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ABSTRACT 

According to the Swedish design code, wind loads on bridges with constant cross 

section and span length less than 50m can be assessed in a simplified method 

presented in Eurocode. However, this simplified method is not applicable for arch 

bridges together with several other types of bridges. The dynamic response for these 

bridges needs to be assessed, which results in time consuming calculations.  

To simplify the design calculations when investigating the dynamic response for a 

bridge it is of big importance to prove the first mode in wind direction is dominating. 

By proving this one can use a method known as the singe-mode method.  

This Master’s Thesis consists of a parametric study which displays the structural 

demand of arch bridges that are subjected to wind loads. Selected parameters are 

chosen and their influence on the decision of the dominating mode is investigated. 

The parametric study is divided into three main groups depending on the material of 

the arches.   

The result is presented in written where characteristic examples for the associated 

parametric study are displayed. In addition to this a regression analysis is performed 

to estimate the relationship between the different parameters and the associated 

structural factor. 

 

Keywords: Dynamic response, arch bridges, wind load, single-mode method, 

structural factor, dominating mode 
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SAMMANFATTNING 

Enligt Trafikverkets dimensioneringsprinciper kan vindlaster för broar med konstant 

tvärsnitt och spännvidd under 50m utvärderas med en förenklad metod beskriven i 

Eurocode. För bl.a. bågbroar krävs däremot en mer detaljerad dynamisk analys där 

den dynamiska responsen för bron utreds. Detta resulterar i en mer komplicerad 

dimensioneringsprocess vilken ofta är tidskrävande.  

För att förenkla dimensioneringsberäkningarna när den dynamiska responsen utreds är 

det en stor fördel om den första moden för bågen är dominerande. Genom att påvisa 

detta kan en enkel-mods metod användas vid beräkningen.  

Detta mastersarbete består av en parameterstudie vilken visar det strukturella 

beteendet för bågbroar exponerade för vindlaster. Parametrar vilka anses ha stor 

inverkan på det dynamiska beteendet är utvalda. Vidare är dessa parametrars inverkan 

vid bestämmandet av den dominarande moden i vindriktningen analyserad. 

Parameterstudien är indelad i tre huvudgrupper beroende av bågarnas material.  

Resultatet är presenterat i text där karakteristiska exempel, för den givna 

huvudgruppen, är illustrerade. Förutom detta har en regressionsanalys utförts för att 

påvisa sambandet mellan de utvalda parametrarna som varierats och den strukturella 

faktorn.  

 

Nyckelord: Dynamisk respons, bågbroar, vindlast, enkel-mods metod, strukturell 

faktor, dominerande mod 
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Notations 

Abbreviations 

FE Finite element  

IC Initial conditions 

PSD Power spectral density 

RMS Root mean square 

SDOF Single degree of freedom 

MDOF Multi degree of freedom 

 

Roman upper case letters 

      Amplitude constants [-] 

  Background response factor [-] 

      Integration constants [-] 

   Local drag coefficient [-] 

  Damping matrix [Ns/m] 

  Modal damping matrix [Ns/m] 

  Young´s modulus [Pa] 

  Non-dimensional PSD [-] 

  Load matrix [N] 

  Frequency Response factor [-] 

  Impulse load [Ns] 

   Turbulence intensity [-] 

  Stiffness matrix [N/m]  

  Modal stiffness matrix [N/m]  

  Modal mass [kg]  

  Mass matrix [kg] 

  Modal mass matrix [kg] 

  Arbitrary degrees of freedom [-] 

  Resonant response factor [-] 

  Power spectral density [-] 

  Period time [s] 

   Along-wind velocity [m/s] 

   Mean wind velocity [m/s] 

  Stochastic process [-] 



 

 

Roman lower case letters 

  Local width [m] 

  Damping coefficient [Ns/m] 

   Roughness factor [-]  

   Orography factor [-] 

   First eigenfrequency [Hz] 

  Load vector [N]  

  Modal load vector [N]  

   Spring stiffness  [N/m] 

   Background factor [-] 

   Response factor [-] 

   Peak factor [-] 

   Terrain factor [-] 

  Mass [kg] 

  Applied load [N] 

  Time [s] 

  Displacement [m] 

  Displacement vector [m] 

 ̇ Velocity [m/s] 

 ̇ Velocity vector [m/s] 

 ̈ Acceleration [m/s
2
] 

 ̈ Acceleration vector [m/s
2
] 

 ̅ Average displacement [m] 

   Zero mean turbulence [m/s] 

  Average frequency [Hz] 

   Basic mean wind velocity [m/s] 

   Mean wind velocity [m/s] 

  Along wind load [kN/m] 

   Load due to mean wind [kN/m] 

   Load due to turbulence [kN/m] 

   Roughness length [m] 

 

 

 



 

Greek upper case letters 

  Eigenvector [-] 

  Frequency of the applied load [rad/s] 

 

Greek lower case letters 

  Phase angle [rad] 

  Damping ratio [-] 

   Aero dynamic damping [-] 

   Structural damping [-]  

    Mean value of stochastic process [-] 

   Poisson’s ratio [-] 

   Density [kg/m
3
] 

   Standard deviation [-] 

    Gust factor [-] 

   Mode shape [-] 

   Modal matrix [-] 

  Circular frequency of load [rad/s] 

   Damped natural frequency [rad/s] 

   Natural frequency [rad/s] 

   
Damped frequency [rad/s] 
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1 Introduction 

1.1 Background 

According to the current regulations in Eurocode 1 (SS-EN 1991-1-4, 2005), bridges 

exposed to wind loads can be assessed by a simplified method where dynamic 

response calculations are not necessary. The structural factor, cscd, is in the simplified 

method set equal to 1.0. However the Swedish guidelines in TRVK Bro 11 

(Trafikverket, 2011), states that the dynamic response has to be evaluated for arch 

bridges, suspension bridges, cable-stay bridges, bridges with roofs, bridges with high 

slender columns and bridges with spans over 50 meters.  

The dynamic response calculations are time consuming but may be simplified by a 

single-mode method. By using this method the number of parameters would be 

reduced and thereby shorten the calculation process. The single-mode method is 

acceptable to use under the condition that the structural response of the bridge is 

dominated by the first in-wind directional mode. A parametric study where the 

parameters that has the highest impact in the decision whether the in-wind directional 

mode is dominating or not would therefore be of interest. If these parameters are set 

into relation with the corresponding structural factor it might also be possible to assess 

the dynamic response without detailed calculations. 

1.2 Aim and objective 

The aim of the thesis is to produce a parametric study that will investigate the 

structural demands of arch bridges, with regards to wind load response, in order to use 

a simplified single-mode method. The structural factor, according to Eurocode 1 (SS-

EN 1991-1-4, 2005), will be evaluated for those bridges that fulfill the requirements 

for the single mode method. 

1.3 Method 

This master thesis will be carried out in two parts; a literature study and a parametric 

study. 

Initially a literature study is performed which is used to evaluate what parameters 

have the highest impact in the decision whether the in-wind directional mode is 

dominating or not. The literature study includes theory of structural dynamics, 

evaluation of different wind spectrum as well as the process to evaluate the structural 

factor. 

The purpose of the parametric study is to evaluate different arch bridge designs and 

their structural response. The condition to use the single-mode method is that the 

structural response is dominated by the first in-wind directional mode. This condition 

is evaluated by analyzing the eigenfrequencies and the RMS (Root Mean Square) 

values of the displacements. In order to obtain the eigenfrequencies and the RMS 

values a FE-software will be used. The FE-software chosen for this study is 

BRIGADE/PLUS which is a FE-software customized for bridge engineering. In case 
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the results are satisfying the conditions for using the single-mode method, the 

structural factor for the corresponding bridge type is evaluated. 

By setting the parameters that are used in the parametric study in relation to the 

corresponding structural factor it might be possible to predict the dynamic response 

for other, not yet assessed bridges.  

1.4 Limitations 

The behavior of the structure is assumed to be linear elastic. Only dynamic response 

due to wind load is considered. The parametric study will only evaluate through arch 

bridges with zero hinges.    

1.4.1 Wind assumptions 

In the theory part concerning wind load the following assumptions apply: 

 The terrain is assumed to be horizontal and its roughness is constant 

 At a sufficient height the wind flow is assumed to be horizontally 

homogeneous 

 Any thermal contributions to the turbulence is neglected 

 The wind direction don’t change with the height above the terrain 

 The main flow direction of the wind is perpendicular to the bridge span axis. 
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2 Theory of structural dynamics 

The reader is expected to have elementary knowledge in structural dynamics, some 

basic equations and concepts are presented in this chapter. The equations in this 

section are derived according to (Craig Jr & Kurdila, 2006). 

2.1 Undamped single degree of freedom system 

The simple single degree of freedom (SDOF) model presented in Figure 2.1 below is 

considered. The mass is excited by an arbitrary force  ( ), the base is assumed to be 

fixed and the system starts from rest. 

 

Figure 2.1 - SDOF Spring-mass system 

The equation of motion for this system is 

   ̈( )    ( )   ( ) (2.1) 

Where   

  Mass    [kg] 

   Spring stiffness [N/m] 

   Applied load  [N] 

   Displacement  [m] 

 

Introducing the natural frequency    

    √
 

 
 (2.2) 

Then equation (2.1) can be rewritten as 

  ̈( )    
  ( )  

 ( )

 
 (2.3) 
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This is a linear ordinary differential equation with constant coefficients. This equation 

has a solution that consists of two parts, a complementary solution    and a particular 

solution.    The total solution is then 

  ( )    ( )    ( ) (2.4) 

The complementary solution is obtained by consider the free vibration case of the 

system i.e. when    . Then the complementary solution has the general solution as 

   ( )                    (2.5) 

The particular solution depends on the applied load. Assuming that the applied load is 

harmonic, then the particular solution will be 

   ( )  
     (  )

 (      )
 (2.6) 

The total solution is then solved by inserting (2.6) and (2.5) into (2.4) and then apply 

the initial conditions from which the constants    and    can be solved.  

2.1.1 Short-duration impulse response 

If the load duration is much less than the system period time the load can be expressed 

as an impulse load. Assuming that the system is subjected to a load of duration    and 

that       then the impulse can be defined as 

   ∫  ( )   
  

 

 (2.7) 

Where   

  Impulse load   [Ns] 

   Applied load  [N] 

    Impulse duration [s] 

The applied load  ( ) is an arbitrary function in time. Figure 2.2 below shows 

examples of some simple functions that can be used to model an impulse. 

 

Figure 2.2 - Impulse load – Square, sinusoidal and triangular load 

The equation of motion then becomes 

   ̈    ̇  {
 ( )       
      

 (2.8) 
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Equation (2.8) is then integrated with respect to time and with the initial conditions 

incorporated.  

   ̇(  )    ̅     (2.9) 

Here  ̅ is the average displacement in the time interval. If it can be assumed that the 

impulse is short, then     . Then equation (2.9) will become 

   ̇(  )    (2.10) 

A short impulse will then give the mass an initial velocity of 

  ̇(  )  
 

 
 (2.11) 

The initial displacement will then become 

  (  )    (2.12) 

By using equation (2.11) and (2.12) as IC, the impulse response can be solved using 

equation (2.4) with the particular solution     . 

2.2 Damped single degree of freedom system 

The motions in real systems cannot continue indefinitely due to damping that will 

dissipate energy from the system. Therefore a damped single degree of freedom 

(SDOF) system illustrated in Figure 2.3 is considered. 

 

Figure 2.3 - SDOF Spring-mass-damper system 

The equation of motion for this system is 

   ̈( )    ̇( )    ( )   ( ) (2.13) 
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Where   

  Mass    [kg] 

  Damping coefficient [Ns/m] 

  Spring stiffness [N/m] 

  Applied load  [N] 

  Displacement  [m] 

 ̇ Velocity  [m/s] 

 ̈ Acceleration  [m/s
2
] 

 

The damping ratio is defined as 

   
 

 √  
 (2.14) 

Then the equation of motion then can be written as 

  ̈( )       ̇( )    
  ( )  

 ( )

 
 (2.15) 

As in the undamped case the solution for the differential equation consists of two 

parts the complementary solution and the particular solution, se equation (2.4). 

Equation (2.15) can be solved by making the ansatz 

  ( )       (2.16) 

This then gives 

            
    (2.17) 

This characteristic equation will have the roots given by 

 
  
  
}         √     (2.18) 

Three cases can be identified underdamped  (     ), critically damped  (   ), 
and overdamped  (   ). These three cases are illustrated in Figure 2.4. 
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Figure 2.4 - Underdamped, Overdamped & Critically damped 

2.2.1 Underdamped (ζ < 1) 

By introducing the damped natural frequency as 

      √     (2.19) 

Equation (2.18) can be rewritten in the form 

 
  
  
}           (2.20) 

Then the complementary solution can be written as 

   ( )   
     (                 ) (2.21) 

2.2.2 Critically damped (ζ = 1)  

For this case equation (2.18) will only have one solution, which is 

       (2.22) 

The complementary solution will be 

   ( )  (      ) 
     (2.23) 

2.2.3 Overdamped (ζ > 1) 

Now equation (2.18) gives two distinct negative real roots. Introducing 

      √     (2.24) 

The complementary solution then can be written as 

  ( )        (       
          

  ) (2.25) 
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2.2.4 Particular solution 

If the applied load is assumed to be harmonic the particular solution will be 

   ( )      (    ) (2.26) 

Here   is the steady-state amplitude and   is the phase angle defined as 

   
  

 √(    )  (   ) 
 (2.27) 

      
   

    
 (2.28) 

Where  

   
 

  
 (2.29) 

The total solution can then be obtained, similar to the undamped system, by applying 

the IC and solve the constants from the complementary solution. 

2.3 Multi degree of freedom system 

Many structures like for example bridges are so complex that they cannot be 

represented by a SDOF system. For convenience a 2-degree of freedom system 

illustrated in Figure 2.5 will be considered. The method described below is analogue 

with an arbitrary   degree of freedom system. 

 

Figure 2.5 - MDOF Spring-Mass-Damper system 

In order to obtain the equation of motion for the system a free-body diagram for each 

of the masses should be established. Then by applying Newton’s second law of 

motion on each mass the following equation will be obtained 

 [
   
   

] [
 ̈ 
 ̈ 
]  [

        
     

] [
 ̇ 
 ̇ 
]  [

        
     

] [
  
  
]  [

  ( )

  ( )
] (2.30) 
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Introducing the notation 

    Mass matrix 

    Damping matrix 

    Stiffness matrix 

    Load vector 

    Displacement vector 

   ̇ Velocity vector 

   ̈ Acceleration vector 

Then equation (2.30) can be written as 

   ̈    ̇       (2.31) 

Assuming that the motion is harmonic such that 

  ( )      (    ) (2.32) 

Here   is a vector with the constants that determines the amplitudes. By inserting 

(2.32) into (2.31) and disregarding the effect of damping  

 (     )    (2.33) 

In order for equation (2.33) to have a nontrivial solution the values of    must satisfy 

the following equation 

 |    
  |    (2.34) 

By solving equation (2.34) the eigenfrequencies    can be obtained. Once the 

eigenfrequencies has been determined the mode shapes can be calculated. The mode 

shapes are defined as 

    [
  
  
]
 

   [
 
  
]        (2.35) 

Using         and insert it into equation (2.32) 

   ( )       (      )       (      ) (2.36) 

   ( )         (      )         (      ) 
(2.37) 

Here    and    can be calculated by applying IC.  

2.4 Mode superposition and modal damping 

The equation of motion for an N-DOF system has in general coupled equations. This 

requires solutions of N equations in N unknowns. The mode-superposition method is 

a method that transforms the set of coupled equations to a set of uncoupled equations. 

The method uses the normalized modes extracted from the undamped system. 
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Assuming that we have N modes and that           the modal masses and the 

modal stiffnesses can be calculated using 

      
           

     (2.38) 

Then due to orthogonality 

   
       

       (2.39) 

This holds for all    . Collecting the mode shapes gives the modal matrix as 

   [       ] (2.40) 

Then by using equation (2.38) and (2.39) the modal damping matrix and the modal 

stiffness matrix can be written as 

            (  )            (  )  (2.41) 

By introducing the principal coordinates 

  ( )    ( )  ∑    ( )

 

   

 (2.42) 

The equation of motion in principal coordinates can then be written as 

   ̈    ̇      ( ) (2.43) 

Where 

    Modal mass matrix 

    Modal damping matrix 

    Modal stiffness matrix 

    Modal load vector 

Since the matrices   and   are diagonal equation (2.43) are coupled only through the 

damping matrix  . One common damping technique used in structural dynamic 

problems is modal damping. The modal damping matrix is then assumed to satisfy 

orthogonality such that the damping matrix becomes 

            (  )      (       ) (2.44) 

Equation (2.43) now consists of uncoupled equations of motion in principal 

coordinates. 

2.5 Fourier analysis 

When considering structures subjected to random loading it is convenient to transform 

the load response from the time domain to the frequency domain. This can be 

obtained by using Fourier analysis (Handa, 1982). 
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2.5.1 Fourier series 

A periodic function can be separated into several harmonic components using a 

Fourier series expansion (Craig Jr & Kurdila, 2006). 

Consider the periodic function 

  ( )   {
    

 

 
    

      
 

 

 (2.45) 

The function is illustrated in Figure 2.6. 

 

Figure 2.6 - Periodic function p(t) 

By definition the real Fourier series expansion of  ( ) is 

  ( )     ∑         

 

   

 ∑         

 

   

 (2.46) 

Where 

    
  

  
 (2.47) 

    
 

  
∫  ( )   

    

 

 (2.48) 

    
 

  
∫  ( )           

    

 

           (2.49) 
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∫  ( )           

    

 

           (2.50) 

Here   is an arbitrary time and    is the period of  ( ). In theory one may need an 

infinite number of terms   for  ( ). In this example it will be shown that one may get 

a sufficient approximation by using a relatively small number of terms. 

By substituting equation (2.45) into equations (2.48), (2.49) and (2.50) it can be 

shown that the Fourier series representation according to equation (2.46) will become 

  ( )  
   
 
∑

 

(    )
   ((    )   )

 

 

 (2.51) 

Equation (2.51) is plotted in Figure 2.7 using              and      . 

It is clear that around 100 terms gives a good approximation of  ( ). 

 

Figure 2.7 - Plots of equation (2.51) using N=1, 3, 10 & 100 

In cases where the system is viscous-damped the complex Fourier series expansion 

can be useful instead of equation (2.46). 

  ( )  ∑   ̅( ) 
 (    )

 

    

 (2.52) 
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Where 

   ̅  
 

  
∫  ( )   (    )

    

 

               (2.53) 

2.5.2 Fourier Integral 

As shown in chapter 2.5.1 a periodic function can be written in terms of harmonic 

function with the Fourier series. However if a function is not periodic, such as for 

example the wind speed registration over a time period, we can still write it in terms 

of harmonic functions. This is done with the Fourier integral (Craig Jr & Kurdila, 

2006).  

Recalling equation (2.52) and (2.53), by letting      and introducing the following 

notation 

                 (2.54) 

  (  )      ̅  
  

  
  ̅ (2.55) 

Then equation (2.52) can be written as 

  ( )  
 

  
∑  ̅(  ) 

 (   )  

 

    

 (2.56) 

And equation (2.53) together with equation (2.55) will become 

  ̅(  )  ∫  ( )  (   )   

  
 ⁄

 
  
 ⁄

 (2.57) 

And since      then    becomes a continuous variable   and also    becomes the 

differential   . Hence equation (2.56) and (2.57) becomes 

  ( )  
 

  
∫  ̅( )       

 

  

 (2.58) 

  ̅( )  ∫  ( )        

 

  

 (2.59) 

Equation (2.58) is the inverse Fourier transform of  ̅( ) and equation (2.59) is called 

the Fourier transform of  ( ). 
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2.6 Random response analysis 

The wind load due to turbulence is in structural engineering treated as a stochastic and 

ergodic process. In order to predict the response of a structure excited by such 

loading, one can in an FE-software perform a random response analysis. In this type 

of analysis the structure is excited by a random load. This load is characterized in the 

frequency domain by a cross-spectral density matrix  ( ). From a previous conducted 

eigenvalue analysis the eigenmodes are used to calculate the power spectral densities 

(PSD) of the response variables considered. The obtained deformations will then give 

the frequencies at which the system is most excited (Dassault Systèmes, 2012). 
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3 Theory of wind engineering 

Due to irregular heating of the atmosphere there will be temperature differences 

between different geographic areas of the earth. Hence, air pressure differences will 

occur which induces movement of the air to reach equilibrium. This movement 

provides the air with kinetic energy and the mass and velocity of the wind has to be 

taken into account when designing a structure (Handa, 1982). 

The fluctuating wind field is assumed to be stationary and homogenous within the 

considered time and space. It may be approximated as a combination between the 

long-term variation of the mean wind velocity, the short term single spatial 

distribution of the turbulence components and the short term single point time domain 

variation of the turbulence components. An illustration over a fluctuating wind field is 

shown in Figure 3.1 (Strømmen, 2010). 

 

Figure 3.1 - Simple bridge structural system subjected to fluctuating wind field 

varying in time and space (Strømmen, 2010). 

 

The along-wind load  (   ) per unit height can be defined according to Holmes 

(2001) 

  (   )  
 

 
  ( ) ( )   

 (   ) (3.1) 

Where   

  ( ) Local drag coefficient    [-] 

  ( ) Local width      [m]  

    Air density     [kg/m
3
] 

  (   ) Wind velocity in along-wind direction [m/s] 
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The wind velocity in along-wind direction  (   ) in equation (3.2) can according to 

Strømmen (2010) be defined as the mean wind velocity  ( ) added to the zero mean 

turbulence component   (   ). 

  (   )   ( )    (   ) (3.2) 

By inserting equation (3.2) into equation (3.1) and neglecting the term   
 (   ) 

since  ( )    (   ), the following expression is obtained 

  (   )  
 

 
  ( ) ( )  ( 

 ( )    ( )  (   )) (3.3) 

The wind load can be divided into the following contributions 

  (   )    ( )    (   ) (3.4) 

Where   

   ( )   
 

 
  ( ) ( )   

 ( ) Quasi-static load due to  ( )   [kN/m] 

   (   )    ( ) ( )   ( )  (   ) Load due to wind turbulence   [kN/m]  

3.1 Load due to mean wind velocity 

The mean wind velocity at height   is depending on the terrain roughness, the 

orography and the basic wind velocity (Dyrbye, 1997). Eurocode 1 (SS-EN 1991-1-4, 

2005) presents a way to calculate the mean wind velocity which is given by: 

  ( )    ( )  ( )   (3.5) 

Where  

    Basic mean velocity [m/s] 

   ( ) Roughness factor [-]  

   ( ) Orography factor [-] 

The basic mean velocity    varies between different geographic regions in Sweden 

and can be decided using the Swedish Annex to Eurocode (TRVFS, 2011:12). 

According to the Swedish Annex to Eurocode (TRVFS, 2011:12) the orography factor 

  ( ) is taken as 1.0 since its influence is already accounted for in the basic mean 

velocity.  

The roughness factor   ( ) depends on the height above the ground level and the 

roughness of the ground at the wind direction of the structure. It is given by Eurocode 

1 (SS-EN 1991-1-4, 2005):  

 
  ( )      (

 

  
)                              

  ( )    (    )                           

(3.6) 
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Where  

    Roughness length given in Table 3.1 [m] 

      Minimum height given in Table 3.1 [m]  

      Maximum height taken as 200m [m] 

    Terrain factor depending on roughness length [-]  

 

        (
  
     

)
    

 (3.7) 

Where  

       Roughness length depending on terrain type 0-IV [m] 

Table 3.1 - Terrain categories and terrain parameters (SS-EN 1991-1-4, 2005). 

Terrain category z0 [m] zmin [m] 

0 Sea or coastal area exposed to the open sea 0.003 1 

I Lakes or flat and horizontal area with negligible 

vegetation and without obstacles 
0.01 1 

II Area with low vegetation such as grass and isolate 

obstacles (tree, buildings) with separations of at least 20 

obstacles heights 

0.05 2 

III Area with regular cover of vegetation or buildings or 

with isolated obstacles with separations of maximum 20 

obstacle heights (such as villages, suburban terrain, 

permanent forrest) 

0.3 5 

IV Area in which at least 15 % of the surface is covered 

with buildings and their average height exceeds 15 m 
1.0 10 

  

3.2 Load due to wind turbulence 

As mentioned, the turbulence load varies in both time and space. Therefore the load 

cannot be predicted deterministically and statistical measures are needed (Dyrbye, 

1997). The wind load and its turbulent component can be described as a stationary and 

ergodic stochastic process (Handa, 1982).   

3.2.1 Power spectral density for along wind 

A structure exposed to a turbulent wind load experience both high and low frequency 

loading. The part of the wind spectra that is of interest when designing a structure, 

with respect to wind loads, is the one above 0.1Hz (Handa, 1982). To describe the 

whole range of frequencies the power spectral density (PSD) for along wind    (   ) 

is used (Handa, 1982). Some of the most common theories to describe the interaction 

between the different frequency spans are Davenport’s, Harris, Solari’s and von 
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Karman’s spectra. Davenport’s and Harris spectra are independent on the height   

while von Karman’s and Solari’s spectra are varying with different heights.  

 

Figure 3.2 - Non-dimensional power spectral density given by von Karman, Solari, 

Davenport and Harris. 

The non-dimensional PSD used in the Swedish Annex to Eurocode (TRVFS, 

2011:12) origins from Von Karman’s wind spectra and is given by 

 
  

 
     
  

(      (
     
  

)
 

)

 
 

 
(3.8) 

 

3.2.2 Stochastic processes and general definitions 

A stochastic process is considered stationary under the conditions that the values are 

time-independent and that the correlations between values at different times only 

depend on time differences (Dyrbye, 1997). If every group of reading is considered 

statistically equivalent with every other group of readings and the fact that one of 

these groups would be representative for many groups of readings, than the process 

would be considered an stationary and ergodic stochastic process (Handa, 1982).  

According to the gust factor method the gust factor,    can be expressed as the 

maximum expected value of a stochastic process,  [    ] divided by   , the 

expected value of the stochastic process. Another way to describe   [    ] is by 

adding the expected value of the stochastic process to the peak factor,    multiplied 

with     the standard deviation of the stochastic process (Mørk, et al., 1999) 
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 [    ]

  
   

    

  
 (3.9) 

The peak factor can be expressed as 

 

    √   (
 

  

  ̇
  
 )  

 

√   (
 
  
  ̇
  
 )

 (3.10) 

Where   

  ̇ Standard deviation of  ̇ [-] 

  Period time   [s] 

  Eulers constant         [-] 

The expected value    of a stationary and stochastic process  ( ) is defined as 

(Strømmen, 2010) 

     { ( )}     
   

 

 
∫  ( )  
    

  

 (3.11) 

By definition, the variance   
  of the stochastic process is defined as (Strømmen, 

2010) 

   
    {( ( )   )

 } (3.12) 

The cross covariance is used to determine the relation between two or more stochastic 

processes. If we consider  ( ) and  ( ) as two stationary stochastic processes, the 

covariance       would be expressed as (Dyrbye, 1997) 

      ( )    {( ( )   )( (   )   )} (3.13) 

If   ( )   ( ) then equation (3.13) gives 

     ( )    {( ( )   )( (   )   )} (3.14) 

The cross-spectrum can for the processes  ( )and X( )be defined as (Mørk, et al., 

1999) 

    ( )   ∫      ( ) 
      

 

  

 (3.15) 

      ( )  
 

  
∫    ( ) 

     
 

  

 (3.16) 
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If     and using equation (3.14) and equation (3.15) the variance from the 

stochastic process  ( ) and  ̇( ) are found (Mørk, et al., 1999) 

   
  

 

  
∫    ( )  
 

 

 (3.17) 

   ̇
  

 

  
∫      ( )  
 

 

 (3.18) 

The cross-spectrum density    ( ) is generally of a complex matter while the one-

sided auto-spectrum density    ( ) is always real for positive cyclic frequencies. The 

cross-spectrum is defined by using the cross-amplitude spectrum |   ( )| and the 

phase spectrum    ( ) and can be defined as (Mørk, et al., 1999) 

    ( )  |   ( )| 
   ( ) (3.19) 

To measure the statistical dependence between stochastic processes at a given 

frequency, the coherence spectrum      ( ) is used (Dyrbye, 1997) 

 

3.2.3 Load contribution due to wind turbulence 

According to equation (3.4) the load due to wind turbulence can be described as 

   (   )   ( )  (   ) (3.21) 

The turbulence load can be written on spectral form by using the covariance function 

     ( ) shown in equation (3.14) 

        (       )   {[  (     )     (     )][  (     )     (     )]} (3.22) 

As  (   ) is defined as the zero mean turbulent component it can be shown 

that             . By applying this into equation (3.22) the following relation 

is obtained (Mørk, et al., 1999) 

        ( )   { (  )  (     ) (  )  (     )} (3.23) 

Since  ( ) is not time-dependent, equation (3.23) can be rewritten (Mørk, et al., 

1999) 

        ( )   (  ) (  )       ( ) (3.24) 

Applying the definition given in equation (3.15) into equation (3.24) gives 

      ( )  
|   ( )|

 

   ( )   ( )
 (3.20) 
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      (       )   (  ) (  )     (       ) (3.25) 

The auto-spectral density    (   ) is determined using the cross-spectral density for 

the modal coordinate process (Mørk, et al., 1999) 

    (   )  ∑∑  ( )  ( )     ( )

 

   

 

   

 (3.26) 

The cross-spectral density      is obtained using the frequency response function 

  ( ) (Strømmen, 2010) 

The frequency response factor   ( )(*complex conjugate) is used to split the 

response calculation into a background and resonant part, shown in Figure 3.3.The 

frequency response factor is defined as (Mørk, et al., 1999) 

   ( )  
 

(              )  
 (3.28) 

 
Figure 3.3 - Illustration demonstrating the split into background and resonant part 

using the frequency response factor. 

The cross-spectral density for the modal load      ( ) is determined using an 

orthogonally condition and given by (Mørk, et al., 1999) 

      ( )  ∫ ∫   (  )  (  )
 

 

 

 

     (       )        (3.29) 

If only the first mode shape (     )is considered and in addition to this combining 

equation (3.17) and (3.26) the following expression will be obtained (Mørk, et al., 

1999) 

   
 ( )  

 

  
  
 ( )∫ |  ( )|

      ( )
 

 

   (3.30) 

      ( )    
 ( )  ( )     ( ) (3.27) 
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The expression in equation (3.30) may be simplified by using equation (3.29) and 

(3.25) and by integrating with regard to the cyclic frequency   (Mørk, et al., 1999) 

   
 ( )  (  ( )   (    ))

 (     ) (3.31) 

The turbulence intensity   is given by 

   (    )  
  (    )

 (     )
 (3.32) 

The background factor    and the response factor    from equation (3.31) are given 

by 

    
 

  

∫ ∫ ∫   (  )  (  ) (  ) (  )
     (        )

   
        

 

 

 

 

 

 

(∫   ( ) ( )  
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  (3.33) 

    
 

 

  

     

     (       )

   
  (  ) (3.34) 

Where   

    
  

  
 Lowest eigenfrequency [Hz]  

          Structural damping coefficient for lowest eigenfrequency [-] 

          Aerodynamic damping coefficient for lowest eigenfrequency [-]  

   (  ) Size reduction factor given in equation (3.35)  

 

   (  )  
∫ ∫   (  )  (  ) (  ) (  )√       (        )      

 

 

 

 

(∫   ( ) ( )  
 

 
)
  (3.35) 

For a plan perpendicular to the wind direction full-scale experiment have shown that 

the vertical coherence spectrum can be stated as (Mørk, et al., 1999) 

        (        )   
     

|     |
 ( ̅)  (3.36) 

Where   

  Decay constant [-] 

 ( ̅) 
 

 
( (  )   (  )) [m/s] 

 

Using the background factor, resonant factor and size reduction factor one can 

calculate the structural factor     . 
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3.2.4 Wind turbulence according to the Swedish Annex to Eurocode 

In the Swedish Annex to Eurocode (TRVFS, 2011:12) some basic equations are 

presented which can be combined with the theory given in chapter 3.2.1 - 3.2.3. The 

factor comprising the resonant response of the structure is given as 

    
       
     

 (3.37) 

Where   is Von Karman’s wind spectra given in equation (3.8). The variables    and 

   are equal to   (  ) given in equation (3.35) where    covers the horizontal 

correlation and     the vertical correlation. The factor comprising the background 

response of the structure is given by 

     
     

 
    

 (  
 
 
)(         

 
    

)
 (3.38) 

The background response factor will reduce the structural factor where    is the width 

of the structure. However a cconservative approximation can be made by setting 

   equal to 1.0. The average frequency is given by 

      
 

√     
 (3.39) 

The peak factor is given by 

    √   (  )  
   

√   (  )
 (3.40) 

Where the time interval T can be set to 600 s which is the time interval belonging to 

the wind spectra. The turbulence intensity comprises the impact of the surrounding 

environment and height of the structure and is given by 

     
  

    (
 
  
)

 (3.41) 

Where   

    Turbulence factor   [-] 

    Topographic factor   [-] 

Finally the structural factor is calculated which can be compared with equation (3.9).  

      
       √     

     
 (3.42) 

The structural factor is the percentage increase of the static wind load. 
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4 Arch bridges 

An arch can be defined according to Birnstiel (2014) as 

“A structural member that spans horizontally between supports that 

develops inwardly directed horizontal reactions when the member is 

subjected to a vertical load” 

In theory a perfect arch is only subjected to compressive forces which act at the 

centroid of each arch element. Bridges are subjected to several types of loadings, such 

as dead load, temperature load, wind load, moving loads etc. This creates bending 

moments in addition to the compressive forces in the arch (Chen & Duan, 2000). In 

Figure 4.1 some arch terms are presented. 

 

Figure 4.1 - Arch terminology 

The choice of material nowadays for arch bridges is normally steel, concrete or 

timber. There are older bridges that have been built in masonry and stone but these 

materials are no longer used (Birnstiel, 2014). 

4.1 Types of Arch bridges 

One fundamental difference between different types of arch bridges is the location of 

the bridge deck. If the bridge deck lies above the arch it is called deck arch. In the 

case where the deck lies in the spring line of the arch it is called through arch. The 

third case is called half-trough arch and in this case the deck is elevated and placed 

between the spring line and the arch crown. In Figure 4.2 below sketches of these 

three types of arches are presented (Chen & Duan, 2000).  

 

Figure 4.2 - (a) Deck arch. (b) Through arch. (c) Half-through arch 
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The arch itself can be built with zero, one, two or three hinges. In Figure 4.3a-b two 

example sketches of hinge placements are shown. An advantage in using hinges at the 

arch ends is the absence of moment at the skewback, and therefore it makes the 

foundation design easier compared to the fixed arch. An arch bridge can be 

constructed with a structural tie that balances the horizontal forces created by the arch 

and reliving the abutments from these forces (Birnstiel, 2014). This bridge type is 

called tied-arch bridge and is sketched in Figure 4.3c (Chen & Duan, 2000).  

 

Figure 4.3 - (a) 2-hinges. (b) 3-hinges. (c) Tied-arch bridge 
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5 Parametric study 

5.1 Workflow 

The parametric study was carried out using the software’s BRIGADE/PLUS, Matlab 

and Microsoft Excel. To be able to run multiple analyses in Brigade, Python scripts 

were used. The results from Brigade was analyzed by a Matlab program and thereafter 

presented in Microsoft Excel. 

The parametric study comprised two processes. The first process was the modelling 

and generation of results, see Figure 5.1. The second process consisted of the analysis 

of results, see Figure 5.2. The script BRIDGE_DATA.py contained all necessary 

geometric and material data to generate the different Brigade models while 

ARCH_BRIDGE.py consisted of the code that generated the model in Brigade. The 

main script PARAMETRIC_STUDY.py combined the information from the two scripts 

and generated .inp-files, one for each parametric combination. The .inp-files were 

manually sent to the Brigade solver that generated results from the Frequency and 

Random Response analysis. The output from the analyses is gathered in .odb files. 

These can be viewed visually in the Brigade visualizer module. 

 

Figure 5.1 – Flow chart displaying the modelling and the generation of results.   

To be able to run as many analyses as possible it was necessary to be able to manage 

the result in the odb-files in a non-visual manner. This was performed by OUTPUT.py 

that collected the information from each .odb-file and converted it into .txt-files. The 

.txt-files contained RMS-values in wind direction for selected nodes and also the 

eigenfrequencies with their corresponding mode shape. The Matlab program 

ANALYSIS_OF_U_RMS.m extracts necessary parameters from the .txt files and in the 

end this information was sent to the FREQUENCY_RMS_RESULT.xlsx that gave a 

better visual overview of the results.  
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Figure 5.2 – Flow chart displaying the analysis of the results from the .odb-files.  

The result presented in FREQUENCY_RMS_RESULT.xlsx showed whether the first 

in-wind directional mode was dominating or not. With this information it was possible 

to evaluate the structural factor.  

5.2 Selection of input data  

When selecting the input parameters for the arch bridges the Swedish Management 

system of Bridges and Tunnels, BaTMan, was used. Drawings and necessary 

structural parameters have been gathered from BaTMan and is presented in Appendix 

A. 

Depending on the structure the parameters were chosen to resemble the parameters of 

a constructed arch bridge. To begin with, the different arch bridges are divided into 

material of the arch. Therefore three tables are presented, one for each type of 

material.  
  



CHALMERS, Applied Mechanics, Master’s Thesis 2014:35 
28 

5.2.1 Parameters for concrete arch bridges 

Initially a study of input data regarding concrete arch bridges was performed. The 

characteristics for these bridges are quite long spans with rectangular cross sections. 

The bridges do not normally have any cross bracing in addition to the transversal 

bracing. In Table 5.1 the chosen parameters for concrete arch bridges are shown.  

Table 5.1 - Parameters that were chosen for concrete arch bridges. 

Arch 

Number of hinges 0 

Free height 4.7m 

Arch height 10, 15, 20, 25, 30m 

Shape of arch Circular 

Span length 60, 70, 80, 90, 100, 110, 120, 130, 140m 

Distance between arches 8, 12, 16m 

Material Concrete 

Shape of cross section Rectangular 

Width of cross section 0.5, 0,7, 0.9m 

Height of cross section 0.5, 0.8, 1.1m 

Bridge deck 

Material Concrete 

Height of bridge deck 0.25m 

Hangers 

Material Steel 

Shape of cross section Circular 

Diameter of cross section 50mm 

Quantity 15 

Transverse bracing 

Material Concrete 

Shape of cross section Rectangular 

Height of cross section 0.7m 

Width of cross section 0.3m 

Quantity 4, 6, 8 
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5.2.2 Parameters for steel arch bridges 

Steel arch bridges may be built as long span bridges but also as shorter spanned 

walking bridges. The arches are usually made as box profiles with transversal bracing 

and additional cross bracing. In Table 5.2 the chosen parameters for steel arch bridges 

are shown. 

Table 5.2 - Parameters that were chosen for steel arch bridges. 

Arch 

Number of hinges 0 

Free height 4.7m 

Arch height 6, 9, 12, 15, 18m 

Shape of arch Circular 

Span length 30, 40, 50, 60, 70, 80, 90m 

Distance between arches 4, 6, 8, 10m 

Material Steel 

Shape of cross section Box 

Width of cross section 0.25, 0.50, 0.75m 

Height of cross section 0.25, 0.50, 0.75m 

Thickness of steel 15mm 

Bridge deck 

Material Concrete 

Height of bridge deck 0.25m 

Hangers 

Material Steel 

Shape of cross section Circular 

Diameter of cross section 50mm 

Quantity 10 

Transverse bracing 

Material Steel 

Shape of cross section Box 

Height of cross section 0.25x0.25x0.01m 

Quantity 3, 6, 9, 12 

Cross bracing 

Material Steel 

Shape of cross section Circular 

Diameter of cross section 40mm 
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5.2.3 Parameters for timber arch bridges 

Timber arch bridges normally have shorter span than concrete and steel arch bridges. 

Generally the arches are made of glulam beams with a rectangular cross section and in 

addition they are braced with transverse and cross bracing. In Table 5.3 the chosen 

parameters for timber arch bridges are shown. 

Table 5.3 – Parameters that were chosen for timber arch bridges. 

Arch 

Number of hinges 0 

Free height 4.7m 

Arch height 6, 8, 10m 

Shape of arch Circular 

Span length 20, 25, 30, 35, 40, 45, 50m 

Distance between arches 3, 5, 7, 9m 

Material Glulam timber 

Shape of cross section Rectangular 

Width of cross section 0.2, 0.4, 0.6m 

Height of cross section 0.6, 0.8, 1.0m 

Bridge deck 

Material Glulam timber 

Height of bridge deck 0.30m 

Hangers 

Material Steel 

Shape of cross section Circular 

Diameter of cross section 25mm 

Quantity 5 

Transverse bracing 

Material Glulam timber 

Shape of cross section Rectangular 

Width of cross section 0.2m 

Height of cross section 0.2m 

Quantity 3, 5, 7 

Cross bracing 

Material Steel 

Shape of cross section Circular 

Diameter of cross section 25mm 
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5.3 FE-model 

The software used in this study is Brigade/Plus which is a modified version of the 

commercial software Abaqus. The difference between Abaqus and Brigade is that 

Brigade is stripped from certain functions and keywords that are normally not used in 

bridge design. Brigade has also support for live loads in order to simulate vehicles 

driving over the bridge. 

The global coordinate system was set according to Figure 5.3, with the x-axis along 

the bridge length, y-axis in the bridge vertical direction and z-axis in the lateral 

direction (in wind load direction). 

 

Figure 5.3 - Global coordinate system 

5.3.1 Element types 

The arch bridges were modelled using beam and shell elements. All parts of the 

bridge except the deck were modelled with beam type B31, which is a three-

dimensional beam element that uses Timoshenko beam theory. The bridge deck was 

modelled with element type S4R, which is a quadrilateral shell element. These shell 

elements are so called general-purpose shell elements, which mean that they use both 

Kirchhoff and Mindlin shell theory in order to provide good solutions to both thin and 

thick shells (Dassault Systèmes, 2012). 

5.3.2 Material data 

Both concrete and steel were modelled as an elastic isotropic material. The material 

parameters defined were Young´s modulus  , Poisson´s ratio   and the density  . The 

concrete strength class for all concrete bridges in the study was chosen to be C30/37. 

For concrete the material parameters were chosen according to Eurocode 2 (SS-EN 
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1992-1-1, 2005) and for steel according to Eurocode 3 (SS-EN 1993-1-1, 2005). 

Values are presented in Table 5.4. 

Table 5.4 - Material parameters for concrete & steel 

Material   [GPa]     [kg/m
3
] 

Concrete [C30/37] 33 0.1 2500 

Steel 200 0.3 7850 

A big difference between Timber and the other two materials is that it is an 

anisotropic material with different material parameters in each direction. Therefore 

the glulam timber had to be defined with more detailed material parameters. In 

Brigade the material can be modelled by defining the engineering constants in each 

direction. The beam directions were set according to Figure 5.4.  

 

Figure 5.4 - Glulam beam cross-section direction 

The strength class for the glulam timber was chosen to be GL28c and the material 

parameters were chosen according to the Swedish Standard Timber structures (SS-EN 

14080, 2013) and are presented in Table 5.5. 

Table 5.5 - Material parameters for glulam timber 

Glulam timber GL28c 

   [MPa]    [MPa]    [MPa]                        [kg/m3] 

12 500 300 300 0 650 650 65 420 

 

5.3.3 Analysis type 

Two different analyses were performed on each bridge model in the parametric study. 

First a frequency analysis was performed in order to obtain the eigenfrequencies and 

their corresponding mode shape. Then a random response analysis was performed 

with a rectangular power spectral density with magnitude 1 and with a line load 

applied on the arch in the wind direction. From this step the root mean square values 

of the arch displacement in the wind direction were obtained. 
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In the random response analysis modal damping was applied to all modes. The 

damping coefficient was calculated using equation (5.1) according to Craig Jr & 

Kurdila (2006) where   is the logarithmic decrement taken according to Table F.2 in 

Eurocode 1 (SS-EN 1991-1-4, 2005). 

 
  

 

√  (
  
 
)
 
 

(5.1) 

In both types of analyses the frequency ranges of interest were set to 0.1-10 Hz. The 

lower limit was set according to Handa (1982). The higher limit was set due to fact 

that the wind spectrums, described in chapter 3.2.1, has very low values above 10 Hz. 

Therefore it is reasonable to assume that the wind cannot excite the structure at 

frequencies above this limit.  

5.3.4 Assembly 

The models of the arch bridges consist of five parts. These parts were all put together 

in an assembly step. In order to be able to control the coupling between the different 

parts, these were modeled so that there was a small distance between the connecting 

parts. The coupling between the parts were then set with an interaction connection in 

Brigade, see Figure 5.5. 

 

Figure 5.5 - Interaction connection between hanger and deck 

Hinged connections were used for the hangers, connecting to the arch and the deck, 

and for the cross-bracings between the arches. The connection between the horizontal 

bracing members and the arches were modeled as a fixed connection.  
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5.3.5 Boundary conditions 

 

Figure 5.6 - Boundary conditions sketch 

The boundary conditions for the bridge models were applied at the arch ends and at 

the bridge deck ends. A principal sketch of the boundary conditions is given in Figure 

5.6.  

The arch ends were prevented from rotation and translation in all directions. The 

bridge deck was in one end prevented from translation in all directions and in the 

other end the translation in global y- and z-axis was prevented.  

 

Figure 5.7 - Boundary conditions 

 

5.3.6 Convergence study 

When meshing an FE-model it is important that it is sufficiently detailed in order for 

the results to approach the analytical solution. However using an overly detailed mesh 

increases computation recourse and time (Zienkiewicz, et al., 2013).  

A convergence study of the obtained eigenfrequencies was conducted in order to find 

an optimal mesh size. The results of the convergence study presented are from a 

concrete bridge with parameters set according to Table 5.6. Equivalent results were 

obtained from other types of bridges.  
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Table 5.6 - Convergence study bridge parameters 

Span length [m] 30 

Arch length [m] 10 

Cross section dimension of arch [mm] 500 x 600 

Distance between arches [m] 6 

Thickness of deck [mm] 300 

Number of transversal bracings 4 

Cross section dimension of transversal bracing [mm] 500 x 600 

Number of hangers 8 

Diameter of hangers [mm] 50 

Cross bracing No 

The arches were constructed in Brigade using straight lines, and in order to get a good 

shape on the arch these lines were set to have a length of 500 millimeters. This then 

limits the largest element size to the same value. The bridge was meshed using 

element size of 500mm, 250mm and 125mm. This corresponds to 84, 162 and 318 

elements on a single arch. Then a frequency analysis was performed in order to obtain 

the eigenfrequencies. The first two eigenfrequencies that belonged to the arch is 

plotted in Figure 5.8. 

 

Figure 5.8 - Eigenfrequencies vs number of elements 

It is clear that the model had already reached convergence at an element size of 500 

mm and therefore this was the element size used in the parametric study for the whole 

model.  
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5.4 Analysis of result 

The analysis of result consisted of determine whether the first in-wind directional 

mode for the arch was dominating. By studying the RMS values at the 

eigenfrequencies of the arches it was possible to determine how much each 

eigenmode contributed to the total deformation. If it turned out that the first 

eigenmode had the majority of the contribution it could be stated that the first in-wind 

directional mode is dominating. 

Since the bridge consisted of many structural members the frequency analysis 

comprised eigenfrequencies for these members as well. Therefore the first step was to 

identify the eigenfrequencies belonging to the arches. This was performed by studying 

the deformation in wind direction on the arches. In Figure 5.9 respectively Figure 5.10 

the mode shape for eigenmode 1 and 2 is shown.  

 

Figure 5.9 – Eigenmode 1 for arch bridge. 

 

 

Figure 5.10 – Eigenmode 2 for arch bridge 

The identification of the first two eigenmodes for the arches was based on these two 

figures. The largest deformation in eigenmode 1 will occur in the center of the arch 

and besides this, the direction of the deformation will be the same for all other nodes. 

For eigenmode 2 the maximum deformation will occur about 25% respectively 75% 

into the length of the arch. These maximum values will have different direction and in 

addition the deformation in the center of the arch will be close to zero. Therefore the 

deformation values at the nodes placed at 25%, 50% and 75% of the length of the arch 

were extracted from the .odb-files and gathered in .txt-files.  

The RMS plot for a typical arch bridge is shown in Figure 5.11. In this case the 

deformation is dominated by a frequency at about 0.5Hz. The difference between the 
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first and the second eigenfrequency, F1 respectively F2, is set to   . As seen in the 

figure the RMS value for F1 is increasing at a bit higher frequency. Therefore the 

RMS value of interest is set to the corresponding frequency at          . 

 

Figure 5.11 – RMS values plotted against a frequency span from 0.1 to 10.0 Hz 

The program ANALYSIS_OF_U_RMS.m uses the arches deformation to identify the 

first two eigenfrequencies of the arches. In addition the program will add the 

corresponding RMS value and evaluate it in comparison to the maximum RMS value.  

In a case where the RMS value for           is bigger than 95% of the maximum 

RMS value, the arch bridge was considered to be dominated by the first in-wind 

directional mode. 

If the parametric study could show that the deformations were dominated by the first 

in-wind directional mode then the structural factor according to equation (3.42)  

where to be calculated. Since equation (3.42) is based on a single-mode method it is 

not valid if several modes contributes to the deformations in the wind direction. 

Therefore this step where excluded when this condition was not met. 

It would be interesting to evaluate the correlation between structural factor and the 

parameters that is varying in the parametric study. Therefore a multi linear regression 

analysis where performed in the cases the structural factor where calculated.  
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6 Results 

In this chapter results the parametric study is presented. For all the concrete arch 

bridges, the dominating mode where explicitly characterized by the first in-wind 

directional mode. Hence, the structural factor was derived for each combination of 

parameters. These structural factors have been statistically analyzed through a 

regression analysis to detect each parameters impact. Regarding the timber and steel 

arch bridges the dynamic response was more complicated. There were no explicit 

mode behaviors among these bridges. Hence, timber and steel bridges are treated 

under the same chapter.  

6.1 Concrete arch bridges 

The analysis consisted of a parametric study including 3645 concrete arch bridge 

realizations. The results of the analysis were explicitly indicating that the first in-wind 

directional mode was dominating in all cases, see Figure 6.1. The first eigenfrequency 

for the arches are varying between 0.10-1.12Hz.  

Figure 6.1 – Concrete bridge, RMS-plot 

As a consequence of the fact that all concrete arch bridges was dominated by the first 

in-wind directional mode the structural factor was evaluated for all combinations. 

These factors were varying from 1.09 to 1.64 depending on the combination of 

parameters.  

The regression analysis gave each parameters impact on the structural factor which is 

presented in Table 6.1.  
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Table 6.1 – Presentation of each parameters impact on the structural factor.  

  Coefficients Standard Error t-stat 

Intercept 1.0953 3.79E-03 288.95 

Span length.    [m] 0.0026 1.64E-05 156.70 

Arch width.    [m] 0.0065 1.30E-04 50.26 

Arch height.    [m] 0.0060 5.99E-05 100.83 

Number of horizontal bracing.     [-] -0.0249 2.59E-04 -95.82 

Width of cross section (Arch).      [m] -0.1909 2.59E-03 -73.58 

Height of cross section (Arch).      [m] 0.0477 1.73E-03 27.58 

 

The formula derived from the regression analysis is given in (6.1) 

      
                                                 

    
           (6.1) 

The coefficient of determination and standard error are presented in Table 6.2 and the 

residuals are presented in Figure 6.2. 

Table 6.2 – Regression statistics 

Regression R2
 0.9352 

Standard Error 0.0256 

 

Figure 6.2 – Residuals of cscd with respect to the regression analysis made on 

concrete arch bridges. 
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that where dominated by the first in-wind directional mode. These instead had several 

modes that contributed to the deformations. In Figure 6.3 and Figure 6.4 RMS-plots 

of one timber and one steel bridge that showed these behaviors are presented. 

 

Figure 6.3 - Timber bridge, RMS-plot 

 

Figure 6.4 - Steel bridge, RMS-plot 

Following this results it was investigated if a correlation between the varying 

parameters, that could predict whether or not the bridge deformations were dominated 

by the first in-wind directional mode, could be found. However, no such correlation 

was to be found.  
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7 Discussion 

As presented in the results the dominating mode was only explicit for the concrete 

arch bridges. In these cases the first in-wind directional mode was dominating for all 

parametric combinations. However, for timber and steel arch bridges the dynamic 

response was more complicated. This might be able to be explained by the fact that 

concrete is considered being a more heavy construction material in comparison with 

timber and steel.  

The structural factor is calculated for the concrete arch bridges. The method used is 

the one presented in the Swedish Annex (TRVFS, 2011:12), where some of the 

factors origins from the theory presented in chapter 3. The theory given in the 

Swedish Annex to Eurocode is a more simplified method than the one given in 

chapter 3.2.2-3.2.3. However, since the chosen method is accepted by Trafikverket, 

the Swedish Transport Administration, we consider the method as acceptable.  

The regression analysis showed that all chosen parameters had impact on the 

structural factor. This was an expected results since these parameters where chosen as 

parameters with strong relation to the dynamic behavior of the structure. To set the 

values in relation it would have been interesting if a parameter was chosen that was 

believed not having a big impact on the structural factor.  

The derived equation for the structural factor regarding concrete arch bridges presents 

the impact from each parameter. With increasing span length and arch width the 

stiffness decreases which could explain why the structural factor is increasing when 

these parameters are increasing. With increasing arch height the structural factor 

increases. This is an interesting result since the analyses shows that the overall 

stiffness in wind direction increases with increasing height.  However, it may be 

explained by the impact of the arch height has on the calculations of structural factor. 

For example, the higher the arch gets the bigger the wind load gets. The amount of 

horizontal bracings is increasing the stiffness of bridge which is in line with the 

structural factor that decreases with increasing number of horizontal bracings. The 

cross section of arch is also of high importance since these parameters have big 

impact on the stiffness. An increasing width and decreasing height of the structure 

will result in a decreasing structural factor. These results can be explained by the fact 

that an increasing width will have a positive effect on the stiffness to mass ratio 

comparing an increase of height. The analysis shows that a larger width of the arch 

increases the value of the first eigenfrequency while a larger height of the arch’s cross 

section will decrease the first eigenfrequency of the arch. This theory is supported by 

equation (2.34) that displays the importance of stiffness to mass ratio when 

calculating the eigenfrequencies.  

The derived equation from the regression analysis can be seen as an effective way of 

calculating the structural factor. However, this equation should be treated with 

carefulness. With the assumptions made for boundary conditions and other structural 

parameters the equation is not general for all concrete arch bridges. However, it could 

be used to derive guideline values to compare with the actual value for each case.  
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For timber and steel arch bridges no obvious correlation could be found between the 

varying parameters that could explain the dynamic behavior observed in chapter 6.2. 

It is however quite clear theoretically that the density, elastic modulus and stiffness in 

wind direction of the arch affect the dynamic behavior significantly and that the 

combination of at least these may be used to predict this dynamic behavior. 

The evaluation method chosen, were based on root mean square values of the arch 

deformations. This due to the fact that deformations reach convergence faster than for 

example stresses. The method used, is also a method traditionally used in these types 

of problems and is approved by the Swedish Road Administration.  
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8 Conclusions 

The parametric study indicates that the dynamic response for arch bridges varies 

depending on what parameters that are altered. Generally the first eigenfrequency was 

lower for the concrete arch bridges than for steel and timber arch bridges which can 

be explained by the stiffness to mass ratio for the different materials and the fact that 

timber and steel arch bridges were modelled with cross bracing.   

For concrete arch bridges the dynamic response in all cases was dominated by the first 

in-wind directional mode. Hence, the single-mode method could be applied when 

calculating the structural factor. A regression analysis was made to compare the 

altered parameters with the associated structural factor. When designing a concrete 

arch bridge the derived equation from the regression analysis can be used as guideline 

to compare with the true structural factor. 

Regarding timber and steel arch bridges there were no obvious dominating mode. This 

concludes the fact that the single-mode method is no safe method to use without 

determining the dominating mode for each case.  

8.1 Further studies within the field 

Within the field there are several topics that would be interesting for further 

evaluations.  

- This thesis has covered the global dynamic response of arch bridges. In 

addition to this there are local vibrations that need to be designed for. To 

extend the study it would be interesting to examine the dynamic behavior 

of the bridge deck and hangers.   

- An interesting topic would be to extend the existing parametric study 

where more parameters are altered. For example by changing the boundary 

conditions where the end supports are modelled as hinged connections 

instead of fixed etc. Further it would be particularly interesting to 

investigate the influence of stiffness to mass ratio when determining the 

dominating mode.  

- Since the Swedish design code states that the dynamic response should not 

only be evaluated for arch bridges, it would be of interest to perform 

similar parametric studies for the other relevant bridge types.  
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Appendix A 

Concrete arch bridges 
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Steel arch bridges 
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Timber arch bridges 
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Appendix B 
Python source code 
Appendix B comprises the Python source code of the following scripts: 

 

 PARAMETRIC_STUDY.py 

 ARCH_BRIDGE.py 

 BRIDGE_DATA.py 

 OUTPUT.py 
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PARAMETRIC_STUDY.py 
#-------------------------------------------------------------------- 

# PARAMETRIC_STUDY.PY 

# By: Jonathan Johansson, Daniel Josefsson 

#-------------------------------------------------------------------- 

from abaqus import* 

from abaqusConstants import* 

from math import* 

from string import* 

import __main__ 

backwardCompatibility.setValues(includeDeprecated=True,reportDeprecat

ed=False) 

import sketch 

import part 

import numpy 

import bpCustomData 

import regionToolset 

import section 

import step 

import material 

import os 

import mesh 

import job 

import time 

session.journalOptions.setValues(replayGeometry=COORDINATE) 

#RUN INPUT FILE 

execfile('BRIDGE_DATA.py') 

 

#SET AN INPUT DIRECTORY AS CWD 

cwd=os.getcwd() 

os.chdir(cwd+'\\Input') 

 

#Start report file 

outputFile = open('Inp_file_report.txt','w') 

outputFile.write(time.strftime("%Y-%m-%d  %H:%M:%S", 

time.localtime())+'\n') 

outputFile.write('Filename structure:\nsp_len - arch_width –  

arch_height - n_hang - phi_hang - n_Hbrac - t_deck - R_a –  

R_b - R_ahb - R_bhb - use_Cbrac - phi_Cbrac\n\n') 

for ii in range(len(sp_len)): 

 for jj in range(len(arch_width)): 

 for kk in range(len(n_hang)): 

 for ll in range(len(R_a)): 

  for mm in range(len(R_b)): 

 for nn in range(len(arch_height)): 

   for pp in range(len(t_deck)): 

 for qq in range(len(phi_hang)): 

    for rr in range(len(n_Hbrac)): 

 for ss in range(len(use_Cbrac)): 

 for tt in range(len(phi_Cbrac)): 

 for uu in range(len(R_ahb)): 

      for vv in range(len(R_bhb)): 

           

 name=str(int(sp_len[ii]))+'-'+str(int(arch_width[jj]))+'- 

'+str(int(arch_height[nn]))+'-'+str(int(n_hang[kk]))+'-

'+str(int(phi_hang[qq]*1000))+'-

'+str(int(n_Hbrac[rr]))+'-'+str(int(t_deck[pp]*1000))+'-

'+str(int(R_a[ll]*1000))+'-'+str(int(R_b[mm]*1000))+'-
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'+str(int(R_ahb[uu]*1000))+'-

'+str(int(R_bhb[vv]*1000))+'-'+str(int(use_Cbrac[ss]))+'-

'+str(int(phi_Cbrac[tt]*1000)) 

           

  # CONDITIONS 

           

  if (arch_height[nn]-(free_height+deck_height)) > 1.0: 

 if sp_len[ii]>=2*arch_height[nn]:   

  if R_bhb[vv]<=R_b[mm]: 

     

 path=os.path.dirname(os.getcwd())  

     

 execfile(path+'\\ARCH_BRIDGE.py') 

         

 mdb.models['ARCH BRIDGE'].keywordBlock. 

 synchVersions(storeNodesAndElements=False) 

         

 index=mdb.models['ARCH BRIDGE'].keywordBlock. 

sieBlocks.index('*Modal Damping, 

definition=FREQUENCY RANGE\n0.1, 0.016\n10., 

0.016') 

         

 mdb.models['ARCH BRIDGE'].keywordBlock. 

 insert(index, """ 

**           

           

    

*Dload, load case=1 

ArchL, PZ, 1. 

** 

*CORRELATION, TYPE=CORRELATED, PSD=rekt 

1,1,0 

**         

 """) 

         

 mdb.Job(name=name, model='ARCH BRIDGE') 

       

 mdb.jobs[name].setValues(description='', 

  memoryUnits=PERCENTAGE, memory=50, 

  getMemoryFromAnalysis=True) 

         

 mdb.customData.jobName = name   

         

 mdb.customData.jobModel = 'ARCH BRIDGE' 

         

 from func.modules.job.freeBodyCut. 

createFreeBodyCutSurfaces import 

CreateFreeBodyCutSurfaces 

         

 CreateFreeBodyCutSurfaces('ARCH BRIDGE','Job-1') 

      

 mdb.jobs[name].writeInput() 

         

 outputFile.write(name+' - Input file created\n') 

        

 else:       

 outputFile.write(name+' - The transverse bracing  

  beam is higher than the arch\n') 
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 else: 

 outputFile.write(name+' - The arch heigth is to 

high compared to the span length\n') 

           

  else:         

  outputFile.write(name+' - Deck height has to high value 

compared to Arch height\n') 

 

# Close report file 

outputFile.close() 

 

#Set work directory back to script directory 

os.chdir(cwd)  
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ARCH_BRIDGE.py 
#-------------------------------------------------------------------- 

# ARCH_BRIDGE.PY 

# By: Jonathan Johansson, Daniel Josefsson 

#-------------------------------------------------------------------- 

# THIS SCRIPT CREATES DIFFERENT ARCH BRIDGES IN ABAQUS IN ORDER TO  

# PERFORM A FRQUENCY ANALYSIS AND A RANDOM RESPONSE ANALYSIS. THE  

# OUPUT ARE GATHERED IN THE WORK DIRECTORY AS .job-FILES. THE SCRIPT  

# IS CONNECTED TO "PARAMETRIC_STUDY.PY" AND CANNOT BE RUN BY IT SELF.  

 

# TABLE OF CONTENTS 

 

# 1. GENERAL 

#  1.1. IMPORTS PROGRAMMING COMMANDS FROM ABAQUS 

#  1.2. CREATES MODEL 

# 

# 2. PARTS  

#  2.1. ARCH 

# 2.2. BRDIGE DECK  

# 2.3. HANGERS 

# 2.4. HORISONTAL BRACING 

# 2.5. CROSS BRACING  

# 3. PROPERTIES 

#  3.1. MATERIALS 

#  3.2. PROFILES AND SECTIONS 

# 3.3. ASSIGNS PROPERTIES AND BEAM ORIENTATIONS 

# 4. ASSEMBLIES MODEL 

# 5. INTERACTION 

# 6. MESH 

# 7. STEPS 
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#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# 1. GENERAL 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

 

#-------------------------------------------------------------------- 

# 1.1. IMPORTS PROGRAMMING COMMANDS FROM ABAQUS 

#-------------------------------------------------------------------- 

# This part of the script loads the neccessary programming commands  

# into the script.  

 

from abaqus import* 

from abaqusConstants import* 

from math import* 

from string import* 

import __main__ 

import sketch 

import part 

import numpy 

import bpCustomData 

import regionToolset 

import section 

import step 

import material 

import os 

import mesh 

import job 

backwardCompatibility.setValues(includeDeprecated=True, 

 reportDeprecated=False) 

session.journalOptions.setValues(replayGeometry=COORDINATE) 

 

#-------------------------------------------------------------------- 

# 1.2. CREATES MODEL 

#-------------------------------------------------------------------- 

# The model is created and named "ARCH BRIDGE" 

  

myModel = mdb.Model(name='ARCH BRIDGE') 

mySketch = myModel.ConstrainedSketch(name='Sketch ARCH', 

 sheetSize=200.0) 

 

 

  



CHALMERS, Applied Mechanics, Master’s Thesis 2014:35 
B7 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# 2. PARTS 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

free_height=free_height+deck_height 

#-------------------------------------------------------------------- 

# 2.1. ARCH 

#-------------------------------------------------------------------- 

 

myARCH = myModel.Part(name='ARCH', dimensionality=THREE_D,  

 type=DEFORMABLE_BODY) 

 

# GEOMETRY FOR ARCH 

radius=((sp_len[ii]/2)**2+arch_height[nn]**2)/(2*arch_height[nn])  

sec_ang=2*acos((radius-arch_height[nn])/radius)    

  

arch_len=sec_ang*radius 

 

# CALCULATES THE PRLEMINARY NUMBER OF ELEMENTS 

n_el=int(ceil(arch_len/opt_el_len)) 

 

# CHOOSES AN EVEN NUMBER OF ELEMENTS 

if  n_el % 2 == 0: 

 n_el=n_el 

else: 

 n_el=n_el+1 

  

# CREATES X- AND Y-COORDINATES FOR OUTER LINE OF ARCH  

real_el_len=arch_len/n_el 

 

Ys=range(n_el+1) 

angle=0 

for i in range(n_el+1): 

 Ys[i]=radius*sin((((pi+sec_ang)/2)-angle))- 

  (radius-arch_height[nn]) 

 angle=angle+real_el_len/radius 

 

Xs=range(n_el+1) 

angle=0 

for i in range(n_el+1): 

 Xs[i]=radius*cos((((pi+sec_ang)/2)-angle))+sp_len[ii]/2 

 angle=angle+real_el_len/radius 

 

Zs=[0]*len(Ys) 

 

# CALCULATES DISTANCE dPs FOR EACH ELEMENT 

dPs=range(n_el) 

for i in range(n_el): 

 dPs[i]=sqrt((Xs[i+1]-Xs[i])**2+(Ys[i+1]-Ys[i])**2+ 

  (Zs[i+1]-Zs[i])**2) 

  

# CREATES CENTRE COORINDATES FOR EACH ELEMENT 

Px=range(n_el) 

Py=range(n_el) 

Pz=[0]*len(range(n_el)) 

for i in range(n_el): 

 Px[i]=(Xs[i+1]-Xs[i])/2+Xs[i] 

 Py[i]=(Ys[i+1]-Ys[i])/2+Ys[i] 
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# CREATES AND SORTS THE DATUM POINTS 

for i in range(len(Xs)): 

 myARCH.DatumPointByCoordinate(coords=(Xs[i],Ys[i],Zs[i])) 

myARCH_datums_keys = myARCH.datums.keys() 

myARCH_datums_keys.sort() 

DPs = myARCH.datums  

 

# CREATES A WIRE BETWEEN THE DATUM POINTS 

for i in range(n_el): 

 myARCH.WirePolyLine(points=((DPs[myARCH_datums_keys[i]],  

 DPs[myARCH_datums_keys[i+1]]), ), mergeWire=OFF, meshable=ON) 

 

# CALCULATES SECTION WIDTH OF ARCH PROFILE 

if type == 1:  

 sec_width=max(I_b1,I_b2)  

elif type == 2:   

 sec_width=B_a  

elif type == 3: 

 sec_width=P_r 

elif type ==4: 

 sec_width=C_r 

elif type == 5: 

 sec_width=R_a[ll] 

elif type == 6: 

 sec_width=H_r 

elif type == 7: 

 sec_width=max(T_a,T_c) 

elif type == 8: 

 sec_width=L_a 

elif type == 9: 

 sec_width=T_b 

  

#-------------------------------------------------------------------- 

# 2.2. BRIDGE DECK 

#-------------------------------------------------------------------- 

 

# CREATES BRIDGE DECK AS PLANAR SHELL ELEMENT 

myDECK = mdb.models['ARCH BRIDGE'].ConstrainedSketch( 

 name='__profile__', sheetSize=200.0) 

myDECK.setPrimaryObject(option=STANDALONE) 

myDECK.rectangle(point1=(0, 0), point2=(sp_len[ii],  

 (arch_width[jj]-2*sec_width))) 

mdb.models['ARCH BRIDGE'].Part(name='Bridge Deck',  

dimensionality=THREE_D, type=DEFORMABLE_BODY) 

mdb.models['ARCH BRIDGE'].parts['Bridge Deck'].BaseShell( 

 sketch=myDECK) 

myDECK.unsetPrimaryObject() 

  

#-------------------------------------------------------------------- 

# 2.3. HANGERS 

#-------------------------------------------------------------------- 

myHANGER = myModel.Part(name='Hanger', dimensionality=THREE_D,  

 type=DEFORMABLE_BODY) 

dH=0.05 

 

sec_ang_h=2*acos((radius-(arch_height[nn]-deck_height))/radius) 

     

deck_len=2*radius*sin(0.5*sec_ang_h) 
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d_hang=deck_len/(n_hang[kk]+1) 

X_start=(sp_len[ii]-deck_len)/2 

 

# CREATES COORDINATES FOR HANGERS 

Xh=range(n_hang[kk]) 

Yh=range(n_hang[kk]) 

d=d_hang 

for i in range(n_hang[kk]): 

 Xh[i]=X_start+d 

 Yh[i]=abs(sqrt(radius**2-(Xh[i]-sp_len[ii]/2)**2))- 

  (radius-arch_height[nn]) 

 d=d+d_hang 

s1 = mdb.models['ARCH BRIDGE'].ConstrainedSketch(name='__profile__',  

 sheetSize=200.0)  

for i in range(n_hang[kk]): 

 delta=0.01 

 Xhf = mdb.models['ARCH 

BRIDGE'].parts['ARCH'].vertices.getClosest( 

  coordinates=((Xh[i], 

 Yh[i],0.0),(Xh[i]+delta,Yh[i]+delta,0.0),)) 

 Xh[i]=Xhf[0][1][0] 

 Yh[i]=(abs(sqrt(radius**2-(Xh[i]-sp_len[ii]/2)**2))- 

  (radius-arch_height[nn])) 

 s1.Line(point1=(Xh[i], deck_height), point2=(Xh[i], Yh[i]-dH)) 

 

p = mdb.models['ARCH BRIDGE'].parts['Hanger'] 

p.BaseWire(sketch=s1) 

s1.unsetPrimaryObject()  

 

#-------------------------------------------------------------------- 

# 2.4. HORISONTAL BRACING 

#-------------------------------------------------------------------- 

dHb=0.05 

 

if n_Hbrac[rr] > 0: 

 #------------------------------------------------ 

 # CALCULATES SECTION HEIGHT OF HORISONTAL BRACING 

 #------------------------------------------------  

 if typehb == 1:  

  h_Hbrac=I_hhb  

 elif typehb == 2:   

  h_Hbrac=B_bhb  

 elif typehb == 3: 

  h_Hbrac=2*P_rhb 

 elif typehb ==4: 

  h_Hbrac=2*C_rhb 

 elif typehb == 5: 

  h_Hbrac=R_bhb[vv] 

 elif typehb == 6: 

  h_Hbrac=H_rhb 

 elif typehb == 7: 

  h_Hbrac=T_bhb 

 elif typehb == 8: 

  h_Hbrac=L_bhb 

 elif typehb == 9: 

  h_Hbrac=T_hhb 

  

  



CHALMERS, Applied Mechanics, Master’s Thesis 2014:35 
B10 

 y_frih=free_height+h_Hbrac/2 

 x_frih=-sqrt(radius**2-(y_frih+(radius-

arch_height[nn]))**2)+sp_len[ii]/2 

 

 s = mdb.models['ARCH 

BRIDGE'].ConstrainedSketch(name='__profile__',  

  sheetSize=200.0) 

 s.setPrimaryObject(option=STANDALONE) 

 s.Line(point1=(0.0, 0.0), point2=(arch_width[jj]-dHb, 0.0)) 

 p = mdb.models['ARCH BRIDGE'].Part(name='Hbracing', 

dimensionality=THREE_D, 

  type=DEFORMABLE_BODY) 

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing'] 

 p.BaseWire(sketch=s) 

 s.unsetPrimaryObject() 

 del mdb.models['ARCH BRIDGE'].sketches['__profile__']  

  

 x_dist=(sp_len[ii]-(2*x_frih)) 

 theta=acos((x_dist**2-2*radius**2)/(-2*radius**2)) 

  

 if n_Hbrac[rr] == 1: 

  Yhb=range(n_Hbrac[rr]) 

  Xhb=range(n_Hbrac[rr]) 

  Xhbf = mdb.models['ARCH 

BRIDGE'].parts['ARCH'].vertices.getClosest(coordinates=( 

  

 (sp_len[ii]/2,arch_height[nn],0.0),(sp_len[ii]/2,arch_height[nn

],0.0),)) 

  Xhb[0]=Xhbf[0][1][0] 

  Yhb[0]=abs(sqrt(radius**2-(Xhb[0]-sp_len[ii]/2)**2))-

(radius-arch_height[nn]) 

 else: 

  dtheta=theta/(n_Hbrac[rr]-1) 

 

  Yhb=range(n_Hbrac[rr]) 

  angle=0 

  for i in range(n_Hbrac[rr]): 

   Yhb[i]=radius*sin((((pi+theta)/2)-angle))-(radius-

arch_height[nn]) 

   angle=angle+dtheta 

 

  Xhb=range(n_Hbrac[rr]) 

  angle=0 

  for i in range(n_Hbrac[rr]): 

   Xhb[i]=radius*cos((((pi+theta)/2)-

angle))+sp_len[ii]/2 

   angle=angle+dtheta 

    

  delta=0.01 

  for i in range(n_Hbrac[rr]): 

   Xhbf = mdb.models['ARCH 

BRIDGE'].parts['ARCH'].vertices.getClosest(coordinates=((Xhb[i],Yhb[i

],0.0),(Xhb[i]+delta,Yhb[i]+delta,0.0),)) 

   Xhb[i]=Xhbf[0][1][0] 

   Yhb[i]=abs(sqrt(radius**2-(Xhb[i]-

sp_len[ii]/2)**2))- 

    (radius-arch_height[nn])  
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#----------------------------------------------------------------- 

# 2.5. CROSS BRACING 

#-------------------------------------------------------------------- 

if n_Hbrac[rr] < 3: 

 use_Cbrac[ss]=0 

if use_Cbrac[ss]==1: 

 n_fack=n_Hbrac[rr]-1 

 n_Cbrac=n_fack*2 

 d_Cbrac=range(n_fack) 

 

 dCb=0.05 

 for i in range(n_fack): 

  s = mdb.models['ARCH BRIDGE'].ConstrainedSketch( 

  name='__profile__', sheetSize=200.0) 

  s.setPrimaryObject(option=STANDALONE) 

  d_Cbrac[i]=sqrt((Xhb[i+1]-Xhb[i])**2+(Yhb[i+1]-

Yhb[i])**2+ 

  arch_width[jj]**2) 

  s.Line(point1=(0.0, 0.0), point2=(d_Cbrac[i]-dCb, 0.0)) 

  p = mdb.models['ARCH BRIDGE'].Part(name='Cbracing-

'+str(i+1),  

  dimensionality=THREE_D,type=DEFORMABLE_BODY) 

  p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)] 

  p.BaseWire(sketch=s) 

  s.unsetPrimaryObject() 

  del mdb.models['ARCH BRIDGE'].sketches['__profile__'] 
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#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# 3. PROPERTIES 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

 

#-------------------------------------------------------------------- 

# 3.1. CREATES MATERIAL 

#-------------------------------------------------------------------- 

 

myArch=myModel.Material(name='Arch') 

elasticProperties = (E_arch,v_arch) 

myArch.Elastic(table=(elasticProperties,)) 

myArch.Density(table=((D_arch,), )) 

 

myDeck=myModel.Material(name='Deck') 

elasticProperties = (E_deck,v_deck) 

myDeck.Elastic(table=(elasticProperties,)) 

myDeck.Density(table=((D_deck,), )) 

 

myHang=myModel.Material(name='Hangers') 

elasticProperties = (E_hang,v_hang) 

myHang.Elastic(table=(elasticProperties,)) 

myHang.Density(table=((D_hang,), )) 

 

myHbrac=myModel.Material(name='HBracing') 

elasticProperties = (E_Hbrac,v_Hbrac) 

myHbrac.Elastic(table=(elasticProperties,)) 

myHbrac.Density(table=((D_Hbrac,), )) 

 

myCbrac=myModel.Material(name='CBracing') 

elasticProperties = (E_Cbrac,v_Cbrac) 

myCbrac.Elastic(table=(elasticProperties,)) 

myCbrac.Density(table=((D_Cbrac,), )) 

  

#-------------------------------------------------------------------- 

# 3.2. PROFILES AND SECTIONS 

#-------------------------------------------------------------------- 

 

# 3.2.1 CREATES PROFILES FOR ARCH 

if type == 1: 

 myModel.IProfile(name='PROF', l=I_l, h=I_h, b1=I_b1, b2=I_b2,  

 t1=I_t1, t2=I_t2, t3=I_t3)  

elif type == 2: 

 myModel.BoxProfile(name='PROF', b=B_b, a=B_a,  

 uniformThickness=OFF, t1=B_t1, t2=B_t2, t3=B_t3, t4=B_t4) 

  

elif type == 3: 

 myModel.PipeProfile(name='PROF', r=P_r, t=P_t) 

elif type ==4: 

 myModel.CircularProfile(name='PROF', r=C_r) 

elif type == 5: 

 myModel.RectangularProfile(name='PROF', a=R_a[ll], b=R_b[mm]) 

elif type == 6: 

 myModel.HexagonalProfile(name='PROF', r=H_r, t=H_t) 

elif type == 7: 

 myModel.TrapezoidalProfile(name='PROF', a=T_a, b=T_b) 

elif type == 8: 

 myModel.LProfile(name='PROF', a=L_a, b=L_b, t1=L_t1, t2=L_t2) 

elif type == 9: 
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 myModel.TProfile(name='PROF', b=T_b, h=T_h, l=T_l, tf=T_tf,  

 tw=T_tw) 

 

# CREATES SECTION NAMES FOR ARCH 

SEKT=range(n_el) 

for i in range(n_el): 

 SEKT[i]='Section-'+str(i+1) 

  

# CREATES SECTIONS FOR ARCH  

for i in range(n_el): 

 myModel.BeamSection(name=SEKT[i], profile='PROF',  

 integration=DURING_ANALYSIS, poissonRatio=v_arch,  

 material= 'Arch', temperatureVar=LINEAR)  

 

# 3.2.2 CREATES PROFILE AND SECTION FOR DECK 

mdb.models['ARCH BRIDGE'].HomogeneousShellSection(name='Section-

Deck',  

 preIntegrate=OFF, material='Deck', thicknessType=UNIFORM,  

 thickness=t_deck[pp], thicknessField='', i 

 dealization=NO_IDEALIZATION, poissonDefinition=DEFAULT,  

 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,  

 integrationRule=SIMPSON, numIntPts=5) 

 

# 3.2.3. CREATES PROFILES AND SECTIONS FOR HORISONTAL BRACING  

if n_Hbrac[rr] > 0:  

 

 if typehb == 1: 

  myModel.IProfile(name='PROF-hb', l=I_lhb, h=I_hhb, 

b1=I_b1hb,  

  b2=I_b2hb, t1=I_t1hb, t2=I_t2hb, t3=I_t3hb)     

 elif typehb == 2: 

  myModel.BoxProfile(name='PROF-hb', b=B_bhb, a=B_ahb,  

  uniformThickness=OFF, t1=B_t1hb, t2=B_t2hb, t3=B_t3hb,  

  t4=B_t4hb)   

 elif typehb == 3: 

  myModel.PipeProfile(name='PROF-hb', r=P_rhb, t=P_thb) 

 elif typehb ==4: 

  myModel.CircularProfile(name='PROF-hb', r=C_rhb) 

 elif typehb == 5: 

  myModel.RectangularProfile(name='PROF-hb', a=R_ahb[uu],  

  b=R_bhb[vv]) 

 elif typehb == 6: 

  myModel.HexagonalProfile(name='PROF-hb', r=H_rhb, 

t=H_thb) 

 elif typehb == 7: 

  myModel.TrapezoidalProfile(name='PROF-hb', a=T_ahb, 

b=T_bhb) 

 elif typehb == 8: 

  myModel.LProfile(name='PROF-hb', a=L_ahb, b=L_bhb,  

  t1=L_t1hb, t2=L_t2hb) 

 elif typehb == 9: 

  myModel.TProfile(name='PROF-hb', b=T_bhb, h=T_hhb,  

  l=T_lhb, tf=T_tfhb, tw=T_twhb) 

   

 myModel.BeamSection(name='Section-HB', profile='PROF-hb',  

 integration=DURING_ANALYSIS, poissonRatio=v_Hbrac,  

 material= 'HBracing', temperatureVar=LINEAR) 
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# 3.2.4. CREATES PROFILES AND SECTIONS FOR CROSS BRACING  

if use_Cbrac[ss]==1: 

 n_fack=n_Hbrac[rr]-1 

 n_Cbrac=n_fack*2 

 

 myModel.CircularProfile(name='PROF-Cbrac', r=phi_Cbrac[tt]) 

 myModel.BeamSection(name='Cbrac', profile='PROF-Cbrac',  

 integration=DURING_ANALYSIS, poissonRatio=v_Hbrac,  

 material= 'CBracing', temperatureVar=LINEAR)  

   

#-------------------------------------------------------------------- 

# 3.3. ASSIGNS SECTIONS AND BEAM ORIENTATION 

#-------------------------------------------------------------------- 

 

# 3.3.1. ASSIGNS SECTION AND BEAM ORIENTATION FOR ARCH 

  

# CREATES SET NAMES FOR ARCH 

set=range(n_el) 

for i in range(n_el): 

 set[i]='set-'+str(i+1) 

 edg = myARCH.edges.findAt(((Px[i],Py[i],Pz[i]),),) 

 reg = myModel.parts['ARCH'].Set(edges=edg, name=set[i]) 

 myARCH.SectionAssignment(region=reg,sectionName=SEKT[i]) 

 p = mdb.models['ARCH BRIDGE'].parts['ARCH'] 

 region=p.sets[set[i]] 

 p = mdb.models['ARCH BRIDGE'].parts['ARCH'] 

 p.assignBeamSectionOrientation(region=region, 

method=N1_COSINES,  

 n1=(0.0, 0.0, 1.0)) 

  

# 3.3.2. ASSIGNS SECTION AND BEAM ORIENTATION FOR DECK 

p = mdb.models['ARCH BRIDGE'].parts['Bridge Deck'] 

f = p.faces 

faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 

region = regionToolset.Region(faces=faces) 

p = mdb.models['ARCH BRIDGE'].parts['Bridge Deck'] 

p.SectionAssignment(region=region, sectionName='Section-Deck',  

 offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='',  

 thicknessAssignment=FROM_SECTION) 

  

# 3.3.3. ASSIGNS SECTION AND BEAM ORIENTATION FOR HANGERS 

myModel.CircularProfile(name='PROF-hang', r=phi_hang[qq]) 

myModel.BeamSection(name='Hanger', profile='PROF-hang',  

 integration=DURING_ANALYSIS, poissonRatio=v_Hbrac,  

 material= 'Hangers', temperatureVar=LINEAR) 

p = mdb.models['ARCH BRIDGE'].parts['Hanger'] 

e = p.edges 

# ASSIGNS SECTIONS AND BEAM ORIENTATION FOR HANGERS 

for i in range(n_hang[kk]): 

 edges = e.findAt(((Xh[i], Yh[i]-dH, 0.0), ),) 

 region = regionToolset.Region(edges=edges) 

 p = mdb.models['ARCH BRIDGE'].parts['Hanger'] 

 p.SectionAssignment(region=region, sectionName='Hanger',  

  offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='',  

  thicknessAssignment=FROM_SECTION) 

 p.assignBeamSectionOrientation(region=region,  

  method=N1_COSINES, n1=(1.0, 0.0, 0.0)) 
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# 3.3.4. ASSIGNS SECTION AND BEAM ORIENTATION FOR HORISONTAL BRACING 

dHb=0.05 

if n_Hbrac[rr] > 0:  

 # ASSINGS SECTIONS FOR HORISONTAL BRACING 

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing'] 

 e = p.edges 

 edges = e.findAt(((0.0, 0.0, 0.0), )) 

 region = regionToolset.Region(edges=edges) 

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing'] 

 p.SectionAssignment(region=region, sectionName='Section-HB',  

  offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='',  

  thicknessAssignment=FROM_SECTION) 

  

  

 # ASSIGNS BEAM SECTION ORIENTATION FOR HORISONTAL BRACING 

 for i in range(n_Hbrac[rr]): 

  p = mdb.models['ARCH BRIDGE'].parts['Hbracing'] 

  e = p.edges 

  edges = e.findAt(((0.0, 0.0, 0.0), )) 

  region=regionToolset.Region(edges=edges) 

  p.assignBeamSectionOrientation(region=region,  

   method=N1_COSINES, n1=(0.0, 0.0, 1.0)) 

  

# 3.3.5. ASSIGNS SECTION AND BEAM ORIENTATION FOR CROSS BRACING 

if use_Cbrac[ss]==1: 

 for i in range(n_fack): 

  p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)] 

  e = p.edges 

  edges = e.findAt(((0.0, 0.0, 0.0), )) 

  region = regionToolset.Region(edges=edges) 

  p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)] 

  p.SectionAssignment(region=region, sectionName='Cbrac',  

   offset=0.0, offsetType=MIDDLE_SURFACE, 

offsetField='', 

   thicknessAssignment=FROM_SECTION) 

  p.assignBeamSectionOrientation(region=region,  

   method=N1_COSINES, n1=(0.0, 0.0, 1.0))  

   

  zz=range(len(d_Cbrac)) 

  xx=range(len(d_Cbrac)) 

  yy=range(len(d_Cbrac)) 
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#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# 4. ASSEMBLIES MODEL 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# ASSSEMBLIES ARCHES 

a = mdb.models['ARCH BRIDGE'].rootAssembly 

a.DatumCsysByDefault(CARTESIAN) 

p = mdb.models['ARCH BRIDGE'].parts['ARCH'] 

a.Instance(name='ARCH-1', part=p, dependent=OFF) 

a.LinearInstancePattern(instanceList=('ARCH-1', ),  

 direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0),  

 number1=1, number2=2, spacing1=0.0, spacing2=0.0) 

a.translate(instanceList=('ARCH-1-lin-1-2', ), vector=(0.0, 0.0,  

 arch_width[jj])) 

p = mdb.models['ARCH BRIDGE'].parts['Bridge Deck'] 

a.Instance(name='Bridge Deck-1', part=p, dependent=OFF) 

a.rotate(instanceList=('Bridge Deck-1', ),  

 axisPoint=(0.0, 0.0, 0.0), axisDirection=(1.0, 0.0, 0.0),  

 angle=90.0) 

a.translate(instanceList=('Bridge Deck-1', ),  

 vector=(0.0, 0.0, sec_width)) 

a.translate(instanceList=('Bridge Deck-1', ),  

 vector=(0.0, deck_height, 0.0)) 

 

a = mdb.models['ARCH BRIDGE'].rootAssembly 

e1 = a.instances['ARCH-1'].edges 

e2 = a.instances['ARCH-1-lin-1-2'].edges 

a.Set(edges=e1, name='ArchL') 

a.Set(edges=e2, name='ArchR') 

 

# ASSEMBLIES HANGERS 

p = mdb.models['ARCH BRIDGE'].parts['Hanger'] 

a.Instance(name='Hanger-1', part=p, dependent=OFF) 

a.LinearInstancePattern(instanceList=('Hanger-1', ),  

 direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0),  

 number1=1, number2=2, spacing1=0.0, spacing2=0.0) 

a.translate(instanceList=('Hanger-1-lin-1-2', ), vector=(0.0, 0.0,  

 arch_width[jj])) 

 

# ASSEMBLIES HORISONTAL BRACING 

if n_Hbrac[rr] > 0: 

 a1 = mdb.models['ARCH BRIDGE'].rootAssembly 

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing'] 

 for i in range(n_Hbrac[rr]): 

  a1.Instance(name='Hbracing-'+str(i+1), part=p, 

dependent=OFF) 

  a1.rotate(instanceList=('Hbracing-'+str(i+1), ),  

  axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0),  

  angle=270.0) 

  a1.translate(instanceList=('Hbracing-'+str(i+1), ),  

   vector=(Xhb[i], Yhb[i], dHb/2)) 

    

# ASSEMBLIES CROSS BRACING 

if n_Hbrac[rr] < 0: 

 use_Cbrac[ss]=0 

if use_Cbrac[ss]==1: 

 zz=range(len(d_Cbrac)) 

 xx=range(len(d_Cbrac)) 

 yy=range(len(d_Cbrac)) 
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 for i in range(len(d_Cbrac)): 

  alpha=asin((Yhb[i+1]-Yhb[i])/d_Cbrac[i])*180/pi 

  beta=atan(arch_width[jj]/(Xhb[i+1]-Xhb[i]))*180/pi 

  zeta=atan((Yhb[i+1]-Yhb[i])/arch_width[jj])*180/pi 

  yy[i]=sin(alpha*pi/180)*dCb/2 

  if zeta==0: 

   zz[i]=sin(beta*pi/180)*dCb/2 

  else: 

   zz[i]=yy[i]/tan(zeta*pi/180) 

  xx[i]=sqrt((dCb/2)**2-yy[i]**2-zz[i]**2) 

  

  a1 = mdb.models['ARCH BRIDGE'].rootAssembly 

  p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)] 

  a1.Instance(name='Cbracing-'+str(i+1)+'-1', part=p,  

   dependent=OFF) 

  a1.translate(instanceList=('Cbracing-'+str(i+1)+'-1', ),  

   vector=(xx[i]+Xhb[i], yy[i]+Yhb[i], zz[i])) 

  a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-1', ),  

   axisPoint=(xx[i]+Xhb[i], yy[i]+Yhb[i], zz[i]),  

   axisDirection=(0.0, 0.0, 1.0), angle=alpha) 

  a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-1', ),  

   axisPoint=(xx[i]+Xhb[i], yy[i]+Yhb[i], zz[i]),  

   axisDirection=(0.0, -1.0, 0.0), angle=beta) 

 

 Xdp=range(n_fack) 

 Ydp=range(n_fack) 

 Xnext=range(n_fack) 

 Ynext=range(n_fack) 

 theta=range(n_fack) 

 for i in range(len(d_Cbrac)): 

  alpha=asin((Yhb[i+1]-Yhb[i])/d_Cbrac[i])*180/pi 

  beta=atan(arch_width[jj]/(Xhb[i+1]-Xhb[i]))*180/pi 

  zeta=atan((Yhb[i+1]-Yhb[i])/arch_width[jj])*180/pi 

   

  yy[i]=sin(alpha*pi/180)*dCb/2 

  if zeta==0: 

   zz[i]=sin(beta*pi/180)*dCb/2 

  else: 

   zz[i]=yy[i]/tan(zeta*pi/180) 

  xx[i]=sqrt((dCb/2)**2-yy[i]**2-zz[i]**2) 

   

  

  a1 = mdb.models['ARCH BRIDGE'].rootAssembly 

  p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)] 

  a1.Instance(name='Cbracing-'+str(i+1)+'-2', part=p,  

   dependent=OFF) 

  a1.translate(instanceList=('Cbracing-'+str(i+1)+'-2', ),  

   vector=(Xhb[i]+xx[i], Yhb[i]+yy[i],  

   arch_width[jj]-zz[i])) 

  a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-2', ),  

   axisPoint=(Xhb[i]+xx[i], Yhb[i]+yy[i],  

   arch_width[jj]-zz[i]), 

   axisDirection=(0.0, 0.0, 1.0), angle=alpha) 

  a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-2', ),  

   axisPoint=(Xhb[i]+xx[i], Yhb[i]+yy[i],  

arch_width[jj]-zz[i]), axisDirection=(0.0, 1.0, 

0.0), angle=beta) 
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#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# 5. INTERACTION 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

       

mdb.models['ARCH BRIDGE'].ConnectorSection(name='Pin-fixed',  

 assembledType=UJOINT)  

mdb.models['ARCH BRIDGE'].ConnectorSection(name='Pin',  

 translationalType=JOIN, rotationalType=ROTATION) 

mdb.models['ARCH BRIDGE'].ConnectorSection(name='Fixed',  

 translationalType=JOIN, rotationalType=ALIGN) 

datum1 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[1] 

 

#-------------------------------------------------------------------- 

# ADDING COUPLING BETWEEN HANGERS AND BRIDGE DECK 

#-------------------------------------------------------------------- 

# ONLY RUN IF HANGERS EXISTS 

if n_hang[kk] > 0: 

 #CREATES PARTITIONS IN THE BRIDGE DECK BETWEEN THE HANGERS 

 a = mdb.models['ARCH BRIDGE'].rootAssembly 

 for i in range(n_hang[kk]): 

  v1 = a.instances['Hanger-1'].vertices 

  v2 = a.instances['Hanger-1-lin-1-2'].vertices 

  f1 = a.instances['Bridge Deck-1'].faces 

  pickedFaces = f1.findAt(((Xh[i], deck_height,  

   arch_width[jj]/2), )) 

  a.PartitionFaceByShortestPath(point1=v1.findAt( 

   coordinates=(Xh[i], deck_height, 0.0)),  

   point2=v2.findAt(coordinates=(Xh[i], deck_height,  

   arch_width[jj])), faces=pickedFaces) 

 # DEFINE COUPLING BETWEEN THE HANGERS AND BRIDGE DECK 

  

 v11 = a.instances['Bridge Deck-1'].vertices 

 v12 = a.instances['Hanger-1'].vertices 

 for i in range(n_hang[kk]): 

  a = mdb.models['ARCH BRIDGE'].rootAssembly 

  v1 = a.instances['Bridge Deck-1'].vertices 

  v2 = a.instances['Hanger-1'].vertices 

  a.WirePolyLine(points=((v1.findAt(coordinates=(Xh[i],  

   deck_height, sec_width)),  

   v2.findAt(coordinates=(Xh[i], deck_height, 0.0))), 

),  

   mergeWire=OFF, meshable=OFF) 

  e1 = a.edges 

  edges1 = e1.findAt(((Xh[i], deck_height, sec_width/2), )) 

  region=regionToolset.Region(edges=edges1) 

   

  csa = a.SectionAssignment(sectionName='Pin-fixed',  

   region=region) 

  a.ConnectorOrientation(region=csa.getSet(),  

   localCsys1=datum1) 

   

  v3 = a.instances['Bridge Deck-1'].vertices 

  v4 = a.instances['Hanger-1-lin-1-2'].vertices 

  a.WirePolyLine(points=((v3.findAt(coordinates=(Xh[i],  

   deck_height,  

  arch_width[jj]-sec_width)), v4.findAt(coordinates=(Xh[i],  

   deck_height, arch_width[jj]))), ),  

   mergeWire=OFF, meshable=OFF) 
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  e1 = a.edges 

  edges1 = e1.findAt(((Xh[i],deck_height,arch_width[jj]),)) 

  region=regionToolset.Region(edges=edges1) 

  csa = a.SectionAssignment(sectionName='Pin-fixed',  

   region=region) 

  a.ConnectorOrientation(region=csa.getSet(),  

   localCsys1=datum1) 

   

#-------------------------------------------------------------------- 

# ADDING COUPLING BETWEEN HANGERS AND ARCH 

#-------------------------------------------------------------------- 

if n_hang[kk] > 0: 

  for i in range(n_hang[kk]): 

   a = mdb.models['ARCH BRIDGE'].rootAssembly 

   v1 = a.instances['ARCH-1-lin-1-2'].vertices 

   v2 = a.instances['Hanger-1-lin-1-2'].vertices 

  

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xh[i],  

Yh[i], arch_width[jj])),v2.findAt(coordinates=(Xh[i], 

Yh[i]-dH, arch_width[jj]))), ),mergeWire=OFF, 

meshable=OFF) 

   e1 = a.edges 

   edges1 = e1.findAt(((Xh[i],Yh[i],arch_width[jj]),)) 

   region=regionToolset.Region(edges=edges1) 

   a.SectionAssignment(region=region, 

sectionName='Pin') 

    

   v3 = a.instances['ARCH-1'].vertices 

   v4 = a.instances['Hanger-1'].vertices 

  

 a.WirePolyLine(points=((v3.findAt(coordinates=(Xh[i],  

   Yh[i], 0.0)), v4.findAt(coordinates=(Xh[i],  

   Yh[i]-dH,0.0))), ),mergeWire=OFF,meshable=OFF) 

   e1 = a.edges 

   edges1 = e1.findAt(((Xh[i], Yh[i], 0.0), )) 

   region=regionToolset.Region(edges=edges1) 

a.SectionAssignment(region=region, 

sectionName='Pin')  

 

#-------------------------------------------------------------------- 

# ADDING COUPLING BETWEEN HORIZONTAL BRACING AND ARCH 

#-------------------------------------------------------------------- 

if n_Hbrac[rr] > 0: 

 for i in range(n_Hbrac[rr]): 

  a = mdb.models['ARCH BRIDGE'].rootAssembly 

  v1 = a.instances['ARCH-1-lin-1-2'].vertices 

  v2 = a.instances['Hbracing-'+str(i+1)].vertices 

  a.WirePolyLine(points=((v1.findAt(coordinates=(Xhb[i],  

   Yhb[i], arch_width[jj])), 

v2.findAt(coordinates=(Xhb[i],  

   Yhb[i], arch_width[jj]-(dHb/2)))), ),  

   mergeWire=OFF, meshable=OFF) 

  e1 = a.edges 

  edges1 = e1.findAt(((Xhb[i], Yhb[i],  

   arch_width[jj]-(dHb/2)), )) 

  region=regionToolset.Region(edges=edges1) 

  a.SectionAssignment(region=region, sectionName='Fixed') 
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  v1 = a.instances['ARCH-1'].vertices 

  v2 = a.instances['Hbracing-'+str(i+1)].vertices 

  a.WirePolyLine(points=((v1.findAt(coordinates=(Xhb[i],  

   Yhb[i], 0)), v2.findAt(coordinates=(Xhb[i], Yhb[i], 

   (dHb/2)))), ), mergeWire=OFF, meshable=OFF) 

  e1 = a.edges 

  edges1 = e1.findAt(((Xhb[i], Yhb[i],(dHb/2)), )) 

  region=regionToolset.Region(edges=edges1) 

  csa = a.SectionAssignment(sectionName='Fixed',  

   region=region) 

  a.ConnectorOrientation(angle1=90.0, region=csa.getSet(),  

   localCsys1=datum1) 

   

#-------------------------------------------------------------------- 

# ADDING COUPLING BETWEEN CROSS-BRACING BRACING AND ARCH 

#-------------------------------------------------------------------- 

if use_Cbrac[ss]==1: 

 # Create partition in the Arch alligned with the cross-bracing 

 for i in range(n_Hbrac[rr]-1):  

  dist=sqrt(Xhb[i]**2+(Yhb[i]**2)) 

  angle=acos((dist**2-2*radius**2)/(-2*radius**2))+ 

   real_el_len/radius 

  Ynext[i]=radius*sin(((pi+sec_ang)/2)-angle)- 

   (radius-arch_height[nn]) 

  Xnext[i]=radius*cos(((pi+sec_ang)/2)-angle)+sp_len[ii]/2 

  theta[i]=atan((Ynext[i]-Yhb[i])/(Xnext[i]-Xhb[i])) 

  Xdp[i]=Xhb[i]+xx[i] 

  Ydp[i]=Yhb[i]+(tan(theta[i])*xx[i]) 

 for i in range(n_Hbrac[rr]-1):  

  a.DatumPointByCoordinate(coords=(Xdp[i], Ydp[i], 0.0)) 

 for i in range(n_Hbrac[rr]-1):  

  a.DatumPointByCoordinate(coords=(Xdp[i], Ydp[i],  

   arch_width[jj])) 

 e11 = a.instances['ARCH-1'].edges 

 e12 = a.instances['ARCH-1-lin-1-2'].edges 

 d11 = a.datums 

 datum_list=d11.keys() 

 for i in range(n_Hbrac[rr]-1):  

  a.PartitionEdgeByPoint(edge=e11.findAt(coordinates=( 

   Xdp[i], Ydp[i], 0.0)), point=d11[datum_list[i+1]]) 

 for i in range(n_Hbrac[rr]-1): 

 

 a.PartitionEdgeByPoint(edge=e12.findAt(coordinates=(Xdp[i],  

   Ydp[i], arch_width[jj])),  

   point=d11[datum_list[n_Hbrac[rr]+i]]) 

 Xdp2=range(n_fack) 

 Ydp2=range(n_fack) 

 Xnext=range(n_fack) 

 Ynext=range(n_fack) 

 theta=range(n_fack)  

   

 for i in range(n_fack):  

  dist=sqrt(Xhb[i+1]**2+(Yhb[i+1]**2)) 

  angle=acos((dist**2-2*radius**2)/(-2*radius**2))- 

   real_el_len/radius 

  Ynext[i]=radius*sin(((pi+sec_ang)/2)-angle)- 

   (radius-arch_height[nn]) 

  Xnext[i]=radius*cos(((pi+sec_ang)/2)-angle)+sp_len[ii]/2 
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  theta[i]=atan((Xnext[i]-Xhb[i+1])/(Ynext[i]-Yhb[i+1])) 

  Xdp2[i]=Xhb[i+1]-xx[i] 

  Ydp2[i]=Yhb[i+1]-(xx[i]/tan(theta[i])) 

 for i in range(n_fack):  

  a.DatumPointByCoordinate(coords=(Xdp2[i], Ydp2[i], 0.0)) 

 for i in range(n_fack):  

  a.DatumPointByCoordinate(coords=(Xdp2[i], Ydp2[i],  

   arch_width[jj])) 

 e11 = a.instances['ARCH-1'].edges 

 e12 = a.instances['ARCH-1-lin-1-2'].edges 

 d11 = a.datums 

 datum_list=d11.keys() 

 for i in range(n_fack):  

 

 a.PartitionEdgeByPoint(edge=e11.findAt(coordinates=(Xdp2[i],  

   Ydp2[i], 0.0)), 

point=d11[datum_list[2*n_fack+1+i]]) 

 for i in range(n_fack): 

  a.PartitionEdgeByPoint(edge=e12.findAt(coordinates=( 

   Xdp2[i], Ydp2[i], arch_width[jj])),  

   point=d11[datum_list[3*n_fack+1+i]]) 

 

if use_Cbrac[ss]==1: 

 a.DatumCsysByThreePoints(name='Datum csys-2',  

  coordSysType=CARTESIAN, origin=(0.0, 0.0, 0.0),  

  point1=(0.0, -1.0, 0.0), point2=(1.0, 0.0, 0.0)) 

 csysdatum=mdb.models['ARCH BRIDGE'].rootAssembly.datums.keys() 

  

 datum11 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[ 

  csysdatum[len(csysdatum)-1]] 

 Xcb=range(len(Yhb)) 

 Ycb=range(len(Yhb)) 

 Zcb=range(len(Yhb)) 

 for i in range(n_fack): 

  a = mdb.models['ARCH BRIDGE'].rootAssembly 

  v1 = a.instances['ARCH-1'].vertices 

  v2 = a.instances['Cbracing-'+str(i+1)+'-1'].vertices 

  a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp[i],  

   Ydp[i], 0)), v2.findAt(coordinates=(xx[i]+Xhb[i],  

   yy[i]+Yhb[i],zz[i]))),),mergeWire=OFF,meshable=OFF) 

  e1 = a.edges 

  edges2 = e1.findAt(((xx[i]+Xhb[i],yy[i]+Yhb[i],zz[i]), )) 

  region=regionToolset.Region(edges=edges2) 

 

  v1 = a.instances['ARCH-1-lin-1-2'].vertices 

  v2 = a.instances['Cbracing-'+str(i+1)+'-1'].vertices 

   

  Coord = v2.getClosest(coordinates=((Xhb[i+1]-xx[i], 

Yhb[i+1]-yy[i],arch_width[jj]-zz[i]),(Xhb[i+1]-

xx[i],Yhb[i+1]-yy[i],arch_width[jj]-zz[i]),)) 

   

  Xcb[i+1] = Coord[0][1][0] 

  Ycb[i+1] = Coord[0][1][1] 

  Zcb[i+1] = Coord[0][1][2] 

  

  a.DatumCsysByThreePoints(name='Datum csys-2',  

   coordSysType=CARTESIAN, origin=(Xhb[i]+xx[i],  

   Yhb[i]+yy[i], zz[i]), point1=(Xcb[i+1], Ycb[i+1],  
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   Zcb[i+1]), point2=(Xhb[i]+xx[i], Yhb[i]+yy[i],  

   arch_width[jj]-zz[i])) 

  csysdatum=mdb.models['ARCH 

BRIDGE'].rootAssembly.datums.keys() 

  datum11 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[ 

   csysdatum[len(csysdatum)-1]] 

   

  csa = a.SectionAssignment(sectionName='Pin-fixed',  

   region=region) 

  a.ConnectorOrientation(angle1=-90, axis1=AXIS_3,  

   region=csa.getSet(), localCsys1=datum11) 

     

  a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp2[i],  

   Ydp2[i], arch_width[jj])), v2.findAt(coordinates=( 

    Xcb[i+1], Ycb[i+1],Zcb[i+1]))), ),  

    mergeWire=OFF, meshable=OFF) 

  e1 = a.edges 

  edges1 = e1.findAt(((Xcb[i+1], Ycb[i+1],Zcb[i+1]), )) 

  region=regionToolset.Region(edges=edges1) 

  a.SectionAssignment(region=region, sectionName='Pin') 

   

 Xcb=range(len(Yhb)) 

 Ycb=range(len(Yhb)) 

 Zcb=range(len(Yhb)) 

 for i in range(n_fack): 

  a = mdb.models['ARCH BRIDGE'].rootAssembly 

  v1 = a.instances['ARCH-1-lin-1-2'].vertices 

  v2 = a.instances['Cbracing-'+str(i+1)+'-2'].vertices 

  a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp[i],  

   Ydp[i], arch_width[jj])), v2.findAt(coordinates=( 

   Xhb[i]+xx[i],Yhb[i]+yy[i],arch_width[jj]- 

   zz[i]))),), mergeWire=OFF, meshable=OFF) 

  e1 = a.edges 

  edges2 = e1.findAt(((Xhb[i]+xx[i], Yhb[i]+yy[i], 

   arch_width[jj]-zz[i]), )) 

  region=regionToolset.Region(edges=edges2) 

  

  v1 = a.instances['ARCH-1'].vertices 

  v2 = a.instances['Cbracing-'+str(i+1)+'-2'].vertices 

  

  Coord = v2.getClosest(coordinates=((Xhb[i+1]-xx[i],  

   Yhb[i+1]-yy[i], zz[i]),(Xhb[i+1]-xx[i],  

Yhb[i+1]-yy[i], zz[i]),)) 

  Xcb[i+1] = Coord[0][1][0] 

  Ycb[i+1] = Coord[0][1][1] 

  Zcb[i+1] = Coord[0][1][2] 

   

  a.DatumCsysByThreePoints(name='Datum csys-2',  

   coordSysType=CARTESIAN, origin=(Xhb[i]+xx[i],  

   Yhb[i]+yy[i], arch_width[jj]-zz[i]),   

   point1=(Xcb[i+1], Ycb[i+1], Zcb[i+1]), 

 point2=(Xhb[i]+xx[i], Yhb[i]+yy[i], zz[i])) 

  csysdatum=mdb.models['ARCH  

   BRIDGE'].rootAssembly.datums.keys() 

  datum11 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[ 

   csysdatum[len(csysdatum)-1]] 

   

  csa = a.SectionAssignment(sectionName='Pin-fixed',  
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   region=region) 

  a.ConnectorOrientation(angle1=-90, axis1=AXIS_3,  

   region=csa.getSet(), localCsys1=datum11) 

       

  a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp2[i],  

   Ydp2[i], 0.0)), v2.findAt(coordinates=(Xcb[i+1],  

   Ycb[i+1], Zcb[i+1]))), ), mergeWire=OFF, 

meshable=OFF) 

    

  edges2 = e1.findAt(((Xcb[i+1], Ycb[i+1], Zcb[i+1]), )) 

  region=regionToolset.Region(edges=edges2) 

  a.SectionAssignment(region=region, sectionName='Pin') 

   

#-------------------------------------------------------------------- 

# BOUNDARY CONDITIONS 

#-------------------------------------------------------------------- 

a = mdb.models['ARCH BRIDGE'].rootAssembly 

 

#BC-1 - ARCH @ x = 0 

v1 = a.instances['ARCH-1'].vertices 

verts1 = v1.findAt(((Xs[0], Ys[0], Zs[0]), )) 

v2 = a.instances['ARCH-1-lin-1-2'].vertices 

verts2 = v2.findAt(((Xs[0], Ys[0], arch_width[jj]), )) 

region = regionToolset.Region(vertices=verts1+verts2) 

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Arch-1',  

createStepName='Initial', region=region, u1=SET, u2=SET, 

u3=SET, ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET,  

 distributionType=UNIFORM, fieldName='', localCsys=None) 

 

#BC-2 - ARCH @ x = SPAN LENGTH 

v1 = a.instances['ARCH-1-lin-1-2'].vertices 

verts1 = v1.findAt(((Xs[n_el], Ys[n_el], arch_width[jj]), )) 

v2 = a.instances['ARCH-1'].vertices 

verts2 = v2.findAt(((Xs[n_el], Ys[n_el], Zs[n_el]), )) 

region = regionToolset.Region(vertices=verts1+verts2) 

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Arch-2',  

 createStepName='Initial', region=region, u1=SET, u2=SET,  

 u3=SET, ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET,  

 distributionType=UNIFORM, fieldName='', localCsys=None) 

  

#BC-3 - BRIDGE DECK @ x = 0 

e1 = a.instances['Bridge Deck-1'].edges 

edges1 = e1.findAt(((0.0, deck_height, arch_width[jj]/2), ),) 

region = regionToolset.Region(edges=edges1) 

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Deck-1',  

 createStepName='Initial', region=region, u1=SET, u2=SET,  

 u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET,  

 distributionType=UNIFORM, fieldName='', localCsys=None) 

 

#BC-3 - BRIDGE DECK @ x = SPAN LENGTH 

e1 = a.instances['Bridge Deck-1'].edges 

edges1 = e1.findAt(((sp_len[ii], deck_height, arch_width[jj]/2), ),) 

region = regionToolset.Region(edges=edges1) 

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Deck-2',  

 createStepName='Initial', region=region, u1=UNSET, u2=SET,  

 u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET,  

 distributionType=UNIFORM, fieldName='', localCsys=None) 
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#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# 6. MESH 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

a = mdb.models['ARCH BRIDGE'].rootAssembly 

elemType1 = mesh.ElemType(elemCode=S4R, elemLibrary=STANDARD,  

 secondOrderAccuracy=OFF, hourglassControl=DEFAULT) 

elemType2 = mesh.ElemType(elemCode=S3, elemLibrary=STANDARD) 

elemType3 = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD) 

elemType4 = mesh.ElemType(elemCode=T3D2, elemLibrary=STANDARD) 

 

# ASSIGNS ELEMENT TYPE TO BRIDGE DECK 

f1 = a.instances['Bridge Deck-1'].faces 

pickedRegions =(f1, ) 

a.setElementType(regions=pickedRegions, elemTypes=(elemType1,  

 elemType2)) 

partInstances =(a.instances['Bridge Deck-1'], ) 

a.seedPartInstance(regions=partInstances, size=0.5,  

 deviationFactor=0.1, minSizeFactor=0.1) 

a.generateMesh(regions=partInstances) 

 

# ASSIGNS ELEMENT TYPE TO ARCH 

e1 = a.instances['ARCH-1-lin-1-2'].edges 

e2 = a.instances['ARCH-1'].edges 

pickedRegions =(e1, ) 

a.setElementType(regions=pickedRegions, elemTypes=(elemType3, )) 

pickedRegions =(e2, ) 

a.setElementType(regions=pickedRegions, elemTypes=(elemType3, )) 

partInstances =(a.instances['ARCH-1-lin-1-2'], ) 

a.seedPartInstance(regions=partInstances, size=0.5,  

 deviationFactor=0.1, minSizeFactor=0.1) 

a.generateMesh(regions=partInstances) 

partInstances =(a.instances['ARCH-1'], ) 

a.seedPartInstance(regions=partInstances, size=0.5,  

 deviationFactor=0.1, minSizeFactor=0.1) 

a.generateMesh(regions=partInstances) 

 

# ASSIGNS ELEMENT TYPE TO HANGERS 

if n_hang[kk] > 0: 

 e1 = a.instances['Hanger-1-lin-1-2'].edges 

 e2 = a.instances['Hanger-1'].edges 

 pickedRegions =(e1, ) 

 a.setElementType(regions=pickedRegions,elemTypes=(elemType3, )) 

 pickedRegions =(e2, ) 

 a.setElementType(regions=pickedRegions,elemTypes=(elemType3, )) 

 partInstances =(a.instances['Hanger-1-lin-1-2'], ) 

 a.seedPartInstance(regions=partInstances, size=0.5,  

  deviationFactor=0.1, minSizeFactor=0.1) 

 a.generateMesh(regions=partInstances) 

 partInstances =(a.instances['Hanger-1'], ) 

 a.seedPartInstance(regions=partInstances, size=0.5,  

  deviationFactor=0.1, minSizeFactor=0.1) 

 a.generateMesh(regions=partInstances) 

 

# ASSIGNS ELEMENT TYPE TO HORISONTAL HANGERS 

if n_Hbrac[rr] > 0: 

 for i in range(n_Hbrac[rr]):  

  e1 = a.instances['Hbracing-'+str(i+1)].edges 

  pickedRegions =(e1, ) 
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  a.setElementType(regions=pickedRegions,  

   elemTypes=(elemType3, )) 

  partInstances =(a.instances['Hbracing-'+str(i+1)], ) 

  a.seedPartInstance(regions=partInstances, size=0.5,  

   deviationFactor=0.1, minSizeFactor=0.1) 

  a.generateMesh(regions=partInstances) 

 

# ASSIGNS ELEMENT TYPE TO CROSS BRACING 

if use_Cbrac[ss]==1: 

 for i in range(n_fack):  

  e1 = a.instances['Cbracing-'+str(i+1)+'-1'].edges 

  pickedRegions =(e1, ) 

  a.setElementType(regions=pickedRegions,  

   elemTypes=(elemType3, )) 

  e2 = a.instances['Cbracing-'+str(i+1)+'-2'].edges 

  pickedRegions =(e2, ) 

  a.setElementType(regions=pickedRegions,  

   elemTypes=(elemType3, )) 

  partInstances =(a.instances['Cbracing-'+str(i+1)+'-1'], ) 

  a.seedPartInstance(regions=partInstances, size=0.5,  

   deviationFactor=0.1, minSizeFactor=0.1) 

  a.generateMesh(regions=partInstances) 

  partInstances =(a.instances['Cbracing-'+str(i+1)+'-2'], ) 

  a.seedPartInstance(regions=partInstances, size=0.5,  

   deviationFactor=0.1, minSizeFactor=0.1) 

  a.generateMesh(regions=partInstances) 

 

# CREATE NODE SET FOR THE TOP NODE 

a = mdb.models['ARCH BRIDGE'].rootAssembly 

n1 = a.instances['ARCH-1'].vertices 

x_coord = range(len(n1)) 

y_coord = range(len(n1)) 

z_coord = range(len(n1)) 

for i in range(len(n1)): 

 x_coord[i] = n1[i].pointOn[0][0] 

 y_coord[i] = n1[i].pointOn[0][1] 

 z_coord[i] = n1[i].pointOn[0][2] 

y_node = max(y_coord) 

index= (y_coord.index(y_node)) 

v1 = a.instances['ARCH-1'].vertices 

verts1 = v1.findAt(((x_coord[index], y_coord[index],  

 z_coord[index]), )) 

a.Set(vertices=verts1, name='topnode') 

# CREATE NODE SET FOR 1ST QUARTER NODE 

index2 = int(ceil(len(x_coord)/4)) 

v1 = a.instances['ARCH-1'].vertices 

verts2 = v1.findAt(((x_coord[index2], y_coord[index2],  

 z_coord[index2]), )) 

a.Set(vertices=verts2, name='q1node') 

# CREATE NODE SET FOR 2ND QUARTER NODE 

index3 = int(ceil(len(x_coord)*3/4)) 

v1 = a.instances['ARCH-1'].vertices 

verts3 = v1.findAt(((x_coord[index3], y_coord[index3], 

 z_coord[index3]), )) 

a.Set(vertices=verts3, name='q2node') 

# CREATE NODE SET FOR ALL THREE NODES 

verts4 = verts1+verts2+verts3 

a.Set(vertices=verts4, name='all3nodes')  
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#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

# 7. STEPS 

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> 

 

#-------------------------------------------------------------------- 

# CREATES FREQUENCY STEP 

#-------------------------------------------------------------------- 

mdb.models['ARCH BRIDGE'].FrequencyStep(name='Frequency',  

 previous='Initial',minEigen=0.1, maxEigen=10.0, 

 normalization=MASS) 

#-------------------------------------------------------------------- 

# CREATES RANDOM RESPONSE STEP 

#-------------------------------------------------------------------- 

mdb.models['ARCH BRIDGE'].PsdDefinition(name='rekt',  

 data=((1.0, 0.0, 0.1), (1.0, 0.0, 10.0))) 

mdb.models['ARCH BRIDGE'].RandomResponseStep(name='RR',  

 previous='Frequency', freq=((0.1, 10.0, 10, 3), ),  

 directDamping=None, compositeDamping=None, 

rayleighDamping=None,  

 structuralDamping=None, directDampingByFrequency=((0.1,  

  damping), (10.0,damping))) 

regionDef=mdb.models['ARCH BRIDGE'].rootAssembly.sets['all3nodes'] 

mdb.models['ARCH BRIDGE'].fieldOutputRequests['F-Output-

2'].setValues( 

 variables=('U', 'RU'), region=regionDef, sectionPoints=DEFAULT,  

    rebar=EXCLUDE) 
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BRIDGE_DATA.py 
#-------------------------------------------------------------------- 

# BRIDGE_DATA.PY 

# By: Jonathan Johansson, Daniel Josefsson 

#-------------------------------------------------------------------- 

# INPUT FILE - SHALL BE PLACED IN THE SAME DIRECTORY AS MAIN SCRIPT 

 

#-------------------------------------------------------------------- 

# GEOMETRY INPUT 

#-------------------------------------------------------------------- 

 

# BRIDGE GEOMETRY 

sp_len=[]   #Span length [m] 

arch_height=[]  #Arch height [m] 

deck_height=  #Bridge deck height above the spring line 

t_deck=[]   #Thickness of deck [m] 

arch_width=[]  #Width between the two arches [m] 

opt_el_len=   #[m] 

free_height=  #Free height [m] Value according to VGU 

 

    #Type of section for arch 

    # 1 = I-profile, 2 = Box, 3 = Pipe,  

    # 4 = Circular, 5 = Rectangular, 

type=    # 6 = Hexagonal, 7 = Trapezoidal 

    # 8 = L-profile, # 9 = T-profile 

         

        

#GEOMETRY HANGERS 

n_hang=[]   #Number of hangers [-] 

phi_hang=[]   #Diameter for hanger 

 

#GEOMETRY HORIZONTAL BRACING 

n_Hbrac=[]   #Number of horizontal bracing beams   

         

    #Type of section for horisontal bracing 

    # 1 = I-profile, 2 = Box, 3 = Pipe,  

    # 4 = Circular, 5 = Rectangular, 

type=    # 6 = Hexagonal, 7 = Trapezoidal 

    # 8 = L-profile, # 9 = T-profile 

         

 

#GEOMETRY CROSS-BRACING 

use_Cbrac=[]  #Set 1 if cross bracing shall be used,  

     #otherwise set value 0 

phi_Cbrac=[]  #Diameter for horizontal bracing 

 

#-------------------------------------------------------------------- 

# MATERIAL INPUT 

#-------------------------------------------------------------------- 

damping=   # Damping coefficient [Timber = 0.01] 

  

#DEFINE MATERIAL FOR ARCH 

E1_A =      #[Pa] 

E2_A =      #[Pa] 

E3_A =      #[Pa] 

v12_A =      #Poisson ratio[-] 

v13_A =      #Poisson ratio[-] 

v23_A =      #Poisson ratio[-] 
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G12_A =      #[Pa]     

   

G13_A =      #[Pa] 

G23_A =      #[Pa] 

D_arch=      #[kg/m^3] 

 

 

 

#DEFINE MATERIAL FOR DECK 

E1_D =      #[Pa] 

E2_D =      #[Pa] 

E3_D =      #[Pa] 

v12_D =      #Poisson ratio[-] 

v13_D =      #Poisson ratio[-] 

v23_D =      #Poisson ratio[-] 

G12_D =      #[Pa]     

   

G13_D =      #[Pa] 

G23_D =      #[Pa] 

D_deck=      #[kg/m^3] 

 

#DEFINE MATERIAL FOR HANGERS 

E_hang =      #[Pa] 

v_hang =      #Poisson ratio[-] 

D_hang=      #[kg/m^3] 

 

#DEFINE MATERIAL FOR HORISONTAL BRACING 

E1_Hb =      #[Pa] 

E2_Hb =      #[Pa] 

E3_Hb =      #[Pa] 

v12_Hb =      #Poisson ratio[-] 

v13_Hb =      #Poisson ratio[-] 

v23_Hb =     #Poisson ratio[-] 

G12_Hb =     #[Pa]     

   

G13_Hb =     #[Pa] 

G23_Hb =     #[Pa] 

D_Hbrac=     #[kg/m^3] 

 

# DEFINE MATERIAL FOR CROSS-BRACING 

E_Cbrac =      #[Pa] 

v_Cbrac  =      #Poisson ratio[-] 

D_Cbrac =      #[kg/m^3] 

 

#-------------------------------------------------------------------- 

# SECTION TYPES FOR ARCH 

#-------------------------------------------------------------------- 

 

#--# I 

I_t1=[] 

I_t2=[] 

I_t3=[] 

I_b1=[] 

I_b2=[] 

I_h=[] 

I_l=[] 

#--# Box 

B_b=[] 
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B_a=[] 

B_t1=[] 

B_t2=[] 

B_t3=[] 

B_t4=[] 

 

#--# Pipe 

P_r=[] 

P_t=[] 

 

#--# Circular 

C_r=[] 

 

#--# Rectangular 

R_a=[] 

R_b=[] 

 

#--# Hexagonal 

H_r=[] 

H_t=[] 

 

#--# Trapezoidal 

T_a=[] 

T_b=[] 

 

#--# L 

L_a=[] 

L_b=[] 

L_t1=[] 

L_t2=[] 

 

#--# T 

T_b=[] 

T_h=[] 

T_l=[] 

T_tf=[] 

T_tw=[] 

 

#-------------------------------------------------------------------- 

# SECTION TYPES FOR HORISONTAL BRACING 

#-------------------------------------------------------------------- 

#--# I 

I_t1hb=[] 

I_t2hb=[] 

I_t3hb=[] 

I_b1hb=[] 

I_b2hb=[] 

I_hhb=[] 

I_lhb=[] 

 

#--# Box 

B_bhb=[] 

B_ahb=[] 

B_t1hb=[] 

B_t2hb=[] 

B_t3hb=[] 

B_t4hb=[] 
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#--# Pipe 

P_rhb=[] 

P_thb=[] 

 

#--# Circular 

C_rhb=[] 

 

#--# Rectangular 

R_ahb=[] 

R_bhb=[] 

#--# Hexagonal 

H_rhb=[] 

H_thb=[] 

 

#--# Trapezoidal 

T_ahb=[] 

T_bhb=[] 

 

#--# L 

L_ahb=[] 

L_bhb=[] 

L_t1hb=[] 

L_t2hb=[] 

 

#--# T 

T_bhb=[] 

T_hhb=[] 

T_lhb=[] 

T_tfhb=[] 

T_twhb=[] 
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OUTPUT.py 
#-------------------------------------------------------------------- 

# OUTPUT.PY 

# By: Jonathan Johansson, Daniel Josefsson 

#-------------------------------------------------------------------- 

# SCRITP THAT EXTRACTS DISPLACEMENTS AND EIGENFREQUENCIES FOR THE  

# ARCH BRIDGE ANALYSIS CREATED BY THE SCRITP ARCH_BRIDGE.py  

# 

# BRIDGE_DATA.py MUST BE PLACED IN THE SAME FOLDER AS OUTPUT.py  

 

#-------------------------------------------------------------------- 

# 1. IMPORTS PROGRAMMING COMMANDS FROM ABAQUS 

#-------------------------------------------------------------------- 

from abaqus import * 

from abaqusConstants import * 

import __main__ 

import odb 

import math 

import odbAccess 

import odbSection 

import odbMaterial 

import section 

import regionToolset 

import displayGroupMdbToolset as dgm 

import step 

import part 

import material 

import assembly 

import interaction 

import load  

import mesh 

import optimization 

import job 

import sketch 

import visualization 

import xyPlot 

import displayGroupOdbToolset as dgo 

import connectorBehavior 

import time 

session.journalOptions.setValues(replayGeometry=COORDINATE) 

#-------------------------------------------------------------------- 

# 2. RUN INDATA FILE 

#-------------------------------------------------------------------- 

execfile('BRIDGE_DATA.py') 

#-------------------------------------------------------------------- 

# 3. NUMBER OF PARAMETERS VARYING AND  LOOP OVER ALL PARAMETERS 

#-------------------------------------------------------------------- 

a = range(len(sp_len)) 

b = range(len(arch_width)) 

c = range(len(n_hang)) 

d = range(len(R_a)) 

e = range(len(R_b)) 

f = range(len(arch_height)) 

g = range(len(t_deck)) 

h = range(len(phi_hang)) 

k = range(len(n_Hbrac)) 

l = range(len(use_Cbrac)) 

m = range(len(phi_Cbrac)) 
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n = range(len(R_ahb)) 

o = range(len(R_bhb)) 

 

name=range(len(a)*len(b)*len(c)*len(d)*len(e)*len(f)*len(g)*len(h)* 

len(k)*len(l)*len(m)*len(n)*len(o)) 

 

i=0 

for ii in range(len(sp_len)): 

for jj in range(len(arch_width)): 

for kk in range(len(n_hang)): 

for nn in range(len(arch_height)): 

  for ll in range(len(R_a)):  

 for mm in range(len(R_b)): 

   for pp in range(len(t_deck)): 

 for qq in range(len(phi_hang)): 

    for rr in range(len(n_Hbrac)): 

 for ss in range(len(use_Cbrac)): 

     for tt in range(len(phi_Cbrac)): 

 for uu in range(len(R_ahb)): 

      for vv in range(len(R_bhb)): 

name[i]=str(int(sp_len[ii]))+''+str(int(arch_width[jj]))+'-

'+str(int(arch_height[nn]))+'-'+str(int(n_hang[kk]))+'-

'+str(int(phi_hang[qq]*1000))+'-'+str(int(n_Hbrac[rr]))+'-

'+str(int(t_deck[pp]*1000))+'-'+str(int(R_a[ll]*1000))+'-

'+str(int(R_b[mm]*1000))+'-'+str(int(R_ahb[uu]*1000))+'-

'+str(int(R_bhb[vv]*1000))+'-'+str(int(use_Cbrac[ss]))+'-

'+str(int(phi_Cbrac[tt]*1000)) 

 i=i+1 

           

   

for j in range(len(name)): 

 # ------------------------------------------------------------- 

 # 3.1 OPEN .ODB FILE 

 # ------------------------------------------------------------- 

 odb = session.openOdb('Input\\'+name[j]+'.odb') 

 assembly = odb.rootAssembly 

 # ------------------------------------------------------------- 

 # 3.2 Obtaining the displacements 

 # ------------------------------------------------------------- 

 session.viewports['Viewport: 1'].setValues(displayedObject=odb) 

session.odbData['Input\\'+name[j]+'.odb'].setValues(activeFrame 

 s=(('Frequency', ('0:-1', )), )) 

 U = session.xyDataListFromField(odb=odb, outputPosition=NODAL, 

variable=(('U', NODAL, ((COMPONENT, 'U3'), )), ), 

nodeSets=('Q1NODE', 'Q2NODE', 'TOPNODE', )) 

 # ------------------------------------------------------------- 

 # 3.3 Obtaining the RMS-displacements 

 # ------------------------------------------------------------- 

 session.viewports['Viewport: 1'].setValues(displayedObject=odb) 

 session.odbData['Input\\'+name[j]+'.odb'].setValues( 

activeFrames=(('RR', ('0:-1', )), )) 

 RU = session.xyDataListFromField(odb=odb, outputPosition=NODAL, 

variable=(('RU',NODAL,((COMPONENT, 'RU3'), )), ), 

nodeSets=('Q1NODE', 'Q2NODE','TOPNODE', )) 

 # ------------------------------------------------------------- 

 # 3.4 Obtaining the eigenfrequencies 

 # ------------------------------------------------------------- 

 freq_bulk = odb.steps['Frequency'].historyRegions[ 
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'Assembly ASSEMBLY'].historyOutputs['EIGFREQ'] 

 freq = range(len(freq_bulk.data)) 

 for i in range(len(freq_bulk.data)): 

  freq[i] = freq_bulk.data[i][1] 

 # ------------------------------------------------------------- 

 #  3.5 Writing the obtained data to an output file 

 # ------------------------------------------------------------- 

 outputFile = open('Output\\'+name[j]+'_RMS.txt','w') 

 for i in range(len(RU[0])): 

outputFile.write('%10.20E\t%10.20E\t%10.20E\t%10.20E\n' % 

(RU[0][i][0],RU[0][i][1],RU[1][i][1],RU[2][i][1])) 

 outputFile.close() 

  

 outputFile = open('Output\\'+name[j]+'_U.txt','w') 

 for i in range(len(U[0])): 

outputFile.write('%10.20E\t%10.20E\t%10.20E\t%10.20E\n' % 

(freq[i],U[0][i][1],U[1][i][1],U[2][i][1])) 

 outputFile.close() 

 # ------------------------------------------------------------- 

 # 3.6 Delete created xy-data 

 # ------------------------------------------------------------- 

 n_data = len(session.xyDataObjects) 

 xyname = session.xyDataObjects.keys() 

 for i in range(n_data): 

  del session.xyDataObjects[xyname[i]] 

 # ------------------------------------------------------------- 

 # 3.7 Closing .odb file 

 # ------------------------------------------------------------- 

 odb.close() 

#-------------------------------------------------------------------- 

# 4. WRITE A .TXT FILE WITH THE FILENAMES FROM THE ANALYSIS  

#-------------------------------------------------------------------- 

outputFile = open('Output\\Filename.txt','w') 

for j in range(len(name)): 

 outputFile.write(name[j].replace('-','\t')+'\n') 

outputFile.close() 


