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Modelling of roller bearings in ABAQUS 

 

Master’s Thesis in the Applied Mechanics  

EMIL CLAESSON 

Department of Applied Mechanics 

Division of Material and Computational Mechanics 

 

Chalmers University of Technology 

 

ABSTRACT 

A useful FE-analysis requires a good knowledge of the loads that the analysed 

structure is subjected to. When simulating gearboxes, bearings are key components in 

this aspect as they transmit forces between the components in the gearbox, e.g. gear 

wheels, shafts and housings.  

Using full FE-models of the bearings, with solid rollers and contacts, when modelling 

a significant part of the gearbox with several bearings is not feasible, from the view of 

computational cost. Thus it is necessary to have simplified bearing models. 

Three simplified FE-models for roller bearings, both cylindrical and tapered bearings, 

have been developed. The models have different levels of complexity and 

computational cost. The cylindrical models have been verified against reference 

results from full FE-models with satisfactory result. The models for tapered bearings 

are still to be verified.   
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VI 

Notations 

 

C3D20   Second order, 20-node brick element 

CCL12   First order, 12-node cylindrical element 

CCL24R  Second order, 24-node cylindrical element with reduced integration 

IR  Inner ring of the bearing 

OR   Outer ring of the bearing 

   Constant factor in load-deflection relation for roller-raceway contact 

    Roller diameter 

   Load deflection factor for roller-raceway contact 

    Load in roller element 

    Flange load inner tapered bearing 

     Radial component of flange load in tapered bearing 

     Axial component of flange load in tapered bearing 

    Inner race load 

     Axial component of inner race load in tapered bearing 

     Radial component of inner race load in tapered bearing 

     Outer race load 

      Axial component of outer race load in tapered bearing 

     Radial component of outer race load in tapered bearing 

   Semiwidth for ideal line contact   

     Mean raceway diameter for inner and outer ring 

    Effective length of roller (roller length minus edge radius) 

     Distance along roller length 

    Cup angle of bearing (zero for cylindrical bearing) 

    Flange angle in tapered bearing 

    Inner raceway angle in tapered bearing 

    Outer raceway angle in tapered bearing 

    Approach of two points in roller-raceway contact 

   Roller element position in bearing 

     Curvature sum for roller-raceway contact 
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1 Introduction 

 

1.1 Background 

The gearbox is continuously being developed for future demands of increased loads, 

longer lifetime and reductions of noise and weight. To do this in an effective way it is 

necessary to evaluate designs virtually, e.g. with CAE methodologies such as FE-

analysis.  

A useful FE-analysis requires a good knowledge of the loads that the gearbox will be 

subjected to during operation. It is also necessary to be able to correctly model how 

these loads affect the structure of the gearbox. Bearings are key components in this 

aspect as they transmit forces between the components in the gearbox, e.g. gear 

wheels, shafts and housings.  

Using full FE-models of the bearings with contacts and solid rollers is not feasible, 

from the view of computational cost, when modelling a significant part of the gearbox 

with several bearings. Thus it is necessary to have simplified bearing models. The 

demand on a bearing model varies with the position of the bearing relative the area of 

interest in the analysis. If the position of the bearing is not close to the area of interest 

it is sufficient that the bearing model acts as a pivot point and allow for the correct 

total force to be transmitted. This requires that the model provides the correct overall 

stiffness and correct forces.  

When the position of the bearing is close to the area of interest, then the detailed 

deformation and force distribution in the bearing will affect the critical area. This 

yields different and significantly more complex requirements on the bearing model 

than for the previous case.  

Having bearing models of suitable complexity that is numerically stable and 

thoroughly tested and verified both decreases the computational time and ensure that 

the results are adequate. If they can be created automatically from a limited number of 

parameters then also the time for setting up models of gearboxes can be decreased.  

The intention with this thesis work is to develop bearing models with different degree 

of complexity and computational cost. This gives a possibility to choose the proper 

model with respect to the purpose of the analysis. 

 

1.2 Purpose 

The aim of this thesis work is to develop roller bearing models, for both cylindrical 

and tapered roller bearings. They should be built with ABAQUS elements and 

automatically created from a limited number of parameters. This should be done using 

a MATLAB script. The models are intended to be used in static analysis.  

 

1.3 Limitations 

The contact pressure between rollers and rings will not be regarded. No physical 

testing will be performed. Only the cylindrical bearing models will be calibrated.   
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2 Theoretical background 

This chapter describes the theory needed to understand how roller bearings behave 

under different loading conditions. Most of the theory is based on Houpert (1997) and 

Harris (1991).  

Houpert (1997) has derived a uniform analytical approach for calculating the bearing 

forces and moments for both tapered and cylindrical roller bearings (and ball 

bearings). Some results from this analytical approach are shown, and later compared 

with results from the simplified FE-models. Harris (2006) (among others) presents a 

more complete theory for roller bearings but a uniform approach for cylindrical and 

tapered bearings is missing. Since this work is focusing on the development of FE-

models and the analytical solutions are used only for comparison, and to explain the 

bearing behaviour, Houpert’s approach is more suitable. However, Harris (1991) 

presents an even more simplified theory for calculating forces in cylindrical bearings; 

this approach is presented in Appendix A together with the equilibrium equations 

from Houpert, and is compared to the simplified FE-models Section 4.3. 

The load-deflection relation for the roller-raceway contact is also discussed. The 

stiffness of the rollers in the simplified FE-models is based on these analytical 

relations. 

 

2.1 Kinematics of roller bearings 

Houpert (1997) derives a kinematic relation between the roller-raceway deformation 

(normal to the outer raceway) and five race displacements, see Figure 2.1. The centre 

of the inner ring, point I, is displaced with respect to the centre of the outer ring, point 

O, Figure 2.1 b). Both translations and rotations of the inner ring are regarded.    

 

 
 

Figure 2.1 Displacement of the centre of the inner ring (point I) with respect to 

the centre of the outer ring (point O) (Houpert ,1997). a) Position of the rings when 

the bearing is undeformed. b) Inner ring displaced with respect to the outer ring.   

 

 

a) b) 
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The rollers are assumed to be flat, i.e. the profile of the rollers has no crowning and 

the edge radius is not considered. The deformation for a roller-raceway contact is 

given as a function of the circumferential position of the roller in the bearing,    and 

the distance along the roller length,   : 

 

  

  (    )           (            )           

                    (            )          (                )    

 

(2.1) 

 

   and    are the components of the radial displacement in the x- and y-direction, 

and    is the displacement in the axial direction.     and     are rotations around the 

x-axis and y-axis, respectively.  For tapered bearings the misalignment of the bearing 

causes an additional roller-raceway deformation at   =0. This gives a coupling 

between the angular misalignment, the radial displacement, the axial displacement 

and the roller-raceway deformation.  

For cylindrical bearings the cup angle,  , is zero. So the coupling between the 
misalignment of the bearing and the radial and axial stiffness for cylindrical bearings 

is missing in this theory.  

 

 

2.2 Roller-raceway contact 

The contact between the rollers and the raceways of the rings is an important aspect 

for determining the stiffness of bearings. The roller and raceway are initially in 

contact along a line, this contributes to the stiffness of roller bearings being non-

linear. 

 

2.2.1 Ideal line contact 

When two cylindrical bodies with parallel axes that are in contact along a line is 

subjected to loading, a small contact area is formed, see Figure 2.2. The most 

commonly used approximation for determining the stress distribution and the width of 

the contact area is based on Hertzian contact theory. The following assumptions are 

made, cf. Harris (1991): 

1. All deformations occurs in the elastic range 

2. Loading is perpendicular to the surface, i.e. the effect of surface shear stresses 

is neglected 

3. The contact area dimensions are small compared with the radii of curvature of 

the contacting bodies. 
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Figure 2.2 Stress distribution and contact area for an ideal line contact based on 

Hertzian contact theory (Harris, 2006). 

 

If the bodies in contact have the same length, the stress distribution is given by:  

 

 

  
  

   
[  (

 

 
)
 

]
   

 
(2.2) 

where   is the roller load. Furthermore, the contact dimensions  ,   and the coordinate 
y are introduced in Figure 2.2.  Harris (1991) also gives the following approximation 

for the semiwidth of the contact area for steel roller bearings: 

 
           (

 

  
)
   

  (2.3) 

where   is the roller load per length: 

 
  

 

 
  

(2.4) 

where   is the roller effective length. The curvature sums for the inner and outer 
roller-raceway contact are: 

 
    

 

 
(

 

      
) 

 

(2.5) 

 
    

 

 
(

 

      
) (2.6) 

where   is the roller diameter and    the mean raceway diameter for the inner and 

outer ring. Figure 2.3 shows the width of the contact for the inner and outer ring 

versus roller load.  

A condition for ideal line contact is that the lengths of the bodies in contact are the 

same. In roller bearings the bodies in contact have different lengths and the rollers are 

crowded. This will lead to a somewhat different stress distribution than for ideal line 

contact. Stress concentrations occur at the roller ends, both in the roller and raceway, 
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due to the abrupt geometry change.  The calculated contact width should only be seen 

as an approximation of the real contact. The contact width is used as a guideline when 

modelling the roller-raceway contact in the simplified FE-model of type C, see 

Section 3.3. 

 

 

Figure 2.3 Width of the contact area between roller and raceway,  , versus roller 

force,   (computed from equation (2.3)) 

 

2.2.2 Load-deflection relations 

The relation between force and deformation in a roller-raceway contact is non-linear 

due to the line contact, and its force dependent contact area, between the roller and 

raceway. Expressions for calculating the change in distance,  , between a point in the 
roller and the corresponding point in the ring have been suggested by several authors, 

most of them are based on experiments, Harris (1991). 

For a single roller-raceway contact the load-deflection relation may be expressed as, 

Harris (1991): 

       (2.7) 

where   is the roller load,    is the load-deflection factor and   is an exponent close 
to 1.1 for roller bearings. The total displacement of the inner ring with respect to the 

outer ring in the normal direction of the raceways becomes: 

            (2.8) 

and the force      is (due to equilibrium) equal in the inner and outer ring: 

            (2.9) 
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Hence, for one roller in contact with inner and outer ring: 

            
  (2.10) 

 

where: 

 

   [
 

(   
⁄ )

   

 (   
⁄ )

   
]

 

 (2.11) 

In this expression    and    refer to the load-deflection factors of the inner and outer 

ring, respectively. The load deflection factor is dependent on the effective length of 

the roller,  . Also effects from the roller diameter,  , may be included. The 
expression for the total roller-raceway deformation may be written in the general 

form: 

 

       (
 

  
)
  

(
 

  
)
  

(
    

  
)
  

 (2.12) 

Variables with subscript zero are used to normalize the parameters and are equal to 

unity when the parameters are given in millimetres. Numerical values for the 

constants have been given by several authors and can be seen in Table 2.1. Note that 

all authors include the roller effective length in the load-deflection factor, but only 

Houpert includes the effect from the diameter of the roller. However, he does not 

motivate why or whether the constants are theoretical or obtained from experiments. 

The influence from the diameter is however small since the exponents,   , is close to 
zero. The constants proposed by the other authors are based on experiments. Figure 

2.4 shows the relation between      and      for a roller with the effective length 14.9 
mm and the diameter 10.75 mm.  

  

Table 2.1 Constants for the load-deflection relations for roller-raceway contacts. 

Reference    [N]    [-]    [-]    [-] 

Palmgren (1959)           8/9 0 10/9 

Brändlein et al. (1999)          0.9189 0 1.0811 

Houpert (1997)          0.991 0.1034 1.1 
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Figure 2.4 Load      versus deflection      for contact between roller and 
raceways. Computed from equation (2.12) with constants according to Table 2.1.  
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3 Simplified FE-models  

Three different types of simplified models are developed, for both cylindrical and 

tapered bearings. In all the models, the stiffness of the bearing is modeled, partly or 

entirely, with non-linear spring elements. 

Model A is intended to give the correct stiffness and kinematics for radial and axial 

displacements as well as misalignment of the rings, but the deformation of the rings 

are not considered. 

Model B should give the correct stiffness, but also the global deformation of the rings 

should be accurate. This means that the forces between rollers and rings are not 

modeled discrete; instead they are distributed over the raceways of the rings.  

In Model C the force between rollers and rings is modeled discrete, i.e. the force at 

each roller-raceway contact and the detailed deformation of the ring is modelled. The 

force distribution inside the bearing and the deformation of the rings influence how 

the load is transferred from the bearing to the surrounding structure, see Section 4.4 

 

3.1 Model A 

Model A is intended to give the correct stiffness and kinematics, for both translations 

and misalignments. The deformation of the rings and the load distribution inside the 

bearing are not regarded.  The coupling to the surrounding structure (typically shaft 

and bearing seat) is done via two coupling nodes in the centre of the bearing.  

The stiffness of the bearing is modelled with spring elements. The springs are located 

at the same position as the rollers in the bearing, see Figure 3.1. This facilitates the 

calibration of the model with respect to the coupling between radial stiffness and the 

reactions moments for a misalignment. The springs are connected to the nodes at the 

centre of the model with kinematic couplings, see Figure 3.2. The kinematic couplings 

constrain the translation of the spring nodes to the translation of the nodes in centre of 

the model. This is comparable to having rigid rings in the model.  
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Figure 3.1 Model A, the stiffness of the bearing is modelled with spring elements 

that are connected to coupling nodes in the centre.  

 

          

Figure 3.2  Model A. Left: Cylindrical bearing. Right: Tapered bearing.  

 

In the centre of the bearing there are three nodes, the two coupling nodes and one 

node that is used to enable the bearing to rotate, see Figure 3.3. The inner coupling 

node is connected to the inner spring nodes with a kinematic coupling. There is also a 

kinematic coupling between the outer spring nodes and the extra node in the centre. 

The outer coupling node is not connected to the springs, but to the two other nodes in 

the centre. It is constrained to follow the motion of the extra node for all degrees of 

freedom except rotation around the z-axis. This enables the bearing to “rotate” around 

the z-axis (i.e. the axis parallel to the shaft).  

For cylindrical bearings there is a spring that acts in the z-direction (axial direction in 

bearing) between the inner and outer coupling nodes, to model the axial stiffness. For 

tapered bearings the springs are orientated to be perpendicular to the raceways, hence 

Inner spring nodes 

Spring elements Kinematic coupling 

Outer spring nodes 

Inner coupling 

node  

Outer coupling 

node + extra node 

for rotation 

Kinematic 

coupling  
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the axial stiffness is obtained in the correct direction in the bearing (negative z-

direction in Figure 3.2).  

 

 

Figure 3.3 Nodes and connection elements in the centre of the model. The inner 

coupling node is connected to the inner spring nodes with a kinematic coupling (not 

shown in figure). The extra node for rotation is connected to the outer spring nodes 

with a kinematic coupling (not shown in figure).  

 

 

3.2 Model B 

Model B is formulated with the intention to give the correct stiffness and kinematics, 

but also the global deformation of the rings should be accurate, see Figure 3.4. The 

local deformation at each roller is not captured, but the deformation of the rings is 

smoother. This means that the forces between rollers and rings are not modelled at 

discrete positions but the forces are distributed over the raceways.  

The structure of the models are the same for cylindrical and tapered bearings; the 

rollers are modelled with non-linear spring elements and the rings with cylindrical 

solid elements, see Figure 3.5. There is however a difference in how the load is 

transmitted between the rings and rollers for cylindrical and tapered bearings, 

especially when the bearing is subjected to an axial load, Section 3.2.2. 

 

 

Outer coupling 

node 

Inner coupling 

node 

Extra node for 

rotation 

JOIN + REVOLUTE 

elements  

Spring in z-direction 

(only for cylindrical 

bearings) 
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Figure 3.4 Local deformation versus global deformation of the outer raceway.  

 

 

          

 

 

Figure 3.5  a) Model B, each roller is modelled with a row of spring elements and 

rings with cylindrical solid elements. b) Spring elements between the rings to model 

the rollers in the bearing. Note that a cylindrical bearing is shown but tapered 

bearings are modelled in a similar manner. 

 

Each roller is modelled with a number of spring elements between the inner and outer 

ring, see Figure 3.5 b). Note that only a cylindrical bearing is shown but the rollers are 

modelled in a similar way for tapered bearings. Two rows of springs in series are used 

for each roller. The springs are connected to nodes belonging to the elements on the 

inner raceway, but a contact pair is used between the outer spring nodes and the outer 

raceway. This enables the inner ring to rotate with respect to the outer ring. The outer 

spring nodes and the nodes between the springs are constrained such that the springs 

remain perpendicular to the inner raceway.   

 

Cylindrical solid elements Spring elements 

a) b) 

Second spring row 

First spring row 
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3.2.1 Rings 

The rings are modelled with second order cylindrical elements, see Figure 3.6. That is, 

24-node cylindrical brick elements are used with quadratic basis functions in the 

radial plane and trigonometric basis functions in the circumferential direction 

(ABAQUS, 2013). Cylindrical elements is chosen because by having trigonometric 

basis functions in the circumferential direction, the surface inside and outside the 

bearing becomes cylindrical, even when a small number of elements is used in 

circumferential direction. When the bearing model is used in gearbox models, torsion 

of the shafts might cause the inner ring of the bearing to rotate slightly with respect to 

the outer ring. A smooth cylindrical surface then makes the contacts, used to enable 

the bearing to rotate, more stable. If the surfaces are not cylindrical the forces in the 

bearing and the deformation of the rings will vary with the position of the spring 

nodes. Also the contacts with shafts and housing become more stable with smooth 

inner and outer surfaces of the bearing.  

 

 

Figure 3.6 24-node second order cylindrical element (CCL24R) (ABAQUS, 2013) 

 

As discussed in Section 2.2.1, the contacts between the rollers and rings are initially 

line contacts. When a load is applied a small contact area is formed. This could be 

achieved in the model by distributing the loads from the springs over an equally small 

area in the model, e.g. to the nodes adjacent to the spring nodes. But a force 

distributed over a small area leads to that the number of elements needs to be 

increased in this area in order to achieve mesh convergence.   

The distribution of the forces could also be achieved by increasing the number of 

spring rows in the circumferential direction (i.e. using more spring rows than the 

actual number of rollers in the bearing). This will even out the forces on the rings, but 

also increase the number of elements since at least one element between each spring 

row is needed. In order to lower the number of elements needed to model the rings, 

the loads are instead “distributed” by using kinematic constraints that constrains the 

mid-nodes on the raceways. The displacement in the axial and radial direction of the 

mid-nodes on face 4 of IR and face 3 of OR is coupled to the displacement of the 

corner nodes (2, 3, 6, 7 and 1, 4, 5, 8 for IR and OR, respectively). One element is 

used between each spring row so this leads to a smoother deformation of the rings. 
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3.2.2 Roller-flange contact  

The forces in the roller in cylindrical bearings due to an axial load (or misalignment of 

the bearing) act along the diagonal of the roller, see Figure 3.7. This introduces a 

moment that causes a misalignment of the roller that affects the stiffness of the 

bearing. To model this, rigid beam elements are connected to the flanges on the 

opposite side of the rings. In order to capture the rotation of the roller due to the axial 

load, and to get the force to enter the rings at the correct position, the beam elements 

are coupled to the displacement of the spring elements used for the radial stiffness. 

The axial play and axial stiffness is taken into account by using spring elements 

between the beams and the outer ring (not shown in the figure). The beams are 

connected to the rings in such a way that they are free to displace in the radial 

direction (as the springs are compressed). The outer ring is also free to rotate with 

respect to the beam elements.  

 

                      

 

Figure 3.7 a) Misalignment of roller in a cylindrical bearing subjected to an axial 

load, P b) The axial stiffness in the cylindrical bearing is modelled with beam 

elements between the flanges of the rings. Note that this is a simplified figure of the 

beam/spring arrangement.  

 

In tapered bearings, forces between the roller ends and the flanges of the inner ring 

occur for all load conditions, see Figure 3.8. Due to the angle of the raceways, a 

wedging effect will occur when the bearing is loaded in the axial direction. The spring 

nodes on the raceway are coupled to nodes on the left flange (in Figure 3.8) on the 

inner ring. This means that the spring loads will be distributed to the flange. 

 

a) b) 
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Figure 3.8 a) Forces between the roller and rings in a tapered bearing, when 

subjected to a combined axial and radial load (Harris, 2006) b) The spring nodes on 

the inner raceway are connected to the flange  

 

3.3 Model C 

In Model C the forces between rollers and rings are modelled at discrete positions, i.e. 

the force in each roller is resolved. The rollers are modelled similar as in Model B, but 

two parallel rows of spring elements are used (each row consists of springs in series, 

as for Model B), see Figure 3.10. The contact area between rollers and rings is 

modelled with thin (in the circumferential direction) elements at each roller position, 

see Figure 3.9. In Section 2.2.1 the pressure distribution in the roller-raceway contact 

is shown. In the model the pressure is approximated as uniform in the circumferential 

direction over the contact area and replaced by the force resultants from the springs at 

the perimeter of the elements used to model the roller-raceway contact. If the 

elements have approximately the same width as the contact area formed the 

deformation of the rings should still be reasonably accurate. 

 

                   

Figure 3.9 Contact between outer raceway and roller. The spring elements are 

used to model the actual roller and the elements with width b in circumferential 

direction is used to model the contact area.  

a) b) 
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Figure 3.10 Spring elements used to model the radial stiffness. Two parallel rows 

of springs are used; they are connected to an element with the width in the same order 

as the contact area formed between roller and raceway.  

 

This approach requires that the location of the spring nodes coincides with the 

elements used to model the contact area. Hence, the rings must not rotate with respect 

to each other. The spring nodes are constrained to coincide with the position of the 

nodes in the elements used to model the contact area.  

The width of the contact area,  , varies with the roller load, see equation (2.3), but the 
magnitude is in the order of 10

-1 
mm for roller loads under 5kN/mm. The deformation 

inside the bearing, at the roller contact, is smoothened out through the thickness of the 

rings, see Section 4.4. Hence, since the model is not used to analyse the bearing, but 

the surrounding structure, the exact width of the contact area should not be critical.   

For this model the bending of the roller due to misalignment may have some effect 

since the detailed deformation of the rings is of interest. But the ratio between the 

diameter and length of the roller may be considered small for most of the roller 

bearings to be modelled. Hence, this effect can probably be neglected, but this needs 

to be verified.   

The axial stiffness for cylindrical bearings is modelled in the same way as for Model 

B, i.e. with beam elements between the flanges of the rings that are coupled to the 

spring rows (see Figure 3.7). One arrangement of beam element is used for each 

spring row, i.e. two arrangements of beam elements for each roller. The load 

distribution to the flange on the inner ring for tapered bearing is done in the same way 

as for Model B, see Figure 3.8. 
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3.4 Spring stiffness  

The stiffness of the springs is non-linear to account for the non-linear behaviour of the 

roller-raceway contact, see Section 2.2. Since the rollers in a bearing can only take a 

compressive load, the force in tension should be zero. But to enhance the stability of 

the models and the initial conditions, the springs have a small stiffness also in tension. 

The relation between the force and displacement for the springs can be seen in Figure 

3.11. The radial play of the bearing is also included in the spring stiffness. The rollers 

have a convex profile to avoid stress concentration at the roller ends, Harris (1991). 

This is included in the models by adjusting the radial play, i.e. the offset in the spring 

stiffness, depending on the axial position of the springs in each spring row. The 

springs have a small stiffness also for the radial play to enhance the stability of the 

models.  

 

 

 

Figure 3.11 Sketch of force-displacement relation for the non-linear spring 

elements used to model the rollers. 

 

The spring stiffness is based on the load-deflection relations in Section 2.2.2. Those 

relations are valid for two remote stress free points in the rings and the rollers; hence 

especially for Model B and C the relations need to be adjusted. The springs in Model 

A is used to model the stiffness of both the rollers and the rings so the analytical 

expressions should be fairly accurate.  

In Model B the rings are modelled with deformable solid elements so the stiffness of 

the springs should only include the deformation of the rollers. Hence, the springs 

should be a bit stiffer than what is described by the analytical expressions. The force 

from the springs is not modelled at discrete location at the rings, but distributed over 

the raceway, this also affects the spring stiffness required in order to get the correct 

overall stiffness in the bearing. Since the deformation of the rings is constrained to 
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obtain the load distribution, some of the deformation of the rings needs to be included 

in the springs by lowering the stiffness.  

Also in Model C the rings are modelled with deformable solid elements but the forces 

from the springs is modelled at discrete locations. This yields a higher required spring 

stiffness than for Model B since the deformation of the rings should be fairly accurate. 

The spring stiffness in the models are calibrated against reference results from 

complete FE-models, see Appendix C. 
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4 Evaluation of models  

The evaluation of the models was performed based on the geometry of SKF XX 

cylindrical bearing, see Appendix B for input data. The mesh convergence for the 

models of type B and C was studied as well as the stability of the Model B when 

subjected to a rotation around the z-axis (parallel to shaft). The effects on the load 

distribution to the surrounding structure for Model B and C were studied by 

simulating a bearing that is built into a disc representing the bearing housing.   

The computational cost for one simple load case is presented in Table 4.1. The outer 

ring was fixed and a radial force was applied to the inner ring. From a computational 

cost aspect the main difference between the models is the number of degrees of 

freedom. It can be seen that the number of iterations is significantly lower for Model 

A than for the other two. Also the CPU time is lower. The number of iterations for 

Model B and C is similar, but the CPU time is lower for Model B.  

 

Table 4.1 Computational cost for one simple load case for the different models 

for cylindrical bearing. A radial force was applied on the inner ring and the outer 

surface of the outer ring was fixed.   

Model Number of 

elements 

Iterations CPU Time 

[sec]  

A 35 2 0.13 

B 256 14 35 

C 20128 15 1098 

 

 

4.1 Model B 

4.1.1 Mesh convergence  

The mesh convergence was studied for the simple load case defined by fixing the 

outside of the outer ring and applying a radial force to the inner ring. The radial 

displacement of the centre of the inner ring was used to measure the convergence. The 

same number of elements was used for the inner and outer ring. Different element 

types (first and second order cylindrical elements and second order brick elements) 

were studied, for comparison. The element types were tested with and without load 

distribution on the raceways. 

The number of elements in the rings and the number of springs per roller were both 

increased uniformly in all directions (axial, radial and circumferential). The resulting 

convergence for the different element types, with and without load distribution can be 

seen in Figure 4.1. It can be observed that the model converges faster when the load is 

distributed over the raceway, and that the convergence is almost identical for the 

different element types when load distribution is used.  
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Figure 4.1 Convergence for the first and second order cylindrical elements 

(CCL12 and CCL24R) and second order brick elements (C3D20), with and without 

load distribution ( - load dist.). Note that the values have been normalized.  

 

The difference in radial displacement between the coarsest and the finest mesh 

without load distribution is about 8-12%.  When load distribution is used the 

difference is around 2.5%. It may also be noted that with CCL24R elements 

convergence is reached for the third mesh.  

 

4.1.2 Rotation stability 

When the model is used in gearbox models, torsion of the shafts might cause the inner 

ring of the bearing to rotate slightly with respect to the outer ring. Since the spring 

elements are attached to the inner ring, they will rotate with it. The rotation of the 

inner ring will therefore affect the results (in particular the stiffness of the bearing) for 

two reasons. The first reason is that the load distribution among the spring rows (i.e. 

rollers) will alter as the position of the rollers with respect to the direction of the force 

change. The second reason is that the position of the spring nodes on the elements on 

the outer raceway change. Initially they are lined up with the corner nodes on the 

outer elements.  
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Figure 4.2 a) Initial position of the springs and the direction of the radial force. 

Also the load distribution in the spring elements can be seen. b) Load distribution in 

the spring elements when the inner ring is rotated an angle corresponding to half an 

element in the circumferential direction.  

 

Mesh 1, see previous Section, is used to test the stability of the model. Initially the 

rings and the spring elements where lined up according to Figure 4.2 a). A radial load, 

  , was applied and then the rings was rotated with respect to each other. 

Figure 4.2 b) shows how the load is distributed over the rollers (spring elements) 

when the inner ring is rotated an angle corresponding to half an element in the 

circumferential direction.  It is shown that the load is distributed over more spring 

rows compared to the initial position. Hence, the radial stiffness is increased and the 

radial displacement is decreased. Figure 4.3 a) shows the variation of the radial 

displacement (of the centre of the inner ring) for the rotation over one element, in the 

circumferential direction, on the outer raceway. It can be seen that the displacement 

varies with the position of the spring nodes on the elements on the outer ring. When 

IR is rotated the distribution of the force in the roller will change, so this curve 

describes the variation due the spring node position on the outer ring and the load 

distribution among spring rows. When OR is rotated only the position of the spring 

nodes on the outer ring change, not the load distribution among the spring rows.  

Figure 4.3 b) shows the variation in the radial displacement when the rings are rotated 

360 . It can be seen that the change in displacement is repeating for each element 
circumferentially and that it does not grow or decrease, this indicates that the model is 

stable. The maximum variation in radial displacement compared to the initial solution 

is about -0.4%. If the load is not distributed over the elements, the difference in radial 

displacement should become larger due to the change in number of rollers in contact. 

Also a bearing with a lower number of rollers should give a larger variation.  

𝐹𝑟 

a) 

𝐹𝑟 

b) 
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Figure 4.3 Radial displacement versus rotation of the rings. One element in the 

circumferential direction is used between each roller position on the rings. a) 

Rotation over one element in the circumferential direction. b) 360  Rotation of the 

inner ring. 

Figure 4.4 shows how the axial displacement varies if the bearing is rotated when 

subjected to a pure axial load. The variation is independent of which ring that is 

rotated, as expected. For this case the load distribution among the rollers does not 

change when the bearing is rotated. But the obtained variation is due to the position of 

the end nodes, on the beams used to model the roller ends, with respect to the 

elements inside the flanges on the outer ring. The load is distributed over these 

elements as well, but small fluctuations in the axial displacement can be seen. Also 

for this case the model seems to be stable when subjected to a large rotation. The 

maximum variation of the axial displacement with respect to the result for the initial 

position of the rings, is about -0.27% which can be regarded as negligibly small.  

 

 

Figure 4.4 Variation in axial displacement versus rotation of the rings. One 

element in the circumferential direction is used between each roller position on the 

rings. a) Rotation over one element in the circumferential direction. b) 360  Rotation 
of the inner ring. 
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4.2 Model C  

4.2.1 Mesh convergence 

The mesh convergence for Model C was studied by increasing the number of elements 

uniformly in all direction, including the number of spring elements in each row. The 

meshes are shown in Figure 4.5. The outside of the outer ring was fixed and a radial 

force was applied to the inner ring. The radial displacement of the centre of the inner 

ring was used to measure the convergence. The same number of elements was used 

for the inner and outer ring. The results can be seen in Table 4.2. The change in radial 

displacement is small, the difference between the coarsest and finest mesh is about 

0.2%.  

 

Table 4.2 Mesh convergence for Model C.  

Number of 

elements 

Radial displacement 

[mm] 

Iterations  

 

CPU Time 

[sec]  

20128 0,03894 15  1098 
79168 0,03888 15  11500 
332128 0,03885 16  174185 

 

 

 

Figure 4.5 Meshes used in convergence study for Model C. Left to right: Coarse 

to fine.  
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4.3 Forces and moments  

The spring stiffness in the models for cylindrical bearings was calibrated against 

results from a complete FE-model of the bearing. The complete model is regarded as a 

guideline for the simplified models. The resulting expressions for the stiffness are 

presented in Appendix C.  

Figure 4.6 shows the force versus displacement for the reference model, the simplified 

models and analytical solutions from Harris (1991) and Houpert (1997) (see Appendix 

A for equations). The simplified models and the reference model give similar 

behaviour of the bearing after the calibration of the spring stiffness. Harris approach 

gives a bit stiffer response for the bearing, especially for small displacements; this 

might be due to that the profile of the rollers is not included in the equations. 

Houpert’s approach gives instead a weaker response of the bearing with a higher 

initial stiffness. The weaker response could be related to his expression for the load-

deflection relation for the roller-raceway contact, see Section 2.2.2. 

 

Figure 4.6 Force versus displacement for the cylindrical bearing.    

 

Figure 4.7 shows the error for the simplified models against the reference for the 

computed displacement versus the normalized applied force. The error is 

approximately constant for Model A and B, this indicates that the non-linearity of the 

stiffness in the models is approximated accurate. For model C the error is larger for 

smaller forces. This indicates that the expression for the load-deflection relation in the 

spring elements should be adjusted and that the initial stiffness of bearing is too small.   
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Figure 4.7 Error in displacement versus normalized force for cylindrical bearing.  

 

Figure 4.8 shows the moment versus misalignment for the bearing models. Also for 

these the agreement between the reference model and the simplified bearing models 

are satisfactory after calibration of the spring stiffness. Houpert’s equations give a 

similar behaviour of the bearing, but the response is a bit stiffer for larger 

misalignments.     

 

Figure 4.8 Moment versus misalignment for cylindrical bearing.  

Figure 4.9 shows the error for the simplified models against the reference for the 

reaction moment versus normalized misalignment. The error seems to be larger for 

small misalignments. It could be mentioned that even though the largest error in 

percentage is between 3-5% for the models, the difference in absolute values could be 

considered small.    
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Figure 4.9 Error in reaction moment versus normalized misalignment for 

cylindrical bearing.  

 

4.4 Force distribution in the surrounding structure  

The bearing models are not intended to be used to analyse bearings, but to introduce 

forces to the surrounding structure in the gearbox. Hence, it is of interest to analyse 

what effects the simplifications made have on the load distribution in the surrounding 

structure. In Model B the roller forces are distributed over the raceways, while in 

Model C the forces between the rollers and the rings are modelled at discrete 

locations. This affects how the force enters the bearing housing. For Model B the 

deformation of the rings is smoother, while Model C the local deformation at each 

roller-raceway contact is captured.  Note that in Model A the coupling to the 

surrounding structure is done via two nodes in the centre of the model, hence it does 

not make sense to evaluate the force distribution for this model.   

The two models are simulated in an assembly with two discs, representing a shaft and 

the bearing seat. The housing is made of aluminium and the shaft is made of steel. 

The plate with bearing Model B is shown in Figure 4.10.  
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Figure 4.10 Cylindrical roller bearings built in a structure consisting of two discs, 

representing a shaft and bearing seat.  

 

The meshes for the models can be seen in Figure 4.11. Note that due to the structure 

of the models, with the load distribution for Model B etc., the meshes for the bearings 

are quite different. Model B is intended to use with a small number of elements in the 

circumferential direction. The width, in circumferential direction, of the elements used 

to model the roller-raceway contact in Model C is set to 0.25mm which corresponds 

to a roller load of approximately 0.5kN/mm according to equation (2.3). 

 

 

Figure 4.11 Models used in the simulations. Left: Reference Middle: Model B 

Right: Model C.  

 

A radial load is applied to the shaft and the outer surface of the outer plate is fixed. 

Figure 4.12 shows the stress distribution in the outer plate for the two simplified 

models and for a complete FE-model of the bearing. The stress distribution in the 

plate is similar for all the bearing models. Close to the bearing seat some difference 
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between Model B and C can be seen, due to the difference in the distribution of the 

roller loads. Figure 4.13 shows the stress distribution in the contact between the 

bearings and the outer disc (cut in the middle of the disc in). The force enters the disc 

a discrete locations for Model C and the reference model, while for Model B the force 

is smoothen out and distributed over a larger area of the bearing seat. This indicates 

that if the stress in the area close to the bearing is of interest, Model B may be not 

appropriate to use, but the differences is small. However, if the detailed deformation 

of the bearing seat is of interest then Model B is not sufficient but the more discrete 

modelling of the forces in Model C is needed.   

 

 

 

 

Figure 4.12 Stress distribution in the outer disc, representing bearing seat. Left: 

Reference Middle: Model B Right: Model C. Note that the same scale is used for the 

stress in all the figures. 
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Figure 4.13 Stress distribution in the outer disc, representing bearing seat, cut in 

the middle of the disc. Left: Reference Middle: Model B Right: Model C. Note that the 

same scale is used for the stress in all the figures.  
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5 Conclusions and discussion 

Figure 4.6 and Figure 4.8 indicates that the behaviour of the simplified models for 

cylindrical bearings, in the radial direction and for misalignment, is similar to that of 

the reference model. However, more load cases with different boundary conditions, 

e.g. the bearing built in to different structures, should be evaluated. Also bearings with 

different geometry and number of rollers should be evaluated.  

The relation between force and displacement is captured more correct than the 

relation between misalignment and reaction moment, see Figure 4.7 and Figure 4.9. 

This indicates that the axial position of the spring elements that are used to model the 

rollers should be investigated further. The springs in Model B and C is connected to 

elements on the inner ring and constrained to be perpendicular to the inner raceway. If 

the inner ring is misaligned the springs follows with the rotation. Due to the geometry 

of the raceways the affect from constraining the springs to the outer ring instead 

should be investigated.     

Figure 4.6 and Figure 4.8 also shows that the analytical solutions from Harris and 

Houpert give a fairly good approximation of the forces and moments in cylindrical 

bearings, with Houpert’s approach being a bit closer to the reference results.  

Model A seems to give satisfactory results for decoupled forces and moments. 

However, the coupling between an axial displacement and the moments and radial 

forces is not included in the model for cylindrical bearings.  

Figure 4.12 and Figure 4.13 indicates that the stress distribution in the surrounding 

structure is similar for the reference model and Model B only a short distance from 

the model, approximately twice the roller diameter. The deformation of the bearing 

seat is however smoother for Model B and the detailed deformation at each roller is 

not captured, if this is of interest then Model B is not sufficient to use.   

In Section 4.1.2 it was shown the radial and axial displacement in the bearing is stable 

when the rings are rotated with respect to each other. The variation due to the contact 

between the spring nodes and the outer raceway (mesh dependence) was small. It was 

also shown that the load distribution among the spring rows varies with respect to the 

direction of the force as the inner ring is rotated; leading to a variation in the radial 

displacement, but the variation was small. The deformation of the rings is constrained 

to be smooth so this variation might actually be too small compared to an actual 

bearing.   

Figure 4.12 and Figure 4.13 shows that the stress and load distribution on the structure 

surrounding the bearing are similar for the reference model and Model C. This 

indicates that the deformation of the rings and the load distribution in the bearing is 

similar for the two models. The force distribution is modelled as uniform in 

circumferential direction over the contact area for the roller-raceway contact in Model 

C, which is an approximation. The effects from modelling the force distribution more 

accurate, e.g. according to a Hertz-like pressure distribution could be investigated. 

However, the comparison with the reference model shows that the approximation 

used seems to give sufficient accuracy for the deformation and load distribution 

outside the bearing.  
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6 Recommendations and future work 

 

 Model C is intended to capture the detailed deformation of the rings in the 

bearing. However, bending of the rollers is not included. The rollers are quite 

stiff in this direction due to the diameter/length ratio being small but the 

effects from modelling the roller as flexible, e.g. using beam elements, should 

be investigated further.  

 

 The spring stiffness for the tapered models should be approximately the same 

as for the cylindrical bearings. But this needs to be verified.  

 

 The spring elements used to model the stiffness in the axial direction for 

cylindrical bearings needs to be calibrated against reference results.   

 

 The bearing models can be generated from a limited number of parameters 

describing the bearing geometry but to facilitate the use of the models, a 

graphical user interface should be implemented 
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A Analytical approach for bearing race loads and 

moments 

 

A.1 Cylindrical bearing subjected to pure radial load 

Harris (1991) derives analytical expressions for determining of the total stiffness of a 

roller bearings subjected to a pure radial load. By studying static equilibrium, he 

shows that the radial force,   , on the bearing is related to the radial displacement,   , 

as: 

       (        )   ( )  (A.1) 

Where    is the so called Sjövall integral: 

 
  ( )  

 

  
∫ [  

 

  
(      )]
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Where    is the angle of load zone extent: 

 
        (

  

   
)  (A.3) 

 

And   is the relation between the diametral play,   , in bearing and the radial 
displacement according to: 

 
  

 

 
(  
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Equation (A.1)– (A.4) can be solved, using iterations, for the radial displacement for a 

given radial force, or vice versa. 
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A.2 General loading of tapered and cylindrical bearings 

Equations for calculating the bearing inner race loads and moments, based on the 

kinematic relation in Section 2.1, see also Houpert (1997). 

 

 

Figure A.1 Displacement of the centre of the inner ring (point I) with respect to 

the centre of the outer ring (point O) (Houpert ,1997). a) Position of the rings when 

the bearing is undeformed. b) Inner ring displaced with respect to the outer ring.   

 

A.2.1 Bearing inner race forces 

Equivalent displacements of the centre of the inner roller-raceway contact: 
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Summation of the roller loads, by integrating over   for the number of rollers in 
contact, gives: 
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            (A.10) 

             (A.11) 

 

and    is the angle for the position of the roller where the maximum roller load will 

occur: 

 
        

  

  
                   (A.12) 

 
        

  

  
              (A.13) 

and    is: 

 
        (A.14) 

  is a parameter that combines the displacements in the axial and radial direction, that 
is used to determine the angle for the number of rollers in contact: 

 
  

       

      
 (A.15) 

A.2.2 Bearing inner ring moments 

The radial loads and a misalignment of the inner ring with respect to the outer ring 

give rise to moments in the centre of the inner ring. If the contact angle between the 

rollers and raceway is assumed to be constant, the moment due to the radial loads and 

misalignments are: 

                      (A.16) 

                    (A.17) 

The additional tilting moment due to the misalignment,    , can be approximated by, 
assuming that the roller-raceway deformation is small: 
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Where     and   are integrals over the number of rollers in contact that can be 
approximated with the analytical expressions in Table 8.1. 
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Table A.1 Analytical expressions for     and   (Houpert, 1997) 

For      For      

       (  )   √       (   )      

    √                   

       (  )   √         (   )      
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B Appendix Volvo GTT 
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C Appendix Volvo GTT 
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D Appendix Volvo GTT 


