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ABSTRACT   

This paper presents a novel fully automatic unsupervised framework for the segmentation of brain tissues in magnetic 
resonance (MR) images. The framework is a combination of our proposed Bayesian-based adaptive mean shift (BAMS), 
a priori spatial tissue probability maps and fuzzy c-means. BAMS is applied to cluster the tissues in the joint spatial-
intensity feature space and then a fuzzy c-means algorithm is employed with initialization by a priori spatial tissue 
probability maps to assign the clusters into three tissue types; white matter (WM), gray matter (GM) and cerebrospinal 
fluid (CSF). The proposed framework is validated on multimodal synthetic as well as on real T1-weighted MR data with 
varying noise characteristics and spatial intensity inhomogeneity. The performance of the proposed framework is 
evaluated relative to our previous method BAMS and other existing adaptive mean shift framework. Both of these are 
based on the mode pruning and voxel weighted k-means algorithm for classifying the clusters into WM, GM and CSF 
tissue. The experimental results demonstrate the robustness of the proposed framework to noise and spatial intensity 
inhomogeneity, and that it exhibits a higher degree of segmentation accuracy in segmenting both synthetic and real MR 
data compared to competing methods. 
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1. INTRODUCTION 
 
Accurate segmentation in Magnetic resonance (MR) images plays a vital role for the quantitative analysis of normal and 
abnormal brain tissues 1-3. It can also be useful for assigning individual tissues conductivity to constructing the realistic 
conductivity models for various neurological applications such as electroencephalography (EEG) source localization in 
epilepsy patients 4,5 and hyperthermia treatment planning for head and neck 6,7. Accurate segmentation of tissues in MR 
brain images is a challenging task because of noise and spatial intensity inhomogeneity artifacts 8-11. Several 
unsupervised segmentation methods 12-16 have been proposed to cope with these problems. However, the main 
disadvantage of these methods is that they rely on many critical parameter settings to segment the tissues accurately in 
MR brain images 17.  
 
Mean shift (MS) 18,19 is one of the unsupervised clustering methods, which doesn’t have this problem. It is an adaptive 
gradient approach to estimate the modes of the multivariate distribution underlying the feature space. The feature points 
that are associated with a mode form a cluster.  The only parameter that influences the clustering is the bandwidth of the 
kernel. However, the use of a fixed bandwidth can cause over-clustering or under-clustering. Several approaches 20-22 
have been proposed to solve this problem, wherein the bandwidth of each feature point is used to estimate the clusters. 
Therefore, the mean shift based on the adaptive bandwidth of the kernel is called adaptive mean shift (AMS).  
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AMS can also provide clustering by taking both the spatial and the intensity domain into account. Due to this 
characteristic, AMS can be more robust to noise and spatial intensity inhomogeneity artifacts in the MR brain images 
compared to intensity based clustering methods 17. The output of the AMS is a set of clusters or modes. In order to get 
the desired number of clusters or tissue classes, merging is required. 
 
In 17, the first adaptive mean shift framework is proposed for segmenting the brain tissues in the MR images. The 
framework is based on the mode merging and voxel weighted k-means algorithm to categorize the clusters, obtained 
from the adaptive mean shift, into WM, GM and CSF tissue. In our previous work 22, we proposed a Bayesian based 
adaptive mean shift (BAMS) method wherein we adopt the same procedure as described in 17 for assigning the clusters 
into three tissue types.  
 
A downside of this procedure is that mode pruning in a range (intensity) domain can lose spatial information of modes 
(clusters), which may cause combining of the modes belonging to different tissue classes. Another downside of it is that 
the final merging of pruned modes into three tissue types, using the prior knowledge about the ordering of tissue 
intensity 17 in MR images to initialize the voxel weighted k-means algorithm, may also lead to assigning the clusters to 
the wrong tissue class. 
 
To overcome this problem, we here propose a new unsupervised segmentation framework, wherein we incorporate the 
spatial priors of the tissues to assigning the clusters, obtained from the adaptive mean shift, into the three tissue types; 
WM, GM and CSF. The proposed framework is based on the Bayesian-based adaptive mean shift (BAMS), a priori 
spatial tissue probability maps and the fuzzy c-means algorithm.  
 
The organization of the paper is as follows. Section 2 describes the MR data and the proposed framework. The 
experimental results for both synthetic and real MR data are presented in section 3. Section 4 discusses the results and 
finally, the conclusions are drawn in section 5. 
 

2. Materials and Methods 

2.1. MRI data 
 
We used two different data sets to evaluate the performance of our proposed framework relative to our previous method 
22 as well as other competing adaptive mean shift (AMS) framework 17. These data sets are hereinafter referred to as data 
set 1 and data set 2.  
 
Data set 1 comprises synthetic multimodal MR data, obtained from the BrainWeb simulated brain database (SBD) 23.  
More specifically the data set comprises realistic T1, T2, and proton density (PD) MR images for four different noise 
levels (3%, 5%, 7% and 9%) with two different spatial intensity inhomogeneity levels (20% and 40%). Each MR image 
is of size 181×217×181 with cubic voxels of size 1!!!!.  
 
Data set 2 comprises five real T1 MR images of healthy subjects, downloaded from the IBSR 24 database. Each MR 
image consists of 60 coronal T1 slices. The size of each voxel is!3.1!!!!. 
 
A ground truth segmentation for each data set was also obtained from their corresponding databases.  
 

2.2. Bayesian-based adaptive mean shift (BAMS) 

In 22, we proposed an adaptive bandwidth estimator based on the Bayesian approach for the estimation of bandwidth of 
the kernel. The approach includes the modelling of local variances of N set of neighborhoods of each feature point and 
fitting of Gamma distribution function to these. The estimated bandwidth for each feature point is then used in the mean 
shift to estimate the modes of multivariate distributions underlying the feature space. We called it Bayesian based 
adaptive mean shift (BAMS).  
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In BAMS, the mode or cluster of brain tissue is defined as  
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where !!! ∈ ℝ!!|!i = 1,… . n   is a set of n feature vectors in d-dimensional space that represent a single or multimodal 
MR brain data,  g x  is the kernel profile of kernel G, !h !! ≡ h! is an adaptive bandwidth of the kernel for feature point 
!! and  

!
!{!}!!!,!…!!represents the successive locations of the kernel G.  

 
The kernel G starts from an initial position !! and moves towards the position closer to the higher dense region. This 
process is continued until the position in higher dense region is achieved which represents a mode (local maxima) of the 
density. The feature points that converge to the same mode constitute a cluster. In order to perform the clustering using 
spatial information of brain voxels with its intensity values, we used a joint spatial-intensity domain kernel G!!,!!, 
defined as 
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where !! represents a vector of spatial coordinates of brain voxels, !! represents a vector of brain voxels intensity values 
and h! and h! ≡ h! are their corresponding kernel bandwidths. In this work, we used Gaussian kernel for both spatial and 
intensity domain and set the spatial bandwidth to ℎ! = 3. The output of BAMS is a set of modes or clusters of brain 
tissues. 
 

2.3. Fuzzy c-means algorithm 
 
Let  !!!, !!!, !!!,…… , !!  denote a set of m clusters obtained from the BAMS. The fuzzy c-means 25 is then applied to 
assign these clusters to the three tissue types by minimizing the cost function defined as 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! = !!"! !! − !!
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!!!                                       (3) 

where !! represents an intensity vector of cluster !!!, !! is the kth cluster (tissue) center and  !!" is known as membership 
function and it represents the probability that an intensity vector !!! of cluster !!! belongs to a specific tissue. The 
constant g controls the fuzziness of the resulting partition. In this work, we set g = 1.5. 

To initialize the tissue centers, a priori spatial tissue probability maps are incorporated into the fuzzy c-means algorithm. 
The kth tissue center is then initialized as  
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where  !!"_!"!#!$%  represents a priori spatial probability map of kth tissue. The membership functions and tissue centers 
are then updated as 
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2.4. Summary of the proposed segmentation framework 
 
Herein, we summarize the proposed segmentation framework. The schematic procedure of the proposed framework is 
shown in Fig.1. 

The proposed framework includes the following pre-processing steps: (1) extraction of brain from MR data using the 
ground truth mask. In practice, it is assumed that all the MR data are skull-stripped, (2) Normalization of intensity values 
for the multimodal MR brain images to the interval [0 1] using the linear histogram stretching17, and (3) Co-registration 
of a priori spatial tissue probability maps, obtained from the International Consortium for Brain Mapping (ICBM) 26,27, to 
the MR brain data by employing the Flirt registration tool in FSL 28. Given that these preliminary requirements are 
satisfied, the proposed framework segmenting the MR brain into three tissue types; WM, GM and CSF is as follows. 

1. The adaptive bandwidth h!!for each feature point !! was estimated by employing the Bayesian-based estimator 
as described in 22.  

2. The modes or clusters !!!, !!!, !!!,… . , !!  of the MR brain were then computed using the adaptive bandwidth 
h!, obtained from the fist step, in Eq.1. The clustering was done in the joint spatial-intensity domain using the 
joint kernel, defined in Eq.2.  

3. Finally, the fuzzy c-means algorithm was applied to categorize the clusters, obtained from the step 2, into the 
WM, GM, and CSF tissue by employing the Eq.3, wherein the center of the tissues ! was initialized by 
incorporating the a priori spatial tissue probability maps using the Eq.4. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure.1 Schematic of the proposed framework for segmenting the WM, GM and CSF tissue in MR images. 

 

2.5.  Segmentation performance 

The segmentation accuracy of the proposed framework and the other competing methods was evaluated quantitatively, 
relative to the ground truth in terms of Dice index (DI) 29 and Tanimoto coefficient (TC) 17. Both metrics are used to 
measure the degree of overlap between the ground truth and the segmentation result. They are defined as 

 
Bayesian-based adaptive 

mean-shift (BAMS) clustering 

 

Fuzzy c-means 
algorithm 

Pre-processing 
!  Brain extraction 
!  Intensity normalization 

WM!

GM!

CSF!

Registration 

WM!

GM!

CSF!

Input: MR image (single or multimodal)!
MR brain image!

a priori spatial tissue probability maps 

Registerd a priori spatial tissue 
probability maps 

Output: Segmented MR brain image!

Proc. of SPIE Vol. 9038  90381M-4

Downloaded From: http://spiedigitallibrary.org/ on 09/29/2014 Terms of Use: http://spiedl.org/terms



 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" = !!!"

!!!!!
                                                                    (7) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" = !!"
!!!!!!!!!"

                                                                      (8) 

where !!" is the number of voxels the segmentation result and the ground truth have in common, and !! and !! denote 
the number of voxels in the segmentation result and the ground truth respectively. The DI or TC has value one for perfect 
segmentation and zero when there is no overlap between the segmentation result and ground truth. 
 

3. Experimental results 
 
In this section, we present the experimental results of the proposed framework and the competing methods using the two 
data sets. 
 
The quantitative results of the proposed framework and our previous method BAMS for the data set 1 for 4 different 
noise levels with 20% and 40% spatial intensity inhomogeneity level are shown in Fig. 2 and Fig. 3 respectively.  They 
show that the proposed framework has higher Dice index values for each tissue compared to the previous method, based 
on the mode pruning and voxel weighted k-means.   

Figure. 2. The Dice index values for synthetic data for noise levels ranging from 3% to 9% with level of 20% spatial intensity 
inhomogeneity for (a) WM (b) GM and (c) CSF. 

 

Figure. 3. The Dice index values for synthetic data for noise levels ranging from 3% to 9% with level of 40% spatial intensity 
inhomogeneity for (a) WM (b) GM and (c) CSF. 
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An example of the segmentation result of the proposed framework and our previous method for the data set 1 with 9% 
noise and 40% spatial intensity inhomogeneity level is shown in Fig. 4 (e, f). 
 
The quantitative results for the data set 2 are shown in Fig. 5. They show that the proposed framework has higher 
segmentation accuracy (higher Tanimoto coefficient) for each tissue compared to the previous method as well as the 
other competing adaptive mean shift (AMS) framework 17. 
 
An example of the segmentation result of the proposed framework and our previous method for the real T1 weighted 
image (5_8) from the data set 2 is shown in Fig. 6 (c, d).  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4. A sample slice from the BrainWeb: (a-c) Input slice: T1, T2 and PD (proton density) image for 9% noise level with 40 % 
spatial intensity inhomogeneity (d) Ground truth (e) Proposed framework (f) BAMS + pruning + voxel weighted k-means (WM in 

white, GM in gray and CSF in black). 

Figure. 5. The Tanimoto coefficient values for real data (five T1-weighted images) for (a) WM (b) GM and (c) CSF. 
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Figure. 6. A sample slice from the IBSR: (a) Input slice: T1 weighted image (5_8) (b) Ground truth (c) Proposed framework (d) 

BAMS + pruning + voxel weighted k-means (WM in white, GM in gray and CSF in black). 

 

4. Discussion 
 
We presented a new fully automatic unsupervised segmentation framework for the segmentation of three tissue types 
from the MR brain images. The framework is based on the Bayesian-based adaptive mean shift (BAMS) to initially 
divide the brain into a number of clusters and on the fuzzy c-means algorithm wherein the a priori spatial tissue 
probability maps are incorporated to categorize the resulting clusters into WM, GM and CSF tissue. We also presented 
the evaluation of the segmentation accuracy of the proposed framework relative to our previous method as well as to 
other existing AMS framework 17. The evaluation was performed using two different data sets: multimodal synthetic MR 
data from the BrainWeb for the noise levels ranging from 3% to 9% with spatial intensity inhomogeneity levels of 20% 
and 40% respectively, and five T1-weighted real MR images, corrupted with spatial intensity inhomogeneity, from the 
IBSR database. 
 
The data set 1 was used to investigate the robustness of the proposed framework relative to our previous method against 
both noise and spatial intensity inhomogeneity artifacts. 
 
The quantitative results (DI) show that using the a priori spatial probability maps in the proposed framework 
significantly improved the accuracy of segmentation of each tissue for each noise level with each spatial intensity 
inhomogeneity level compared to the previous method, based on the mode pruning and voxel weighted k-means 
algorithm.  
 
The qualitative results in Fig. 4 show the robustness of the proposed framework against the noise and spatial intensity 
inhomogeneity relative to our previous method. It can be observed that the assigning of the clusters to the desired tissue 
types using the mode pruning and voxel weighted k-means algorithm have a higher tendency to misclassify the WM as 
GM and the GM as CSF compared to the proposed framework. 
 
The five real T1-weighted images from the data set 2 are acknowledged in literature 17 as difficult to segment because 
they have varying contrast and strong spatial intensity inhomogeneity across the slices. For this reason, we segmented 
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each T1-weighted image in data set 2 slice by slice using both our proposed framework and previous method. The slice-
by-slice segmentation was performed in the coronial direction. The segmented results of the proposed framework and 
our previous method are also compared with the published results of the existing AMS framework 17, based on the mode 
pruning and voxel weighted k-means algorithm.  
 
The quantitative results (TC) show that the performance of proposed framework is consistent across the five T1 weighted 
images with varying contrast and large spatial intensity inhomogeneity compared to competing methods. It outperforms 
the previous method for each tissue classification except for the case of T1- weighted image (2_4) where it is comparable 
to previous method for the WM classification. It can also be observed that the slice-by-slice segmentation of data set 2 
using the a priori spatial tissue probability maps in the proposed framework provides highest segmentation accuracy of 
each tissue compared to the existing AMS framework, which was applied to segment the whole brain volume with 
rudimental spatial intensity inhomogeneity correction. 

The qualitative results in Fig. 6 show that the mode pruning and the voxel weighted k-means algorithm in the previous 
method caused the over-segmentation of WM and CSF tissue, which lead to more misclassification of GM compared to 
the proposed framework. This corroborates the results shown in Fig. 5. 
 

5. Conclusions 
 
We have proposed and evaluated a fully automatic unsupervised framework for segmenting the WM, GM and CSF tissue 
from the multimodal synthetic and real MR brain images. We demonstrated the robustness of the proposed framework 
against the noise and spatial intensity inhomogeneity. Integrating the a priori spatial tissue probability maps in the fuzzy 
c-means algorithm to assigning the clusters (modes) to the three desired tissue types improves the segmentation accuracy 
compared to the competing methods, based on the mode pruning and the voxel weighted k-means algorithm. In addition 
this increases the segmentation reproducibility of the proposed framework with respect to our previous method.  
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