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Abstract

This paper presents an efficient diagnosability veri-
fication technique, based on a general abstraction ap-
proach. We exploit branching bisimulation with explicit
divergence (BBED), which preserves the temporal logic
property that verifies diagnosability. Furthermore, using
compositional abstraction for modular diagnosability ver-
ification offers additional state space reduction in com-
parison to the state-of-the-art techniques.

1. Introduction

Failure is a deviation of a system from its normal be-
havior. The task of identifying and isolating deviations
from desired behavior is called failure diagnosis and the
ability to deduce about previously occurred failures within
a bounded number of observations is called diagnosabil-
ity [20]. A system is diagnosable if each failure can be
uniquely identified through a number of events in partial
observations.

There are two approaches, namely, language specifica-
tion [19, 21], and failure events [14], to show the faulty
behavior in discrete event systems. In the language speci-
fication approach, a specification represents the non-faulty
behavior of the system and every deviation from that spec-
ification leads to a failure. In the failure event approach,
the failures are shown in the same model using events.
For both approaches, there are polynomial diagnosabil-
ity algorithms, [19, 23, 25, 11, 14, 24]. However, al-
though polynomial time algorithms exists, the state space
increases exponentially when modular systems are com-
posed. Thus, it is often too complex to analyze systems of
industrial size.

To tackle the computational complexity, abstraction-
based diagnosability verification algorithms have been re-
cently introduced for both automata and Petri net mod-
els [10, 15, 21], including techniques for modular systems
[22]. In [21], the computational effort for diagnosability
verification methods is reduced by determining sufficient
conditions, such that diagnosability of the original sys-
tem follows from diagnosability of an abstracted model.
Moreover, it is shown that if the abstracted system is not

diagnosable, then the original system is not diagnosable,
if all observable events remain after abstraction. This re-
quirement implies that in general only limited abstractions
can be expected for non-diagnosable systems.

The aforementioned abstraction techniques used lan-
guage specification. In some other works, e.g, [15], event-
based abstraction technique are exploited, which are be-
haviorally equivalent to the original model. The classifi-
cation of different behavioral equivalences is made in [6].
One of the most well known behavioral equivalences is
weak bisimulation, also called observation equivalence,
[16], which holds a very coarse equivalence. Another
slightly more restricted one isbranching bisimulation, [8].
Unlike weak bisimulation, branching bisimulation pre-
serves the branching structure of processes, in the sense
that it preserves computations together with the potentials
in all intermediate states that are passed through, even
if silent moves are involved. An extension of branching
bisimulation, which is also critical for our purposes, is
branching bisimulation with explicit divergence(BBED).
It means that silent loops resulting from abstraction are
preserved [7].

BBED has the important property that the temporal
eventually operator (E) is preserved, which is not the case
for weak bisimulation. Even more, the complete tempo-
ral logic CTL* [1], except for the next operator X, called
CTL*-X, is preserved for BBED. This is critical for di-
agnosability verification, and means that BBED, but not
weak bisimulation, can be used for diagnosability abstrac-
tion. BBED is applied on event labels on labeled transition
systems (LTS), while CTL*-X expressions are based on
state labels included in Kripke structures (KS). However,
in [17] a translation between LTS to KS is established, so
that CTL*-X can also be considered as a logic on LTS.

In this work, we use an abstraction-based verification
method in order to reduce the computational complex-
ity. Here, we induce the failure information to state la-
bels based on a diagnosability algorithm. Then, exploit-
ing BBED we perform event-based abstraction technique
while preserving silent loops. Preserving all uncertain
loops, where diagnosability can not be decided, is im-
portant to claim the diagnosability of a system correctly.
Using the mentioned transformation in [17], we get the
equivalent abstracted KS of the system with silent events,



where we perform CTL based model checking for diag-
nosability verification.

The contribution of this paper is that BBED is proposed
and developed for abstraction-based diagnosability verifi-
cation. Compared to previous works on abstraction for
diagnosability, our approach gives more efficient abstrac-
tions. One reason is that observable events can also be ab-
stracted, still showing equivalence between the abstracted
and the original system concerning diagnosability. Fur-
thermore, unlike earlier language-based approach, where
all transitions with the same event must be considered for
abstraction, in the proposed approach transitions with the
same event are abstracted individually, once again result-
ing in more efficient abstractions. Finally, compositional
abstraction is applied for modular systems, which can be
considered as a partitioning technique avoiding temporary
state-space complexity in the abstraction phase.

The rest of the paper is organized as follows. Section II
presents preliminary concepts. Section III gives the defi-
nition of diagnosability. In Section IV, the temporal logic
formulation for diagnosability verification is presented.
Section V is on branching bisimulation abstraction. In
Section VI, compositional abstraction is described. Fi-
nally, conclusions are drawn in Section VII.

2. Preliminaries

The event observation projection [3], called observa-
tion mask in [14], is a mapping from the original event
set Σ to a smaller observable event setΣo ⊆ Σ, i.e.,
P : Σ → Σo ∪ {ε}, which can be extended toΣ∗ that is
the set of all event traces generated fromΣ. Here,ε shows
unobservable events, so that we haves ∈ Σ∗, σ ∈ Σ:
P (sσ) = P (s)P (σ), with P (ε) = ε andP (σ) = ε
for all σ ∈ Σu, the unobservable event set. Moreover,
Σ = Σo∪̇Σu, andΣo = Σs∪̇Σℓ, with Σs denoting shared
events which are involved in more than one module and
Σu denoting local events which only belong to one mod-
ule. Σu = Σf ∪̇Σn, whereΣf andΣn are failure and
non-failure unobservable events, respectively.

Definition 1 (Kripke Structure (KS)) [17] LetAP be a
fixed nonempty set of atomic proposition names, ranged
over byq, p, . . . . A Kripke Structure(KS) is a tripleK =
(Q,L,→), whereQ is a set of states,L : Q → 2AP is
the proposition labeling, and→⊆ Q×Q is the transition
relation; an element(q, p) ∈→, usually written asq → p,
is called a transition. �

Based on KS, we extend automata including state la-
bels onG. The transition system definition in the follow-
ing includes both labels on states and transitions.

Definition 2 (Transition System) A transition system
(TS) is a tupleG = 〈Q,Σ,→, Q0, AP, L〉 whereQ is a
set of states,Σ is a set of events,→⊆ Q × Σ × Q is a
transition relation, alsoQ0 denotes the set of initial states,
AP is a set of atomic propositions, andL : Q → 2AP

represents a proposition labeling. �

Now, we define synchronous composition on transition
systems as follows.

Definition 3 (Synchronous Composition)Let
Gi = 〈Qi,Σi,→i, Q0i, APi, Li〉 for i = 1, 2
be two automata. The synchronous composi-
tion of G1 and G2 is defined asG1 ‖ G2 =〈
Q1 ×Q2,Σ1 ∪ Σ2,→, Q0

1 ×Q0
2, AP1 ∪AP2, L1 × L2

〉

where

(q1, q2)
a
→(p1, p2) : a ∈ (Σ1 ∩ Σ2), q1

a
→1p1, q2

a
→2p2

(q1, q2)
a
→(p1, q2) : a ∈ (Σ1\Σ2), q1

a
→1p1

(q1, q2)
a
→(q1, p2) : a ∈ (Σ2\Σ1), q2

a
→2p2.

�

3. Diagnosability of Discrete Event Systems

In this section, we define the diagnosability notion,
along with a polynomial algorithm for diagnosability ver-
ification of modular systems. In the end, the algorithm is
illustrated through an example.

Definition 4 (Failure Assignment Function) Failure as-
signment function is a mapping from the original event set
Σ to state failure labelsN or F , i.e.,ψ : Σ → {F,N}. It
means that ifσ ∈ Σ is not a failure event, it is projected to
N ; otherwise it is projected to theF . All reachable states
after a state with labelF , keep it as their labels. �

For the sake of simplicity, here one failure class is con-
sidered. Assume a systemG to be live without any cycle
of unobservable events, and let the set of all traces gener-
ated byG be denotedL(G). Furthermore, consider a trace
s ∈ L(G) ending with a failure, and a sufficiently long
tracem obtained by extendings. The systemG is then
diagnosableif every tracew that is observation equivalent
tom, also contains a failure. Formally, the diagnosability
is defined as follows.

Definition 5 (Diagnosability) With respect to the event
observation projection and the failure assignment function
ψ : Σ → F ∪N , a systemG is diagnosable if

(∀F )(∃ni ∈ N)(∀s ∈ L(G), ψ(sf ) = F )

(∀m = st ∈ L(G), ‖t‖ ≥ ni) ⇒

(∀w ∈ L(G), P (w) = P (m))(∃r ∈ pr({w}), ψ(rf ) = F )

Here,sf andrf are the last events in tracess andr, re-
spectively, andpr({w}) is the set of all prefixes ofw.

�

3.1. Diagnosability Algorithm
Diagnosability verification answers the question

whether a failure can always be detected or not. In [14], a
verifier is introduced that abstracts away all unobservable
and failure transitions by first constructing an observable
automaton,Go, whose definition is presented in Algorithm



1 in the following. Then,G = Go‖Go is calculated. The
verifierG is checked for the existence of possible uncer-
tain cycles, i.e., cycles including states with different fail-
ure labels. All other states and their associated transitions
are then deleted. If the remaining graph contains at least
one cycle, the system is not diagnosable. This verifier has
polynomial complexityO(n4qnt), wherenq andnt are the
number of states and transitions, respectively.

Algorithm 1: [14] For diagnosability verification
in a modular system, let each module beGi =
(Qi,Σi,→i, Q0i) for i ∈ I = {1, . . . , k}, wherek is
the number of modules. The following algorithm verifies
the diagnosability ofG =‖i∈I Gi:

1. Augment states of eachGi with failure labels (N,F ),
based on the failure assignment function, resulting in
Gi = (Qi,Σi,→i, Q0i, AP, Li)

2. Obtain a non-deterministic automaton
Go
i = (Qo

i ,Σ
o
i ,→

o
i , Q

o
0i, AP, L

o
i ), where

Qo
i =

{
(qi, ℓi) |q

o
i ∈ Q̄ ∪ {qo0i}

}
and

Q̄i = {qi ∈ Qi|∃ (pi, σi, qi) ∈→i with P (σi) 6= ε}.

3. Compute the verifier automaton,Gi = Go
i ‖ Go

i .

4. Replace all state labels(NN,FF ) and (NF,FN)
with C (certain state labels) andU (uncertain state
labels), respectively.

5. Verify the existence of uncertain cycles, i.e., loops
over states with label(U) in G =‖i∈I Gi.

In the synchronization ofG =‖i∈I Gi, we may get
different combinations ofk number of labels in each state.
Having at least oneU label in each state is enough to make
that state uncertain. Therefore, all states with at least one
U are replaced withU , and states with onlyC labels are
replaced withC. For instance, withk = 2, we may get
different combinations ofCC, CU , UC andUU in G.
ExceptCC which is replaced withC, the rest ofCU ,UC
andUU are replaced withU . This rule is always applied
in the synchronization.

3.2 Diagnosability Verification in Modular Structure
In diagnosability verification of a system in a modu-

lar structure, if all modules are diagnosable, based on the
following, the total system is diagnosable. Therefore, we
assume at least one non-diagnosable module in our evalu-
ation.

Diagnosability verification in a modular structure con-
tains three different cases [4]: (a) if the monolithic system
(G) is not diagnosable then necessarily one of the mod-
ules (Gi) is not diagnosable; (b) if all local modules are
diagnosable then the monolithic system (G) is also diag-
nosable; and (c) if a local module is not diagnosable then
the monolithic system may or may not be diagnosable.
The above cases cover all possible outcomes that may oc-
cur when modules of a system are composed in parallel.
We focus on Case (c), where it is not possible to evaluate
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Figure 1 The three automata of Example 1.

the diagnosability ofG by finding the diagnosability of
each module separately. The following example includes
a non-diagnosable automaton.

Example 1 Consider the three automata depicted in
Fig. 1. Events descriptions are as follows;Σo =
{σ1, . . . , σ6}, Σuo = ε1, Σf = {f1, f2}, and Σs =
{σ1, σ5}. Both failures belong to one failure class.G1

is not diagnosable, andG2 andG3 are diagnosable. How-
ever, based on the above description, the diagnosability
of the monolithic systemG = G1 ‖ G2 ‖ G3 is not clear
yet. Therefore, based on Algorithm 1, we evaluate the di-
agnosability ofG. Steps 2 and, 3-4 of the algorithm are
illustrated in Fig. 2 and Fig. 3, respectively. In Fig. 3, only
the updated failure labels are shown in each state. The
verifier G, has 78 states, 150 transitions and uncertain
loops. Thus the systemG is not diagnosable.

4 Temporal Logic

Diagnosability test is shown to be an instance of tem-
poral logic model-checking [12]. In the last step of diag-
nosability algorithm, it is needed to determine the exis-
tence of uncertain cycles using temporal logic. Thus, we
describe the temporal logic and quantifiers, briefly.

There are particularly two common used temporal log-
ics; linear-temporal logic(LTL) where time is linear, and
computation-tree logic(CTL) where time is branching.
Temporal logic includes temporal quantifiers, which in
CTL are expressed in pairs. In CTL, as well as the tem-
poral operatorsU, F, G andX, there are also quantifiersA
(universal) andE (existential) which express “all paths”
and “exists a path”, respectively, [13]. Furthermore,G is
the universal quantifier andF is the existential quantifier,
ranging over the states along a particular path. Moreover,
X means next andU until.

In our case, a CTL* specification for diagnosability
verification is used, cf. [18]. CTL* is an extension of
CTL and LTL, which combines the features of both log-
ics, and thus is more expressive than either of them. The
specification is

AG AF(C) (1)



1N

2N

2F

4N4F

5N

5F

1F

σ1

σ2
σ2

σ3

σ4

σ2

σ3

σ4

σ1

(a) Go

1

1N

2N 1F

2F

σ1

σ5

σ1 σ5

(b) Go

2

1N

2N

σ5σ6

(c) Go

3

Figure 2 TheGo

i of the three automata of Example 1.

whereC denotes certain labels. This implies that for all
computation paths beginning from an initial state, there
will be some future states whereC holds infinitely of-
ten. If this specification holds, the system is diagnosable.
This statement becomes clear by investigating its nega-
tion, meaning that a system is not diagnosable when

¬AG AF (C) ≡ EF(¬AF (C)) ≡ EF EG (U). (2)

The last expression means that in at least one path,U will
eventually be permanently true. This implies that the non-
diagnosable system can continue forever in an uncertain
cycle.

5. Abstraction

In this section, we outline the concept of abstraction-
based diagnosability for modular systems. Since up to
step 4 of the diagnosability Algorithm 1 is performed be-
fore applying abstraction in each module, the necessary
information for diagnosability verification is preserved.
Step 5 in Algorithm 1, is the most burdensome part. Thus,
to overcome the problem of computational complexity,
abstraction technique preserving loops, calledbranching
bisimulation with explicit divergence(≈d) is presented.

Here, the abstraction will be applied on the verifierGi,
i ∈ I. At this step, each state has the information of pre-
viously traversed transitions, thanks to the failure labels.
The next step is to find uncertain cycles inG =‖i∈I Gi.
To convey the failure occurrence information to the whole
system, state labels are considered in the model . In this
section we encounter three different events; localτ events,
which are the replacements of local events between two
similar state labels, localc/u events which are the replace-
ments of local events between two states with different la-
bels as illustrated in Fig. 4, and also shared events. Note
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thatc/u events are introduced when there is a transforma-
tion of state labels to events. The goal is to abstract the
local τ transitions.

There is stuttering bisimulation which abstracts the
equally labeled states and branching bisimulation which
abstracts local events, and we want to combine them
with each other. Moreover, we want to preserve CTL*
property, and based on [17] branching bisimulation does
that, by showing the equivalence between stuttering and
branching bisimulation, and also showing that CTL* is
based on state labels as in stuttering bisimulation. There-
fore, our technique uses branching bisimulation that pre-
serves state labels to the end. By our technique to include
events for the state labels changes, we only abstract states
with the same label, which is a key point in our abstrac-
tion. All the mentioned definitions are explained in the
following. From now on we can abstract based on events.

5.1 Branching bisimulation
Here, we first describe the branching bisimulation and

then we add the definition for the branching bisimulation
with explicit divergence.

Definition 6 (Branching Bisimulation) [7] Let G =
(Q,Σ,→, Q0) be a finite automaton. A relationR ⊆
Q × Q is called a branching bisimulation (≈) if it is
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straction.

symmetric and satisfies the following transfer property: if
q′Rq̄ andq′

a
→ p′, then eithera = τ andp′Rq̄, or ∃q, p

such that̄q ⇒ q
a
→ p, andq′Rq andp′Rp. �

We considerG′ as the abstracted model when all pos-
sibleτ transitions have been removed. This means thatG
andG′ are branching bisimilar whenG ≈ G′. We denote
by ⇒ reflexive-transitive binary closure and it indicates
τ∗.

Now, the goal is to remove as many as possibleτ transi-
tions and the main algorithm for branching bisimulation is
[9], but since this algorithm only works on systems that do
not have cycles of silent events, here we use the distributed
minimization algorithms proposed in [2], where there are
signature-based algorithms. The algorithm works by suc-
cessively refining the trivial partition, according to the lo-
cal signature of the states with respect to the previous par-
tition. Since the does not assume the absence ofτ -cycles,
we do not lose necessary information of the system. For
more information on the algorithm please see [2].

For diagnosability verification we check whether there
exist a loop over uncertain states or not. However, silent
loops disappear in branching bisimulation and we need to
keep these loops. For this reason we define another ver-
sion of branching bisimulation that preserves silent loops.

Definition 7 (Branching Bisimulation with Explicit
Divergence)[7] A relationR ⊆ Q×Q is called a branch-
ing bisimulation with explicit divergence (BBED) (≈d) if
it is a branching bisimulation and in addition satisfies the
following condition for all statesp, q:

If pRq and there is an infinite sequence of states
(pk)k∈Ω such thatp = p0, pk ⇒ pk+1 andpkRq, ∀k ∈ Ω,
then there exists an infinite sequence of states(qℓ)ℓ∈Ω

such thatq = q0, qℓ ⇒ qℓ+1, ∀ℓ ∈ Ω, and pkRqℓ,
∀k, ℓ ∈ Ω. �

Algorithmically every cycle is handled by adding a
dummy state (div) to the model, which has a selfloop.
There are also ingoing transitions from states belonging to
loops, todiv. All newly added transitions are labeled with
τ . Then, the algorithm for branching bisimulation [2], is
applied on the new model, as in Fig. 9. In the end,div
and its corresponding transitions are removed and self-
loops are added to all states connected todiv.
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q
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p
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(2)

τ

a

Figure 5 Branching bisimulation withτ

5.2 Synchronization
The important fact that BBED is preserved by synchro-

nization is shown in the following proposition.

Proposition 1 (BBED Synchronization) Let
Gi = (Qi,Σi,→i, Q0i, AP, Li), i = 1, 2 denotes
automata being bisimilar with explicit divergence and
let G′

i = (Q′
i,Σ

′
i,→

′
i, Q

′
0i, AP, L

′
i), i = 1, 2 denotes

these abstractions. LetRi ⊆ Qi × Q′
i be a BBED for

(Gi, G
′
i), i = 1, 2. Then, the relation

R = {(〈q1, q2〉 , 〈q
′
1, q

′
2〉)|(q1R1q

′
1) ∧ (q2R2q

′
2)}

is a BBED for (G1 ‖G2, G
′
1 ‖G

′
2), i.e., G1 ≈

dG′
1 and

G2 ≈
dG′

2, implies thatG1‖G2 ≈d G′
1 ‖ G′

2.
Proof: Assume that there is a transition

〈q1, q2〉
a
→〈p1, p2〉 in G1 ‖ G2. The following three event

cases then need to be considered.

1. For a ∈ Σs. Since Gi is BBED there is
a path q̄i ⇒ qi

a
→i pi in Gi, and a transi-

tion q′i
a

→′
i p

′
i in G′

i where (q′i, qi) ∈ Ri and
(p′i, pi) ∈ Ri. Then, synchronization of
G1 and G2 implies that if (q′1, q

′
2)R(q̄1, q̄2)

and 〈q′1, q
′
2〉

a
→〈p′1, p

′
2〉, ∃q1, q2, p1, p2 such

that (q̄1, q̄2) ⇒ (q1, q2)
a
→(p1, p2), where

(q′1, q
′
2)R(q1, q2) and (p′1, p

′
2)R(p1, p2). Note

that from (q̄1, q̄2) to (q1, q2) there aremn inter-
leavings betweenτ transitions, wherem and n
are the number ofτ transitions inG1 and G2,
respectively.

2. For a /∈ Σs ∪ {τ}. In this case, there is an inter-
leaving behavior between local non-τ -transitions,
i.e., u/c transitions. By symmetry, and sinceG1

is BBED, we may assume that̄q1 ⇒ q1
a

→1 p1,
and G2 stays in its current state. Sinceq′1R1q1,

there exists a transitionq′1
a

→′
1 p

′
1 inG′

1 with p′1R1p1.
If (q′1, q

′
2)R(q̄1, q̄2) and 〈q′1, q

′
2〉

a
→〈p′1, q

′
2〉, then

∃q1, p1 such that(q̄1, q̄2) ⇒ (q1, q̄2)
a
→(p1, q̄2), and

(q′1, q
′
2)R(q1, q̄2) and(p′1, q

′
2)R(p1, q̄2).

3. For a = τ . By symmetry, we may assume thata
is in G1, andG2 stays in its current state. Argu-
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i, i = 1, . . . , 3 of Example 1.

ing in the same as in Case 2, if(q′1, q
′
2)R(q̄1, q̄2) and

〈q′1, q
′
2〉

a
→〈p′1, q

′
2〉, then(p′1, q

′
2)R(q̄1, q̄2).

To conclude, for all three cases the synchronized system
is BBED, i.e.G1‖G2 ≈d G′

1 ‖ G′
2 . �

6 Compositional Abstraction

In ordinary modular abstraction, each module is ab-
stracted once, and all abstracted modules are synchro-
nized. Compositional abstraction means that after each
synchronization of two modules, the abstraction is re-
peated. This implies normally a significant further state-
space reduction as motivated below.

6.1 General Compositional Approach
A modular system consists ofG = G1 ‖ · · · ‖ Gm. In

the compositional algorithm of [5], the modular systemG
is abstracted step by step. Each automatonGi is replaced
by an abstracted versionG′

i. Synchronous composition
is computed step by step, and each intermediate result is
abstracted again.

Eventually, the procedure leads to a single automaton
G′, the abstract description of the original system. Once
G′ is found, the final step is to useG′ instead of the origi-
nal system for diagnosability verification.

When abstracting an automatonGi, in an attempt to re-
place it byG′

i, there will typically be some events used in
Gi which do not appear in any other componentGj , j 6= i.
These are called local events and are denoted asΣi

ℓ, and
they are replaced by eitherτ (between similar state labels)
or c/u (transition between states with different labels, see
Fig. 4) in the abstraction. In other words, some events be-
long to a few modules, which after synchronization they
become local events for the rest of modules, although they
were not local from the beginning. In each iteration, more
events become local which leads to more abstraction in
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U U

τ

τ

u1

τ
τ

u1

τ τ
c1

τ

Figure 7 TheĜ of Example 1, where allσ5 events are replaced
by τ .

comparison to merely abstracting all modules once in the
beginning.

6.2 Diagnosability Verification of Compositional
State-labeled Branching Bisimilar Automata

The ultimate goal is to determine ifG satisfies CTL
expression 1, whereG =‖i∈I Gi. Each moduleGi, in-
cludesC orU state labels.

Algorithm 2:

1. ∀i ∈ I, follow the steps of 1 to 4 of Algorithm 1 and
findGi.

2. Based on events inΣs andΣi
ℓ, find the BBED of each

Gi, denoted asG′
i. There are two possible cases re-

gardinga ∈ Σi
ℓ as in the following.

2.1. q
a
→ p, ℓq 6= ℓp, replacea with ℓq and consider

the index of the automata as the label index as
in Fig. 4.

2.2. q
a
→ p, ℓq = ℓp, replacea with τ .

After replacinga ∈ Σi
ℓ with the proper events, add

dummy statediv with its corresponding transitions,
if there are cycles inGi. Then, findG′

i. EachG′
i of

Example 1 is depicted in Fig. 6.

3. Take two abstracted automata,G′
i andG′

j and find

Ĝij = G′
i ‖ G

′
j .

4. Identify local events of̂Gij (a ∈ Σij
ℓ ) and make a

BBED of Ĝij , denoted aŝG′
ij as in Step 2.

5. SynchronizêG′
ij with the abstraction of the next au-

tomaton;Ĝijk = Ĝ′
ij ‖ G

′
k.

6. Continue Step 4 to 5, until all automata are synchro-
nized and only one automaton remains. Fig. 7 shows
the lastĜ. Then findĜ′ as in Fig. 9.

7. TransformĜ′ from LTS to KS as in Fig. 10, and in-
vestigate the CTL expression (2) on it.



Gi σ1

σi1 σiβ

fi

εi
σ2

Figure 8 The considered automata of Example 3.

Table 1 Comparison of the verification methods introduced
here and in [14] for the model depicted in Fig. 8.

verifier in [14] verifier after abstraction
N β ns nt ns nt

2 1 44 125 5 8
2 2 88 277 5 8

3 1 252 1672 5 8
3 2 616 4225 5 8

In Example 1, the infinite silent loops appears in the
final monolithic automaton, see Fig. 8, where we find its
BBED. Such infiniteτ -loops may appear in any step of
the algorithm, for which the same procedure applies.

Example 2 The Ĝ′ of the three automata of Example 1,
is depicted in Fig. 10. It has 3 states and 5 transitions and
is non-diagnosable due to a self-loop overU . �

The following example shows the efficiency of the di-
agnosability method introduced here in comparison to the
method in [14].

Example 3 Assume that there areN automata withΣs =
{σ1, σ2} andΣi

ℓ = {σi1, σiβ}, i = 1, . . . , N as depicted
in Fig. 8. Table 1 shows the number of statens and tran-
sitionsnt of the verifier in [14] and the abstracted one in
Algorithm 2. �

6.3 Abstraction-based Diagnosability
Finally, the correctness of the proposed diagnosability

approach, Algorithm 2, is formulated in a theorem, say-
ing that a model is diagnosable iff a corresponding BBED
satisfies the CTL expression (1).

Theorem 2 (Diagnosability and≈d) The composed
modelG=‖i∈I Gi is diagnosable, iffG′ satisfies the CTL
expressionAG AF(C).

Proof: According to [12],G is diagnosable iffG =‖i∈I

Gi satisfies the CTL expression (1). Then, since aG′ is
constructed incrementally combining BBED and synchro-
nization, and synchronization, according to Proposition 1,
is also BBED, we find thatG ≈d G′. The CTL expression
(1) is based on state labels, but according to [1], Chapter 7,
there is a strong bisimulation transforming between event
based and state based labeling. Combing this bisimulation
with BBED, and since BBED preserves CTL*-X, the tem-
poral logic expression (1) is satisfied forG iff it is satisfied
also forG′. �

C

C

C

U U

div

τ

τ

u1

τ

d

τ
u1

τ

d

τ
c1

τ
d

τ

(a) Ĝ with dummy eventdiv

C

C U

div

τ u1

d

c1

d

τ

(b) Ĝ′ before removingdiv

Figure 9 (a) Shows adding dummy statediv to Ĝ of Example
1 to find BBED. (b) ShowŝG′ before removingdiv.

C

C U

τ u1
c1

ττ

Figure 10 Evaluate the CTL expression (2), which is the same
as identifying if there are any silent loops on the uncertain states.



7. Conclusion

This paper developed an efficient diagnosability verifi-
cation technique based on a general abstraction approach.
We exploited BBED, which preserves the main features
for diagnosability verification, i.e., divergence sensitiv-
ity keeps loops in the system and does not abstract them
away. Moreover, BBED is equivalent to CTL*-X, which
means that model checking can be used to verify the
abstracted model. As we showed, using compositional
abstraction for modular diagnosability verification adds
more efficiency to the approach. It avoids state space ex-
plosion by offering a significant reduction in comparison
to the state-of-the-art techniques. Future work includes
applying BBED and compositional abstraction technique
for diagnosability verification of realistic industrial size
systems.
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