 44 45 46 7 15 25 26

8 18 19 29 30 36 40 41 42 43

9 20 21 22 23 24 31 32 33 34 35 37 38

10 11 12

2

2 2

C C C C M C C C C C M N C C C C M Niter

C C C C C C C C C C M Niter N

C C C C C C C C C C C C C M Niter N P

C C C M Niter N P

                

            

                 

            

     

 

13 14

16 17 27 28 15 25 26

8 18 19 29 30 36

2 2 ^ 2

2 2 log

C C M Niter N P

C C C C M Niter P M Niter N C C C M Niter

C C C C C C M Niter N

       

                

        

  

Therefore, the time complexity of this decoding algorithm is   2 ^ 2O M Niter N P      

 

Time complexity of LDPC encoder algorithm 

 

Algorithm            Cost           Time 

1:   for all m such that 0 m M              1C   M         
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         begin to encode individual blocks           

2:           for all i  such that 0 i n                    2C   M n   

3:                Initialize the codeword variable          3C      1M n    

4:       for all j  such that 0 j k             4C               M n k   

5:                     Encode using generator matrix         5C   1M n k    

6:       end for loop 

7:  end for loop 

8:   end for loop 

 

The total cost is given by, 

   1 2 3 4 5C M C C M n C C M n k            

The time complexity of LDPC encoding algorithm is  O M n k  . 

  
Time complexity of LDPC decoder algorithm 

In this algorithm, constant variables C and H for code node and check node sizes are used 

respectively.   

 

Algorithm         Cost     Time  

1:  if FCS == received FCS          1C         1  

2:       Successful receiving, return         

3:  else if FEC flag set in FCF         2C         1  

4:       Calculate FEC field and number of blocks of the frame    3C         1  

          And get payload into data field and FEC field                           

5:       for all m such that 0 m M          4C        M    

               Begin to decode individual blocks                       

6:      for all i  such that 0 i N          5C    M N   

        Initialize the decoder codeword with received data    6C    1M N     

7:   end for loop 

8:   for all iter  such that 0 iter Niter        7C    M Niter  

9:        flag reset if the syndrome is all zero           

10:        for all i such that 0 i P                     8C    M Niter P   

11:                    for all j  such that  0 .j check node i size                9C    M Niter P H    

12:                         compute the parity check equations using-    10C   1M Niter P H     

      Received code word 

13:             end for loop 

14:             assign the value to  .check node i syndrome                 11C    1M Niter P    

15:             if  . 1check node i syndrome         12C    1M Niter P    

16:                  flag set         13C    1M Niter P    

17:      end if 
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18:        end for loop  

19:         if (flag)         14C    1M Niter   

20:                for all i  such that 0 i N        15C    M Niter N   

21:                  counter initialized        16C    1M Niter N    

22:                  for all j  such that  0 .j code node j size     17C    M Niter N C    

14:                              obtain    .indexaux code node i j                    18C    1M Niter N C     

15:           if  .check node aux syndrome                     19C    1M Niter N C     

16:                increment counter                                          20C   1M Niter N C     

17:                              end if 

17:      end for loop 

18:                  if counter threshold         21C   1M Niter N    

19:                       bit at position i  is flipped 

20:                  end if 

18:             end for loop 

19:        else 

20:             flag reset, syndromes are all zero, return       22C   1M Niter   

21:               end if    

22:          end for loop 

23:     end for loop 

24:  end if 

 

The total cost is given by

     

     

1 2 3 4 5 6 7 14 22 8 11 12 13

9 10 15 16 17 18 19 20

C C C C M C C M N C C C M Niter C C C C M Niter P

C C M Niter P H C C M Niter N C C C C M Niter N C

                    

                 

 

Therefore, the time complexity of the LDPC decoding algorithm is given by

 O M Niter N C   . 

 
Analysis and Conclusions 
LDPC and Turbo codes are widely used FEC codes in the application of information coding 

theory due to their capability of approaching Shannon capacity. It could be interesting to 

evaluate them in IWSNs under circumstances where the execution time and limited memory 

consumptions are important metrics to be strictly followed. For sake of our discussion and 

conclusion, we focus on the processing time with high speed optimization and memory 

consumption with high size optimization of LDPC (12, 4) and Turbo (24, 8) codes.   

The decoding time of Turbo (24, 8) algorithm with maximum message length and correctable 

errors is 0.7032 seconds as it can be seen in Table 11. It is not feasible to implement in IWSN 

that incorporates the standard timing requirement. The execution time of LDPC (12, 4) code 

is much faster than Turbo (24, 8) code, but it is far beyond the standard timing requirement 

boundary. It also consumes huge amount of memory, nearly a size of 7K bytes in RAM. 
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Turbo (24, 8) code requires a lot of memory as it is shown in Figure 24, especially, in Read-

Only code memory compare to the rest of FEC candidates. Both Turbo and LDPC codes can 

use considerably much longer block lengths in order to approach Shannon limit, however, 

due to the memory constraint we are restricted to use shorter block length. According to the 

results obtained, these two famous FEC codes are not suitable to be implemented in IWSN 

with limited memory and processing time. Therefore, even though LDPC and Turbo codes 

are close to capacity bound as shown in Figure 23, they fail to fulfill the requirements for 

IWSN standard.  

Generally, in our evaluation of FEC algorithms; RS (15, 11) is the first best candidate chosen 

to be applied in IWSNs based on the performances from our results. It requires much less 

memory nearly 1.2K bytes out of 6K bytes of RAM size. It takes 0.5953 ms to encode a 

maximum packet size in the MAC layer and 0.9582 ms of decoding time without error or few 

errors. For a worst case scenario, that is, when maximum correctable errors occurred, it takes 

roughly 2.3 ms which is beyond the time limit requirement of the IEEE 802.15.4 standard in 

IWSNs. However, this worst scenario happens when only maximum packet size of the 

payload is transmitted which is applied rarely in real time and also happens when 13.3% of 

the message is in error which again occurred very rare in practical applications.  

One of the possible approaches to improve the performance in processing time and memory 

of FEC algorithms is to use high performance IWSN-chip with high speed processor and 

embedded memories (flash memory and SRAM). The High clock speed of the processor and 

memory enhance the performance in processing time and memory consumption in order to 

meet the necessary requirements of IWSNs. Another option is, to use hardware 

implementation of FEC codes at the expense of hardware cost. The FEC code candidates with 

less performance may also be further optimized to increase their feasibility in IWSN 

implementation. 
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Chapter 5 

Conclusions and Future Work 

5.1 Summary and Conclusions 

Reliability and latency are two important requirements we need to address within IWSNs in 

industrial automation. It is a challenge to provide a deterministic real time communication 

and reliable link due to the dynamic nature of wireless channels and harsh environment in 

industrial wireless communication. Reliability is one of the primary requirements due to the 

high probability of packet loss and transmission failure in wireless link. Therefore, IWSNs 

apply a mechanism called ARQ in a MAC layer to provide reliable communication. ARQ 

trigger an automatic packet retransmission whenever communication fails which results in 

latency and network congestion. FEC code on MAC layer is another approach proposed to 

mitigate latency. FEC code is used by introducing redundancy bits to recover corrupted data 

due to noisy wireless channel at the expense of bandwidth.  

In our project, the feasibility of FEC codes in IWSNs is realized based the timing requirement 

of IEEE 802.15.4 based IWSN standard and limited memory of the embedded device. Several 

FEC algorithms are proposed and evaluated with respect to the processing time and memory 

consumption in IWSN chip with high performance core operating at 24MHz frequency. The 

algorithms are applied on MAC layer without hardware support and interaction with radio 

chip manufacturer. Our result shows that RS (15, 11) code is the best candidate chosen to be 

suitable algorithm for IWSNs in industrial automation process in terms of processing time 

and memory consumption. The other FEC candidates can also be feasible in IWSNs using the 

chips with higher processor speed. One can also examine more suitable FEC code parameters 

and optimize the FEC code implementations for higher efficiency. Moreover, the algorithms 

can also be implemented using hardware implementation to improve their performance.  

5.2 Future Work 

In this thesis project, the evaluation and comparison of FEC coding algorithms on MAC layer 

in IWSNs are implemented using pure C programming. The hardware implementation of 

the FEC algorithms can be interesting to evaluate in IWSNs and see up to what extent the 

performance has improved. The future work could be to implement our algorithms in real 

industrial devices and harsh environment. Therefore, the performance of our solution can be 

evaluated in real industrial environments and help strengthen our results.  

Currently, reliable and robust routing protocol in WSNs is challenging topic and great deal 

of research interest. Applying routing protocols on network layer play an important role to 

improve the communication latency and reliable data transmission. The combination of FEC 

schemes in MAC layer and robust routing protocols is also an interesting approach for 

reliable and real time communication in IWSNs. 
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Appendix  

 

Table 14. Execution time of Cyclic (15, 7) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 1.1625 1.9148 12.2954 

30 1.7690 2.9138 18.7104 

40 2.3249 3.8295 24.5908 

50 2.9314 4.8285 31.0058 

60 3.4874 5.7443 36.8862 

70 4.0433 6.6600 42.7667 

 

Table 15. Execution time of Cyclic (15, 7) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.4696 0.8644 10.2590 

30 0.7146 1.3154 15.6115 

40 0.9392 1.7288 20.5179 

50 1.1842 2.1798 25.8704 

60 1.4088 2.5933 30.7769 

70 1.6333 3.0067 35.6833 

 

Table 16. Execution time of Cyclic (15, 7) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.4945 0.9497 10.3471 

30 0.7525 1.4452 15.7456 

40 0.9890 1.8994 20.6943 

50 1.2470 2.3949 26.0928 

60 1.4835 2.8491 31.0414 

70 1.7200 3.3033 35.9900 

 

Table 17. Execution time of Cyclic (15, 7) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.6785 2.1553 9.7041 

30 1.0325 3.2798 14.7671 

40 1.3570 4.3106 19.4082 

50 1.7110 5.4351 24.4712 

60 2.0355 6.4659 29.1123 

70 2.3600 7.4967 33.7533 
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Table 18. Execution time of Hamming (7, 4) code with no compiler Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 2.8033 2.0467 2.2667 

30 4.2050 3.0700 3.4000 

40 5.6066 4.0933 4.5333 

50 7.0083 5.1167 5.6667 

60 8.4100 6.1400 6.8000 

70 9.8116 7.1633 7.9333 

 

Table 19. Execution time of Hamming (7, 4) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.7000 0.7117 0.8967 

30 1.0500 1.0675 1.3450 

40 1.4000 1.4233 1.7933 

50 1.7500 1.7792 2.2417 

60 2.1000 2.1350 2.6900 

70 2.4500 2.4908 3.1383 

 

Table 20. Execution time of Hamming (7, 4) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.7167 0.7550 0.9300 

30 1.0750 1.1325 1.3950 

40 1.4333 1.5100 1.8600 

50 1.7917 1.8875 2.3250 

60 2.1500 2.2650 2.7900 

70 2.5083 2.6425 3.2550 

 

Table 21. Execution time of Hamming (7, 4) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 1.8533 1.6183 1.7483 

30 2.7800 2.4275 2.6225 

40 3.7067 3.2367 3.4967 

50 4.6333 4.0458 4.3708 

60 5.5600 4.8550 5.2450 

70 6.4867 5.6642 6.1192 
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Table 22. Execution time of Repetition (3, 1) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.6933 0.9133 1.2133 

30 1.0400 1.3700 1.8200 

40 1.3867 1.8267 2.4267 

50 1.7333 2.2833 3.0333 

60 2.0800 2.7400 3.6400 

70 2.4267 3.1967 4.2467 

 

Table 23. Execution time of Repetition (3, 1) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.1467 0.4333 0.8000 

30 0.2200 0.6500 1.2000 

40 0.2933 0.8667 1.6000 

50 0.3667 1.0833 2.0000 

60 0.4400 1.3000 2.4000 

70 0.5133 1.5167 2.8000 

 

Table 24. Execution time of Repetition (3, 1) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.2067 0.4733 0.8000 

30 0.3100 0.7100 1.2000 

40 0.4133 0.9467 1.6000 

50 0.5167 1.1833 2.0000 

60 0.6200 1.4200 2.4000 

70 0.7233 1.6567 2.8000 

 

Table 25. Execution time of Repetition (3, 1) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) 
[ms] 

Decoding time with 
no error[ms] 

Decoding time with 
max Errors[ms] 

20 0.5067 0.6600 0.9333 

30 0.7600 0.9900 1.4000 

40 1.0133 1.3200 1.8667 

50 1.2667 1.6500 2.3333 

60 1.5200 1.9800 2.8000 

70 1.7733 2.3100 3.2667 
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Table 26. Execution time of BCH (15, 5) code with High speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.5720 1.6867 4.8293 

30 0.8580 2.5300 7.2440 

40 1.1440 3.3733 9.6587 

50 1.4300 4.2167 12.0733 

60 1.7160 5.0600 14.4880 

70 2.0020 5.9033 16.9027 

 

Table 27. Execution time of BCH (15, 5) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.6067 2.0613 5.4347 

30 0.9100 3.0920 8.1520 

40 1.2133 4.1227 10.8693 

50 1.5167 5.1533 13.5867 

60 1.8200 6.1840 16.3040 

70 2.1233 7.2147 19.0213 

 

Table 28. Execution time of BCH (15, 5) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 1.0653 3.2360 6.0013 

30 1.5980 4.8540 9.0020 

40 2.1307 6.4720 12.0027 

50 2.6633 8.0900 15.0033 

60 3.1960 9.7080 18.0040 

70 3.7287 11.3260 21.0047 

 

Table 29. Execution time of BCH (15, 5) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 2.3520 3.9987 10.6533 

30 3.5280 5.9980 15.9800 

40 4.7040 7.9973 21.3067 

50 5.8800 9.9967 26.6333 

60 7.0560 11.9960 31.9600 

70 8.2320 13.9953 37.2867 
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Table 30. Execution time of BCH (15, 7) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.4207 0.8146 2.3364 

30 0.6402 1.2396 3.5554 

40 0.8414 1.6292 4.6728 

50 1.0609 2.0542 5.8918 

60 1.2621 2.4438 7.0092 

70 1.4633 2.8333 8.1267 

 

Table 31. Execution time of BCH (15, 7) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.9152 1.0935 2.6306 

30 1.3927 1.6640 4.0031 

40 1.8304 2.1869 5.2613 

50 2.3079 2.7574 6.6338 

60 2.7456 3.2804 7.8919 

70 3.1833 3.8033 9.1500 

 

Table 32. Execution time of BCH (15, 7) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.4600 0.7916 2.4898 

30 0.7000 1.2046 3.7887 

40 0.9200 1.5832 4.9795 

50 1.1600 1.9962 6.2785 

60 1.3800 2.3747 7.4693 

70 1.6000 2.7533 8.6600 

 

Table 33. Execution time of BCH (15, 7) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 2.0403 1.5439 4.6642 

30 3.1048 2.3494 7.0977 

40 4.0806 3.0878 9.3284 

50 5.1451 3.8933 11.7619 

60 6.1209 4.6316 13.9926 

70 7.0967 5.3700 16.2233 
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Table 34. Execution time of BCH (31, 21) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.7237 0.5050 1.3290 

30 1.0855 0.7575 1.9935 

40 1.4473 1.0100 2.6580 

50 1.8092 1.2625 3.3225 

60 2.0805 1.4519 3.8209 

70 2.4424 1.7044 4.4854 

 

Table 35. Execution time of BCH (31, 21) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.9883 0.7437 1.7133 

30 1.4825 1.1155 2.5700 

40 1.9767 1.4873 3.4267 

50 2.4708 1.8592 4.2833 

60 2.8415 2.1380 4.9258 

70 3.3356 2.5099 5.7825 

 

Table 36. Execution time of BCH (31, 21) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.7273 0.5533 1.5443 

30 1.0910 0.8300 2.3165 

40 1.4547 1.1067 3.0887 

50 1.8183 1.3833 3.8608 

60 2.0911 1.5908 4.4400 

70 2.4547 1.8675 5.2121 

 

Table 37. Execution time of BCH (31, 21) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 2.6590 0.9883 2.7907 

30 3.9885 1.4825 4.1860 

40 5.3180 1.9767 5.5813 

50 6.6475 2.4708 6.9767 

60 7.6446 2.8415 8.0232 

70 8.9741 3.3356 9.4185 
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Table 38. Execution time of RS (15, 5) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.4077 1.3150 3.9990 

30 0.6115 1.9725 5.9985 

40 0.8153 2.6300 7.9980 

50 1.0192 3.2875 9.9975 

60 1.2230 3.9450 11.9970 

70 1.4268 4.6025 13.9965 

 

Table 39. Execution time of RS (15, 5) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.5290 1.7093 4.7783 

30 0.7935 2.5640 7.1675 

40 1.0580 3.4187 9.5567 

50 1.3225 4.2733 11.9458 

60 1.5870 5.1280 14.3350 

70 1.8515 5.9827 16.7242 

 

Table 40. Execution time of RS (15, 5) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.5350 1.6983 4.9647 

30 0.8025 2.5475 7.4470 

40 1.0700 3.3967 9.9293 

50 1.3375 4.2458 12.4117 

60 1.6050 5.0950 14.8940 

70 1.8725 5.9442 17.3763 

 

Table 41. Execution time of RS (15, 5) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 1.2080 3.0970 8.7720 

30 1.8120 4.6455 13.1580 

40 2.4160 6.1940 17.5440 

50 3.0200 7.7425 21.9300 

60 3.6240 9.2910 26.3160 

70 4.2280 10.8395 30.7020 
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Table 42. Execution time of RS (15, 9) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.1979 0.5069 1.3683 

30 0.2771 0.7096 1.9157 

40 0.3562 0.9124 2.4630 

50 0.4354 1.1151 3.0103 

60 0.5542 1.4192 3.8313 

70 0.6333 1.6220 4.3787 

 

Table 43. Execution time of RS (15, 9) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.2950 0.6298 1.5417 

30 0.4130 0.8817 2.1583 

40 0.5310 1.1336 2.7750 

50 0.6490 1.3855 3.3917 

60 0.8260 1.7634 4.3167 

70 0.9440 2.0153 4.9333 

 

Table 44. Execution time of RS (15, 9) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.2712 0.6079 1.5892 

30 0.3797 0.8511 2.2248 

40 0.4882 1.0942 2.8605 

50 0.5968 1.3374 3.4962 

60 0.7595 1.7022 4.4497 

70 0.8680 1.9453 5.0853 

 

Table 45. Execution time of RS (15, 9) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.6754 1.1908 2.9075 

30 0.9456 1.6672 4.0705 

40 1.2157 2.1435 5.2335 

50 1.4859 2.6198 6.3965 

60 1.8911 3.3343 8.1410 

70 2.1613 3.8107 9.3040 
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Table 46. Execution time of RS (15, 11) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.1832 0.2948 0.7217 

30 0.2747 0.4422 1.0825 

40 0.3663 0.5897 1.4433 

50 0.4579 0.7371 1.8042 

60 0.5037 0.8108 1.9846 

70 0.5953 0.9582 2.3454 

 

Table 47. Execution time of RS (15, 11) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.2358 0.3792 0.8630 

30 0.3538 0.5687 1.2945 

40 0.4717 0.7583 1.7260 

50 0.5896 0.9479 2.1575 

60 0.6485 1.0427 2.3733 

70 0.7665 1.2323 2.8047 

 

Table 48. Execution time of RS (15, 11) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.2308 0.3368 0.8290 

30 0.3463 0.5053 1.2435 

40 0.4617 0.6737 1.6580 

50 0.5771 0.8421 2.0725 

60 0.6348 0.9263 2.2797 

70 0.7502 1.0947 2.6942 

 

Table 49. Execution time of RS (15, 11) code with None Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.5173 0.7460 1.5188 

30 0.7760 1.1190 2.2782 

40 1.0347 1.4920 3.0377 

50 1.2933 1.8650 3.7971 

60 1.4227 2.0515 4.1768 

70 1.6813 2.4245 4.9362 
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Table 50. Execution time of LDPC (12, 4) code 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 8.6917 19.6567 27.1517 

30 13.0375 29.4850 40.7275 

40 17.3833 39.3133 54.3033 

50 21.7292 49.1417 67.8792 

60 26.0750 58.9700 81.4550 

70 30.4208 68.7983 95.0308 

              

Table 51. Execution time of LDPC (12, 4) code with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.6817 7.2750 10.6233 

30 1.0225 10.9125 15.9350 

40 1.3633 14.5500 21.2467 

50 1.7042 18.1875 26.5583 

60 2.0450 21.8250 31.8700 

70 2.3858 25.4625 37.1817 

 

Table 52. Execution time of LDPC (12, 4) code with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.7033 6.8483 10.5150 

30 1.0550 10.2725 15.7725 

40 1.4067 13.6967 21.0300 

50 1.7583 17.1208 26.2875 

60 2.1100 20.5450 31.5450 

70 2.4617 23.9692 36.8025 

                                            

Table 53. Execution time of LDPC (12, 4) code with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 2.2500 8.1633 11.8767 

30 3.3750 12.2450 17.8150 

40 4.5000 16.3267 23.7533 

50 5.6250 20.4083 29.6917 

60 6.7500 24.4900 35.6300 

70 7.8750 28.5717 41.5683 
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Table 54. Execution time of Turbo code, rate 1/3 with no optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 3.1867 ms 2.9671 sec 2.9755 sec 

30 4.7800 ms 4.4506 sec 4.4632 sec 

40 6.3733 ms 5.9342 sec 5.9509 sec 

50 7.9667 ms 7.4177 sec 7.4386 sec 

60 9.5600 ms 8.9013 sec 8.9264 sec 

70 11.1533 ms 10.3848 sec  10.4141 sec 

 

Table 55. Execution time of Turbo code, rate 1/3 with High Speed Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.5517 ms  0.2009 sec 0.2006 sec  

30 0.8275 ms  0.3014 sec  0.3009 sec  

40 1.1033 ms  0.4018 sec  0.4012 sec  

50 1.3792 ms  0.5023 sec  0.5015 sec  

60 1.6550 ms  0.6028 sec  0.6018 sec 

70 1.9308 ms  0.7032 sec  0.7021 sec  

          

Table 56. Execution time of Turbo code, rate 1/3 with High Balance Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.6467 ms 0.1992 sec     0.2014 sec 

30 0.9700 ms 0.2988 sec 0.3020 sec 

40 1.2933 ms 0.3984 sec 0.4027 sec 

50 1.6167 ms 0.4980 sec 0.5034 sec 

60 1.9400 ms 0.5976 sec 0.6041 sec 

70 2.2633 ms 0.6972 sec  0.7048 sec  

            

Table 57. Execution time of Turbo code, rate 1/3 with High Size Optimization 

Packet size[bytes] Encoding time (ms) Decoding time with 
no error (ms) 

Decoding time with 
max Errors (ms) 

20 0.7700 ms 0.2106 sec     0.2112 sec     

30 1.1550 ms 0.3158 sec     0.3168 sec     

40 1.5400 ms 0.4211 sec     0.4225 sec     

50 1.9250 ms 0.5264 sec     0.5281 sec     

60 2.3100 ms  0.6317 sec     0.6337 sec     

70 2.6950 ms  0.7369 sec  0.7393 sec 
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Table 58. Footprint of Cyclic (15, 7) code 

Packet 
size[byte] 

Memory type None High size 
optimization 

High speed 
optimization 

High balance 
optimization 

 
 

20 

RO code 
memory (Bytes) 

4992 3216 3800 3412 

RO data 
memory (Bytes) 

368 47 66 47 

RW data 
memory (Bytes) 

2768 2768 2768 2768 

 
 

30 

RO code 
memory (Bytes) 

4992 3216 3800 3412 

RO data 
memory (Bytes) 

368 57 76 57 

RW data 
memory (Bytes) 

3440 3440 3440 3440 

 
 

40 

RO code 
memory (Bytes) 

4992 3220 3812 3416 

RO data 
memory (Bytes) 

368 67 84 67 

RW data 
memory (Bytes) 

4056 4056 4056 4056 

 
 

50 

RO code 
memory (Bytes) 

4992 3220 3808 3416 

RO data 
memory (Bytes) 

368 77 96 77 

RW data 
memory (Bytes) 

4728 4728 4728 4728 

 
 

60 
 
 
 

RO code 
memory (Bytes) 

4996 3220 3804 3416 

RO data 
memory (Bytes) 

368 87 106 87 

RW data 
memory (Bytes) 

5344 5344 5344 5344 

 
 

70 

RO code 
memory (Bytes) 

4992 3216 3800 3420 

RO data 
memory (Bytes) 

368 97 114 97 

RW data 
memory (Bytes) 

5960 5960 5960 5960 
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Table 59. Footprint Hamming (7, 4) code 

Packet 
size[byte] 

Memory type None High size 
optimization 

High speed 
optimization 

High balance 
optimization 

 
 

20 

RO code 
memory (Bytes) 

1944 1336 1648 1472 

RO data 
memory (Bytes) 

344 138 144 138 

RW data 
memory (Bytes) 

1744 1744 1744 1744 

 
 

30 

RO code 
memory (Bytes) 

1944 1336 1648 1472 

RO data 
memory (Bytes) 

344 142 154 142 

RW data 
memory (Bytes) 

2384 2384 2384 2384 

 
 

40 

RO code 
memory (Bytes) 

1948 1340 1652 1480 

RO data 
memory (Bytes) 

344 148 164 148 

RW data 
memory (Bytes) 

3024 3024 3024 3024 

 
 

50 

RO code 
memory (Bytes) 

1948 1340 1652 1480 

RO data 
memory (Bytes) 

344 152 174 152 

RW data 
memory (Bytes) 

3664 3664 3664 3664 

 
 

60 
 
 
 

RO code 
memory (Bytes) 

1948 1340 1648 1480 

RO data 
memory (Bytes) 

344 158 183 158 

RW data 
memory (Bytes) 

4304 4304 4304 4304 

 
 

70 

RO code 
memory (Bytes) 

1948 1340 1644 1480 

RO data 
memory (Bytes) 

344 162 196 162 

RW data 
memory (Bytes) 

4944 4944 4944 4944 
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Table 60. Footprint Repetition (3, 1) code 

Packet 
size[byte] 

Memory type None High size 
optimization 

High speed 
optimization 

High balance 
optimization 

 
 

20 

RO code 
memory (Bytes) 

1948 1588 1764 1624 

RO data 
memory (Bytes) 

168 23 44 23 

RW data 
memory (Bytes) 

1468 1468 1468 1468 

 
 

30 

RO code 
memory (Bytes) 

1948 1588 1764 1624 

RO data 
memory (Bytes) 

168 23 54 23 

RW data 
memory (Bytes) 

2108 2108 2108 2108 

 
 

40 

RO code 
memory (Bytes) 

1956 1588 1764 1632 

RO data 
memory (Bytes) 

168 23 64 23 

RW data 
memory (Bytes) 

2748 2748 2748 2748 

 
 

50 

RO code 
memory (Bytes) 

1956 1588 1764 1632 

RO data 
memory (Bytes) 

168 23 74 23 

RW data 
memory (Bytes) 

3388 3388 3388 3388 

 
 

60 
 
 
 

RO code 
memory (Bytes) 

1956 1588 1784 1632 

RO data 
memory (Bytes) 

168 23 80 23 

RW data 
memory (Bytes) 

4028 4028 4028 4028 

 
 

70 

RO code 
memory (Bytes) 

1956 1588 1752 1632 

RO data 
memory (Bytes) 

168 23 58 23 

RW data 
memory (Bytes) 

4668 4668 4668 4668 
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Table 61. Footprint of BCH (15, 5) code 

Packet 
size[byte] 

 

Memory type None High size 
optimization 

High speed 
optimization 

High balance 
optimization 

 
 

20 

RO code 
memory (Bytes) 

2996 2124 2972 2364 

RO data 
memory (Bytes) 

412 183 184 183 

RW data 
memory (Bytes) 

1876 
 

1876 1876 1876 

 
 

30 

RO code 
memory (Bytes) 

2996 2124 2972 2364 

RO data 
memory (Bytes) 

412 193 194 193 

RW data 
memory (Bytes) 

2516 2516 2516 2516 

 
 

40 

RO code 
memory (Bytes) 

3004 2128 2976 2368 

RO data 
memory (Bytes) 

412 203 204 203 

RW data 
memory (Bytes) 

3156 3156 3156 3156 

 
 

50 

RO code 
memory (Bytes) 

3004 2128 2976 2368 

RO data 
memory (Bytes) 

412 213 214 213 

RW data 
memory (Bytes) 

3796 3796 3796 3796 

 
 

60 
 
 
 

RO code 
memory (Bytes) 

3004 2128 2972 2368 

RO data 
memory (Bytes) 

412 223 224 223 

RW data 
memory (Bytes) 

4436 4436 4436 4436 

 
 

70 

RO code 
memory (Bytes) 

3004 2128 2972 2368 

RO data 
memory (Bytes) 

412 233 234 233 

RW data 
memory (Bytes) 

5076 5076 5076 5076 
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Table 62. Memory footprint of different BCH codes 

BCH codes 
 

Memory Types None  High Size 
Optimization 

High Balance 
Optimization 

High Speed 
Optimization 

 

BCH (15,5) RO code 
memory (Bytes) 

3028 2120 2368 2972 

RO data 
memory (Bytes) 

412 233 233 234 

RW data 
memory (Bytes) 

5076 5076 5076 5076 

BCH (15,7) RO code 
memory (Bytes) 

3044 2124 2412 2984 

RO data 
memory (Bytes) 

404 227 227 226 

RW data 
memory (Bytes) 

5036 5036 5036 5036 

BCH 
(31,21) 

RO code 
memory (Bytes) 

3252 2112 2372 2988 

RO data 
memory (Bytes) 

537 362 362 362 

RW data 
memory (Bytes) 

5356 5356 5356 5356 

 

Table 63. Memory footprint of different RS codes 

RS codes 
 
 

Memory Types None  High Size 
Optimization 

High Balance 
Optimization 

High Speed 
Optimization 

RS (15,5) RO code 
memory (Bytes) 

4716 2872 3340 4156 

RO data 
memory (Bytes) 

456 184 184 194 

RW data 
memory (Bytes) 

1700 1700 1700 1700 

RS (15,9) RO code 
memory (Bytes) 

4628 2852 3320 4144 

RO data 
memory (Bytes) 

441 168 168 170 

RW data 
memory (Bytes) 

1348 1348 1348 1348 

RS (15,11) RO code 
memory (Bytes) 

4464 2752 3096 3984 

RO data 
memory (Bytes) 

432 160 160 160 

RW data 
memory (Bytes) 

1208 1212 1212 1212 
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Table 64. Memory Footprint of LDPC (12, 4) code  

Packet 
size[byte] 

 

Memory type None High size 
optimization 

High speed 
optimization 

High balance 
optimization 

 
20 

RO code memory 
(Bytes) 

2676 1784 2144 1812 

RO data memory 
(Bytes) 

308 101 150 101 

RW data memory 
(Bytes) 

3656 3656 3656 3656 

 
 

30 

RO code memory 
(Bytes) 

2676 1784 2152 1812 

RO data memory 
(Bytes) 

308 101 161 101 

RW data memory 
(Bytes) 

4296 4296 4296 4296 

 
 

40 

RO code memory 
(Bytes) 

2680 1788 2112 1816 

RO data memory 
(Bytes) 

308 101 130 101 

RW data memory 
(Bytes) 

4936 4936 4936 4936 

 
 

50 

RO code memory 
(Bytes) 

2680 1788 2112 1816 

RO data memory 
(Bytes) 

308 101 130 101 

RW data memory 
(Bytes) 

5576 5576 5576 5576 

 
 

60 

RO code memory 
(Bytes) 

2680 1788 2112 1816 

RO data memory 
(Bytes) 

308 101 130 101 

RW data memory 
(Bytes) 

6216 6216 6216 6216 

 
 

70 

RO code memory 
(Bytes) 

2680 1788 2112 1816 

RO data memory 
(Bytes) 

308 101 130 101 

RW data memory 
(Bytes) 

6856 6856 6856 6856 
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Table 65. Memory Footprint of Turbo code, rate 1/3  

Packet 
size[byte] 

 

Memory type None High size 
optimization 

High speed 
optimization 

High balance 
optimization 

 
 

20 

RO code memory 
(Bytes) 

8776 7310 8954 7938 

RO data memory 
(Bytes) 

201 168 169 166 

RW data memory 
(Bytes) 

3788 3144 3140 3144 

 
 

30 

RO code memory 
(Bytes) 

8776 7310 8954 7938 

RO data memory 
(Bytes) 

201 172 175 172 

RW data memory 
(Bytes) 

4748 3464 3460 3464 

 
 

40 

RO code memory 
(Bytes) 

8776 7314 8958 7938 

RO data memory 
(Bytes) 

201 182 185 182 

RW data memory 
(Bytes) 

6028 4104 4100 4104 

 
 

50 

RO code memory 
(Bytes) 

8776 7314 8958 7938 

RO data memory 
(Bytes) 

201 188 189 186 

RW data memory 
(Bytes) 

6348 4424 4420 4424 

 
 

60 

RO code memory 
(Bytes) 

8776 7314 8958 7938 

RO data memory 
(Bytes) 

201 192 195 192 

RW data memory 
(Bytes) 

6668 4744 4740 4744 

 
 

70 

RO code memory 
(Bytes) 

8776 7314 8958 7938 

RO data memory 
(Bytes) 

201 198 199 196 

RW data memory 
(Bytes) 

6988 5064 5060 5064 

 

 


