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Vacuum refractive indices and helicity flip in strong-field QED
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Vacuum birefringence is governed by the amplitude for a photon to flip helicity or polarization state in an
external field. Here, we calculate the flip and nonflip amplitudes in arbitrary plane wave backgrounds,
along with the induced spacetime-dependent refractive indices of the vacuum. We compare the behavior of
the amplitudes in the low energy and high energy regimes, and analyze the impact of pulse shape and
energy. We also provide the first lightfront-QED derivation of the coefficients in the Heisenberg-Euler

effective action.
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I. INTRODUCTION

The quantum vacuum, when exposed to intense light,
effectively becomes a birefringent medium [1] due to the
possibility of light-by-light scattering [2—4]. Photonic probes
of the vacuum then acquire an ellipticity in their polarization,
in analogy to a probe passing through a birefringent crystal.
This “vacuum birefringence” has become experimentally
accessible due to the advent of high-intensity (optical) and
high-energy (X-FEL) laser systems. A flagship experiment
to measure vacuum birefringence, using combined optical
and x-ray lasers, has been proposed by the HIBEF con-
sortium [5], based on the suggestion in [6]. Continual
progress is being made in meeting the experimental chal-
lenges [7], in particular in developing the required x-ray
polarimetry. Unprecedented accuracies in polarization purity
have been achieved [8], and are indeed required, to detect the
tiny ellipticity signal.

This paper complements the experimental progress by
extending previous theoretical results [1,6,9-13], obtained
for constant fields, to a particular case of spacetime-
dependent fields, namely plane waves. The challenge here
is to obtain an analytic expression for the ellipticity signal.
The prevalent method, which works well for constant
background fields, has been to extract refractive indices
from the polarization tensor, evaluated in the given back-
ground (see [14-17] for methods and comprehensive
reviews). It is common folklore among workers in the
field that nonconstant backgrounds pose much greater
difficulties. Take the example of plane waves for which
the polarization tensor has been known since 1975 [18,19].
The associated Ward identity has only recently been
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verified [20], and the extraction of the refractive indices
remains a challenge to this day.

In this paper we will meet and overcome this challenge
by taking a different vantage point; we will trade the
effective action approach behind the polarization tensor
(and, in consequence, the refractive indices) for an
approach based on a scattering, i.e. S-matrix, picture.

Recall that it is the quantum process of photon-photon
scattering which lies behind the nonlinearity of the
vacuum; see Fig. 1. Thus, even in the absence of matter,
i.e. in vacuum, photons do self-interact. As a result, most
optical effects known from photon-matter interactions have
a purely “photonic” analogue arising from the virtual
fermion loop of Fig. 1. For instance, vacuum birefringence
emerges from forward scattering, while backscattering
may be viewed as quantum reflection [21]. Off-forward
scattering in general corresponds to diffraction [22-25] or
deflection [26]. Upon counting vertices in Fig. 1, the
scattering amplitude is of order o?, with a = 1/137
denoting the fine structure constant. So, clearly, all
“vacuum optics” effects will be small. Nevertheless, it
makes sense to study the relevant S-matrix elements [3]
with a view to enhancing the experimental signatures by
choosing an optimal set of kinematics and parameters. For
example, birefringence is, as we will show, fully described
by a single scattering amplitude: that for helicity flip in
forward scattering.

For the problem at hand, our S-matrix point of view turns
out to be more powerful than the traditional approach based
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FIG. 1. Left: the basic photon-photon scattering diagram.
Right: the lowest order contribution to birefringence in a back-
ground field. Two of the loop’s legs are attached to the back-
ground, two to a probe photon.
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on effective actions and their functional derivatives such
as the polarization tensor. By calculating scattering
amplitudes, we are able to overcome the restriction to
constant background fields and describe vacuum bire-
fringence for plane waves. It even becomes possible to
study the impact of pulse shape and energy. In this way
we manage to extend known results, valid in the low
energy, intensity-dominated regime, to the quantum-
dominated high energy regime where the probe energy
exceeds the electron mass, m, as would be the case for
the setup proposed in [27], and for experiments at the
Nuclear Physics pillar of the Extreme Light Infrastructure
facility (ELI-NP) [28], as we discuss below. Because the
helicity flip amplitude is significantly simpler than the
full polarization tensor, our approach should also be
suitable for studying more complicated field geometries,
say Gaussian beams.

The paper is organized as follows. We begin below by
briefly reviewing the usual approach to vacuum birefrin-
gence in strong fields, based on effective actions. In Sec. II
we introduce our own approach, based on scattering
amplitudes and expectation values in QED. We describe
the observables relevant for birefringence and, for com-
pleteness, also show how to extract the vacuum refractive
indices for arbitrary plane waves. The forward scattering
amplitudes for helicity flip and nonflip are analyzed in
Sec. Il and Sec. IV, respectively. Since our results are exact
in the background field, we are able to interpolate between
the low energy and high energy regimes and explore the
relative importance of both high-intensity and high-energy
effects. The accessibility of low and high energy effects in
proposed experiments is discussed in Sec. V, and the
extension of our results to more realistic, i.e. focused,
fields [29-31] is then discussed in the conclusions.

We use lightfront field theory throughout, as this is
the easiest and most natural way to perform QED calcu-
lations in plane wave backgrounds [32,33]. The details of
this approach are not needed to understand our results
(which are equivalent to those obtained via the usual,
covariant Feynman diagram approach), and so the explicit
calculations are left to the appendices.

A. Preliminaries and review

The standard derivation of vacuum birefringence
[1,6,9,11-13] starts from the inhomogeneous wave equa-
tion obtained by varying the quantum effective action in a
background field, a, by linearizing in a fluctuating field, b,

Ob, =11,,(a)b, (1)

where the background dependent polarization tensor
I1,,(a) is depicted in Fig. 2. The wave equation (1) is
solved by making a geometric optics, or eikonal, ansatz,

b, = €, exp(—iV), (2)
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FIG. 2. The one-loop contribution to helicity or polarization
flip in a background field. The tree-level contribution is
identically zero.

which implies the algebraic “transport” equation for the
polarization vector e,

{Kzg,,,, + 10, (k;a)}e” = 0, (3)
where the probe wavevector « is defined by
K, = 0,V. (4)

The secular equation then turns into light-cone conditions
[11,34] which may be written as

K2 + Hi = O, (5)

in which the I, are the two nontrivial eigenvalues of the
polarization tensor.

At low photon energies < m, where m is the electron
mass, the appropriate effective Lagrangian is Heisenberg-
Euler. To leading order in field strengths, this is

—_

Lygio = 3 (c_8* + ¢, P?). (6)

It depends only on the field invariants

1 |
S:_ZFﬂyFﬂ’ P:_ZF/'WF”’ (7)

and the low energy constants are

cy a 1 [7
= — s 8
{c_} 457:E§{4} (8)
where Eg = m?/e =10'"8 V/m is the Sauter-Schwinger
critical field [4,35,36]. In this situation, the eigenvalues of

the polarization tensor may be expressed in terms of the
background energy-momentum tensor, G*,

I, = c.x,0"k, >0, 9)

which obeys a positive energy theorem [11]. The light-cone
conditions (5) then take on the simple form

K +TI = (G + €10, k"K" =0, (10)

with effective metric g, + ¢4+ ©,,. Introducing an index of
refraction,
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: (11)

i

Ko

one finds the two solutions

K, 0"k, a E?
ni:l—l—ci ﬂzwz —)1+E(11i3)E—§, (12)

where the final expression is obtained for head-on colli-
sions between the probe and background. One can obtain
(6) and other effective Lagrangians by simply writing down
all possible invariant combinations of the field strength,
with unknown coefficients. The “matching problem” is
then to calculate these coefficients in the underlying theory.
QED, of course, implies the Heisenberg-Euler Lagrangian
(6), while the low energy limit of the U(1) sector in
string theories tends to be Born-Infeld electrodynamics
[12,37,38]. In this paper we will give, to the best of our
knowledge, the first calculation of the matching coefficients
¢4 in lightfront QED.

II. OBSERVABLES FOR BIREFRINGENCE

The proposed setup for measuring birefringence uses an
intense optical laser probed by an X-FEL beam. Both are
linearly polarized. As the probe, with polarization €, passes
through the optical laser, it acquires an ellipticity due to
light-by-light scattering, and it is this ellipticity which is to
be measured.

The observables of interest are then the polarization of
the probe field, or the number of probe photons detected
with a nonzero ¢/—polarization component, 01rth0gonall1 to
that of the initial photons, €’e = 0. Such observables can be
obtained in quantum field theory as the expectation values
of (i) the ¢'—projected photon number operator, N, and
(ii) the ¢'E component of the laser field, both calculated in
the time-evolved state.

We describe the background field as a plane wave
which depends on x := r + z, which is “lightfront time.”
(Other coordinates are x~ = x"—x3, xt={x' x*};
momenta are p. = (po+ p3)/2, pL={pi,p2}.) As
such, our system has an explicit dependence on x™, which
is the natural parameter to use in order to describe time
evolution [32]. The incoming asymptotic state |in) which
describes a laser probe is a coherent state. Such “closest to
classical” states give, for example, nonzero expectation
values for electromagnetic fields, unlike pure photon-
number states. The expectation value for an observable,
O, in the time-evolved state is

(O)ou = (in|U"(x7)OU (x*)lin), (13)

"This does not mean the beam’s polarization is rotated by 90°.
Rather, it is the presence of a small number of orthogonally
polarized photons which gives the beam a small ellipticity.
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where U(x") is the time-evolution operator (so that S :=
U(oo) is the S-matrix operator). Working to one loop, we
find that the observables introduced above can all be
expressed in terms of a single lightfront time-ordered
transition amplitude, 7, defined by sandwiching the
time-evolution operator between single photon states
[, ¢) (for momentum [, and polarization ¢):

(I, €U(xT)

Le) = :5(1, ) (=ce + iToo(x)),  (14)
where the delta function is §(I,1) = (27)°21_8° | (I' - 1).
This conserves momentum in the longitudinal (“minus”
and transverse directions because the background is inho-
mogeneous in only one direction. The appearance of the
delta function is typical of scattering amplitudes in plane
waves [39,40]. The factor of i is for convenience, and it is
understood throughout that 7" also depends on the forward
scattered probe momentum [,. The relevant one-loop
Feynman diagram is given in Fig. 2, and the double lines
are dressed fermion (Volkov [41]) propagators. While the
method of calculation, starting from this diagram, is by now
standard, it is more efficient and elegant to calculate in
lightfront field theory. The derivation and renormalization
of T is given in Appendix A. Here, we describe how T
enters the observables of interest.

We take the incoming probe field to be monochromatic,
to illustrate. The coherent state for such a probe is defined
by the action of the photon annihilation operator:

E
a,(I')|in) = —is2e,8(I',1)[in).
21,

(15)
Before interaction with the background field, the fields of
this state are € polarized, so that

e(E);, = Eycoslx, ¢(E);, =0, (16)
where ¢’ is the second possible polarization of the wave,
€¢’e =0. Interaction with the background changes
the structure of the fields. First, the fields acquire an
ellipticity because the interaction generates a nonzero ¢’
field component:

€'(E)ou = ReEge™™iTuc(x7). (17)

The original field component is also affected, becoming2

€<E>oul = ReEoe_”x(l + iTee(x+>)

—~ ReEoe_ilx+iT€é‘(x+). (18)

As T is complex, we will have both dispersive and
absorptive contributions. As will shortly be shown, though,

Here, we have neglected terms of higher order in the probe
field strength E,. These terms vanish for e.g. (17) when ¢’e = 0.
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T is real in the low energy limit, in which case the induced
field component (17) becomes (€'E) = E sin(Ix)Ty.(xT),
out of phase with the original field component. The induced
ellipticity, o, of the field is the ratio of the field’s minor and
major axes, i.e. what remains after dropping the trig terms:

5 =Ty, (19)

From (18) we can use (2) to read off a (complex) phase
shift, ¥,

U =[x —T.(x"), (20)
and from (4) we identify the probe wave vector «:

8T€€ ('x+ )

kK, =0,V =1,-n, pre (21)
From this the refractive index is extracted as in (11):
10T, (x*
n(xt) = &y +”—2ﬂ. (22)

Ko w; 8)6*

The indices are not constant, but inherit a dependence on
x* from the background. Measurements in a real experi-
ment will of course be made far from interaction volumes,
and so the asymptotic limit, x* — oo, is relevant. In this
limit, it is clear from the definition (14) that iT is just the
one-loop S-matrix element” for forward scattering between
different possible polarization states. Now, a photon has
only two independent polarization states, so we can take
{€’, €} as a basis. (One such choice, see below, is a helicity
basis.) The probability that the photon “flips™ polarization
between these states during its interaction with the back-
ground is just the large time limit of 7., mod-squared,
which governs the induced ellipticity in the beam:

P (flip) = [Te(c0)[*. (23)

Further, iT,, is just the nonflip scattering amplitude, and if
the number density of e-polarized photons in the in-state is
pe(l) (going beyond plane wave probes) it follows that the
number of orthogonally polarized photons which can be
detected in the out-state is

2

’

Nedou = [ Ap. (0P (tip) = [ dip (D] (o)
(24)
where dl is the invariant on-shell momentum measure [see

Eq. (A2) for the explicit form].

*We remark that in and out vacua are equivalent in a plane
wave background; the one-loop effective action is identically zero
and there is no Schwinger pair production [36].
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A. Scattering and the polarization tensor

Again from (14), the asymptotic limit 7(co0) can be
written as the polarization tensor sandwiched between
different polarization states,

Tezel (00) = €2H(l’ l)€17 (25)

for [,, the forward-scattered momentum. Given any (two-
component) basis €] of the photon’s physical polarizations,
and writing 7 = T ., for compactness, the polarization
tensor for on-shell photons can be reconstructed as

= €T, (26)

A

Note that to calculate the observables (17), (19) and (24),
one needs only the flip amplitude. This single amplitude
corresponds to a particular component of the polarization
tensor, but the tensor as a whole is not needed.

As we now show, the expressions we have derived for T
are simple and easily evaluated in comparison to the
majority in the literature. We begin by introducing our
conventions and notation in more detail. Consider a photon
probing a background plane wave. The plane wave is a
transverse function of nx where n, is a light-like vector:
n? = 0. We can choose n, such that nx = x° + x* = x™,
lightfront time. (Other coordinates are as above.) In order to
make approximations and estimates, we introduce w, a
typical frequency scale associated with the background. We
will often use ¢ := kx, for k = wn, as a dimensionless
lightfront time variable. The background plane wave is

eFS () = kual (@) — (D)K.
d\(§) = —eE, ()]0, (27)

A photon with momentum [, has two independent
physical polarization states. These are described by a
two-component basis of polarization vectors, e’,{(l) which,
in the lightfront form, can be chosen to be orthogonal
to both the photon’s momentum and to the lightfront/
laser direction n,, so le;(I) = ne,(l) = 0. With vector
components in order +, —, L we have

e(l) = <0, - lllef : e;>. (28)

The polarization vectors (which may now be complex)
obey the completeness relation

ntlY + P n?

o (29)

> E(Des(l) = —g™ +

Possible choices of bases are the helicity basis
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1
ej:ﬁ(l,i/l), A==l (30)
or a basis of linear polarizations,
et = (1,0) er = (0,1). (31)

We will consider both choices below. For the presentation
of our general result, we let ¢, ¢ be any two polarization
vectors constructed from such a basis. The transition
amplitude 7 depends on the background field through
the moving average

@)= [ dvas o (32)

_%g

where ¢ and 6 are lightfront times which arise in the
S-matrix calculation as center of mass and relative coor-
dinates, respectively. The amplitude also depends on the
projection of the average (32) onto the polarization vectors,
A :=¢(a) and A := & (a). We write a subscript 8 or ¢ for a
derivative, so Ay = €“0y(a,) and so on. The asymptotic
amplitude 7'(o0) is

Toe(oo0) = _i’l d¢/ dae(Il <ggz>
|:€ €M2 —m?9(6M?)

2 0*m? 00

+ <Ag + %A,,,) <Aa - %Aqb)]
%Iz (ek_zvf) [%e (@) = (AgAg — AeA(/:)] )

(33)
in which

M?(¢.0) = m? + (a)* — (@) (34)

is Kibble’s effective mass [42], and the two Z-functions are
simple combinations of modified Bessel functions:

T,(x) = ixe* (K, (ix) — Ko(ix)),
To(x) = e"*Ky(ix). (35)

The loop momentum implicit in Fig. 2 has been integrated
out exactly, which is one reason why this amplitude has a
much simpler representation than is typically obtained for
the polarization tensor. The two remaining integrals over
the lightfront times {¢,#}, which come from the two
vertices in Fig. 2, can be performed numerically. This is
discussed in Appendix C. Despite appearances, the inte-
grals are well behaved at 8 = 0; a potential contact term
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[15] (a ultraviolet (UV) divergence) is removed by renorm-
alization; see Appendix A.

The remainder of the paper is given over to a detailed
investigation of the cases of interest, namely the flip and
nonflip amplitudes. In order to cement the fact that 7 is the
relevant object, we will “preview” the discussion with 7’s
low energy expansion, which is relevant for upcoming
birefringence experiments. Let /, be the probe momentum
and k, be the typical momentum associated with the
background, as above. A low energy limit can then be
defined by expanding in the invariant kI/m?. Although we
have presented 7(co) above, the low energy part of T(x™")
has the same form, except for the integration limits, and is
equal to

a ki1

Tee¥™) = 4033

/ dp(14€ed? — 6€'d'ed’). (36)

We immediately recognize the coefficients for the refractive
indices and ellipticity. For nonflip case, ¢ = ¢, there are
two independent cases to consider; if ¢€E = 0 we pick up
the first term in (36) with coefficient 14, and if ¢||E we pick
up both terms, 14 —6 = 8. Using (22), these give the
coefficients of the two refractive indices. For the induced
ellipticity (19) and its asymptotic limit 7. (co0) with
€'e =0, i.e. the flip probability, we pick up only the last
term in (36), with coefficient 6. This is the difference of the
two refractive indices, and it is this which is measured by a
birefringence experiment. Inserting (36) into (22), one
confirms immediately that the refractive indices differ from
unity only when the field strength ~a’ is nonzero. The
indices are also constant when the field is constant, as
expected.

III. HELICITY AND POLARIZATION FLIP

In this section we analyze the flip probability. We will
frame the discussion in terms of helicity, which is most
natural from a high energy physics perspective since a
photon’s helicity is relativistically invariant [43], and
preserved in the absence of interactions. Our calculations
hold, though, in arbitrary bases.

The normalized photon state of definite helicity A and

momentum wave packet f is
[ansae =1

(37)

)= / drf(1)e,(1)a (1)[0).

In the presence of a background, there is a nonzero
probability that the photon’s helicity will flip, 4 - —4,
as it propagates. In general backgrounds this can be
accompanied by scattering, but when the background is
a plane wave, conservation of three lightfront momentum
components means that asymptotic scattering is automati-
cally forward. (See [13] for nonforward, nonasymptotic
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contributions using the effective action approach.) Hence,
the probability for helicity flip 4 - —1 and forward
scattering is given here by the total probability of helicity
flip,

P (flip) = / Ay, —iS|f. ). (38)

Taking the wave packet to be peaked around momentum /,,
the flip probability becomes

Pl(ﬂlp) = |T€/€<OO)

2, Fe=0. (39)

In this case only the second terms in each square bracket
of (33) contribute. The probability vanishes when the field
vanishes, as it should.

A. Helicity flip: Behavior as a function of energy

For laser-based investigations of birefringence, we
are mainly interested in low energy probes in low energy
backgrounds, which means that the invariant b :=
kl/m?* < 1 and we can simplify the probability. The most
naive way of doing so is to change variables § — by and
then expand in powers of b,. The 6 integral then becomes
simple, and we are left with

byl 2

. a ki
P,(flip) =" | s

— 40
307z m* (40)

[ wed @red()

In Fig. 3 we compare (40) with the exact polarization flip
probability (39). For our plots, here and in subsequent
examples, we use the following background field profile:

(al) :aome_¢z/Az(cosrpsin(qﬁ—qﬁm))’ (41)

sin ¢ sin(¢p — ¢,)

as

0.1

0.01

0.001

1 1 1 1 bO
107 0.001 0.01 0.1 1

FIG. 3 (color online).
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which has an amplitude ~a,, a Gaussian envelope and a
polarization determined by ¢ and the carrier phases ¢;. For
Fig. 3 we have chosen a circularly polarized background,
@ =7r/4, o1 =0, ¢y, = n/2, and A = 10z which corre-
sponds to a FWHM duration of around 30 fs at optical
frequency w = 1.24 eV. We see first that the approximation
(40) is excellent in the low energy regime of interest. As the
probe energy rises, (40) underestimates the full result, over
a range of around one order of magnitude in b,. Thus,
increasing the energy boosts the flip probability. For even
higher energies, (40) greatly overestimates the true prob-
ability, which begins to drop. The reason is that, at high
energies, additional quantum effects appear. There is for
example a greater probability that the photon will “decay”
via e.g. stimulated pair production [39,40,44-47], and it
follows from unitarity that “photon persistence” probabil-
ities must drop. As we will see below, this is associated with
the appearance, at high energy, of effects, such as anoma-
lous dispersion, which are not captured by the low energy
approximation.

From the figures, we can read off when the approxima-
tion (40) holds. We find that this can be phrased in terms of
a single parameter, namely the photon’s “quantum effi-
ciency parameter” y [39,40,48], which is the contraction of
the probe momentum with the energy-momentum tensor in
a plane wave [6,11]:

e’ E w,
=\ lOu N ~——. 42
)( mé M E¢m (42)

Here and below, w; = [, is the probe energy. y is spacetime
dependent. As we will see below, low energy processes are
typically sensitive to the total, integrated y, but since we
have fixed pulse shape and length, peak and total y are
proportional, and it is simpler to use peak y, which for the
circular polarized wave is

0.6

04F

1 - bO
107 0.001 0.01 0.1 1

Left: The exact probability P for helicity flip 4 — —A (full lines), from (39), and the approximation P, from (40)

(dashed lines), plotted as functions of invariant b, = ki/m? (log-log scale). Right: Ratio P/P,. as a function of b,. The background is
circularly polarized with a Gaussian profile, see (41), width A = 10z and @, = 200, 100, 50 (left to right). In the low energy regime (40)

provides an excellent approximation.
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(43)

Values of y cannot be read off directly from the plots, but
are easily extracted from the numerics. We find that the
difference between (39) and (40) is within 5% for y < 0.3,
and within 10% for

x <04, (44)
Even for an optical fieldstrength of E = 107*Eq,
corresponding to an intensity of around 10> W/cm?,
the approximation (40) remains valid for photon ener-
gies reaching w; ~1 GeV. The worst underestimate,
(40)/(39) ~0.72, occurs at y = 1. The probability for
helicity flip is maximal for y ~ 12. This is all consistent
with expectations, which are that quantum effects become
more important as y increases toward unity, although our
results allow us to be a little more specific. Interestingly,
Fig. 3 shows that (40) again becomes a good approximation
even at some higher energies for which y > 1. This is due
to the behavior of the probability, which turns and begins to
drop, and so the low energy expansion changes from an
underestimate to an overestimate. There is then a small
kinematic regime around y == 2 in which the approximation
becomes close to the true probability again. It may be that,
for such high probe energies, higher loops are needed
in (39).

B. Locally constant approximation

More about the low energy approximation, and its
shortcomings, is revealed by considering the locally con-
stant approximation to (39). This can be obtained either by
expanding (39) in the relative coordinate 8, or by writing
down (39) for a constant crossed field and then replacing
E — E(¢) everywhere. For the latter method, take w = m,
and define &/ = E//Eg (£° = 0), the ratio of the electric
field to the Schwinger field. A vector potential for the
crossed field is a*(¢p) = —mE*¢. Representing the Bessel
functions as an integral over dimensionless s (which can,
see Appendix A, be interpreted as a light-cone momentum
fraction), the constant field probability is

am? [ 0 1 _me-2e /12 | 2

i K 2s(1-s) — z

— /_oodqﬁA dGHA dse 4(65)(68) .
(45)

CF —

This diverges quadratically with the volume of lightfront
time ¢. However, if we replace £ — £(¢) then we obtain
the locally constant approximation, Py cga. In this case we
can perform the f-integral exactly, obtaining Airy (Ai) and
Scorer (Gi) functions, both of which are typical of one-loop
results in constant fields, see [11,49],

PHYSICAL REVIEW D 89, 125003 (2014)

akl _

Prcra = W/dqﬁeé’(qﬁ)eé’(gb)
2 2 d . . . 2

[ dsls(1 =) - i) = G| (46)

where
m2 1 2/3
= (—— —2&H71/3, 47

i= () ) (47)

The kinematic regime of experimental interest is

kl/m*> < 16u > 1; we therefore turn to the asymptotic
expansions of the Airy and Scorer functions, which for
u>1 are

/41/4 2 3 Gil(u) 1 (48)
———exp—=u’*, 1 =——7.
N A H P

The Airy function term is nonperturbatively small in the
invariant b, = kl/m?, relative to the Scorer function. The
locally constant approximation reveals that the helicity flip
probability contains a part which is nonperturbative in b,
and which is, naturally, missed when one simply expands in
powers of b,. Nevertheless, since this nonperturbative part
is exponentially small in the regime of interest, it is safe to
neglect it; doing so, the remaining s-integral is trivial and
we recover precisely (40), so Py cpa = P(flip) for by < 1.
The validity of this approximation in the regime of interest
is confirmed by the excellent agreement between (40) and
the exact result (39), shown in Fig. 3 and Fig. 5.

We have therefore seen, either by direct low energy
expansion or by going via the locally constant approxi-
mation, that the flip probability collapses to a simple
expression which is quadratic in the background, i.e. is
the same as would be obtained to lowest order by treating
the background perturbatively. This is as expected from the
low energy expansion of the Heisenberg-Euler action, and
is an explicit example of the general statement in [50] that
higher-order terms (in the background) are hard to observe
in loop processes when probes have low energy.

Al () =

C. Polarization flip: Dependence on geometry

Since (39) is not restricted to just the helicity states, we
consider now the “polarization flip” probability between
elements of the linear basis (31). This is relevant because
the experimental case of interest, birefringence, takes both
the background and probe to be linearly polarized. Let us
then make the connection with literature results on
birefringence.

We take the incoming photon to have polarization € = €,
from (28) and (31), and we look at the probability that this
photon will have flipped to the orthogonal linear polari-
zation ¢’ = e, after interaction with the background. We
begin in the low energy regime. From (40) we can then
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FIG. 4 (color online). Head-on collision between the probe
and the background field. The background field has light-
front duration Ax™', and the probe emerges after a distance
d = Ax"/2.

identify three parameters on which the probability depends;
the collision angle, the angle between the polarizations of
the background and probe, and (somewhat broadly) the
background field profile. Since the polarization vectors are
real in this linear setup, we can look directly at the flip
amplitude 7 which we know from (19) is the induced
ellipticity of the probe beam. Let 9 be the angle between the
beam directions k and 1, and let ¢ be the angle between €
and a . Then

9 E2 +
Tee= %a),siﬁisin 2(7/d)fr l({zz )

(49)

We have a straightforward factorization of dependencies,
and the probability is clearly maximal for head-on colli-
sions, 9 = 7, and a 45° angle between the probe polari-
zation and the background, ¢ = 7/4; this is well known for
birefringence. This leaves us with the pulse shape. For the
above angles, consider first a constant field of duration,
Ax*, in lightfront time. Introducing the probe wavelength
/11 = 277:/601, we find

a AxT (EN? 2ad (E\?
49) » L2 (2T 20 dEAT (50
49) ~ 15 4 (ES) 154 (ES> 30

where, in the last step, we have introduced the distance d
traveled by the probe in the “birefringent medium”; for the
case of a head-on collision between a photon and a plane
wave, this distance is d = Ax*/2, as shown in Fig. 4. We
recognize the structure of the birefringence signal [6],
which has come directly from the flip amplitude in a
background field. Note that the observable is (64)-squared.
In the quantum theory, this is the probability of polarization
flip. In the effective theory it is the intensity of the induced
component of the probe beam, which is proportional to the
phase retardation squared [6].

It is clear that the constant field probability can be
increased by raising the field’s amplitude or extending its
duration, so let us now consider a nonconstant wave of
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arbitrary profile. Returning to (49), we could calculate the
xT—integral for different intensities and field configurations
and then compare. However, the physically realistic sce-
nario is that a laser will have a fixed amount of energy
which can be manipulated (e.g. via focusing) into different
pulse shapes. For phenomenological comparisons between
pulses, the parameter we should therefore keep constant is
the energy. The best we can do in a plane wave is to hold
constant the total energy per transverse area (or integrated
intensity), which is

% / At B2 (xt) + B2 (xH)] = / A B2 (). (51)

We see immediately that if the energy is fixed, (49) is also
fixed, and the flip probability becomes independent of the
pulse shape, under the constraint of fixed energy. This is a
potentially positive result, as it suggests that birefringence
signals, while weak, are robust. The important question is
of course how well this result extends to more realistic,
focused background fields. This will be investigated
elsewhere.

The probability for polarization flip from (39) and its
approximation (40) are compared in Fig. 5. We take here a
linearly polarized background given by (41) with ¢ = z/4
and both ¢y = 0. For linear polarization, peak y. The
approximation (40) is within 10% of the full probability for
x < 0.6, and the worst underestimate, (40)/(39) ~ 0.74,
occurs at y = 1.1. We saw above that, in the low energy
regime, only the total pulse energy is relevant, and this is
proportional to the total, integrated y. Hence, there is a
scaling behavior in the low energy regime: the ratio Pg;,,/ a3
depends only on the product y = agby. This behavior
extends to all energies in the case of crossed fields as
can be seen explicitly in e.g. the refractive indices for
constant fields [1,6,9—11]. In more realistic pulsed fields,

P, P,

l¢g ,
0.1
0.01

0.001

! ! ! ! by
1074 0.001 0.01 0.1

FIG. 5 (color online). The exact probability for polarization flip
e — ¢ (with €'e =0), from (39), and the low energy approxi-
mation (40) as a function of the invariant b, = ki/m? (log scale).
The background has linear polarization, a Gaussian profile with
width A = 10z and intensities a, = 200, 100, 50 (left to right).
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FIG. 6 (color online). The exact probability for polarization flip
¢ — ¢ (with ¢’e = 0), as a function of y, for ay = %, 2, 8. The
dotted line is the low energy approximation and represents low
energy scaling. The black dashed line is a, = 1000, demonstrat-
ing the crossed field, or large a,, limit with high intensity
scaling.

though, there are scaling violations at high energies,
essentially because the spacetime variations of the back-
ground induce b0-dependent corrections to constant field
results. In Fig. 6 we have plotted the flip probability as a
function of peak y = ayb,. Polarizations are as above. We
have chosen a selection of lower intensities, ag = O(1), in
order to show the structure of the probability. The scaling
behavior is clear for low y, where all the curves sit on top of
each other. At high energy we see scaling violation, as the
probabilities become dependent on field strength (a0) and
probe energy (b,) separately. The probability exhibits a
great deal of structure when the energy scale dominates
over the intensity scale, i.e. when b, > a,. More about this
structure can be found below and in Appendix C. These
features are washed out in the large a( limit in which the
intensity once again dominates, and the crossed field result
is expected to be a good approximation [39,40]. This is
corroborated by our results for the probability when
ay = 1000 (black, dashed line in Fig. 6).

IV. FORWARD SCATTERING, THE REFRACTIVE
INDICES AND PAIR PRODUCTION

We discuss here the nonflip forward scattering ampli-
tude, and its relation to pair production and the refractive
indices, again for arbitrary plane waves. The nonflip
amplitude is of theoretical interest because it gives, as
described in Sec. II, the spacetime-dependent refractive
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indices, and because together with the flip amplitude it
completely defines the polarization tensor for on-shell
external photons via (26).

For a one-photon state |f, €) of form (37), the one-loop
forward scattering amplitude is

F = (f,e

SIfe) =141 / dlf (P e, (52)

There are two (independent) such amplitudes, associated
with the photon’s two (independent) polarization/helicity
states. The relevant Feynman diagram is as in Fig. 2, but
with the same incoming and outgoing states. Taking the
wave packet to be peaked around /,, the nonflip forward
scattering amplitude is, in terms of 7,

F =14 iT.(c0). (53)
In this case, one can have contributions from all the terms 1
n (33). Our results in this section can be verified
by comparison with results for limiting cases derived
previously, e.g. the constant crossed field case [9,11]
(see Appendix B).

A. The refractive indices

For an incoming monochromatic probe with momentum
1, and polarization €, the refractive indices are, from (22),
bl _ |, nlOTe(x')

n(xt) = — .
(%) Ko w?  OxT

(54)

Inserting the low energy approximation (36) into this
formula gives us the following expressions for the refrac-
tive indices. First, if we again take J to be the angle
between the directions of the probe and the background
momentum (three) vectors, and o to be the angle between
the polarization vectors of the probe and the background,
then

2 9 E?(x*
n(xt) =1 +ésin2§(7 — 3c0s20) ]% ) (55)
In particular, if we take ea = 0, then we find
a miy*(xt)
N =1+7— , 56
nu() = 1+ T B (56)
while for €||a we have
a miy?(x")
N=14+2—7=2"7 57
M (%) + 457 a)% (57)

The low energy indices are independent of the probe
frequency w; [as it cancels against y; see (54)], but are
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dependent on pulse shape and position, x™ (see also [51]).
For the case of a constant field, the indices become constant
and recover (28) in [9]. Note that it is 7. which appears in
asymptotic observables; this “integrated index” is just the
difference in optical path lengths in the birefringent
vacuum, compared with the ordinary vacuum:

Z}—iTee(oo) - /dx+(n— . (58)

l

For low energy, it is proportional to the energy seen by the
probe. We therefore find again that, in the limit that
kl/m < 1, the relevant property of the pulse is its total
energy.

B. Behavior as a function of energy

The imaginary part of the nonflip amplitude obeys the
well-known optical theorem result that, for all energies,

2ImT . (o0) = P, (pair), (59)

where P, (pair) is the total probability of stimulated pair
production by a photon of polarization, e [39,40,44-47],
written here using the expression (33), not previously found
in the literature, in which the final state momentum
integrals have been performed. The small b, expansion
of ImT7.(c0) vanishes, because pair production is non-
perturbative in the kinematic invariant b,. This can be seen
as follows. In vacuum, pair production by two photons with
momenta k, and /, is a threshold process forbidden for
kl < 2m?>< b, < 2. For a photon, [, in a background, this
threshold is removed because of the (in principle) arbitrar-
ily high frequency components of the background; if k, is
here the central frequency and r parametrizes the frequency
range, the S-matrix element will contain the structure

/dr&swp(rkl/m2 —2)--- (60)

While this integral does have support for arbitrarily low
probe energy w,, it remains identically zero to all orders in a
low energy expansion.

We could plot the refractive indices as a function of
probe energy and lightfront time, but since it is the optical
path length 7. (c0) which enters asymptotic observables,
recall (58), we focus on this. We will therefore examine the
real and imaginary parts of the forward scattering ampli-
tude (53) as a function of probe energy. This requires a
careful and sophisticated numerical evaluation of (33), see
Appendix C, and in preparation it is worth comparing the
large-¢ behavior of the integrand in (33) for small and large
by. Outside of the volume for which the pulse is peaked, the
general behavior of the integrand is to decrease with
increasing ¢p. At low b, the decrease is rapid, occurring
in a region not much larger than that in which the pulse is
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peaked. In the “fully quantum regime” of large by > 1,
though, the integrand decreases more slowly, with the 6-
integral contributing many oscillations, and the effect of the
pulse is noticeable in the integral even far outside the
pulse volume. Consequently, the integral receives large
contributions from coherent/interference effects at large by,.
(Compare large a(, in which the locally constant, or
incoherent, approximation applies.) This behavior is also
seen in the effective mass M2, which is nonzero even when
one of its arguments is far outside the pulse [42,52].

We will consider a linearly polarized probe and three
different circularly polarized field profiles. The first is
monochromatic; set A = oo in (41), and the others are
pulsed, with A = 10z and A = #, the latter being a very
short pulse. (We remark that carrier phase effects may
become particularly important in short pulses, although we
do not analyze this here. Further, for more on the impact of
photon polarization, see e.g. [53].)

For monochromatic backgrounds the integrand in (33)
depends periodically on ¢, so finite quantities can be
obtained only per cycle, i.e. by restricting the ¢-integral
to one cycle. The real and imaginary parts of 7. (c0)/N, for
N the total number of cycles, are plotted in Fig. 7. Before
considering their detailed structure, we begin with the
broad behavior of the amplitude (which is common to all
three background profiles). The imaginary part (the prob-
ability per cycle of pair production) is positive, initially
small, and then rises steeply. The real part (the integrated
real part of the refractive index, or optical path difference)
begins positive (normal dispersion), peaks and then
decreases (anomalous dispersion) as the pair production
probability reaches its maximum. For higher energies the
real part becomes negative, corresponding to Re n < 1.
This behavior mirrors that of the refractive indices in a
constant field, and is typical of a medium with a single
absorption band as described in [11].

We have though additional structure in comparison to
the constant field case. For a monochromatic field, one
expects threshold behavior in the pair production prob-
ability, corresponding to resonance conditions [45] which
describe the effective conservation of quasimomentum

[39,40],

qut+qup=1,+nk, n=1273_., (61)

where the quasimomenta obey ¢> = m2, the effective
mass is m? = m*(1 + a§/2) [41,54,55], see (41), and nk,
represents discrete energies taken from the background.
Squaring (61), this implies the threshold values,

2 2
by = (62)

n

which are clearly visible in the pair production proba-
bility, bottom panel of Fig. 7 for low n = 1, 2, 3, with the
peak positions moving from right to left with increasing
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n, at fixed aq. For higher n, i.e. further to the left, the
peaks are washed out by many overlapping contributions,
a behavior typical also of nonlinear Compton scattering
in a monochromatic wave [56]. While the n = 1 thresh-
old is sometimes associated with the minimum energy
needed to create a pair, we clearly see that higher-order
effects can sum up to give comparable contributions at
much lower probe energies. There is a corresponding
behavior in the real part of the forward scattering
amplitude [18]. The real part peaks sharply upwards as
the imaginary part dips, which happens just before an
effective mass threshold is reached. So, when the
absorptive part dips, (61) and (62) lead to a resonance
peak in the dispersive part. Interestingly, for larger laser
intensity ag, the peaks (dips) in the real (imaginary) part
become more pronounced, and the forward scattering
amplitude begins to resemble the refractive index in a
medium with double band structure, in which one can
have “transparency.” This is the vanishing of the absorp-
tive part Im n = 0, which would correspond here to a
vanishing pair production probability. See [11] for a
discussion of scenarios in which this could be realized.

ReTe(c0)/N
0.010

0.002

0.000
—-0.002

—0.004
2ImTe(c0)/N
0.035

0.030
0.025
0.020
0.015
0.010

0.005

0.000 : - - by
05 1.0 5.0 10.0 50.0 100.0

FIG. 7 (color online). The real and imaginary parts of the
forward scattering amplitude for a circularly polarized, mono-
chromatic wave, (41), with A = o0, ay = 1/2 (cyan), 1 (red), 2
(green), 4 (orange), and 8 (blue). The low energy approximation
is illustrated with the dashed lines.
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We now go to pulsed fields, beginning with A = 10z.
The forward scattering amplitude 7..(co0) is plotted in
Fig. 8. In this case, we see that the broad behavior of the
forward scattering amplitude is as before. However, struc-
ture due to the effective mass has largely been washed out,
because we lose periodicity by going to pulses with quickly
dropping envelope functions such as Gaussians [57]. It is
possible though to retain such structure, if one wishes, by
tailoring the pulse shape. A longer pulse with a reasonably
flat envelope, which contains many similar oscillations,
will retain some features of the monochromatic case,
interpolating between the monochromatic and pulsed
results in Figs. 7 and 8. For explicit examples, see [57]
for nonlinear Compton scattering, [45] for stimulated pair
production and [58] for Schwinger pair production.

The forward scattering amplitude in the short pulse with
A =7 is plotted in Fig. 9. In this short pulse, a new
structure arises. This can be seen in e.g. the a, = 8§ curve.
Unlike the abrupt cusps signalling the effective mass,
there is in the high energy regime, b, > 1, an oscillation
which builds smoothly in amplitude. This can likely be
attributed to an increased importance of high frequency

ReTee(c0)
0.06

0.04

0.02

0.00

-0.02

2ImTe(co)
025
0.20 |
0.15|
o010 e S
[ / \\\
/ N\
/
0.05 // -
/ T~
0.00 _— M

b
05 10 50 100 500  100.0

FIG. 8 (color online). The real and imaginary parts of the
forward scattering amplitude for a circularly polarized, Gaussian
pulse (41) with A = 107z, ay = 1/2 (cyan), 1 (red), 2 (green), 4
(orange), and 8 (blue).

125003-11



DINU et al.

ReTe(c0)

0.006 -
0.004

0.002

0.000

-0.002

2ImT(c0)
0.025f
0.020
0015

L ,///lﬁ ——
0.010 - y S~

r / ~—

/ .

[ /
0.005 / ~

F ///

,// M

0.000 — S

b
05 1.0 50 100 500 1000

FIG. 9 (color online). The real and imaginary parts of the
forward scattering amplitude for a circularly polarized, short
Gaussian pulse (41) with A =7z, ay = 1/2 (cyan), 1 (red), 2
(green), 4 (orange), and 8 (blue).

components in the background, the interaction of many
such components with the probe giving rise to the structure
shown. We find in particular that, at large b,, the most
significant contributions to the integrals come from the
regions when ¢ £ 6/2 (which are the original, ordered
times appearing in the S-matrix element) lie outside and on
opposite sides of the pulse peak. One might say that this
occurs when the virtual particles running the loop see the
whole pulse before annihilating. This should be contrasted
to the low energy but high a( behavior in [50]; in that case
the virtual pair typically annihilates after a short time.
Finally, we study the effects of pulse shaping under the
reasonable physical assumption that the total pulse energy
(51) is constant. We plot in Fig. 10 the forward scattering
amplitude for various intensities, g, and pulse lengths, A,
such that the total pulse energy is constant. The scaling law
for low energy probes is clearly visible in the real part; for
fixed energy, the results are independent of pulse shape.
This scaling law is violated at high energies. The behavior
of the imaginary part gives the following insight into
realizations of stimulated pair production. As a function
of probe energy, the probability of pair production in the
high intensity/short pulse (cyan curve) increases most
rapidly from zero. As probe energy increases, though,
the low intensity/long pulse probability rises to much
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FIG. 10 (color online). The real and imaginary parts of the
forward scattering amplitude for a circularly polarized pulse with
constant energy, shaped into different profiles with (ay, A/x) =
(4,1) (cyan), (2.93, 2), (2.09,4), (1.48,8), (1.05,16) (blue).

greater values. Hence, if available probe energy is low, it
is better to use a short intense pulse. If probe energy is
higher, it is better to use a long, less intense pulse.

V. EXPERIMENTAL POSSIBILITIES

We now give a brief overview of the parameters which
are or will be available at various experimental facilities,
and which of the effects discussed above could be observed
in various birefringence experiments. We begin with the
proposed experiment at the HIBEF facility, in which
the European XFEL (x-ray free electron laser [59]), with
frequency w; = 12.9 keV, would probe a Petawatt optical
field with frequency w = 1.55 eV and peak electric field
strength of E =3 x 107*Eg [5,7,60], corresponding to
aop = 100. For these parameters, we have

20w,

w; E
by = ! 6

~——=8x107°.
X mES x

—=15x107",
m

(63)
It is clear from Figs. 3-5 that the low energy approximation
is excellent in this regime. Using the simple approximation
(50), and estimating d = 12 ym corresponding to the
expected Rayleigh range, the induced ellipticity in the
probe beam becomes
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2ad [ E\2 s
1) 152, <Es> 107, (64)
If one could instead use a 10-Petawatt class laser, reaching
E ~ 1073Eg, the ellipticity would be increased to § = 1074,
This brings us to the ELI-NP facility, where such an optical
laser could be probed by a gamma ray source with energy
w; = 19 MeV. Despite the high probe energy, the invar-
iants remain small,

by =2x 1074, x =0.04, (65)
and we are still in the low energy regime. The “ellipticity”
in this case would be 6 = 0.2, but at higher energies we
must reconsider the question of how to perform the
required polarimetry in order to measure the ellipticity.
In this context we mention the proposal in [27], in which
very high energy photons with @w; = 31 GeV are generated
and passed through a comparatively weak magnetic field
with B = 2 x 107°E;. Rather than detecting the emerging
photons directly, they are dumped into a crystal to produce
pairs, with their magnetic-induced polarization rotation
being extracted from the pair spectrum.

Finally, staying with high energy probes, consider
colliding the electron beam available at the European
XFEL site [59], with energy my = 20 GeV, against an
optical laser with @ = 1.55 eV and low intensity (ay < 1;
see e.g. [56] and references therein). This generates
photons with upshifted energy w; = 4y’w = 10 Gev via
Compton-backscattering. Using such photons to probe a
petawatt class laser, as for HIBEF, above, yields

by =10.1, x =0, (66)
which, from Figs. 3 and 5 (ag = 100 curve) is enough to
take us beyond the scope of the low energy approximation.
Here, one could observe effects which are not captured by
low energy or effective approaches to QED. At even
higher energies, other processes can be triggered, contrib-
uting to background noise. The most obvious candidate at
high energy is pair production by the probe photon
[45-47].

VI. CONCLUSIONS

We have presented the polarization flip and nonflip
amplitudes for a photon of arbitrary momentum /, probing
an arbitrary plane wave background with central momen-
tum k. We have obtained expressions which are simple and
compact, allowing us to test the limits of the low energy
approximation in a completely analytic case. The ampli-
tudes exhibit a rich structure for moderate intensities and
high energies, and contain parts which are nonperturba-
tively small in the kinematic invariant kI/m?. All the
amplitudes admit simple and accurate low energy approx-
imations in the low energy regime. This confirms the
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validity of previous analyses based on calculating directly
in the low energy limit.

From the nonflip forward scattering amplitudes we have
extracted the effective refractive indices of the vacuum,
going beyond previous constant field results. The behavior
of the nonflip amplitude, as a function of probe energy,
reflects that of the refractive indices, exhibiting first
normal, then anomalous, dispersion, together with absorp-
tion due to pair production, as well as (depending on pulse
shape) threshold and resonance effects due to the inten-
sity-dependent effective mass. Such effects occur only at
very high energies (also as shown for constant fields in
[11]), but may become accessible in the not too distant
future by using novel means to generate high energy
probes.

We have concentrated on polarization effects without
changes in momentum. As we saw, a single photon is
always scattered forward in a plane wave background. In
a general background, though, it may be that forward
scattering is more likely than nonforward scattering, or
vice versa, and this may provide clues for identifying the
most promising experiment to detect effects due to light-
by-light scattering. Alternatively, it is easy to imagine
that the field structure could be tuned to emphasise a
chosen effect. These are interesting questions for the
future.

APPENDIX A: STRONG FIELD QED IN
LIGHTFRONT QUANTIZATION

The most convenient formalism with which to study
physics in plane wave backgrounds is, as first advocated
in [32], lightfront field theory, in which one quantizes
on light-like hyperplanes, taking x* = x" +x* as the
time direction. (See [61,62] for comprehensive reviews.)
Coordinates are x* =x%+x%, xt={x',¥*}, p.=
(Po £ p3)/2, pL = {p1, P2}

There are several advantages to using this “front form”
over the usual “instant form” of quantization. First, we can
choose coordinates so that the background depends only on
x*, which makes calculations simple because the back-
ground enters only through time-dependent factors.
Second, because lightfront field theory is an on-shell
formalism, all of the p, integrals in Feynman diagrams
are done for free. Third, many terms vanish immediately
because p_ > 0, which is related to the properties of the
ligthfront vacuum.

One disadvantage of the formalism is that a Feynman
diagram with n vertices leads to (roughly) n! lightfront-
time-ordered diagrams. Even though this increase is min-
imal for the low-order processes we consider here, it is
nevertheless simplest to drop the diagrammatic approach
entirely, and calculate directly with the states and
Hamiltonian. This may be viewed as a particular
incarnation of “old-fashioned perturbation theory” [43].
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We now give a brief overview of the theory, in preparation
for the calculation below.
The mode expansion for the gauge field is

AF = /dlai(l)eﬁ’(l)e'”x +c.c., (A1)

with A = 0 (lightfront gauge), A~ = 9, A, /O_ being the
constrained field, and €, being the helicity state vectors.

The invariant, on-shell momentum space measure dp is, in
lightfront coordinates,

[ [E0s [= oo
(2n)? Jo (27)2p_°

and p, is always given by the mass-shell condition

pe=(pt +m?)/(4p_), m—0 for photons. We

define a*(I) = a,(I)é}(l). The commutator of the photon
modes is

(A2)

n,l, +Ln,
nl

la, (1), i (1] = ~5(.1) (g,w _ ) (A3)

where 5(I',1) is the relativistically invariant delta function,

/ dis(l, 1) = 1, (A4)
which, in lightfront coordinates, has the form
s = 2l_(27r)352(l’l —1)8(l-=1). (A5)

For the fermion fields we use the four-component, rather
than two-component, spinor formalism,

W(x) = / Apby (), K itz + K yspdi(p)o_p. (A6)

in which the spinor and scalar components are, respectively
[32,41],

. ka(9)
K,(¢)=1+ %p
2 )
gop(x) =exp-— {ipx—l— /()tﬁpzakpa] (A7)

The commutators of the fermion modes are

{ba(p). b} (P)} = {di(p). d}y(p")} = 8(p.P')8,x. (AS8)

The lightfront-QED Hamiltonian contains two groups of
terms. The first is order one in the coupling e,

H, :g / dXTA, ", (A9)
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(where dx = d’x"dx™) and the second group is order e?.
The latter contains the seagull and four-fermion terms,
both particular to lightfront quantization. We find that,
ultimately, these terms do not contribute to the processes
of interest here, and so we discard them from here on.
(In terms of Feynman diagrams, one finds that the
instantaneous parts of the fermion propagators do not
contribute.) It is useful to note for later that, in a plane
wave, the Lorentz momentum 7, for a particle with initial
momentum p, is

2a(p)p — a*(¢) .

T, . (A10)

7 (@) = pu—a,(@) +

1. The one-loop amplitude

The one-loop amplitudes for helicity flip and nonflip
between single photon states are readily written down in
terms of the time-evolution operator and the S matrix. We
are also interested in expectation values of the electromag-
netic fields of a coherent (probe) photon state, at non-
asymptotic times. Because coherent states are eigenvectors
of the photon annihilation operators, the calculations for the
expectation values and single photon amplitudes are very
similar. The relations between them can be found in Sec. II.
Working to one-loop, we find that all the objects of interest
are built from the following lightfront time-ordered
product, a transition amplitude between photon states,
momentum /, and polarization €, to momentum [, and
polarization €);:

M(x") = —<l’7€’|/_x+ dy* /_) dz"H\(y")H (25|l €).
(Al1)

We will briefly describe the computation of this object, and
then relate it to the observables of interest. We first need to
evaluate the action of the Hamiltonian on the incoming
state:

Hy(z")

Le) = Hy (=" )e(l)a' (1)]0)- (A12)
The integral over position X in H; yields a delta func-
tion in three momentum components. Because all
momenta have positive minus component, g_ > 0, and
because there are no fermions in the incoming state, only
terms like

H,(z")e()a' (1)|0) ~ bTd aa’(1)|0) (A13)
can contribute. The photon operators can then be commu-
tated away. It follows that the only contributing term of the
second factor of H, in (A11) can be ~bda’, and all the
commutators can be performed immediately. One finds,

after a standard calculation of the trace, that M =
&I, 1)iT,, where
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2 ke ¢ o1 — s kP
iTa = % d¢2/ ’ d¢1 /dpﬁe lj‘lzk([]*{)) (élﬂ'eﬂ' + |:1 :|€,/n_€n,
kI?

+ (ay —a;)? + e

=/
“4kepk(i - p)

in which 1,2 indicate the arguments ¢, ¢, and bracketed
subscripts mean (anti)symmetrization. The integrals in
(A14) are regulated using transverse dimensional regulari-
zation [63]. The field-dependent terms are UV finite, and
renormalization is performed by subtracting the divergent
free-field contribution from the integrand of T,, which we
schematically write as T, — Ty. After this subtraction, one
can return to 3 + 1 dimensions. The renormalized ampli-
tude Ty, =T, — Ty is then UV finite and vanishes when
the field vanishes, so that e.g. the full forward scattering
amplitude becomes F = 1. From this result one can
directly extract the refractive indices using (22), or take
the asymptotic limit to obtain the scattering amplitudes.
However, T, — Ty in the form (A14) is cumbersome to
evaluate numerically, and we would like to be able to
perform as many of the integrals as possible analytically.
We will present this for the asymptotic limit 7'(c0), which is
a little simpler since e.g. the final term in (A14) vanishes
immediately. That term is a total derivative,
(lmy + Iy )e = ik(l— p)(0y — Oy)e, (A15)
|

—icOM? _ —icOm? 2 _ 02 2
/ 7 / ™ dge-ieon M~ 7 dOM
0 0

92

k
2k(l = p)
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ey | 2kpk(I-p)| 21

(Izy + lﬂ'])), (A14)

[
and in the asymptotic limit gives a vanishing boundary
contribution.

So, following the renormalization above, we can perform
the p | integrals with ease, since they are Gaussian [64]. We
also change variables from the ordered times to ¢ = (¢, +
¢1)/2 and 6 = ¢, — ¢y, and from p_ to the lightfront
momentum fraction s := p_/I_. This leads to expressions
containing the form [writing ¢ = 1/(2kls(1 — s))]

i 2
—e icOm

92

—icOM?
¢ : (A16)

which come from renormalization, i.e. from the subtraction
of the free terms. In this form it is clear that the UV
divergence would, without renormalization, appear as a
contact term in position space at @ = 0 [15]. It is easily
verified by expanding M? and (A16) in powers of @ that
subtracting the free part removes this 1/6> divergence. It is
helpful, especially for numerics, to rewrite such terms with
a single exponent:

oM2 0 (A17)

as can be shown by integrating by parts (the boundary term vanishes), separating out the lowest order behavior in 8, and
using the properties of the effective mass M? [42,52]. One is left at this stage with

1 © 0 1 _
Too(00) = -~ d¢/0 d@@[) dse

2nkl ) o

I- - 1 -

i oM
2KTs(1—s)

(g [M2 = d(0M?) (a);
*M?*  do 4s5(1 =)

(A18)

where A =e(a), A =&(a) and subscript ¢ and ¢ indicates derivatives, e.g. Ay = €*dp(a,). We now turn to the
s-integral, noting that the s(1 — s) factors in the exponents are typical of lightfront wave functions [61,62,65]. This final
momentum integral can also be performed analytically, using the results

1 ds —ix : .
e S () e‘”‘[(o(lx),
0

which finally leads to the expression (33) in the text. For the low energy limit we rescale the 6 integral @ — (kl/m?)6 and
expand in kl/m?. To lowest order the last two terms in (A 18) vanish. This expansion can be performed, if one wishes, before
the s-integral is performed. Then the #-integral becomes

o . 1
/ dgge 0 = —
0 b
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/ dsex0=) = ixe ™ (K, (ix) — Ky (ix)), (A19)
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after which the s-integral becomes trivial. We have pre-
sented the calculation for 7'(co). However, for small kl/m?
the amplitude has the same form for finite times, except that
the ¢-integral extends to kx rather than infinity. The result
is as shown in (36).

APPENDIX B: CROSSED FIELD CASE

Here, we will show equivalence between (53) and known
literature results in the case of a constant crossed field, for
which the polarization tensor is well known. Contracting
that tensor with es should then yield the appropriate nonflip
amplitude, in a crossed field. Note that our results are both
more general and more compact than the majority in the
literature (and that we have already reproduced the known
refractive indices). Demonstrating the equivalence between
our results and others is a a tedious exercise in changing
variables in order to show the equivalence of two at-first-
sight different integrals.

For this reason, we present only the simplest case,
which is to assume ea = 0. We start from (A18), with
the s-integral unevaluated, which is closer in form to
the literature expressions. The nonflip amplitude is then
(still for arbitrary plane waves)

a 1 d¢ 2400 [ dse 5
[ — Se s(1=s5
277.' kl 0 0

<a>§5 | dOMZ M2 — 2
4s(1 —s) 0> M?

In a crossed field we have a, = m&, ¢, taking @ = m for
convenience, and M? = mzu( e /12). (Recall that
—& =E?/Eg>0.) In a crossed field, (B1) becomes
independent of ¢, and the d¢-integral contributes the infinite
volume of lightfront time, which we can divide out. Now
take the first term in (B1) and change variables as follows:

(B1)

0
s =

1
-7 =~ (1+0).
2bos(1—s) I+

(B2)

Then the first term becomes

—(Zbo E 2 1 G 1
= do(1 = 22 det —it—i—L2*A|,
167 (ES) /_1 v(l-v )/0 eXp[ ST }

(B3)

where L = by(1 — v?)E/Es. For the second term in (B1),
we rewrite it in a more convenient form, this time introducing
an extra integral:

_ i om? _ i om? i HMZ
e (=) — @ 2H(1-s) dne 2k151 ) <B4)
0

where M2 = m? + 17(M2 — m?). Change variables § — ¢ as
above, then n — &= s*(1 — 5)*n. The integrand becomes
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independent of s, and that integral can be performed. After
this, one can change variables again: ¢ — v with
&= (1-1v%)?2/16. (Note that these changes of variables
must be defined “piecewise” in order to be invertible and
properly cover the integration volume.) One obtains (B3) but
with an additional factor of —v?/3 in the integrand. Finally,
adding the two terms together gives us

Tee(o0) —aby (EN\? [1 1
= — do(1—=0?)( 1 -2
Far ~tor (5) [, er0-(1=50
0 1
drt —it—i— 11
XA exp[ it—ig },

in which we have the same integral as in Eq. 4.26 in [11] and
in Eq. (4) in [9]) (contracted with € where ea = 0).

(BS)

APPENDIX C: NUMERICAL METHODS

The final state and loop momenta in our amplitudes have
been performed analytically. What remains in e.g. (A18)
are the {0, ¢} integrals over lightfront times, which come
from the two vertices in Fig. 2. For constant or mono-
chromatic fields, one can make some further analytic
progress with these integrals, but for general fields one
must turn to numerical methods.

For small b, and/or large a,, a direct € integration is
difficult due to the integrand oscillating rapidly. Specialized
numerical quadratures for integrals involving trig factors
have been employed, by separating the oscillatory factor

2% from the special functions 7 ; (the remaining factor
bemg well behaved) and numerlcally changing variable
from 6 — ® := OM?/m? in order to make oscillations
uniform. (For very small 6 and large ®/b,, perturbative
and asymptotic expansions can help to maintain precision.)
It is easily verified that

6_@71_(014‘02_2@»2 g
00 4m?

+ (ar — ay) > 1

. (CI)

so the change of variables is well defined. (Subscripts once

again denote the arguments ¢, = ¢ + 0/2, ¢, = ¢p — 6/2.)
We note also that

op m?

For a} > b, the main contribution to our integrals comes
from the vicinity of points where

ay = a; = (a), (C3)

so that (C1) is minimized and (C2) vanishes. The dominant

contribution is then obtained by expanding in # about § = 0

(for any ¢), this giving the “locally constant” result based
on crossed fields.
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Other points {0;,¢;} such that the derivatives are
minimized generally exist only for linearly polarized back-
grounds. These points give a correction which, for mod-
erate a, oscillates as a function of by, as can be seen
in for example Fig. 6. It is worth noting that these
oscillations are linked to the presence of the effective
mass, as follows. To illustrate, let the field be monochro-
matic: a; = {agmsin ¢, 0}. The condition (C3) is obeyed
at (amongst others) the points {¢;,6;} = {{0,z},2rz},
r € Z™ (recall that ¢-integrals are restricted to one cycle for
monochromatic plots). At these points, second derivatives
of ® also vanish and, for example,

PHYSICAL REVIEW D 89, 125003 (2014)

i.e. Kibble’s mass M? becomes equal to its asymptotic
value,

1
M?* - m? = m2<1 +§a%>, (C5)

which we recognize as the well-known effective mass in a
laser pulse [42,55,57].
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