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ABSTRACT: Ashbya gossypii is a filamentous fungus that
naturally overproduces riboflavin, or vitamin B2. Advances in
genetic and metabolic engineering of A. gossypii have
permitted the switch from industrial chemical synthesis to
the current biotechnological production of this vitamin.
Additionally, A. gossypii is a model organism with one of the
smallest eukaryote genomes being phylogenetically close to
Saccharomyces cerevisiae. It has therefore been used to study
evolutionary aspects of bakers’ yeast. We here reconstructed
the first genome scale metabolic model of A. gossypii, iRL766.
The model was validated by biomass growth, riboflavin
production and substrate utilization predictions. Gene
essentiality analysis of the A. gossypii model in comparison
with the S. cerevisiae model demonstrated how the whole-
genome duplication event that separates the two species has
led to an even spread of paralogs among all metabolic
pathways. Additionally, iRL766 was used to integrate tran-
scriptomics data from two different growth stages of A.
gossypii, comparing exponential growth to riboflavin produc-
tion stages. Both reporter metabolite analysis and in silico
identification of transcriptionally regulated enzymes demon-
strated the important involvement of beta-oxidation and the
glyoxylate cycle in riboflavin production.
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Introduction

Ashbya gossypii (or Eremothecium gossypii) is a filamentous
hemiascomycete with unique features which make it a widely
studied organism in both basic research (Wendland and
Walther, 2005) and industrial applications (Kato and
Park, 2012).
Its genome, which has been sequenced and annotated

(Dietrich et al., 2004; Hermida et al., 2005), is one of the
smallest eukaryotic genomes with only 4,718 protein-coding
genes. It is highly similar to the well-studied organism
Saccharomyces cerevisiae and 95% of A. gossypii genes have
homologs in yeast (Dietrich et al., 2004; Fig. 1A). In spite of
this high homology, the S. cerevisiae genome encodes over 800
additional genes (5,570 in total), many of which have
presumably originated from a whole-genome duplication
event (Wolfe and Shields, 1997). While most components are
shared between the two genomes, the life cycles of these two
organisms show important differences, such as the probable
lack of a sexual cycle and the multinucleated hyphae
development in A. gossypii. It has therefore been considered
amodel organism to study theminimal eukaryotic free-living
cell (Finlayson et al., 2011), the event of genome duplication
(Wolfe and Shields, 1997), the pheromone signal cascade and
sexual cycle (Wendland et al., 2011), fungal development and
polarized hyphal growth (Schmitz and Philippsen, 2011) and
to reinvestigate the S. cerevisiae genome (Brachat et al., 2003).
A. gossypii is a natural overproducer of riboflavin (vitamin

B2), which animals and humans cannot synthesize. Ribofla-
vin is a high value industrial compound used not only in
pharmaceuticals, but also in animal feed additives, cosmetics
and in the food industry (Shi et al., 2009). A. gossypii has
been considered a paradigm of the industry-friendly white
biotechnology and it is nowadays one of the world’s top
producers of riboflavin by microbial fermentation (Kato and
Park, 2012; Ledesma-Amaro et al., 2013b; Stahmann et al.,
2000). The availability of the genome sequence and genetic
engineering tools (Wendland et al., 2000) have allowed the
development of metabolic engineering approaches that have
significantly increased the vitamin production titer (Jimenez
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et al., 2005, 2008; Park et al., 2011). In addition to its well-
established use in riboflavin production, the capabilities of
A. gossypii to produce proteins (Ribeiro et al., 2010, 2013) and
bioethanol from glycerol (Ribeiro et al., 2012) are being
investigated.

Genome-scale metabolic models (GEMs) have become an
important tool in the understanding of metabolic networks
and they have been useful in both the study and the
applications of biological systems (Garcia-Albornoz and
Nielsen, 2013; Kim et al., 2012; Ledesma-Amaro et al.,
2013a). GEMs can serve to describe novel metabolic
networks, find essential genes and metabolites, predict
substrate consumption capabilities and aid in re-annotating
genomic information (Costanzo et al., 2010; Ibarra et al.,
2002; Vongsangnak et al., 2008). Additionally, they can be
used as a scaffold to integrate omics experiments and thus
the physiological differences between different conditions
can be analyzed in the context of the metabolic network
(Osterlund et al., 2013). Thirdly, GEMs have been widely
used in the biotechnology field for identification of metabolic
bottlenecks and novel metabolic engineering targets (Agren
et al., 2013b; Caspeta and Nielsen, 2013; Otero et al., 2013;
Park et al., 2007b).

Here we present the first curated genome-scale metabolic
model of the filamentous fungus A. gossypii, called iRL766.
Along this work iRL766 was validated and its capabilities to
predict biomass growth, riboflavin production and substrate
utilization were shown. Gene essentiality was studied in the
context of its own network and of its close relative S. cerevisiae,
enlightening the event of the whole genome duplication. Due
to the industrial interest in this organism for riboflavin
production, the biosynthetic pathway of the vitamin within
the model was studied in more detail. Finally the metabolic
network was used to integrate transcriptomics data and
transcriptionally controlled reactions in the transition from a
trophic phase to a riboflavin productive phase, representing
possible targets for further strain engineering.

Materials and Methods

Reconstruction of Genome-Scale Metabolic Model

The first step in reconstructing the iRL766 model was to
create two draft models using the RAVEN toolbox (Agren
et al., 2013a). The first draft model was based on protein
orthology between the S. cerevisiaemodel iTO977 (Osterlund
et al., 2013) and A. gossypii. For this, homology between the
protein coding sequences of the S. cerevisiae and A. gossypii
genomes were evaluated using bi-directional BLASTp, with
the following cut-offs: E-value <1e�30, identity >40% and
alignment length >200 amino acids. All 1-1 orthologs were
included, to capture potential paralogs while ensuring that
only genes that map back to the original gene in the BLASTp
in the opposite direction are included. For the second draft
model the A. gossypii genome was queried using hidden
Markov models (HMMs), which were constructed from
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2012) consensus sequences, as described
in (Agren et al., 2013a). The protein sequence of A. gossypii
strain ATCC10895 (http://genolevures.org/) was used for
construction of both draft models. The two draft models were
merged to generate a model representing reactions with and
without homology in S. cerevisiae, using the naming
convention and charge balancing from iTO977. Subsequent-
ly, reactions in the combinedmodel weremanually curated to
assure correctness with respect to reaction stoichiometry,
metabolites and co-factors involved, and to identify gaps in
the metabolic network. Manual curation was performed
using KEGG, MetaCyc (Caspi et al., 2012), Saccharomyces
Genome Database (Cherry et al., 2012), Ashbya Genome
Database (Gattiker et al., 2007), and available literature.
Where A. gossypii specific knowledge of gene-associations,
metabolic reactions and localization was insufficient, data
from the closely related S. cerevisiae was used.

The biomass equation and ATP for maintenance were
taken from the iTO977 model, as insufficient information is
available from A. gossypii. When oil was used as a carbon
source, the biomass equation was modified in lipid composi-
tion according to previously reported data (Stahmann et al.,
1994).

All simulations were performed using RAVENand COBRA
toolboxes in Matlab. iRL766 is available in the BioMet
Toolbox (Cvijovic et al., 2010; http://sysbio.se/BioMet/—will
be uploaded upon acceptance of paper).

Constraints-Based Flux Analysis and Simulations

Flux balance analysis was widely performed used in
simulations with the reconstructed GEMs (Park et al.,
2009). Loops were removed from the solution by minimizing
the number of reactions carrying flux. To simulate the trophic
phase, either glucose or oleic acid uptake rates were set, while
biomass productionwas set as objective function. To simulate
the riboflavin production phase, the consumption rate of
lipid bodies was set, while riboflavin production was set as

Figure 1. Comparison between the A. gossypii and S. cerevisiae genomes and the

iTO977 and iRL766 models. (A) Comparison of the total ORFs in the genomes of S.

cerevisiae (Sc) and A. gossypii (Ag). (B) Comparison of the genes in the yeast model

iTO977 and the Ashbyamodel iRL766, after extensive manual curation. The overlapping

regions of (A) and (B) represent the number of homologous genes. The numbers in bold

are A. gossypii genes with homologs in S. cerevisiae while normal numbers are genes

from S. cerevisiae with homologs in A. gossypii. Asteriks denote approximate value.
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objective function. ATP for maintenance was not considered
in the productive phase since we assumed that this is
produced from different molecular sources (as mutants
unable to consume lipid bodies have the same growth
pattern as wild type (Ledesma-Amaro R., personal commu-
nication). Experimental data were extracted from previous
publications using EasyNData (http://puwer.web.cern.ch/
puwer/EasyNData/).

Gene Essentiality Predictions

In silico evaluation of single gene knock-outs were performed
using the RAVEN toolbox, which takes the presence of iso-
enzymes into account. Lethality was estimated according to a
relative fitness value (f¼mutant growth rate/wild type
growth rate), when f was smaller than the cutoff value
(0.9) the gene was considered essential (Osterlund
et al., 2013). Less strict cutoff values did not drastically
reduce the number of lethal genes (Supplementary File 7).
Two different glucose-based media were used, minimal
media (MM) and rich media (YPD). Minimal media
consisted of the uptake of glucose, ammonium, oxygen,
sulfate and phosphate while YPD media also allowed the
uptake of amino acids and nucleotides.

In Silico Prediction of Carbon and Nitrogen Utilization

Assessment of growth on different carbon sources was
performed by constraining the uptake of each carbon source
individually to 6 C-mol/gCDW/h and maximizing for cell
growth. In silico growth rates were qualitatively compared to
experimental growth rates, and therefore categorized as: no
growth, reduced growth (0.001–0.090 h�1) and normal
growth (0.090 h�1). Experimental data were classified in
the same three categories.

Integrative Data Analysis

Normalized microarray dataset E-MEXP-1945 (Gattiker
et al., 2007) was obtained from ArrayExpress (www.ebi.ac.
uk/arrayexpress/). Eighteen and 103 h samples were
analyzed, corresponding to fast growing advanced mycelia
and sporulating mycelia, respectively. The sporulating
mycelia represent the riboflavin productive stage, as
sporulation is a process directly correlated to vitamin
production (Stahmann et al., 2001). These data were
integrated in the model iRL766 in order to identify
reporter metabolites and transcriptionally regulated key
enzymes. Reporter metabolites were identified with R
package Piano (Varemo et al., 2013). A random sampling
algorithmwas applied in order to identify transcriptionally
regulated enzymes (Bordel et al., 2010). Normalized array
data as described above were used as input. The upper and
lower bounds of the exchange fluxes and biomass or
riboflavin reactions in iRL766 were constrained according
to experimentally measured fluxes for each condition
(Supplementary file 5). A set of 500 flux distributions was

generated for each of the considered conditions (Osterlund
et al., 2013). Z-scores were calculated from the two sets of
flux distributions and transformed into probabilities of
change by using the cumulative Gaussian distribution, as
described in Bordel et al. (2010). The values of the
moderated t-statistic from the transcriptomics data were
used to calculate a probabilistic score P for each reaction
representing the probability that the flux and the
transcription are significantly changed in the same
direction between the two conditions (cutoff P> 0.9).

Results and Discussion

Reconstruction and Comparative Analysis of the A.
gossypii Metabolic Network

The high sequence similarity between S. cerevisiae and A.
gossypii allowed us to create a first draft model using the
yeast model iTO977 as template (Osterlund et al., 2013),
using bi-directional BLASTp, containing 725 genes. No
homologs could be found for 69 genes from iTO977,
corresponding to 76 reactions (Supplementary file 3).
Among these were reactions involved in biotin and myo-
inositol synthesis, rendering A. gossypii auxotrophic for both
nutrients (Demain, 1972). Additionally, 12 reactions
related to galactose metabolism were absent in A. gossypii,
explaining the incapability of this organism for growth
using galactose as a sole carbon source (Kurtzman
et al., 2011). The use of a S. cerevisiae model as a template
has the disadvantage that the resulting draft model can only
contain genes, and their associated reactions, that have high
sequence identity in A. gossypii. To include the function of A.
gossypii genes that were not represented in the S. cerevisiae
genome, a second draft model was generated based on
similarity with KEGG consensus sequences (Kanehisa
et al., 2012), containing 570 genes. KEGG consensus
sequences provided only 11 A. gossypii genes with no
homologs in S. cerevisiae, responsible for 30 reactions.
Eleven of these reactions were predicted to require
riboflavin derivatives, such as flavin mononucleotide
(FMN) or flavin adenine dinucleotide (FAD). These
reactions were added to the first draft model, by
transferring the reactions indicated in Supplementary file
3. Subsequent extensive manual curation of the merged
model generated the model iRL766. iRL766 included 766
genes which were involved in 1,595 reactions, comprising
799 unique metabolites distributed in four different
compartments (cytoplasm, mitochondria, peroxisome,
and extracellular). After manual curation, the number of
unique genes in each model increased to 116 and 69 for the
iTO977 and iRL766 models, respectively. Although the
model has less annotated genes than iTO977 (977 genes)
they still constitute 16.2% of the total open reading frames
of the genome, which is a higher coverage than for the yeast
model (14.8%; Fig. 1B).
While some differences between the models were

observed, it is unlikely that these are sufficient to explain
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the unique properties of each strain but a combination of
these and the unequal regulation at several biological levels.

Riboflavin Biosynthetic Pathway in iRL766

A. gossypii is used on a large-scale in the bioindustry for
riboflavin production, often using glucose (Jimenez
et al., 2008) or oils (Park et al., 2011) as carbon source.
The oils used are typically rich in triacylglycerols, predomi-
nantly composed of oleic acid (triolein). To investigate the
production of riboflavin from glucose and triolein, FBA was
performed using either carbon source and optimized for
riboflavin production (Supplementary file 4 and Fig. 2).

When glucose was used as sole carbon source, 86 reactions
were involved in riboflavin production (Fig. 2A, Supplemen-
tary file 4). The most important pathways activated in the
model were glycolysis, TCA cycle and oxidative phosphory-

lation, to provide the energy supply, followed by purine
metabolism and pentose phosphate pathway to provide the
precursors GTP and ribulose-5-phosphate respectively, and
finally riboflavin metabolism to synthesize the active vitamin.

When oleic acid was used as carbon source a total of 134
reactions were involved in riboflavin synthesis (Fig. 2B,
Supplementary file 4). The activities of glycolysis and the
pentose phosphate pathway were reduced as fatty acid
degradation was now involved in substrate utilization.
Precursors and riboflavin biosynthesis reactions remained
almost invariant during growth on both carbon sources.

These pathways described by iRL766 are in concordance
with previously published data (Park et al., 2007a, 2011;
Stahmann et al., 2000; Sugimoto et al., 2009). Flux variability
analysis was performed to search for alternative solutions
(Supplementary file 10), and these results adhere to the same
pathways as shown in Figure 2.

Figure 2. Scheme of pathways that carry flux when the riboflavin production phase is simulated in iRL766 when (A) glucose or (B) oleic acid is used as carbon source. FA, fatty

acid; AcCoA, acetyl coA; TCA, tricarboxylic; Glu-6P, glucose-6-phosphate; Ribu-5P, ribulose-5-phosphate.

4 Biotechnology and Bioengineering, Vol. 9999, No. xxx, 2013



Growth Rate and Riboflavin Synthesis Predictions

A. gossypii has two growth stages, a first trophic phase, when
cells grow exponentially while riboflavin production is
minimal; and a second phase, or productive phase when
cells stop growing and riboflavin is overproduced (Mateos
et al., 2006). These two conditions were simulated in the
model, to validate the growth rate and riboflavin production
predictions with experimental data (Supplementary file 5).
The growth predictions on both glucose and triolein were in
good concordance with experimental data (Fig. 3).
There is limited comprehensive data available that can be

used to validate the riboflavin productive phase. Firstly, the
carbon source used for the vitamin production has not been
entirely elucidated. In most experimental approaches,
glucose and oils have been exhausted from the media at
the end of the exponential phase. It has been hypothesized
that fatty acids, accumulated as lipid bodies during growth,
are remobilized in the productive phase permitting riboflavin
synthesis, supported by microscopy and Nile red staining of
A. gossypii lipid bodies (Lim et al., 2003; Stahmann et al., 1994,
Ledesma-Amaro et al., 2013c). This hypothesis is further
supported by an increase in riboflavin synthesis when oils are
used for growth, as A. gossypii accumulates at least twice the
amounts of lipids during the first growth phase in these
conditions (Stahmann et al., 1994). Using experimental lipid
bodies consumption rate to constrain the model and
riboflavin production as objective function resulted in a
vitamin production rate of 0.0156mmol/gCDW/h, which
was close to the experimental value of 0.0126mmol/gCDW/h
(Stahmann et al., 2001).

In Silico Prediction of Carbon and Nitrogen Utilization

The model was further validated by comparison with
experimental growth data on different carbon and
nitrogen sources (Kurtzman et al., 2011; Ribeiro
et al., 2012; Table I and Supplementary file 6). Of the 41
tested carbon and nitrogen sources, 39 showed comparable
growth in both model and experiments, while only
D-ribose and D-xylose were identified in the model as
false positives. While A. gossypii is capable of growth with
D-ribose as sole carbon source, it can do so only in
concentrations below 0.3% due to possible toxicity, which
cannot be predicted by the model (Revuelta, J.L. personal
communication). Regarding D-xylose, it was recently
found that while the machinery for D-xylose consumption
is encoded in the A. gossypii genome, as demonstrated in
iRL766, D-xylose can only be converted to xylitol and not
metabolized further (Ribeiro et al., 2012). Even though the
putative genes for xylose catabolism are present, they
cannot be expressed to sufficient level to ensure growth, as
it is the case in S. cerevisiae (Scalcinati et al., 2012; van Zyl
et al., 1989).

In Silico Analysis of Reaction Essentiality

As A. gossypii has one of the smallest eukaryotic genomes
(Dietrich et al., 2004), iRL766 represents an interesting
platform to study gene essentiality and the minimal set of
reactions to maintain a free-living eukaryotic cell. Addition-
ally, A. gossypii shares high homology to the well-studied yeast
S. cerevisiae, while baker’s yeast encodes 852more genes within
its genome, due to the whole-genome duplication event that
took place in baker’s yeast but not in A. gossypii (Dietrich
et al., 2004). We compared gene essentiality in iRL766 to
iTO977 to investigate this WGD event.
In both models, iTO977 and iRL766, each gene was

knocked out sequentially, and the effect on the specific
growth rate was examined in minimal and rich media (MM
and YPD). As anticipated, the fraction of essential genes in
the model increased from 18.9% in yeast to 22.5% in A.
gossypii inMM, and from 12.4% in yeast to 14.2% in A. gossypii
in YPD (Fig. 4A). Many of the differences between the two
species can be explained by reactions that are associated with
a single gene in iRL766, whereas they are associated with two
or three different genes in iTO977 (e.g., IMD3-IMD4).
Essential genes for the twomodels were grouped according to
their metabolic function (Fig. 4B, Supplementary file 7).
Many essential genes were found in lipid metabolism and
oxidative phosphorylation, followed by sugar and nucleotide
metabolism. In MM also many genes in amino acid
metabolism were found to be essential, while the presence
of amino acids in YPD allowed auxotrophs to scavenge amino
acids from the growth medium. There were no major
differences in the spread of essential genes among the
different metabolic pathways in the two models, indicating
that paralogs in S. cerevisiae are evenly spread out over all
metabolic functions.

Figure 3. Comparison between the in silico prediction of specific growth rate with

experimental data. Growth phenotypes were collected from literature and compared

with simulated values when glucose (diamonds) and oils (squares) were used as

carbon sources (Supplementary file 5). Black line represent perfect correlation.
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Integrative Data Analysis

Another powerful use of GEMs is as a scaffold for the analysis
of data fromdifferent biological levels. Focusing on riboflavin
production, we analyzed previously published microarray
data (Gattiker et al., 2007) from trophic stage and riboflavin
productive stage Even though these microarray data have
extensively been investigated for cell development
(Rischatsch, 2007), the information they carry about
riboflavin production has remained unexplored.

Reporter Metabolites

Patterns in the transcriptional responses of the metabolic
network can be revealed by using the network topology from

a GEM (Patil and Nielsen, 2005). We therefore used iRL766
to group genes into sets all coding for enzymes that catalyze
reactions where a specific metabolite takes part. Enriched or
significant gene sets (i.e., reporter metabolites) can be
interpreted as metabolic hotspots or metabolites around
which important transcriptional changes occur (Supple-
mentary file 8). Among the most significant reporter
metabolites were primarily amino acids, likely a consequence
of the protein turnover that is observed between the two
growth stages (Rischatsch, 2007). While riboflavin was
among these top metabolites, its precursor cytosolic glycine
appeared as the most reliable reporter metabolite. Glycine
has been described as a key factor in riboflavin production
and the increase of this, either by metabolic engineering
approaches or media supplementation leads to riboflavin

Table I. Carbon and nitrogen utilization.

Predicted value Experimental value Refs.

Carbon source
Acetate o o Mickelson (1950)
Cellobiose oo o Kurtzman et al. (2011)
Cellulose — — Farries and Bell (1930); Ribeiro et al. (2012)
Citrate o o Kurtzman et al. (2011)
D arabinose — — Kurtzman et al. (2011)
D glucosamine — — Kurtzman et al. (2011)
D mannitol — — Kurtzman et al. (2011)
D ribose oo — Kurtzman et al. (2011)
D xylose oo — Kurtzman et al. (2011); Ribeiro et al. (2012)
D sorbitol oo o Kurtzman et al. (2011)
D gluconate o o Kurtzman et al. (2011)
DL lactate — — Kurtzman et al. (2011)
Erythritol — — Kurtzman et al. (2011)
Ethanol oo o Kurtzman et al. (2011); Mickelson (1950)
Fructose oo oo Farries and Bell (1930)
Galactitiol — — Kurtzman et al. (2011)
Galactose — — Kurtzman et al. (2011)
Glucose oo oo Kurtzman et al. (2011); Ribeiro et al. (2012)
Glycerol oo oo Kurtzman et al. (2011); Ribeiro et al. (2012)
Hexadecane — — Kurtzman et al. (2011)
Inulin — — Kurtzman et al. (2011)
L arabinose — — Kurtzman et al. (2011); Ribeiro et al. (2012)
L rhamnose — — Kurtzman et al. (2011)
L sorbose — — Kurtzman et al. (2011)
Lactose — — Farries and Bell (1930); Kurtzman et al. (2011); Mickelson (1950)
Maltose oo o Kurtzman et al. (2011)
Melezitose — — Kurtzman et al. (2011)
Melibiose — — Kurtzman et al. (2011)
Methanol — — Kurtzman et al. (2011)
Methyl-alpha-D glucoside — — Kurtzman et al. (2011)
Myoinositol — — Kurtzman et al. (2011)
NADglucosamine — — Kurtzman et al. (2011)
Pyruvate o o Mickelson (1950)
Raffinose o oo Kurtzman et al. (2011)
Ribitol — — Kurtzman et al. (2011)
Starch oo oo Ribeiro et al. (2012)
Succinate o o Kurtzman et al. (2011)
Sucrose oo oo Kurtzman et al. (2011)
Trehalose oo oo Kurtzman et al. (2011)

Nitrogen source
NH4 oo oo Ribeiro et al. (2012)
Nitrate — — Kurtzman et al. (2011); Ribeiro et al. (2012)

Comparison of in silico (predicted) and in vivo (experimenal) growth on different carbon and nitrogen sources. — represents no growth; o represents
reduced growth; while oo represents unimpaired growth, compared to growth on glucose (Supplementary file 6).
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overproduction (Monschau et al., 1998; Schlupen
et al., 2003). Glyoxylate and the vast presence of fatty acids
derivatives as reporter metabolites supported the proposed
mechanism for riboflavin production through beta-oxida-
tion of lipid bodies and the glyoxylate cycle. Also other
intermediates in riboflavin biosynthesis appeared at high
positions in the up regulated reporter metabolite list such as
4-(1-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine,
6,7-dimethyl-8-(1-D-ribityl)lumazine or 3,4-dihydroxy-2-
butanone 4-phosphate.

Identification of Transcriptionally Regulated Enzymes

Genetic engineering of A. gossypii has allowed to increase the
production of riboflavin to an industrial level (Kato and
Park, 2012). Enzymes that correlate in expression levels and
metabolic fluxes are potential targets for overexpression, in
an attempt to direct the metabolic flux towards a desired
product. We identified what changes in metabolic fluxes in
response to the riboflavin production phase are transcrip-
tionally regulated. The transcriptomics dataset is described
above.
For the metabolic fluxes, a space of feasible flux

distributions was defined by constraining the model by a
small set of experimental metabolic fluxes and appropriate
objective functions for each condition. A collection of
possible flux distributions was calculated using a random
sampling algorithm (Bordel et al., 2010). Flux distributions
from the two conditions were compared and probability
scores were calculated to identify the significance of the
observed changes. The probability score of the change in
metabolic flux was compared to the probability score of a
transcriptional change, obtained from the microarray data-
set. The reactions with a probability score higher than 0.9, as
calculated by the random sampling algorithm (Bordel
et al., 2010), present both changes in the same direction.
Statistics for both up- and down-regulated reactions were
calculated (Supplementary file 9).

In total, 38 reactions demonstrated correlated increases in
both transcript levels and metabolic fluxes; these reactions
were transcriptionally up-regulated. Four of those reactions
were part of the riboflavin synthetic pathway: RIB2, RIB3,
RIB4, and RIB5 (Fig. 5). Other up-regulated reactions were
involved in beta-oxidation (e.g., POX and FOX2) and
gluconeogenesis (FBP1, PCK1), supporting the hypothesis
of lipid bodies consumption in the riboflavin productive
phase. Almost all other up-regulated reactions were involved
in extracellular uptake of amino acids and nucleosides. A.
gossypii can suffer autolysis in the latest phases of its life cycle:
some cells can lyse in order to supply nutrients to the
remaining cells which continue their riboflavin overproduc-
tion and sporulation (Stahmann et al., 2000). This explains
the up-regulation of amino acid and nucleoside permeases in
this growth phase. All the genes involved in the reactions
identified as up-regulated are potential candidates for
overexpression in order to increase riboflavin production.
While some, such as the RIB genes, are more obvious,
especially the genes of beta-oxidation and gluconeogenesis

Figure 4. Gene essentiality was investigated in both models iRL766 and iTO977 by knocking out individual genes and assessing their growth rate. Whole models comparison

where (A) the fraction of essential genes over all genes in the model, and (B) metabolic groups of these essential genes are shown. MM, minimal media: YPD, rich media.

Figure 5. Transcriptionally controlled reactions (reactions where the change in

flux correlate with change in expression of the involved gene) in riboflavin synthesis.

Gene in squares are responsible for an up-regulated reaction identified by the random

sampling algorithm when comparing trophic phase and riboflavin productive phase.

UnkPh (unknown phosphatase), Ribu5P (ribulose 5 phosphate), DHBP (3,4-dihydroxy-2-

butanone 4-phosphate), DARPP (2,5-diamino-6-hydroxy-4-(50-phosphoribosylamino)-
pyrimidine), DArPP (2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 50-phosphate),
ArPP (5-amino-6-(50-phosphoribitylamino)uracil), ArP (4-(1-D-ribitylamino)-5-amino-

2,6-dihydroxypyrimidine), DRL (6,7-dimethyl-8-(1-D-ribityl)lumazine).
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would require further investigation to elucidate whether the
sole overexpression of these genes lead to some increase in the
vitamin titer and experimental data must be done to confirm
this.

A larger number of reactions, 127, were transcriptionally
down-regulated and many of those are related to biomass
formation. Interestingly, many reactions from purine biosyn-
thesis were down-regulated, despite this pathway’s involve-
ment in the supply of GTP for riboflavin production. This has
been previously described for some of the genes of purine
biosynthesis, such as ADE4 (Mateos et al., 2006), indicating
that either the nucleotides have been synthetized in excess
during the trophic phase or the nucleotides/nucleosides from
partially broken mycelia are taken up from the environment
using the up-regulated permeases. Additionally, down-
regulation also prevents riboflavin consumption by riboflavin
kinase (FMN1) and glycine degradation by SHM2 and GCV.
Indeed the disruption of SHM2 in A. gossypii leads to an
accumulation of riboflavin (Schlupen et al., 2003) and both
SHM2 and ADE4 have been identified as down-regulated by
the transcription factor BAS1 (Mateos et al., 2006).

Conclusions

In this study, we reconstructed and validated the first
manually curated genome-scale model of A. gossypii, iRL766,
with particular focus on the riboflavin production by this
fungus. The model is in good concordance with existing
experimental data on the pathways involved in riboflavin
production, growth rate and the use of different carbon
sources. Subsequently, the curated GEM was used to analyze
gene essentiality, particularly in comparison to the S. cerevisiae
GEM iTO977. The increased number of predicted essential
genes in iRL766 could be transcribed to the whole genome
duplication event that has occurred in S. cerevisiae but not in A.
gossypii. Categorizing the predicted essential genes in
metabolic pathways indicated that this event has led to an
even spread of paralogs among all metabolic pathways. This is
in agreement with the proposed rationale of gene duplication,
where duplicated genes do not belong to any particular
dominated function and do not occur more frequently in
essential genes, but often overlap functional roles (Kuepfer
et al., 2005).

Subsequently, the model was used as a scaffold to analyze
microarray data to investigate the transcriptional changes
related to riboflavin production. Reporter metabolite analysis
indicated glycine, glyoxylate, and fatty acids as important
metabolic hot spots, together with the anticipated riboflavin.
A random sampling algorithm was employed to identify
transcriptionally regulated reactions in the GEM. Together
with the anticipated RIB genes, also beta oxidation and
gluconeogenesis were transcriptionally up-regulated. Addi-
tionally observed important reporter metabolites and
transcriptionally regulated reactions were supported by
previous publications. This underwrites the validity of the
model and indicates how it can be used in future approaches
not only for overproduction of riboflavin, but also other

vitamins, proteins, or lipids, as well as it can be used to
improve our knowledge of this organism.

R. L.-A. was recipient of an FPU predoctoral fellowship from the
Ministerio de Educación, Cultura y Deporte and an EMBO short-term
fellowship.
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