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On integral equation methods of solution to eddy current interaction problems
Thesis for the degree of Doctor of Philosophy in Solid and Structural Mechanics
LARS LARSSON
Department of Applied Mechanics
Chalmers University of Technology

Abstract

The eddy current method is used for nondestructive evaluation of conducting materials.
To achieve a greater knowledge and insure safe and reliable evaluation methods, the use of
mathematical models and simulations are needed. In this thesis integral equation methods
of solutions are applied to solve the eddy current interaction problem which essentially
is a scattering problem. This involves a Green’s function technique to generate integral
relations between the surface fields and the fields everywhere else. Then the key is to use
suitable basis functions to describe the surface fields. In the end numerical integration is
used to obtain the solution, the change of impedance due to the scatterer. The scatterer
in this case is a model of a defect and the source is a single conductor or a single coil.
The solutions are compared to Finite Element solutions with good agreement.

This thesis includes four papers where two different methods of solution have been used.
In the first paper, the T matrix method is applied on a 2D problem with a subsurface
defect. The second paper presents a boundary integral equation method solution to a
problem with a surface-breaking flat and infinitely long crack. In the third and fourth
papers the 3D problem of a rectangular crack is solved also using a boundary integral
method. In the third paper the surface of the material is a plane and in the fourth it is
the inside of a cylindrical hole.

All papers contain comparisons with finite elements calculations and good agreement
is found for all methods presented in the present thesis. The advantage of these methods
compared with the finite element method is the numerical efficiency.

Keywords: Nondestructive evaluation, Scattering, Eddy current, T matrix, Boundary
integral equation
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Thesis

This thesis consists of an extended summary and the following appended papers:
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Vermont, 2012, pp. 316–323

Paper B

L. Larsson, A. Boström, P. Bövik, and H. Wirdelius. Integral equa-
tion method for eddy current nondestructive evaluation of a tilted,
surface-breaking crack. J. Appl. Phys. 114 (2013), 194504 –194504–
6

Paper C
L. Larsson. Integral equation method for evaluation of eddy-current
impedance of a tilted, rectangular, surface-breaking crack. To be
submited for international publication. (2014)

Paper D

L. Larsson and A. Boström. Integral equation method for evaluation
of eddy-current impedance of a rectangular, near surface crack
inside a cylindrical hole. To be submited for international publication.
(2014)

Three of the papers are written with co-authors. In the first paper the author of this
thesis has preformed all of the work except the finite element calculations. In the second
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thesis was responsible for the major progress of work.
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Extended Summary

The subject of this thesis is methods of solution for eddy-current nondestructive evaluation
using integral equation methods. The ambition is to apply methods that have successfully
been used on the elastodynamic scattering problem to the electromagnetic scattering
problem.

1 Introduction

1.1 Background and motivation

Nondestructive evaluation (NDE) methods are used to insure the quality of safety-critical
components, e.g. turbine blades in a jet-engine. One of these methods is the eddy
current method which is used for nondestructive evaluation of conductive materials. Eddy
currents are generated by applying an alternating current to a small coil positioned near
the surface of the material. A crack will interfere with the currents and in that way affect
the impedance of the coil. By measuring this impedance, cracks can be found. When an
aircraft engine is constructed it is designed to withstand loads higher than it ever will
be affected of during operation. Even so the aging engine will eventually degrade to a
state where its structural design becomes too weak. Therefore it is of great importance
to observe this degradation and take the engine out of use before that moment. This
observation is carried out by use of different NDE methods. To ensure a reliable result of
the inspection, specific testing procedures are developed for every different part that is to
be tested. In the development of these procedures the probability of detection (POD)
methodology is an important instrument (see for example [8], [23] and [21]). The POD is a
tool that is used to ensure a method’s capability in an NDE application. The POD curve
shows the estimated probability to detect a defect as a function of different parameters,
e.g. defect size. These curves is most often produced by an expensive experimental
procedure, where lots of different defects are to be fabricated into the test pieces. To
obtain the POD curves by use of simulations is therefore very desirable.

In the field of nondestructive testing and evaluation, mathematical models are im-
portant tools to secure the safety and reliability of the testing methods. With these
models simulations of the testing processes can be done to achieve a greater knowledge
of the process. Of special interest is the use of statistical models together with the
mathematical model to estimate the probability of detection (POD). There are great
advantages with using a mathematical model to predict the signal from the nondestructive
testing instrument due to a crack. In the model the defect parameters can be varied in
an infinite range, while a specific defect when manufactured can often be very difficult to
retrieve.
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1.2 Eddy current nondestructive testing

The eddy current method is an electromagnetic method. The testing instrument, a probe
containing a coil is emitting electromagnetic waves. The resulting electromagnetic field
induces eddy currents in the material below the probe. Therefore the evaluated material
has to be conductive, even if the conductivity may be low. Due to the nature of induction
the eddy currents are exponentially decreasing into the depth of the material, therefore
the method is mostly used to detect surface breaking or near surface defects. How fast the
fields will decay is dependent of the frequency of the input current which is the same as the
frequency of the involved fields. In applications of eddy current testing the typical range
of the frequency is a few kHz to several MHz. A lower frequency field penetrates deeper
into the material, but it also contains less energy compared to a field of higher frequency
and therefore generates a weaker signal. The method can also be used to measure or
detect other things than cracks that are influencing the impedance, for example hardness,
thickness of the material or presence of corrosion.

There are several parameters of the probe that affects the output of the eddy current
testing such as presence of shields and ferrite cores to focus the field towards the inspected
material. In the present thesis such parameters are not included and the probe are
modelled as a single conductor or coil to obtain an analytical expression of the incoming
field transmitted from the probe. The parameters of the defect that have an influence on
the change in impedance are for example depth and subsurface position, size and tilt of
the defect. In papers A and D the defects are near surface and the subsurface position
has a clear influence of the change in impedance. The parameter of depth or height of
the defect is included in all of the papers. The defect in paper B is an infinitely long, flat,
surface-breaking and tilted crack. The length of the defect can be varied in papers C and
D where the cracks are rectangular.

1.3 Simulation methods

The finite element method (FEM) and boundary element methods (BEM) are commonly
used in eddy-current simulations, see for example [19] or [10]. In situations with complex
geometry, either of the defect or probe, FEM is very suitable. In the case of homogeneous
and isotropic material BEM can be used as an alternative. In BEM the dimensionality
of the problem is reduced, by use of the Green’s tensor, into integral equations on the
boundary. The computational efficiency of BEM is dependent on how fast the expression
of the Green’s tensor can be generated. By combining the Discrete Complex Image
Method (DCIM) with the method of the Generalized Pencil of Function (GPOF) this
can be done with a very high computational efficiency [22]. Analytical expressions are
usually used for the incoming field such as presented in [5] for the field from a single coil
close to a conducting half space or in [4] for the field from a single coil positioned inside
of a cylindrical hole in a conductor. Analytical expressions also exists for the field from a
single coil with the presence of a ferrite core [24]. In BEM the fields at the boundaries are
discretized by similar methods as in FEM. In addition to FEM and BEM there exists
several methods for simulation of eddy current including thin-skin approximations, eg.
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[17], methods using the Wiener-Hopf technique [7], and methods based on geometrical
theory of diffraction [6]. With the concept of model assisted probability of detection
(MaPOD) see e.g. Jensen et al. [8], Wirdelius and Persson [23], and Rosell and Persson
[21], where a large number of simulations are needed, the demand of efficient numerical
methods has increased.

2 Electromagnetic and Elastodynamic fields

2.1 Electromagnetic fields

The eddy current method is an electromagnetic method and the electromagnetic fields
are obeying Maxwell’s equations (see [18])

∇ ·
(
ε−1E

)
= ρ (2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B
∂t

(2.3)

∇×
(
µ−1B

)
= J +

∂(εE)

∂t
(2.4)

The presentation in this elegant form simplifies the interpretation of the equations. The
electric field E is created by charges (ρ) and the magnetic field B by moving charges,
the current J . Equations (2.3) and (2.4) also imply that a change of the magnetic field
produces an electric field and vice versa. The material is assumed to be homogeneous,
isotropic and linear, then the electric permittivity ε and the magnetic permeability µ are
constants. When seeking a solution, it is preferable to reformulate Eqs. (2.1) – (2.4) in
order to get fewer equations to work with. This can be done by taking the curl of Eq.
(2.3) and substituting the obtained right hand side by use of Eq. (2.4). Equation (2.2)
implicates that the magnetic field B can be expressed as the curl of a magnetic vector
potential A, B = ∇×A. Inserting this in Eq. (2.3) gives

∇× (E +
∂A

∂t
) = 0 (2.5)

and the expression of E in terms of potentials become

E = −∇V − ∂A

∂t
, (2.6)

where V is a scalar function. The potentials are not unique by these definitions and can
be changed without affecting E or B. Here it is possible to chose a gauge such that ∇V
is eliminated, then Eq. (2.4) can be written as

∇×∇×A = µ0 J − µ0 ε0
∂2A

∂t2
. (2.7)
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The currents appear in form of source currents and conductive currents, J = Js + σE,
where σ is the conductivity. Further on, E is assumed to have zero divergence (ρ = 0)
meaning that there only exists closed currents, being the case for all field problems
presented in the present thesis. By use of this, together with the vector identity∇×∇×A =
∇(∇·A)−∇2A in Eq. (2.7), gives (the harmonic time factor e−iωt is assumed throughout
this thesis)

∇2A+ k2A = −µ0 Js, (2.8)

where k2 = iµωσ + ω2µε. Equation (2.8) together with the radiation condition at infinity
and different boundary conditions is the mathematical model that is used in this thesis to
solve the eddy current interaction problem. The equation is called Helmholtz equation
and it does not only describe eddy current interaction problems but also other scattering
problems.

For a boundary between two regions i = 0 and i = 1 the magnetic vector potential Ai

satisfies the following condition

n̂×A0 = n̂×A1, (2.9)

1

µ0
n̂× (∇×A0) =

1

µ1
n̂× (∇×A1), (2.10)

where n̂ is the unit vector perpendicular to the boundary. The boundary condition taken
across a crack is given below by Eqs. (3.4) and (3.5).

2.2 Elastodynamic fields

To state the reason why the same methods of solution can be used on the elastodynamic
and the electromagnetic scattering problems, this section is given to throw light upon
the unity in the mathematical nature of both types of fields. For a time harmonic
elastodynamic field the displacement u satisfies

(λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) + f = −ω2ρu, (2.11)

where µ and λ are called Lamé constants and f is the body force. This equation can be
rewritten by introducing the Helmholtz decomposition of u

u = ∇φ+∇×ψ, (2.12)

where ∇ ·ψ = 0. Here φ and ψ are scalar and vector potentials of the displacement field.
Substituting u in Eq. (2.11) with Eq.(2.12) yields

(∇2 +
ω2

c2p
)φ = fp, (2.13)

(∇2 +
ω2

c2s
)ψ = fs, (2.14)
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where f = (λ + 2µ)∇fp + µ∇ × fs and ∇ · fs = 0. Here cp =
√

(λ+ 2µ)/ρ and

cs =
√
µ/ρ are the wave speeds of the pressure and shear waves respectively. Both the

scalar and vector potentials of the displacement field and the magnetic vector potential
are satisfying Helmholtz equation. Because of that the behavior of the elastodynamic and
electromagnetic fields in an infinite continuum are similar, but at a boundary Eq. (2.13)
and (2.14) are in general coupled. Either way the similarities between the different fields
do motivate the use of the same methods of solution for both of the field problems.

3 The methods of solution

An efficient way of discretization is a key ingredient to gain an efficient numerical method
of solution. For some simple crack geometries the boundary integral equations can
be discretized using specific basis functions suitable to the geometry of interest. This
approach is used in the present thesis, for a strip-like crack in paper B and a rectangular
crack in paper C and D. In paper A the T matrix method, which successfully have been
used to solve other scattering problems (see for example Refs. [9], [11], [12]) is applied
to a 2D eddy current scattering problem. By use of this method a transition matrix is
calculated which then can be used together with the incoming field to give the change
in impedance. Just like FEM and BEM the methods in this thesis provide accurate
results for incoming fields of arbitrary frequencies in the typical range for eddy current
applications.

3.1 The integral representation

The methods in this thesis make use of a Green’s function technique to get an integral
representation of the problem. This integral representation expresses the fields everywhere
in terms of the fields on the boundaries. In this way the dimensionality of the problem
is reduced to the determination of surface fields. The Green’s function G(r, r ′, k) to
equation (2.8) satisfies

∇2G(r, r ′, k) + k2G(r, r ′, k) = −δ(r − r ′), (3.1)

together with the radiation condition at infinity. Here δ(r − r ′) is the 3D Dirac delta
function. In other words the Green’s function is the solution to the differential equation for
a point source. To illustrate how the Green’s function technique is used to solve Helmholtz
equation the procedure for deriving the integral representation for a general scattering
case is now given. Beginning with multiplication of equation (2.8) with G(r, r ′, k) and
subtracting equation (3.1) multiplied with A(r) yields

G(r, r ′, k)∇2A(r)−A(r)∇2G(r, r ′, k) + µ0 JsG(r, r ′, k) = A(r)δ(r − r ′). (3.2)

Now the scattering geometry described by figure 3.1 is considered. The source is positioned
inside the surface Si and the scatterer is bounded by the surface Ssc. Continuing with
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Figure 3.1: Scattering geometry

integration of equation (3.2) over the volume V (all space outside Si and Ssc) and using
Green’s theorem gives

−
∫

Ssc

((
(∇ ·A(r))n̂sc − n̂sc × (∇×A(r))

)
G(r, r ′, k)

−(n̂sc ·A(r))∇G(r, r ′, k)− (n̂sc ×A(r))×∇G(r, r ′, k)
)

dSsc

+Ain(r′) =

{
A(r′) r′ outsideSsc,

0 r′ insideSsc,

(3.3)

where nsc is the outward normal to the surface of the scatterer and Ain(r′) is the incoming
field obtained by integrating the third term in Eq. (3.2) (see Eq. (3.10) below). The first
row in the integral representation (3.3) is used in integral equation methods while the T
matrix method also makes use of the second row.

In eddy current interaction there only exist closed currents and ∇·E(r) = 0. In paper
A where the 2D case is considered the third term in the surface integral in Eq. (3.3) is
also zero as n̂sc ·A(r) = 0. The other terms will remain, but in a much simpler form. In
papers B, C and D the scatterer is a flat crack where the boundary condition across the
crack are taken as

∇×A(r)− = ∇×A(r)+, (3.4)

n̂sc ·A(r)− = n̂sc ·A(r)+ = 0. (3.5)

Here the indices plus and minus denote the limit from the two sides. By introducing these
boundary conditions the surface integral is reduced to only contain the last term. The
resulting integral representation seems to be neat, but an even more convenient integral
representation for this case can be found by using another form of Green’s theorem and
the Green’s tensor of the metal (see Bowler [3])

x̂ ·Ain(r′) + iω lim
x→0+

∫ b/2

−b/2

∫ a

0

Gxx(r, r′)V (r′) dz′dy′ = 0, (3.6)
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where the x axis is perpendicular to the surface of the crack and Gxx is the xx component
of the tensor. Here ∇′V (r′) = E−(r′)−E+(r′) is the jump in the electric field across
the crack. The crack lies in the yz-plane and has the height a and length b. This integral
representation is used in papers B, C and D.

3.2 The probe

In addition to the formulation of the integral representations (3.3) and (3.6), Green’s
theorem is also of great importance in the calculation of the impedance. The change in
coil impedance due to a crack can be calculated by the following integration over a surface
enclosing the coil (see [1])

∆Z =
1

I2

∫

Si

(Eb ×Ha −Ea ×Hb) · ndS. (3.7)

With the index b denoting the fields in the presence of a defect and a the fields in the
absence of a defect. Again the calculation only involves surface fields. Now by use of
Green’s theorem and Lorentz reciprocity relation for a source-free region

∇ · (Ea ×Hb −Eb ×Ha) = 0, (3.8)

Eq. (3.7) can be rewritten in an even more convenient form

∆Z =
1

I2

∫

Ssc

(Ea ×Hb −Eb ×Ha) · n dS. (3.9)

Here the integration is over a surface enclosing the defect. The information about the
coil geometry is now needed only to determine the incoming field. Thus it is possible
to derive an expression for the change in impedance due to a specific scatterer for an
arbitrary source.

The geometry of the transmitting source is most often simple and in the present thesis
analytical expressions are used for the incoming fields. The field in the air originating
from the probe can be expressed as

Ain(r′) =

∫

Vi

µ0 Js(r)G(r, r ′, k)dV, (3.10)

where G(r, r ′, k) is the scalar free space Green’s function and Js the current density of
the source current. In paper A where the integral equations are for the whole geometry
this expression is used without any alteration. In paper B, C and D the integral equations
are over the crack only and the expression needs to be transformed to give the incoming
field in the metal below the probe by use of the transmission coefficients of the boundary
between the air and metal. The incoming field used in paper B and C is given by Dodd
and Deeds in [5] and the incoming field from the probe inside the cylindrical hole in paper
D is given by Burke and Theodoulidis in [4].
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3.3 Basis functions

A set of functions is called a basis if every solution can be expressed as a sum of these
functions. The functions in such a set are called basis functions. It is a great advantage to
expand the unknown solution in such known functions and the technique is used in many
methods of solution. Then the problem consists of determining the expansion coefficients.

In this section some of the basis functions used in the present thesis are given and
some of their important properties are pointed out.

3.3.1 In 2D

The solution to Helmholtz equation (2.8) in 2D on a cylindrical surface can be expanded
as

A(r, θ) =
∑

mς

ζmςReχmς(r, k), (3.11)

where ζmς are the unknown expansion coefficients and the basis are defined as

Reχmς(r, k) =

√
εm
2

Jm(kr)

{
cos(mφ), if ς = e,

sin(mφ), if ς = o.
(3.12)

Here Jm(kr) is a Bessel function, m ∈ N and ς denotes odd or even.

The solutions can also be expressed in terms of plane waves which are convenient
when the scattering surface is a plane, e.g. the surface of the conductive material. By
expanding the solution in plane waves it becomes easier to interpret how the frequency of
the fields and the electrical and magnetic properties of the material (σ, µ and ε) affect
the solution. The plane wave basis functions are defined as

ϕ(k, r) =
1√
8π
eik·r, (3.13)

where k = kk̂. Here k̂ is the unit vector in the direction of propagation. The imaginary
part of k affects the amplitude whereas the real part affects the phase. In the eddy current
interaction problem the frequency is assumed to be low such that σ � ω ε. Because of
this the imaginary part is equal to the real part, i.e. k = (1 + i)

√
µω σ/2. This states

that the important parameter is the product µω σ and justifies the introduction of the
variable δ =

√
2/µω σ which is a length and is called the skin depth. At one skin depth

the amplitude of the field has been reduced to 37% (e−1) of the amplitude at the surface.

3.3.2 In 3D

In 3D the electromagnetic vector field is conveniently expanded in vector basis functions
which except being solutions to Helmholtz equation also share other properties with the
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electromagnetic field. In paper D the following cylindrical vector basis functions are used

χj1m(h, r) =
1

qj
√

8π
∇× (ẑH(1)

m (qjr)e
imφeihz),

χj2m(h, r) =
1

kjqj
√

8π
∇×∇× (ẑH(1)

m (qjr)e
imφeihz),

(3.14)

where qj =
√
k2j − h2. Here H

(1)
m is a Hankel function of the first kind. The relation

between the two sets of basis functions are similar to the relation between the electric
and magnetic fields

χ1mj(h, r) =
1

kj
∇× χj2m(h, r),

χ2mj(h, r) =
1

kj
∇× χj1m(h, r).

(3.15)

Another advantage of using these basis functions are that the condition of solenoidal
magnetic field Eq. (2.2) is automatically satisfied. A consequence of this is that also the
electric field will be solenoidal when expanded in this basis which is suitable in source
free regions. In paper D where the surface geometry is the inside of a cylindrical hole, the
Green’s tensor is expressed as an expansion in these basis functions

G(r, r′) =





i
∑
τm

∫∞
−∞

[
Reχτm1(h, r<)χ†τm1(h, r>)

+
∑
τ ′ χτ ′m1(h, r)Rmτ ′τ (h)χ†τm1(h, r′)

]
dh in metal,

i
∑
ττ ′m

∫∞
−∞Reχτ ′m0(h, r)Tmτ ′τ (h)χ†τm0(h, r′)dh in cylinder

(3.16)

where Reχτmj are the regular counterparts to (3.14) with the Bessel functions instead

of Hankel functions. Here the functions χ†τm1 have a sign change in the exponential
containing z. The inside space of the cylindrical hole is denoted region j = 0 and the
surrounding metal as region j = 1. The reflection and transmission coefficients, Rmτ ′τ (h)
and Tmτ ′τ (h) are derived by use of the boundary conditions on the cylindrical surface

r̂ ×E0 = r̂ ×E1, (3.17)

1

µ0
r̂ × (∇×E0) =

1

µ1
r̂ × (∇×E1), (3.18)

which when applied to (3.16) gives

r̂ ×
[
Reχτm1(h, rc) +

∑

τ ′

χτ ′m1(h, rc)Rmτ ′τ (h)
]

=

r̂ ×
∑

τ ′

Reχτ ′m0(h, rc)Tmτ ′τ (h),
(3.19)
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r̂ ×
[
∇×

[
Reχτm1(h, rc) +

∑

τ ′

χτ ′m1(h, rc)Rmτ ′τ (h)
]]

=

r̂ ×
[
∇×

∑

τ ′

Reχτ ′m0(h, rc)Tmτ ′τ (h)
]
.

(3.20)

Here rc is the radius of the cylindrical surface. Then using the relation (3.15) to discard
the ∇× operators in (3.20) a system of equations which is straightforward to solve is
obtained.

The main difference of the methods in the present thesis compared to the finite
element method (FEM) or the boundary element method (BEM) is the choice of basis
functions. The basis functions above are preferably used to describe the field on a
cylindrical or plane surface, respectively. In paper B, C and D basis functions related
to the Chebyshev polynomials are used to expand the jump in the electric field over a
strip-like or a rectangular crack. These basis functions posses the important quality to
give the expansion the correct weak singularity at the crack edge [3]. Other basis functions
can be used for other kind of surfaces. With BEM this is avoided by discritizing the
surfaces into a set of elements. Then quite simple basis functions can be used e.g. a
polynomial of low order. In FEM the Green’s functions technique is not used at all and
the entire volume of interest is discritized in a set of elements.

3.4 Numerical integration

All methods in the present thesis involves numerical integration. Because of the nature of
the Green’s tensor some of these integrals needs to be handled with care. The correct
choice of basis functions resolves a great part of the difficulties, e.g. the discretization in
Chebyshev polynomials is taking care of the hypersingularity in that integral equation.
To obtain a reasonable convergence analytical expansions of the dominating terms are
also used. In paper B and C the following integral is solved in this way

∫ ∞

−∞

s2

h
Im(qa)Im′(−qa) dq, (3.21)

where a is the height of the crack and

Im(γ) =

∫ 1

0

cos((2m− 1) arcsin t)eiγtdt. (3.22)

Here h =
√
k20 − s2, s2 = p2 + q2 and both q and p are Fourier transform variables. The

integrand in (3.21) is divergent, but when integrated together with the reflected part of
the Green’s tensor the leading order terms cancel. The remaining leading order terms of
(3.21) for large arguments can be written as

π

|2q| ((1− 2m′)J2m′(qa) + (1− 2m)J2m(qa)) +
π(−1)m

′
(2m′ − 1)(−1)m(2m− 1)

4aq2
. (3.23)
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This is integrated analytically by use of
∫ ∞

0

Jm(qa)

q
dq =

1

m
, for m = 1, 2, ... (3.24)

to get reasonable convergence. In paper D the part that originates from the free space
part of the Green’s tensor

∫ ∞

−∞

s2

hp2
Jn(pa/2)Jn′(−pa/2)dp, (3.25)

has to be integrated in a similar way, but in this case it is easier to identify the dominating
term which can be integrated analytically by use of

∫ ∞

0

1

p
Jn(p)Jn′(p)dp =

δnn′

2n
, for even n+ n′, (3.26)

The method of numerical integration used in this thesis is the Gauss-Legendre quadrature.
It is an efficient method which also manages to deal with weak singularities.

4 Results
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Figure 4.1: The real versus the imaginary part of ∆Z during a surface scan. The lengths
of the cracks are 1 mm, 2 mm, 4 mm, 8 mm and 10 mm, (starting from the top). The
scanning is in the normal direction over the center of the cracks. The solid curves are
with the present method and the circles with FEM.

In the present thesis the numerical examples and comparisons with FEM calculations
are foremost given to confirm the accuracy of the methods. The following two examples
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from papers C and D are even so containing some interesting information. In the first
figure 4.1 the change in impedance when scanning perpendicular over the center of
rectangular cracks with five different lengths 10 mm, 8 mm, 4 mm, 2 mm and 1 mm are
shown. The cracks breaks a plane surface of titanium, they are 0.66 mm high and the
frequency of the current is 1 MHz. There is five different crack lengths, but there are
only four different curves. All cracks that are longer than 8 mm give the same change in
impedance. This imply that the change in impedance due to a rectangular crack can be
calculated by use of the method in paper B for a strip-like crack when the probe is not to
close to the edge of the crack (a distance of 4 mm from the edge is enough in example
4.1). The circles in the figure which agrees very well with the curves are finite element
calculations. Good agreement with FEM is found for all methods in the present thesis.
The change in impedance is presented in the impedance plane which is common in eddy
current applications. Here the imaginary part corresponds to change of the reactance
while the real part corresponds to change of the resistance. All of the curves are coinciding
at the origin where the probe position is far away from the position of the crack. The
signal is increasing when the probe is approaching the crack.
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Figure 4.2: The real versus the imaginary part of ∆Z during a surface scan. The lengths
of the cracks are 2 mm, 4 mm (starting from the top). The scanning is in the φ direction
over the center of the cracks. The radii of the cylindrical hole are 1.5 mm, 2.5 mm, 5 mm,
7.5 mm and ∞mm, where the amplitude is decreasing with increasing radii.

Figure 4.2 is from paper D and shows the change in impedance when scanning inside
cylindrical holes with four different radii, 1.5 mm, 2.5 mm, 5 mm and 7.5 mm. Again
the material is titanium, the height of the cracks is 0.66 mm and the applied frequency
1 MHz. The fifth curve shows the result for the same scan, but when the surface is a
plane. The model of a crack inside the material with plane surface could be used as a
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good approximation for the crack below the cylindrical surface when the radius is large
(larger than rc = 7.5 mm in this case). This is an important observation in the intention
of making computational efficient simulations, especially since the effectiveness of the
integral equation method presented in paper D is decreasing when the radius of the
cylinder is increased. A larger number of cylindrical basis functions which are used in the
expansions of the incoming field and the reflected part of the Green’s tensor is needed for
a cylinder of larger radius.

5 Summary of appended papers

5.1 Paper A

A 2D model of the eddy current interaction problem that consists of an inhomogeneity in
a conductive half space is presented. The applied analytical method of solution is the
transition (T) matrix method. This involves use of the free space Green’s function to
generate a system of boundary integral relations. In this way, it is easy to identify the
contributions to the total solution from each different scattering surface. The different
parts are separated also in the computation of the impedance. This leads to low cost
simulations in terms of computation time and qualify the method to be used to obtain
probability of detection (POD) curves. The model is compared with a Finite Element
(FE) model and numerical examples for the case with a cylindrical inhomogeneity are
given. This method is foremost suitable to subsurface defects and not to surface-breaking
once, even though it is possible to be near the surface. The efficiency of the method and
its building block characteristics enable applications where several scatterers are involved.

5.2 Paper B

An integral equation method to the nondestructive evaluation problem for a flat, infinitely
long, tilted, surface-breaking crack in a conducting half-space is presented. The method
involves use of the half-space Green’s function and the Bowler potential. This potential
describes the jump in the electric field over the crack and is expanded in basis functions
related to the Chebyshev polynomials, being a more analytical approach than the com-
monly used boundary element method (BEM). A similar approach was used by Bövik
and Boström [2] to model a subsurface crack in an elastodynamic field problem. In the
method the scatterer defines a transformation operator to be applied on the incoming
field. This is practical in simulations of the eddy current inspection where this operator
just has to be generated once and not for every position of the probe. The numerical
calculations of the change in impedance due to the crack are compared with a Finite
Element (FE) model of the problem and good agreement is found. The infinite length of
the defect is one of the reasons for the efficiency of the method, even so the model can be
used as an good approximation for long enough rectangular cracks.
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5.3 Paper C

The eddy-current nondestructive evaluation problem for a flat, rectangular, tilted, surface-
breaking crack in a conducting half-space is solved using a similar method as in paper
B. The obvious difference of the rectangular crack compared to the infinitely long crack
is the presence of corners and two more edges. The key point is to expand the Bowler
potential, i.e. the difference in electric potential over the crack, in basis functions who
have the correct behavior along the crack edges. Here two different sets of basis functions
related to the Chebyshev polynomials are used. The way of discretization in this method
leads to a formulation where the scattering is defined by a scattering matrix, independent
of the incoming field. This is an advantage of the method and being a more analytical
approach than the commonly used boundary element method suggests that it can be
expected to be more numerically effective. Numerical examples are given and compared
with Finite Element calculations and good agreement is found.

5.4 Paper D

An integral equation method for solving the eddy-current nondestructive evaluation
problem for a flat, rectangular, crack close to a cylindrical hole in a conducting material
is presented. The method involves expanding the Green’s tensor, the incoming field and
the jump in electric potential over the crack in suitable basis functions. Here plane waves,
cylindrical waves and basis functions related to the Chebyshev polynomials are used. The
way of discretization in this method leads to a formulation where the scattering is defined
by a scattering matrix, independent of the incoming field. This is an advantage in the
simulations where the scattering matrix does not have to be recalculated for every probe
position. The numerical calculations are straightforward and examples are given and
compared with Finite Element calculations. The basis functions used in this paper to
model a subsurface crack are different from those used in paper B and C to model a
surface-breaking crack.

6 Concluding remarks

In this thesis methods of solution for elastic wave scattering have been used to solve
the eddy current scattering problem. All of the methods is based on a Green’s function
technique and integral representations and are restricted to problems in homogeneous and
isotropic media. The T matrix method described in paper A and the integral equation
methods described in paper B, C and D have all shown to be applicable methods of
solution for the eddy current interaction problem. The advantage compared to numerical
methods such as FEM or BEM is the computational efficiency. The computations made
with the T matrix method were carried out 10 to 50 times faster than the corresponding
finite element computations. The simulations done with the integral equation methods
in papers B, C and D were about 10 times faster than the FEM simulations made for
comparisons. The more probe positions used in the simulations the more beneficial
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becomes the methods compared with FEM. These numbers can most likely be greatly
improved by optimization of the implementations.

The T matrix method has the great advantage of being a building block method,
meaning that several T matrices describing different scatterers can be easily put together
into a total T matrix which generates the total scattered field. The method can also
be used together with a finite element method solution approach to manage complex
scattering geometries. On the other hand, it is preferable to use other analytical methods
to obtain different scattering geometries when possible. An ellipsoid is an example of such
a geometry and by use of the method described in [20] the geometry could be altered in
other ways.

The integral equation methods are efficient methods using discretizations in appropriate
basis functions. The choice of correct basis functions is the key point for these methods
to be successful. There are two different sets of basis functions, one to model the surface-
breaking crack in paper B and C and another to model the near surface crack in paper D.
The characteristics of these basis functions are very similar to the characteristics of the
involved fields leading to fast convergence. On the other hand these special properties of
the basis functions are also making them incapable to be applied to a crack of general
geometry for example. Neither can the basis functions used on the surface-breaking crack
be used to model a subsurface crack or vice versa. The Chebyshev related basis used
in paper D on the surface of a subsurface rectangular crack parallel to the axis of the
cylinder can also be used on a radial crack in the same geometry. To model a surface
breaking radial crack the same basis as in paper B and C can also be used here. The
radial crack is more suited to break the surface due to the possibilities to express the
Gzz component of the Green’s tensor as a suitable expansion. Another common crack
geometry where there exists suitable basis functions to discretize the integral equation is
the half-circular crack. These basis functions are related to the Legendre polynomials.

A useful extension of the work would be to reformulate the model of electrical contact
over the crack such that a model of a crack with a small width is obtained.
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[15] L. Larsson, A. Boström, P. Bövik, and H. Wirdelius. Integral equation method for
eddy current nondestructive evaluation of a tilted, surface-breaking crack. J. Appl.
Phys. 114 (2013), 194504 –194504–6.

[16] L. Larsson and A. Rosell. “The T matrix method for a 2D eddy current interac-
tion problem”. AIP Conf. proc. Reveiw of progress in quantitative nondestructive
evaluation. Vol. 1430. Burlington, Vermont, 2012, pp. 316–323.

[17] A. Lewis, D. Michael, M. Lugg, and R. Collins. Thin-skin electromagnetic fields
around surface-breaking cracks in metals. J. Appl. Phys. 64 (1988), 3777–3784.

[18] J. Maxwell. A dynamical theory of the electromagnetic field. Phil. Trans. Royal Soc.
London 155 (1865), 459–512.

[19] I. N. Numerical modeling for electromagnetic non-destructive evaluation. Engineering
NDE. London: Chapman & Hall, 1995.

[20] D. Prémel. Computation of a quasi-static field induced by two long straight parallel
wires in a conductor with a rough surface. J. Phys. D: Appl. Phys. 41 (2008).

[21] A. Rosell and G. Persson. Model based capability assessment of an automated
eddy current inspection procedure on flat surfaces. Res. Nondestr. Eval. 24 (2013),
154–176.

[22] T. Theodoulidis. Developments in efficiently modelling eddy current testing of
narrow cracks. NDT & E International 43 (2010), 591–598.

[23] H. Wirdelius and G. Persson. Simulation based validation of an ultrasonic inspection
procedure. Int. J. Fracture 41 (2012), 23–29.

[24] L. Yu, J. Bowler, and T. Theodoulidis. An analytical model of a ferrite-cored inductor
used as an eddy current probe. J. Appl. Phys 111 (2012), 103907–1–103907–10.

16




