

Dynamic response of arch bridges exposed

to wind load

Master of Science Thesis in the Master’s Program Structural Engineering and

Building Technology

JONATHAN JOHANSSON

DANIEL JOSEFSSON

Department of Applied Mechanics

Division of Dynamics

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2014

Master’s Thesis 2014:35

MASTER’S THESIS 2014:35

Dynamic response of arch bridges exposed to wind load

 Master of Science Thesis in the Master’s Program Structural Engineering and

Building Technology

JONATHAN JOHANSSON

DANIEL JOSEFSSON

Department of Applied Mechanics

Division of Dynamics

 CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2014

Dynamic response of arch bridges exposed to wind load

Master of Science Thesis in the Master’s Program Structural Engineering and

Building Technology

JONATHAN JOHANSSON

DANIEL JOSEFSSON

© JONATHAN JOHANSSON & DANIEL JOSEFSSON, 2014

Master’s Thesis 2014:35

ISSN 1652-8557

Department of Applied Mechanics

Division of Dynamics

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone: + 46 (0)31-772 1000

Cover:

Arch bridge subjected to wind load.

Chalmers reproservice Göteborg, Sweden 2014

Dynamic response of arch bridges exposed to wind load

Master of Science Thesis in the Master’s Program Structural Engineering and

Building Technology

JONATHAN JOHANSSON

DANIEL JOSEFSSON
Department of Applied Mechanics

Division of Dynamics

Chalmers University of Technology

ABSTRACT

According to the Swedish design code, wind loads on bridges with constant cross

section and span length less than 50m can be assessed in a simplified method

presented in Eurocode. However, this simplified method is not applicable for arch

bridges together with several other types of bridges. The dynamic response for these

bridges needs to be assessed, which results in time consuming calculations.

To simplify the design calculations when investigating the dynamic response for a

bridge it is of big importance to prove the first mode in wind direction is dominating.

By proving this one can use a method known as the singe-mode method.

This Master’s Thesis consists of a parametric study which displays the structural

demand of arch bridges that are subjected to wind loads. Selected parameters are

chosen and their influence on the decision of the dominating mode is investigated.

The parametric study is divided into three main groups depending on the material of

the arches.

The result is presented in written where characteristic examples for the associated

parametric study are displayed. In addition to this a regression analysis is performed

to estimate the relationship between the different parameters and the associated

structural factor.

Keywords: Dynamic response, arch bridges, wind load, single-mode method,

structural factor, dominating mode

Dynamisk respons av bågbroar med avseende på vindlast

Examensarbete inom Structural Engineering and Building Technology

JONATHAN JOHANSSON

DANIEL JOSEFSSON

Institutionen för Tillämpad Mekanik

Avdelningen för Dynamik

Chalmers tekniska högskola

SAMMANFATTNING

Enligt Trafikverkets dimensioneringsprinciper kan vindlaster för broar med konstant

tvärsnitt och spännvidd under 50m utvärderas med en förenklad metod beskriven i

Eurocode. För bl.a. bågbroar krävs däremot en mer detaljerad dynamisk analys där

den dynamiska responsen för bron utreds. Detta resulterar i en mer komplicerad

dimensioneringsprocess vilken ofta är tidskrävande.

För att förenkla dimensioneringsberäkningarna när den dynamiska responsen utreds är

det en stor fördel om den första moden för bågen är dominerande. Genom att påvisa

detta kan en enkel-mods metod användas vid beräkningen.

Detta mastersarbete består av en parameterstudie vilken visar det strukturella

beteendet för bågbroar exponerade för vindlaster. Parametrar vilka anses ha stor

inverkan på det dynamiska beteendet är utvalda. Vidare är dessa parametrars inverkan

vid bestämmandet av den dominarande moden i vindriktningen analyserad.

Parameterstudien är indelad i tre huvudgrupper beroende av bågarnas material.

Resultatet är presenterat i text där karakteristiska exempel, för den givna

huvudgruppen, är illustrerade. Förutom detta har en regressionsanalys utförts för att

påvisa sambandet mellan de utvalda parametrarna som varierats och den strukturella

faktorn.

Nyckelord: Dynamisk respons, bågbroar, vindlast, enkel-mods metod, strukturell

faktor, dominerande mod

Contents

ABSTRACT I

SAMMANFATTNING II

CONTENTS III

PREFACE V

NOTATIONS VI

1 INTRODUCTION 1

1.1 Background 1

1.2 Aim and objective 1

1.3 Method 1

1.4 Limitations 2
1.4.1 Wind assumptions 2

2 THEORY OF STRUCTURAL DYNAMICS 3

2.1 Undamped single degree of freedom system 3
2.1.1 Short-duration impulse response 4

2.2 Damped single degree of freedom system 5
2.2.1 Underdamped (ζ < 1) 7

2.2.2 Critically damped (ζ = 1) 7
2.2.3 Overdamped (ζ > 1) 7

2.2.4 Particular solution 8

2.3 Multi degree of freedom system 8

2.4 Mode superposition and modal damping 9

2.5 Fourier analysis 10
2.5.1 Fourier series 11
2.5.2 Fourier Integral 13

2.6 Random response analysis 14

3 THEORY OF WIND ENGINEERING 15

3.1 Load due to mean wind velocity 16

3.2 Load due to wind turbulence 17
3.2.1 Power spectral density for along wind 17
3.2.2 Stochastic processes and general definitions 18
3.2.3 Load contribution due to wind turbulence 20

3.2.4 Wind turbulence according to the Swedish Annex to Eurocode 23

4 ARCH BRIDGES 24

4.1 Types of Arch bridges 24

5 PARAMETRIC STUDY 26

5.1 Workflow 26

5.2 Selection of input data 27
5.2.1 Parameters for concrete arch bridges 28

5.2.2 Parameters for steel arch bridges 29
5.2.3 Parameters for timber arch bridges 30

5.3 FE-model 31
5.3.1 Element types 31
5.3.2 Material data 31

5.3.3 Analysis type 32
5.3.4 Assembly 33
5.3.5 Boundary conditions 34
5.3.6 Convergence study 34

5.4 Analysis of result 36

6 RESULTS 38

6.1 Concrete arch bridges 38

6.2 Timber and steel arch bridges 39

7 DISCUSSION 41

8 CONCLUSIONS 43

8.1 Further studies within the field 43

9 REFERENCES AND SOURCES 44

Preface

This Master Thesis completes the Master’s Program Structural Engineering and

Building Technology at Chalmers University of Technology. It was written in the

spring of 2014 and was carried out in cooperation between Chalmers University of

Technology and WSP Bridge and Hydraulic Design in Gothenburg.

The completion of the Master’s Thesis would never have been possible without the

support from people in our surroundings.

Gratitude is given to Roland Olsson and his co-workers at WSP Bridge and Hydraulic

design for giving us the opportunity to fulfill this Master’s Thesis.

We are grateful for the input we have gotten from our opponent group Ismail Koc &

Endrit Ndoi.

We would like to thank our Examiner Thomas Abrahamsson for the help he has given

us throughout the Thesis project.

The biggest appreciation is given to our Supervisors Peter Nilsson and Kristoffer

Ekholm for all the help they given us with both practical and theoretical issues. With

great dedication and commitment they have inspired us to perform at the top of our

ability.

Jonathan Johansson & Daniel Josefsson

May 2014

Notations

Abbreviations

FE Finite element

IC Initial conditions

PSD Power spectral density

RMS Root mean square

SDOF Single degree of freedom

MDOF Multi degree of freedom

Roman upper case letters

 Amplitude constants [-]

 Background response factor [-]

 Integration constants [-]

 Local drag coefficient [-]

 Damping matrix [Ns/m]

 Modal damping matrix [Ns/m]

 Young´s modulus [Pa]

 Non-dimensional PSD [-]

 Load matrix [N]

 Frequency Response factor [-]

 Impulse load [Ns]

 Turbulence intensity [-]

 Stiffness matrix [N/m]

 Modal stiffness matrix [N/m]

 Modal mass [kg]

 Mass matrix [kg]

 Modal mass matrix [kg]

 Arbitrary degrees of freedom [-]

 Resonant response factor [-]

 Power spectral density [-]

 Period time [s]

 Along-wind velocity [m/s]

 Mean wind velocity [m/s]

 Stochastic process [-]

Roman lower case letters

 Local width [m]

 Damping coefficient [Ns/m]

 Roughness factor [-]

 Orography factor [-]

 First eigenfrequency [Hz]

 Load vector [N]

 Modal load vector [N]

 Spring stiffness [N/m]

 Background factor [-]

 Response factor [-]

 Peak factor [-]

 Terrain factor [-]

 Mass [kg]

 Applied load [N]

 Time [s]

 Displacement [m]

 Displacement vector [m]

 ̇ Velocity [m/s]

 ̇ Velocity vector [m/s]

 ̈ Acceleration [m/s
2
]

 ̈ Acceleration vector [m/s
2
]

 ̅ Average displacement [m]

 Zero mean turbulence [m/s]

 Average frequency [Hz]

 Basic mean wind velocity [m/s]

 Mean wind velocity [m/s]

 Along wind load [kN/m]

 Load due to mean wind [kN/m]

 Load due to turbulence [kN/m]

 Roughness length [m]

Greek upper case letters

 Eigenvector [-]

 Frequency of the applied load [rad/s]

Greek lower case letters

 Phase angle [rad]

 Damping ratio [-]

 Aero dynamic damping [-]

 Structural damping [-]

 Mean value of stochastic process [-]

 Poisson’s ratio [-]

 Density [kg/m
3
]

 Standard deviation [-]

 Gust factor [-]

 Mode shape [-]

 Modal matrix [-]

 Circular frequency of load [rad/s]

 Damped natural frequency [rad/s]

 Natural frequency [rad/s]

Damped frequency [rad/s]

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
1

1 Introduction

1.1 Background

According to the current regulations in Eurocode 1 (SS-EN 1991-1-4, 2005), bridges

exposed to wind loads can be assessed by a simplified method where dynamic

response calculations are not necessary. The structural factor, cscd, is in the simplified

method set equal to 1.0. However the Swedish guidelines in TRVK Bro 11

(Trafikverket, 2011), states that the dynamic response has to be evaluated for arch

bridges, suspension bridges, cable-stay bridges, bridges with roofs, bridges with high

slender columns and bridges with spans over 50 meters.

The dynamic response calculations are time consuming but may be simplified by a

single-mode method. By using this method the number of parameters would be

reduced and thereby shorten the calculation process. The single-mode method is

acceptable to use under the condition that the structural response of the bridge is

dominated by the first in-wind directional mode. A parametric study where the

parameters that has the highest impact in the decision whether the in-wind directional

mode is dominating or not would therefore be of interest. If these parameters are set

into relation with the corresponding structural factor it might also be possible to assess

the dynamic response without detailed calculations.

1.2 Aim and objective

The aim of the thesis is to produce a parametric study that will investigate the

structural demands of arch bridges, with regards to wind load response, in order to use

a simplified single-mode method. The structural factor, according to Eurocode 1 (SS-

EN 1991-1-4, 2005), will be evaluated for those bridges that fulfill the requirements

for the single mode method.

1.3 Method

This master thesis will be carried out in two parts; a literature study and a parametric

study.

Initially a literature study is performed which is used to evaluate what parameters

have the highest impact in the decision whether the in-wind directional mode is

dominating or not. The literature study includes theory of structural dynamics,

evaluation of different wind spectrum as well as the process to evaluate the structural

factor.

The purpose of the parametric study is to evaluate different arch bridge designs and

their structural response. The condition to use the single-mode method is that the

structural response is dominated by the first in-wind directional mode. This condition

is evaluated by analyzing the eigenfrequencies and the RMS (Root Mean Square)

values of the displacements. In order to obtain the eigenfrequencies and the RMS

values a FE-software will be used. The FE-software chosen for this study is

BRIGADE/PLUS which is a FE-software customized for bridge engineering. In case

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
2

the results are satisfying the conditions for using the single-mode method, the

structural factor for the corresponding bridge type is evaluated.

By setting the parameters that are used in the parametric study in relation to the

corresponding structural factor it might be possible to predict the dynamic response

for other, not yet assessed bridges.

1.4 Limitations

The behavior of the structure is assumed to be linear elastic. Only dynamic response

due to wind load is considered. The parametric study will only evaluate through arch

bridges with zero hinges.

1.4.1 Wind assumptions

In the theory part concerning wind load the following assumptions apply:

 The terrain is assumed to be horizontal and its roughness is constant

 At a sufficient height the wind flow is assumed to be horizontally

homogeneous

 Any thermal contributions to the turbulence is neglected

 The wind direction don’t change with the height above the terrain

 The main flow direction of the wind is perpendicular to the bridge span axis.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
3

2 Theory of structural dynamics

The reader is expected to have elementary knowledge in structural dynamics, some

basic equations and concepts are presented in this chapter. The equations in this

section are derived according to (Craig Jr & Kurdila, 2006).

2.1 Undamped single degree of freedom system

The simple single degree of freedom (SDOF) model presented in Figure 2.1 below is

considered. The mass is excited by an arbitrary force (), the base is assumed to be

fixed and the system starts from rest.

Figure 2.1 - SDOF Spring-mass system

The equation of motion for this system is

 ̈() () () (2.1)

Where

 Mass [kg]

 Spring stiffness [N/m]

 Applied load [N]

 Displacement [m]

Introducing the natural frequency

 √

 (2.2)

Then equation (2.1) can be rewritten as

 ̈()
 ()

 ()

 (2.3)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
4

This is a linear ordinary differential equation with constant coefficients. This equation

has a solution that consists of two parts, a complementary solution and a particular

solution. The total solution is then

 () () () (2.4)

The complementary solution is obtained by consider the free vibration case of the

system i.e. when . Then the complementary solution has the general solution as

 () (2.5)

The particular solution depends on the applied load. Assuming that the applied load is

harmonic, then the particular solution will be

 ()
 ()

 ()
 (2.6)

The total solution is then solved by inserting (2.6) and (2.5) into (2.4) and then apply

the initial conditions from which the constants and can be solved.

2.1.1 Short-duration impulse response

If the load duration is much less than the system period time the load can be expressed

as an impulse load. Assuming that the system is subjected to a load of duration and

that then the impulse can be defined as

 ∫ ()

 (2.7)

Where

 Impulse load [Ns]

 Applied load [N]

 Impulse duration [s]

The applied load () is an arbitrary function in time. Figure 2.2 below shows

examples of some simple functions that can be used to model an impulse.

Figure 2.2 - Impulse load – Square, sinusoidal and triangular load

The equation of motion then becomes

 ̈ ̇ {
 ()

 (2.8)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
5

Equation (2.8) is then integrated with respect to time and with the initial conditions

incorporated.

 ̇() ̅ (2.9)

Here ̅ is the average displacement in the time interval. If it can be assumed that the

impulse is short, then . Then equation (2.9) will become

 ̇() (2.10)

A short impulse will then give the mass an initial velocity of

 ̇()

 (2.11)

The initial displacement will then become

 () (2.12)

By using equation (2.11) and (2.12) as IC, the impulse response can be solved using

equation (2.4) with the particular solution .

2.2 Damped single degree of freedom system

The motions in real systems cannot continue indefinitely due to damping that will

dissipate energy from the system. Therefore a damped single degree of freedom

(SDOF) system illustrated in Figure 2.3 is considered.

Figure 2.3 - SDOF Spring-mass-damper system

The equation of motion for this system is

 ̈() ̇() () () (2.13)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
6

Where

 Mass [kg]

 Damping coefficient [Ns/m]

 Spring stiffness [N/m]

 Applied load [N]

 Displacement [m]

 ̇ Velocity [m/s]

 ̈ Acceleration [m/s
2
]

The damping ratio is defined as

 √
 (2.14)

Then the equation of motion then can be written as

 ̈() ̇()
 ()

 ()

 (2.15)

As in the undamped case the solution for the differential equation consists of two

parts the complementary solution and the particular solution, se equation (2.4).

Equation (2.15) can be solved by making the ansatz

 () (2.16)

This then gives

 (2.17)

This characteristic equation will have the roots given by

} √ (2.18)

Three cases can be identified underdamped (), critically damped (),
and overdamped (). These three cases are illustrated in Figure 2.4.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
7

Figure 2.4 - Underdamped, Overdamped & Critically damped

2.2.1 Underdamped (ζ < 1)

By introducing the damped natural frequency as

 √ (2.19)

Equation (2.18) can be rewritten in the form

} (2.20)

Then the complementary solution can be written as

 ()
 () (2.21)

2.2.2 Critically damped (ζ = 1)

For this case equation (2.18) will only have one solution, which is

 (2.22)

The complementary solution will be

 () ()
 (2.23)

2.2.3 Overdamped (ζ > 1)

Now equation (2.18) gives two distinct negative real roots. Introducing

 √ (2.24)

The complementary solution then can be written as

 () (

) (2.25)

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 [

m
m

]

Time [t]

Critically damped

Underdamped

Overdamped

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
8

2.2.4 Particular solution

If the applied load is assumed to be harmonic the particular solution will be

 () () (2.26)

Here is the steady-state amplitude and is the phase angle defined as

 √() ()
 (2.27)

 (2.28)

Where

 (2.29)

The total solution can then be obtained, similar to the undamped system, by applying

the IC and solve the constants from the complementary solution.

2.3 Multi degree of freedom system

Many structures like for example bridges are so complex that they cannot be

represented by a SDOF system. For convenience a 2-degree of freedom system

illustrated in Figure 2.5 will be considered. The method described below is analogue

with an arbitrary degree of freedom system.

Figure 2.5 - MDOF Spring-Mass-Damper system

In order to obtain the equation of motion for the system a free-body diagram for each

of the masses should be established. Then by applying Newton’s second law of

motion on each mass the following equation will be obtained

 [

] [
 ̈
 ̈
] [

] [
 ̇
 ̇
] [

] [

] [

 ()

 ()
] (2.30)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
9

Introducing the notation

 Mass matrix

 Damping matrix

 Stiffness matrix

 Load vector

 Displacement vector

 ̇ Velocity vector

 ̈ Acceleration vector

Then equation (2.30) can be written as

 ̈ ̇ (2.31)

Assuming that the motion is harmonic such that

 () () (2.32)

Here is a vector with the constants that determines the amplitudes. By inserting

(2.32) into (2.31) and disregarding the effect of damping

 () (2.33)

In order for equation (2.33) to have a nontrivial solution the values of must satisfy

the following equation

 |
 | (2.34)

By solving equation (2.34) the eigenfrequencies can be obtained. Once the

eigenfrequencies has been determined the mode shapes can be calculated. The mode

shapes are defined as

 [

]

 [

] (2.35)

Using and insert it into equation (2.32)

 () () () (2.36)

 () () ()
(2.37)

Here and can be calculated by applying IC.

2.4 Mode superposition and modal damping

The equation of motion for an N-DOF system has in general coupled equations. This

requires solutions of N equations in N unknowns. The mode-superposition method is

a method that transforms the set of coupled equations to a set of uncoupled equations.

The method uses the normalized modes extracted from the undamped system.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
10

Assuming that we have N modes and that the modal masses and the

modal stiffnesses can be calculated using

 (2.38)

Then due to orthogonality

 (2.39)

This holds for all . Collecting the mode shapes gives the modal matrix as

 [] (2.40)

Then by using equation (2.38) and (2.39) the modal damping matrix and the modal

stiffness matrix can be written as

 () () (2.41)

By introducing the principal coordinates

 () () ∑ ()

 (2.42)

The equation of motion in principal coordinates can then be written as

 ̈ ̇ () (2.43)

Where

 Modal mass matrix

 Modal damping matrix

 Modal stiffness matrix

 Modal load vector

Since the matrices and are diagonal equation (2.43) are coupled only through the

damping matrix . One common damping technique used in structural dynamic

problems is modal damping. The modal damping matrix is then assumed to satisfy

orthogonality such that the damping matrix becomes

 () () (2.44)

Equation (2.43) now consists of uncoupled equations of motion in principal

coordinates.

2.5 Fourier analysis

When considering structures subjected to random loading it is convenient to transform

the load response from the time domain to the frequency domain. This can be

obtained by using Fourier analysis (Handa, 1982).

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
11

2.5.1 Fourier series

A periodic function can be separated into several harmonic components using a

Fourier series expansion (Craig Jr & Kurdila, 2006).

Consider the periodic function

 () {

 (2.45)

The function is illustrated in Figure 2.6.

Figure 2.6 - Periodic function p(t)

By definition the real Fourier series expansion of () is

 () ∑

 ∑

 (2.46)

Where

 (2.47)

∫ ()

 (2.48)

∫ ()

 (2.49)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
12

∫ ()

 (2.50)

Here is an arbitrary time and is the period of (). In theory one may need an

infinite number of terms for (). In this example it will be shown that one may get

a sufficient approximation by using a relatively small number of terms.

By substituting equation (2.45) into equations (2.48), (2.49) and (2.50) it can be

shown that the Fourier series representation according to equation (2.46) will become

 ()

∑

()
 (())

 (2.51)

Equation (2.51) is plotted in Figure 2.7 using and .

It is clear that around 100 terms gives a good approximation of ().

Figure 2.7 - Plots of equation (2.51) using N=1, 3, 10 & 100

In cases where the system is viscous-damped the complex Fourier series expansion

can be useful instead of equation (2.46).

 () ∑ ̅()
 ()

 (2.52)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
13

Where

 ̅

∫ () ()

 (2.53)

2.5.2 Fourier Integral

As shown in chapter 2.5.1 a periodic function can be written in terms of harmonic

function with the Fourier series. However if a function is not periodic, such as for

example the wind speed registration over a time period, we can still write it in terms

of harmonic functions. This is done with the Fourier integral (Craig Jr & Kurdila,

2006).

Recalling equation (2.52) and (2.53), by letting and introducing the following

notation

 (2.54)

 () ̅

 ̅ (2.55)

Then equation (2.52) can be written as

 ()

∑ ̅()

 ()

 (2.56)

And equation (2.53) together with equation (2.55) will become

 ̅() ∫ () ()

 ⁄

 ⁄

 (2.57)

And since then becomes a continuous variable and also becomes the

differential . Hence equation (2.56) and (2.57) becomes

 ()

∫ ̅()

 (2.58)

 ̅() ∫ ()

 (2.59)

Equation (2.58) is the inverse Fourier transform of ̅() and equation (2.59) is called

the Fourier transform of ().

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
14

2.6 Random response analysis

The wind load due to turbulence is in structural engineering treated as a stochastic and

ergodic process. In order to predict the response of a structure excited by such

loading, one can in an FE-software perform a random response analysis. In this type

of analysis the structure is excited by a random load. This load is characterized in the

frequency domain by a cross-spectral density matrix (). From a previous conducted

eigenvalue analysis the eigenmodes are used to calculate the power spectral densities

(PSD) of the response variables considered. The obtained deformations will then give

the frequencies at which the system is most excited (Dassault Systèmes, 2012).

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
15

3 Theory of wind engineering

Due to irregular heating of the atmosphere there will be temperature differences

between different geographic areas of the earth. Hence, air pressure differences will

occur which induces movement of the air to reach equilibrium. This movement

provides the air with kinetic energy and the mass and velocity of the wind has to be

taken into account when designing a structure (Handa, 1982).

The fluctuating wind field is assumed to be stationary and homogenous within the

considered time and space. It may be approximated as a combination between the

long-term variation of the mean wind velocity, the short term single spatial

distribution of the turbulence components and the short term single point time domain

variation of the turbulence components. An illustration over a fluctuating wind field is

shown in Figure 3.1 (Strømmen, 2010).

Figure 3.1 - Simple bridge structural system subjected to fluctuating wind field

varying in time and space (Strømmen, 2010).

The along-wind load () per unit height can be defined according to Holmes

(2001)

 ()

 () ()

 () (3.1)

Where

 () Local drag coefficient [-]

 () Local width [m]

 Air density [kg/m
3
]

 () Wind velocity in along-wind direction [m/s]

V

z

x

y

ux
z

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
16

The wind velocity in along-wind direction () in equation (3.2) can according to

Strømmen (2010) be defined as the mean wind velocity () added to the zero mean

turbulence component ().

 () () () (3.2)

By inserting equation (3.2) into equation (3.1) and neglecting the term
 ()

since () (), the following expression is obtained

 ()

 () () (

 () () ()) (3.3)

The wind load can be divided into the following contributions

 () () () (3.4)

Where

 ()

 () ()

 () Quasi-static load due to () [kN/m]

 () () () () () Load due to wind turbulence [kN/m]

3.1 Load due to mean wind velocity

The mean wind velocity at height is depending on the terrain roughness, the

orography and the basic wind velocity (Dyrbye, 1997). Eurocode 1 (SS-EN 1991-1-4,

2005) presents a way to calculate the mean wind velocity which is given by:

 () () () (3.5)

Where

 Basic mean velocity [m/s]

 () Roughness factor [-]

 () Orography factor [-]

The basic mean velocity varies between different geographic regions in Sweden

and can be decided using the Swedish Annex to Eurocode (TRVFS, 2011:12).

According to the Swedish Annex to Eurocode (TRVFS, 2011:12) the orography factor

 () is taken as 1.0 since its influence is already accounted for in the basic mean

velocity.

The roughness factor () depends on the height above the ground level and the

roughness of the ground at the wind direction of the structure. It is given by Eurocode

1 (SS-EN 1991-1-4, 2005):

 () (

)

 () ()

(3.6)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
17

Where

 Roughness length given in Table 3.1 [m]

 Minimum height given in Table 3.1 [m]

 Maximum height taken as 200m [m]

 Terrain factor depending on roughness length [-]

 (

)

 (3.7)

Where

 Roughness length depending on terrain type 0-IV [m]

Table 3.1 - Terrain categories and terrain parameters (SS-EN 1991-1-4, 2005).

Terrain category z0 [m] zmin [m]

0 Sea or coastal area exposed to the open sea 0.003 1

I Lakes or flat and horizontal area with negligible

vegetation and without obstacles
0.01 1

II Area with low vegetation such as grass and isolate

obstacles (tree, buildings) with separations of at least 20

obstacles heights

0.05 2

III Area with regular cover of vegetation or buildings or

with isolated obstacles with separations of maximum 20

obstacle heights (such as villages, suburban terrain,

permanent forrest)

0.3 5

IV Area in which at least 15 % of the surface is covered

with buildings and their average height exceeds 15 m
1.0 10

3.2 Load due to wind turbulence

As mentioned, the turbulence load varies in both time and space. Therefore the load

cannot be predicted deterministically and statistical measures are needed (Dyrbye,

1997). The wind load and its turbulent component can be described as a stationary and

ergodic stochastic process (Handa, 1982).

3.2.1 Power spectral density for along wind

A structure exposed to a turbulent wind load experience both high and low frequency

loading. The part of the wind spectra that is of interest when designing a structure,

with respect to wind loads, is the one above 0.1Hz (Handa, 1982). To describe the

whole range of frequencies the power spectral density (PSD) for along wind ()

is used (Handa, 1982). Some of the most common theories to describe the interaction

between the different frequency spans are Davenport’s, Harris, Solari’s and von

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
18

Karman’s spectra. Davenport’s and Harris spectra are independent on the height

while von Karman’s and Solari’s spectra are varying with different heights.

Figure 3.2 - Non-dimensional power spectral density given by von Karman, Solari,

Davenport and Harris.

The non-dimensional PSD used in the Swedish Annex to Eurocode (TRVFS,

2011:12) origins from Von Karman’s wind spectra and is given by

((

)

)

(3.8)

3.2.2 Stochastic processes and general definitions

A stochastic process is considered stationary under the conditions that the values are

time-independent and that the correlations between values at different times only

depend on time differences (Dyrbye, 1997). If every group of reading is considered

statistically equivalent with every other group of readings and the fact that one of

these groups would be representative for many groups of readings, than the process

would be considered an stationary and ergodic stochastic process (Handa, 1982).

According to the gust factor method the gust factor, can be expressed as the

maximum expected value of a stochastic process, [] divided by , the

expected value of the stochastic process. Another way to describe [] is by

adding the expected value of the stochastic process to the peak factor, multiplied

with the standard deviation of the stochastic process (Mørk, et al., 1999)

0,00E+00

5,00E-02

1,00E-01

1,50E-01

2,00E-01

2,50E-01

3,00E-01

3,50E-01

0,001 0,01 0,1 1 10

F
 [

-]

Frequency [Hz]

Davenport's spectra

Harris spectra

Solari's spectra

Von Karman's spectra

Non-dimensional power spectral density

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
19

 []

 (3.9)

The peak factor can be expressed as

 √ (

 ̇

)

√ (

 ̇

)

 (3.10)

Where

 ̇ Standard deviation of ̇ [-]

 Period time [s]

 Eulers constant [-]

The expected value of a stationary and stochastic process () is defined as

(Strømmen, 2010)

 { ()}

∫ ()

 (3.11)

By definition, the variance
 of the stochastic process is defined as (Strømmen,

2010)

 {(())

 } (3.12)

The cross covariance is used to determine the relation between two or more stochastic

processes. If we consider () and () as two stationary stochastic processes, the

covariance would be expressed as (Dyrbye, 1997)

 () {(())(())} (3.13)

If () () then equation (3.13) gives

 () {(())(())} (3.14)

The cross-spectrum can for the processes ()and X()be defined as (Mørk, et al.,

1999)

 () ∫ ()

 (3.15)

 ()

∫ ()

 (3.16)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
20

If and using equation (3.14) and equation (3.15) the variance from the

stochastic process () and ̇() are found (Mørk, et al., 1999)

∫ ()

 (3.17)

 ̇

∫ ()

 (3.18)

The cross-spectrum density () is generally of a complex matter while the one-

sided auto-spectrum density () is always real for positive cyclic frequencies. The

cross-spectrum is defined by using the cross-amplitude spectrum | ()| and the

phase spectrum () and can be defined as (Mørk, et al., 1999)

 () | ()|
 () (3.19)

To measure the statistical dependence between stochastic processes at a given

frequency, the coherence spectrum () is used (Dyrbye, 1997)

3.2.3 Load contribution due to wind turbulence

According to equation (3.4) the load due to wind turbulence can be described as

 () () () (3.21)

The turbulence load can be written on spectral form by using the covariance function

 () shown in equation (3.14)

 () {[() ()][() ()]} (3.22)

As () is defined as the zero mean turbulent component it can be shown

that . By applying this into equation (3.22) the following relation

is obtained (Mørk, et al., 1999)

 () { () () () ()} (3.23)

Since () is not time-dependent, equation (3.23) can be rewritten (Mørk, et al.,

1999)

 () () () () (3.24)

Applying the definition given in equation (3.15) into equation (3.24) gives

 ()
| ()|

 () ()
 (3.20)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
21

 () () () () (3.25)

The auto-spectral density () is determined using the cross-spectral density for

the modal coordinate process (Mørk, et al., 1999)

 () ∑∑ () () ()

 (3.26)

The cross-spectral density is obtained using the frequency response function

 () (Strømmen, 2010)

The frequency response factor ()(*complex conjugate) is used to split the

response calculation into a background and resonant part, shown in Figure 3.3.The

frequency response factor is defined as (Mørk, et al., 1999)

 ()

()
 (3.28)

Figure 3.3 - Illustration demonstrating the split into background and resonant part

using the frequency response factor.

The cross-spectral density for the modal load () is determined using an

orthogonally condition and given by (Mørk, et al., 1999)

 () ∫ ∫ () ()

 () (3.29)

If only the first mode shape ()is considered and in addition to this combining

equation (3.17) and (3.26) the following expression will be obtained (Mørk, et al.,

1999)

 ()

 ()∫ | ()|

 ()

 (3.30)

 ()
 () () () (3.27)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
22

The expression in equation (3.30) may be simplified by using equation (3.29) and

(3.25) and by integrating with regard to the cyclic frequency (Mørk, et al., 1999)

 () (() ())

 () (3.31)

The turbulence intensity is given by

 ()
 ()

 ()
 (3.32)

The background factor and the response factor from equation (3.31) are given

by

∫ ∫ ∫ () () () ()
 ()

(∫ () ()

)
 (3.33)

 ()

 () (3.34)

Where

 Lowest eigenfrequency [Hz]

 Structural damping coefficient for lowest eigenfrequency [-]

 Aerodynamic damping coefficient for lowest eigenfrequency [-]

 () Size reduction factor given in equation (3.35)

 ()
∫ ∫ () () () ()√ ()

(∫ () ()

)
 (3.35)

For a plan perpendicular to the wind direction full-scale experiment have shown that

the vertical coherence spectrum can be stated as (Mørk, et al., 1999)

 ()

| |
 (̅) (3.36)

Where

 Decay constant [-]

 (̅)

(() ()) [m/s]

Using the background factor, resonant factor and size reduction factor one can

calculate the structural factor .

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
23

3.2.4 Wind turbulence according to the Swedish Annex to Eurocode

In the Swedish Annex to Eurocode (TRVFS, 2011:12) some basic equations are

presented which can be combined with the theory given in chapter 3.2.1 - 3.2.3. The

factor comprising the resonant response of the structure is given as

 (3.37)

Where is Von Karman’s wind spectra given in equation (3.8). The variables and

 are equal to () given in equation (3.35) where covers the horizontal

correlation and the vertical correlation. The factor comprising the background

response of the structure is given by

 (

)(

)
 (3.38)

The background response factor will reduce the structural factor where is the width

of the structure. However a cconservative approximation can be made by setting

 equal to 1.0. The average frequency is given by

√
 (3.39)

The peak factor is given by

 √ ()

√ ()
 (3.40)

Where the time interval T can be set to 600 s which is the time interval belonging to

the wind spectra. The turbulence intensity comprises the impact of the surrounding

environment and height of the structure and is given by

 (

)

 (3.41)

Where

 Turbulence factor [-]

 Topographic factor [-]

Finally the structural factor is calculated which can be compared with equation (3.9).

 √

 (3.42)

The structural factor is the percentage increase of the static wind load.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
24

4 Arch bridges

An arch can be defined according to Birnstiel (2014) as

“A structural member that spans horizontally between supports that

develops inwardly directed horizontal reactions when the member is

subjected to a vertical load”

In theory a perfect arch is only subjected to compressive forces which act at the

centroid of each arch element. Bridges are subjected to several types of loadings, such

as dead load, temperature load, wind load, moving loads etc. This creates bending

moments in addition to the compressive forces in the arch (Chen & Duan, 2000). In

Figure 4.1 some arch terms are presented.

Figure 4.1 - Arch terminology

The choice of material nowadays for arch bridges is normally steel, concrete or

timber. There are older bridges that have been built in masonry and stone but these

materials are no longer used (Birnstiel, 2014).

4.1 Types of Arch bridges

One fundamental difference between different types of arch bridges is the location of

the bridge deck. If the bridge deck lies above the arch it is called deck arch. In the

case where the deck lies in the spring line of the arch it is called through arch. The

third case is called half-trough arch and in this case the deck is elevated and placed

between the spring line and the arch crown. In Figure 4.2 below sketches of these

three types of arches are presented (Chen & Duan, 2000).

Figure 4.2 - (a) Deck arch. (b) Through arch. (c) Half-through arch

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
25

The arch itself can be built with zero, one, two or three hinges. In Figure 4.3a-b two

example sketches of hinge placements are shown. An advantage in using hinges at the

arch ends is the absence of moment at the skewback, and therefore it makes the

foundation design easier compared to the fixed arch. An arch bridge can be

constructed with a structural tie that balances the horizontal forces created by the arch

and reliving the abutments from these forces (Birnstiel, 2014). This bridge type is

called tied-arch bridge and is sketched in Figure 4.3c (Chen & Duan, 2000).

Figure 4.3 - (a) 2-hinges. (b) 3-hinges. (c) Tied-arch bridge

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
26

5 Parametric study

5.1 Workflow

The parametric study was carried out using the software’s BRIGADE/PLUS, Matlab

and Microsoft Excel. To be able to run multiple analyses in Brigade, Python scripts

were used. The results from Brigade was analyzed by a Matlab program and thereafter

presented in Microsoft Excel.

The parametric study comprised two processes. The first process was the modelling

and generation of results, see Figure 5.1. The second process consisted of the analysis

of results, see Figure 5.2. The script BRIDGE_DATA.py contained all necessary

geometric and material data to generate the different Brigade models while

ARCH_BRIDGE.py consisted of the code that generated the model in Brigade. The

main script PARAMETRIC_STUDY.py combined the information from the two scripts

and generated .inp-files, one for each parametric combination. The .inp-files were

manually sent to the Brigade solver that generated results from the Frequency and

Random Response analysis. The output from the analyses is gathered in .odb files.

These can be viewed visually in the Brigade visualizer module.

Figure 5.1 – Flow chart displaying the modelling and the generation of results.

To be able to run as many analyses as possible it was necessary to be able to manage

the result in the odb-files in a non-visual manner. This was performed by OUTPUT.py

that collected the information from each .odb-file and converted it into .txt-files. The

.txt-files contained RMS-values in wind direction for selected nodes and also the

eigenfrequencies with their corresponding mode shape. The Matlab program

ANALYSIS_OF_U_RMS.m extracts necessary parameters from the .txt files and in the

end this information was sent to the FREQUENCY_RMS_RESULT.xlsx that gave a

better visual overview of the results.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
27

Figure 5.2 – Flow chart displaying the analysis of the results from the .odb-files.

The result presented in FREQUENCY_RMS_RESULT.xlsx showed whether the first

in-wind directional mode was dominating or not. With this information it was possible

to evaluate the structural factor.

5.2 Selection of input data

When selecting the input parameters for the arch bridges the Swedish Management

system of Bridges and Tunnels, BaTMan, was used. Drawings and necessary

structural parameters have been gathered from BaTMan and is presented in Appendix

A.

Depending on the structure the parameters were chosen to resemble the parameters of

a constructed arch bridge. To begin with, the different arch bridges are divided into

material of the arch. Therefore three tables are presented, one for each type of

material.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
28

5.2.1 Parameters for concrete arch bridges

Initially a study of input data regarding concrete arch bridges was performed. The

characteristics for these bridges are quite long spans with rectangular cross sections.

The bridges do not normally have any cross bracing in addition to the transversal

bracing. In Table 5.1 the chosen parameters for concrete arch bridges are shown.

Table 5.1 - Parameters that were chosen for concrete arch bridges.

Arch

Number of hinges 0

Free height 4.7m

Arch height 10, 15, 20, 25, 30m

Shape of arch Circular

Span length 60, 70, 80, 90, 100, 110, 120, 130, 140m

Distance between arches 8, 12, 16m

Material Concrete

Shape of cross section Rectangular

Width of cross section 0.5, 0,7, 0.9m

Height of cross section 0.5, 0.8, 1.1m

Bridge deck

Material Concrete

Height of bridge deck 0.25m

Hangers

Material Steel

Shape of cross section Circular

Diameter of cross section 50mm

Quantity 15

Transverse bracing

Material Concrete

Shape of cross section Rectangular

Height of cross section 0.7m

Width of cross section 0.3m

Quantity 4, 6, 8

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
29

5.2.2 Parameters for steel arch bridges

Steel arch bridges may be built as long span bridges but also as shorter spanned

walking bridges. The arches are usually made as box profiles with transversal bracing

and additional cross bracing. In Table 5.2 the chosen parameters for steel arch bridges

are shown.

Table 5.2 - Parameters that were chosen for steel arch bridges.

Arch

Number of hinges 0

Free height 4.7m

Arch height 6, 9, 12, 15, 18m

Shape of arch Circular

Span length 30, 40, 50, 60, 70, 80, 90m

Distance between arches 4, 6, 8, 10m

Material Steel

Shape of cross section Box

Width of cross section 0.25, 0.50, 0.75m

Height of cross section 0.25, 0.50, 0.75m

Thickness of steel 15mm

Bridge deck

Material Concrete

Height of bridge deck 0.25m

Hangers

Material Steel

Shape of cross section Circular

Diameter of cross section 50mm

Quantity 10

Transverse bracing

Material Steel

Shape of cross section Box

Height of cross section 0.25x0.25x0.01m

Quantity 3, 6, 9, 12

Cross bracing

Material Steel

Shape of cross section Circular

Diameter of cross section 40mm

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
30

5.2.3 Parameters for timber arch bridges

Timber arch bridges normally have shorter span than concrete and steel arch bridges.

Generally the arches are made of glulam beams with a rectangular cross section and in

addition they are braced with transverse and cross bracing. In Table 5.3 the chosen

parameters for timber arch bridges are shown.

Table 5.3 – Parameters that were chosen for timber arch bridges.

Arch

Number of hinges 0

Free height 4.7m

Arch height 6, 8, 10m

Shape of arch Circular

Span length 20, 25, 30, 35, 40, 45, 50m

Distance between arches 3, 5, 7, 9m

Material Glulam timber

Shape of cross section Rectangular

Width of cross section 0.2, 0.4, 0.6m

Height of cross section 0.6, 0.8, 1.0m

Bridge deck

Material Glulam timber

Height of bridge deck 0.30m

Hangers

Material Steel

Shape of cross section Circular

Diameter of cross section 25mm

Quantity 5

Transverse bracing

Material Glulam timber

Shape of cross section Rectangular

Width of cross section 0.2m

Height of cross section 0.2m

Quantity 3, 5, 7

Cross bracing

Material Steel

Shape of cross section Circular

Diameter of cross section 25mm

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
31

5.3 FE-model

The software used in this study is Brigade/Plus which is a modified version of the

commercial software Abaqus. The difference between Abaqus and Brigade is that

Brigade is stripped from certain functions and keywords that are normally not used in

bridge design. Brigade has also support for live loads in order to simulate vehicles

driving over the bridge.

The global coordinate system was set according to Figure 5.3, with the x-axis along

the bridge length, y-axis in the bridge vertical direction and z-axis in the lateral

direction (in wind load direction).

Figure 5.3 - Global coordinate system

5.3.1 Element types

The arch bridges were modelled using beam and shell elements. All parts of the

bridge except the deck were modelled with beam type B31, which is a three-

dimensional beam element that uses Timoshenko beam theory. The bridge deck was

modelled with element type S4R, which is a quadrilateral shell element. These shell

elements are so called general-purpose shell elements, which mean that they use both

Kirchhoff and Mindlin shell theory in order to provide good solutions to both thin and

thick shells (Dassault Systèmes, 2012).

5.3.2 Material data

Both concrete and steel were modelled as an elastic isotropic material. The material

parameters defined were Young´s modulus , Poisson´s ratio and the density . The

concrete strength class for all concrete bridges in the study was chosen to be C30/37.

For concrete the material parameters were chosen according to Eurocode 2 (SS-EN

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
32

1992-1-1, 2005) and for steel according to Eurocode 3 (SS-EN 1993-1-1, 2005).

Values are presented in Table 5.4.

Table 5.4 - Material parameters for concrete & steel

Material [GPa] [kg/m
3
]

Concrete [C30/37] 33 0.1 2500

Steel 200 0.3 7850

A big difference between Timber and the other two materials is that it is an

anisotropic material with different material parameters in each direction. Therefore

the glulam timber had to be defined with more detailed material parameters. In

Brigade the material can be modelled by defining the engineering constants in each

direction. The beam directions were set according to Figure 5.4.

Figure 5.4 - Glulam beam cross-section direction

The strength class for the glulam timber was chosen to be GL28c and the material

parameters were chosen according to the Swedish Standard Timber structures (SS-EN

14080, 2013) and are presented in Table 5.5.

Table 5.5 - Material parameters for glulam timber

Glulam timber GL28c

 [MPa] [MPa] [MPa] [kg/m3]

12 500 300 300 0 650 650 65 420

5.3.3 Analysis type

Two different analyses were performed on each bridge model in the parametric study.

First a frequency analysis was performed in order to obtain the eigenfrequencies and

their corresponding mode shape. Then a random response analysis was performed

with a rectangular power spectral density with magnitude 1 and with a line load

applied on the arch in the wind direction. From this step the root mean square values

of the arch displacement in the wind direction were obtained.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
33

In the random response analysis modal damping was applied to all modes. The

damping coefficient was calculated using equation (5.1) according to Craig Jr &

Kurdila (2006) where is the logarithmic decrement taken according to Table F.2 in

Eurocode 1 (SS-EN 1991-1-4, 2005).

√ (

)

(5.1)

In both types of analyses the frequency ranges of interest were set to 0.1-10 Hz. The

lower limit was set according to Handa (1982). The higher limit was set due to fact

that the wind spectrums, described in chapter 3.2.1, has very low values above 10 Hz.

Therefore it is reasonable to assume that the wind cannot excite the structure at

frequencies above this limit.

5.3.4 Assembly

The models of the arch bridges consist of five parts. These parts were all put together

in an assembly step. In order to be able to control the coupling between the different

parts, these were modeled so that there was a small distance between the connecting

parts. The coupling between the parts were then set with an interaction connection in

Brigade, see Figure 5.5.

Figure 5.5 - Interaction connection between hanger and deck

Hinged connections were used for the hangers, connecting to the arch and the deck,

and for the cross-bracings between the arches. The connection between the horizontal

bracing members and the arches were modeled as a fixed connection.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
34

5.3.5 Boundary conditions

Figure 5.6 - Boundary conditions sketch

The boundary conditions for the bridge models were applied at the arch ends and at

the bridge deck ends. A principal sketch of the boundary conditions is given in Figure

5.6.

The arch ends were prevented from rotation and translation in all directions. The

bridge deck was in one end prevented from translation in all directions and in the

other end the translation in global y- and z-axis was prevented.

Figure 5.7 - Boundary conditions

5.3.6 Convergence study

When meshing an FE-model it is important that it is sufficiently detailed in order for

the results to approach the analytical solution. However using an overly detailed mesh

increases computation recourse and time (Zienkiewicz, et al., 2013).

A convergence study of the obtained eigenfrequencies was conducted in order to find

an optimal mesh size. The results of the convergence study presented are from a

concrete bridge with parameters set according to Table 5.6. Equivalent results were

obtained from other types of bridges.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
35

Table 5.6 - Convergence study bridge parameters

Span length [m] 30

Arch length [m] 10

Cross section dimension of arch [mm] 500 x 600

Distance between arches [m] 6

Thickness of deck [mm] 300

Number of transversal bracings 4

Cross section dimension of transversal bracing [mm] 500 x 600

Number of hangers 8

Diameter of hangers [mm] 50

Cross bracing No

The arches were constructed in Brigade using straight lines, and in order to get a good

shape on the arch these lines were set to have a length of 500 millimeters. This then

limits the largest element size to the same value. The bridge was meshed using

element size of 500mm, 250mm and 125mm. This corresponds to 84, 162 and 318

elements on a single arch. Then a frequency analysis was performed in order to obtain

the eigenfrequencies. The first two eigenfrequencies that belonged to the arch is

plotted in Figure 5.8.

Figure 5.8 - Eigenfrequencies vs number of elements

It is clear that the model had already reached convergence at an element size of 500

mm and therefore this was the element size used in the parametric study for the whole

model.

2,10

2,20

2,30

2,40

2,50

2,60

2,70

2,80

2,90

3,00

3,10

0 100 200 300 400

E
ig

en
fr

eq
u
en

cy
 [

H
z]

Number of elements [-]

1st eigenfrequency

2nd eigenfrequency

500mm

250mm

125mm

Eigenfrequencies vs number of elements

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
36

5.4 Analysis of result

The analysis of result consisted of determine whether the first in-wind directional

mode for the arch was dominating. By studying the RMS values at the

eigenfrequencies of the arches it was possible to determine how much each

eigenmode contributed to the total deformation. If it turned out that the first

eigenmode had the majority of the contribution it could be stated that the first in-wind

directional mode is dominating.

Since the bridge consisted of many structural members the frequency analysis

comprised eigenfrequencies for these members as well. Therefore the first step was to

identify the eigenfrequencies belonging to the arches. This was performed by studying

the deformation in wind direction on the arches. In Figure 5.9 respectively Figure 5.10

the mode shape for eigenmode 1 and 2 is shown.

Figure 5.9 – Eigenmode 1 for arch bridge.

Figure 5.10 – Eigenmode 2 for arch bridge

The identification of the first two eigenmodes for the arches was based on these two

figures. The largest deformation in eigenmode 1 will occur in the center of the arch

and besides this, the direction of the deformation will be the same for all other nodes.

For eigenmode 2 the maximum deformation will occur about 25% respectively 75%

into the length of the arch. These maximum values will have different direction and in

addition the deformation in the center of the arch will be close to zero. Therefore the

deformation values at the nodes placed at 25%, 50% and 75% of the length of the arch

were extracted from the .odb-files and gathered in .txt-files.

The RMS plot for a typical arch bridge is shown in Figure 5.11. In this case the

deformation is dominated by a frequency at about 0.5Hz. The difference between the

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
37

first and the second eigenfrequency, F1 respectively F2, is set to . As seen in the

figure the RMS value for F1 is increasing at a bit higher frequency. Therefore the

RMS value of interest is set to the corresponding frequency at .

Figure 5.11 – RMS values plotted against a frequency span from 0.1 to 10.0 Hz

The program ANALYSIS_OF_U_RMS.m uses the arches deformation to identify the

first two eigenfrequencies of the arches. In addition the program will add the

corresponding RMS value and evaluate it in comparison to the maximum RMS value.

In a case where the RMS value for is bigger than 95% of the maximum

RMS value, the arch bridge was considered to be dominated by the first in-wind

directional mode.

If the parametric study could show that the deformations were dominated by the first

in-wind directional mode then the structural factor according to equation (3.42)

where to be calculated. Since equation (3.42) is based on a single-mode method it is

not valid if several modes contributes to the deformations in the wind direction.

Therefore this step where excluded when this condition was not met.

It would be interesting to evaluate the correlation between structural factor and the

parameters that is varying in the parametric study. Therefore a multi linear regression

analysis where performed in the cases the structural factor where calculated.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 [

m
m

]

Frequency [Hz]

RMS plot for concrete arch bridge

F1

F2

ΔF

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
38

6 Results

In this chapter results the parametric study is presented. For all the concrete arch

bridges, the dominating mode where explicitly characterized by the first in-wind

directional mode. Hence, the structural factor was derived for each combination of

parameters. These structural factors have been statistically analyzed through a

regression analysis to detect each parameters impact. Regarding the timber and steel

arch bridges the dynamic response was more complicated. There were no explicit

mode behaviors among these bridges. Hence, timber and steel bridges are treated

under the same chapter.

6.1 Concrete arch bridges

The analysis consisted of a parametric study including 3645 concrete arch bridge

realizations. The results of the analysis were explicitly indicating that the first in-wind

directional mode was dominating in all cases, see Figure 6.1. The first eigenfrequency

for the arches are varying between 0.10-1.12Hz.

Figure 6.1 – Concrete bridge, RMS-plot

As a consequence of the fact that all concrete arch bridges was dominated by the first

in-wind directional mode the structural factor was evaluated for all combinations.

These factors were varying from 1.09 to 1.64 depending on the combination of

parameters.

The regression analysis gave each parameters impact on the structural factor which is

presented in Table 6.1.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 [

m
m

]

Frequency [Hz]

Concrete

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
39

Table 6.1 – Presentation of each parameters impact on the structural factor.

 Coefficients Standard Error t-stat

Intercept 1.0953 3.79E-03 288.95

Span length. [m] 0.0026 1.64E-05 156.70

Arch width. [m] 0.0065 1.30E-04 50.26

Arch height. [m] 0.0060 5.99E-05 100.83

Number of horizontal bracing. [-] -0.0249 2.59E-04 -95.82

Width of cross section (Arch). [m] -0.1909 2.59E-03 -73.58

Height of cross section (Arch). [m] 0.0477 1.73E-03 27.58

The formula derived from the regression analysis is given in (6.1)

 (6.1)

The coefficient of determination and standard error are presented in Table 6.2 and the

residuals are presented in Figure 6.2.

Table 6.2 – Regression statistics

Regression R2
 0.9352

Standard Error 0.0256

Figure 6.2 – Residuals of cscd with respect to the regression analysis made on

concrete arch bridges.

6.2 Timber and steel arch bridges

The analysis of both the steel arches and the timber arches showed a more

complicated behavior. Several bridges for both materials did not have deformations

-0,08

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0 4000

Residuals of cscd

Residuals

3645

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
40

that where dominated by the first in-wind directional mode. These instead had several

modes that contributed to the deformations. In Figure 6.3 and Figure 6.4 RMS-plots

of one timber and one steel bridge that showed these behaviors are presented.

Figure 6.3 - Timber bridge, RMS-plot

Figure 6.4 - Steel bridge, RMS-plot

Following this results it was investigated if a correlation between the varying

parameters, that could predict whether or not the bridge deformations were dominated

by the first in-wind directional mode, could be found. However, no such correlation

was to be found.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 [

m
m

]

Frequency [Hz]

Timber

0,00

0,02

0,04

0,06

0,08

0,10

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 [

m
m

]

Frequency [Hz]

Steel

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
41

7 Discussion

As presented in the results the dominating mode was only explicit for the concrete

arch bridges. In these cases the first in-wind directional mode was dominating for all

parametric combinations. However, for timber and steel arch bridges the dynamic

response was more complicated. This might be able to be explained by the fact that

concrete is considered being a more heavy construction material in comparison with

timber and steel.

The structural factor is calculated for the concrete arch bridges. The method used is

the one presented in the Swedish Annex (TRVFS, 2011:12), where some of the

factors origins from the theory presented in chapter 3. The theory given in the

Swedish Annex to Eurocode is a more simplified method than the one given in

chapter 3.2.2-3.2.3. However, since the chosen method is accepted by Trafikverket,

the Swedish Transport Administration, we consider the method as acceptable.

The regression analysis showed that all chosen parameters had impact on the

structural factor. This was an expected results since these parameters where chosen as

parameters with strong relation to the dynamic behavior of the structure. To set the

values in relation it would have been interesting if a parameter was chosen that was

believed not having a big impact on the structural factor.

The derived equation for the structural factor regarding concrete arch bridges presents

the impact from each parameter. With increasing span length and arch width the

stiffness decreases which could explain why the structural factor is increasing when

these parameters are increasing. With increasing arch height the structural factor

increases. This is an interesting result since the analyses shows that the overall

stiffness in wind direction increases with increasing height. However, it may be

explained by the impact of the arch height has on the calculations of structural factor.

For example, the higher the arch gets the bigger the wind load gets. The amount of

horizontal bracings is increasing the stiffness of bridge which is in line with the

structural factor that decreases with increasing number of horizontal bracings. The

cross section of arch is also of high importance since these parameters have big

impact on the stiffness. An increasing width and decreasing height of the structure

will result in a decreasing structural factor. These results can be explained by the fact

that an increasing width will have a positive effect on the stiffness to mass ratio

comparing an increase of height. The analysis shows that a larger width of the arch

increases the value of the first eigenfrequency while a larger height of the arch’s cross

section will decrease the first eigenfrequency of the arch. This theory is supported by

equation (2.34) that displays the importance of stiffness to mass ratio when

calculating the eigenfrequencies.

The derived equation from the regression analysis can be seen as an effective way of

calculating the structural factor. However, this equation should be treated with

carefulness. With the assumptions made for boundary conditions and other structural

parameters the equation is not general for all concrete arch bridges. However, it could

be used to derive guideline values to compare with the actual value for each case.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
42

For timber and steel arch bridges no obvious correlation could be found between the

varying parameters that could explain the dynamic behavior observed in chapter 6.2.

It is however quite clear theoretically that the density, elastic modulus and stiffness in

wind direction of the arch affect the dynamic behavior significantly and that the

combination of at least these may be used to predict this dynamic behavior.

The evaluation method chosen, were based on root mean square values of the arch

deformations. This due to the fact that deformations reach convergence faster than for

example stresses. The method used, is also a method traditionally used in these types

of problems and is approved by the Swedish Road Administration.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
43

8 Conclusions

The parametric study indicates that the dynamic response for arch bridges varies

depending on what parameters that are altered. Generally the first eigenfrequency was

lower for the concrete arch bridges than for steel and timber arch bridges which can

be explained by the stiffness to mass ratio for the different materials and the fact that

timber and steel arch bridges were modelled with cross bracing.

For concrete arch bridges the dynamic response in all cases was dominated by the first

in-wind directional mode. Hence, the single-mode method could be applied when

calculating the structural factor. A regression analysis was made to compare the

altered parameters with the associated structural factor. When designing a concrete

arch bridge the derived equation from the regression analysis can be used as guideline

to compare with the true structural factor.

Regarding timber and steel arch bridges there were no obvious dominating mode. This

concludes the fact that the single-mode method is no safe method to use without

determining the dominating mode for each case.

8.1 Further studies within the field

Within the field there are several topics that would be interesting for further

evaluations.

- This thesis has covered the global dynamic response of arch bridges. In

addition to this there are local vibrations that need to be designed for. To

extend the study it would be interesting to examine the dynamic behavior

of the bridge deck and hangers.

- An interesting topic would be to extend the existing parametric study

where more parameters are altered. For example by changing the boundary

conditions where the end supports are modelled as hinged connections

instead of fixed etc. Further it would be particularly interesting to

investigate the influence of stiffness to mass ratio when determining the

dominating mode.

- Since the Swedish design code states that the dynamic response should not

only be evaluated for arch bridges, it would be of interest to perform

similar parametric studies for the other relevant bridge types.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
44

9 References and sources

Birnstiel, C., 2014. Arch in AccessScience. McGraw Hill Education ed. Retrived from:

http://www.accessscience.com-proxy.lib.chalmers.se/content/arch/047300.

Chen, W.-F. & Duan, L., 2000. Bridge engineering handbook. 1st ed. Boca Raton,

FL: CRC Press.

Craig Jr, R. & Kurdila, A., 2006. Fundamentals of Structural Dynamics. Hoboken NJ:

John Wiley & Sons Inc.

Dassault Systèmes, 2012. Abaqus Theory Manual: version 6.12. Providence: Dassault

Systèmes Simulia Corp.

Dyrbye, C., 1997. Wind load on Structures. 1st ed. Chichester: Wiley.

Handa, K., 1982. Kompendium i byggnadsaerodynamik, Göteborg: Chalmers

Tekniska Högskola.

Holmes, J. D., 2001. Wind Loading of Structures. New York: Spon Press.

Mørk, K., Kirkegaard, P. H. & Sørensen, J. D., 1999. Wind loads on dynamic sensitive

structures, Aalborg: Aalborg University.

SS-EN 14080, 2013. Timber structures – Glued laminated timber and glued solid

timber – Requirements, Stockholm: Swedish Standards Institute.

SS-EN 1991-1-4, 2005. Eurocode 1: Actions on structures – Part 1-4: General

actions – Wind actions, Stockholm: Swedish Standards Institue.

SS-EN 1992-1-1, 2005. Eurocode 2: Design of concrete structures - Part 1-1:

General rules and rules for buildings, Stockholm: Swedish Standards Institue.

SS-EN 1993-1-1, 2005. Eurocode 3: Design of steel structures – Part 1-1: General

rules and rules for buildings, Stockholm: Swedish Standards Institute.

Strømmen, E., 2010. Theory of bridge aerodynamics. 2nd ed. Berlin: Springer.

Trafikverket, 2011. TRVK Bro 11, Borlänge: Trafikverket.

TRVFS, 2011:12. Trafikverkets föreskrifter om ändring i Vägverkets föreskrifter om

tillämpningen av europeiska beräkningsstandarder. Borlänge: Trafikverket.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
45

Zienkiewicz, O. C., Taylor , R. L. & Zhu, J., 2013. The Finite Element Method: its

Basis and Fundamentals. 7th ed. Oxford: Butterworth-Heinemann.

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
A1

Appendix A

Concrete arch bridges

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
A2

Steel arch bridges

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
A3

Timber arch bridges

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B1

Appendix B
Python source code
Appendix B comprises the Python source code of the following scripts:

 PARAMETRIC_STUDY.py

 ARCH_BRIDGE.py

 BRIDGE_DATA.py

 OUTPUT.py

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B2

PARAMETRIC_STUDY.py
#--

PARAMETRIC_STUDY.PY

By: Jonathan Johansson, Daniel Josefsson

#--

from abaqus import*

from abaqusConstants import*

from math import*

from string import*

import __main__

backwardCompatibility.setValues(includeDeprecated=True,reportDeprecat

ed=False)

import sketch

import part

import numpy

import bpCustomData

import regionToolset

import section

import step

import material

import os

import mesh

import job

import time

session.journalOptions.setValues(replayGeometry=COORDINATE)

#RUN INPUT FILE

execfile('BRIDGE_DATA.py')

#SET AN INPUT DIRECTORY AS CWD

cwd=os.getcwd()

os.chdir(cwd+'\\Input')

#Start report file

outputFile = open('Inp_file_report.txt','w')

outputFile.write(time.strftime("%Y-%m-%d %H:%M:%S",

time.localtime())+'\n')

outputFile.write('Filename structure:\nsp_len - arch_width –

arch_height - n_hang - phi_hang - n_Hbrac - t_deck - R_a –

R_b - R_ahb - R_bhb - use_Cbrac - phi_Cbrac\n\n')

for ii in range(len(sp_len)):

 for jj in range(len(arch_width)):

 for kk in range(len(n_hang)):

 for ll in range(len(R_a)):

 for mm in range(len(R_b)):

 for nn in range(len(arch_height)):

 for pp in range(len(t_deck)):

 for qq in range(len(phi_hang)):

 for rr in range(len(n_Hbrac)):

 for ss in range(len(use_Cbrac)):

 for tt in range(len(phi_Cbrac)):

 for uu in range(len(R_ahb)):

 for vv in range(len(R_bhb)):

 name=str(int(sp_len[ii]))+'-'+str(int(arch_width[jj]))+'-

'+str(int(arch_height[nn]))+'-'+str(int(n_hang[kk]))+'-

'+str(int(phi_hang[qq]*1000))+'-

'+str(int(n_Hbrac[rr]))+'-'+str(int(t_deck[pp]*1000))+'-

'+str(int(R_a[ll]*1000))+'-'+str(int(R_b[mm]*1000))+'-

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B3

'+str(int(R_ahb[uu]*1000))+'-

'+str(int(R_bhb[vv]*1000))+'-'+str(int(use_Cbrac[ss]))+'-

'+str(int(phi_Cbrac[tt]*1000))

 # CONDITIONS

 if (arch_height[nn]-(free_height+deck_height)) > 1.0:

 if sp_len[ii]>=2*arch_height[nn]:

 if R_bhb[vv]<=R_b[mm]:

 path=os.path.dirname(os.getcwd())

 execfile(path+'\\ARCH_BRIDGE.py')

 mdb.models['ARCH BRIDGE'].keywordBlock.

 synchVersions(storeNodesAndElements=False)

 index=mdb.models['ARCH BRIDGE'].keywordBlock.

sieBlocks.index('*Modal Damping,

definition=FREQUENCY RANGE\n0.1, 0.016\n10.,

0.016')

 mdb.models['ARCH BRIDGE'].keywordBlock.

 insert(index, """

**

*Dload, load case=1

ArchL, PZ, 1.

**

*CORRELATION, TYPE=CORRELATED, PSD=rekt

1,1,0

**

 """)

 mdb.Job(name=name, model='ARCH BRIDGE')

 mdb.jobs[name].setValues(description='',

 memoryUnits=PERCENTAGE, memory=50,

 getMemoryFromAnalysis=True)

 mdb.customData.jobName = name

 mdb.customData.jobModel = 'ARCH BRIDGE'

 from func.modules.job.freeBodyCut.

createFreeBodyCutSurfaces import

CreateFreeBodyCutSurfaces

 CreateFreeBodyCutSurfaces('ARCH BRIDGE','Job-1')

 mdb.jobs[name].writeInput()

 outputFile.write(name+' - Input file created\n')

 else:

 outputFile.write(name+' - The transverse bracing

 beam is higher than the arch\n')

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B4

 else:

 outputFile.write(name+' - The arch heigth is to

high compared to the span length\n')

 else:

 outputFile.write(name+' - Deck height has to high value

compared to Arch height\n')

Close report file

outputFile.close()

#Set work directory back to script directory

os.chdir(cwd)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B5

ARCH_BRIDGE.py
#--

ARCH_BRIDGE.PY

By: Jonathan Johansson, Daniel Josefsson

#--

THIS SCRIPT CREATES DIFFERENT ARCH BRIDGES IN ABAQUS IN ORDER TO

PERFORM A FRQUENCY ANALYSIS AND A RANDOM RESPONSE ANALYSIS. THE

OUPUT ARE GATHERED IN THE WORK DIRECTORY AS .job-FILES. THE SCRIPT

IS CONNECTED TO "PARAMETRIC_STUDY.PY" AND CANNOT BE RUN BY IT SELF.

TABLE OF CONTENTS

1. GENERAL

1.1. IMPORTS PROGRAMMING COMMANDS FROM ABAQUS

1.2. CREATES MODEL

2. PARTS

2.1. ARCH

2.2. BRDIGE DECK

2.3. HANGERS

2.4. HORISONTAL BRACING

2.5. CROSS BRACING

3. PROPERTIES

3.1. MATERIALS

3.2. PROFILES AND SECTIONS

3.3. ASSIGNS PROPERTIES AND BEAM ORIENTATIONS

4. ASSEMBLIES MODEL

5. INTERACTION

6. MESH

7. STEPS

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B6

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

1. GENERAL

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

#--

1.1. IMPORTS PROGRAMMING COMMANDS FROM ABAQUS

#--

This part of the script loads the neccessary programming commands

into the script.

from abaqus import*

from abaqusConstants import*

from math import*

from string import*

import __main__

import sketch

import part

import numpy

import bpCustomData

import regionToolset

import section

import step

import material

import os

import mesh

import job

backwardCompatibility.setValues(includeDeprecated=True,

 reportDeprecated=False)

session.journalOptions.setValues(replayGeometry=COORDINATE)

#--

1.2. CREATES MODEL

#--

The model is created and named "ARCH BRIDGE"

myModel = mdb.Model(name='ARCH BRIDGE')

mySketch = myModel.ConstrainedSketch(name='Sketch ARCH',

 sheetSize=200.0)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B7

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

2. PARTS

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

free_height=free_height+deck_height

#--

2.1. ARCH

#--

myARCH = myModel.Part(name='ARCH', dimensionality=THREE_D,

 type=DEFORMABLE_BODY)

GEOMETRY FOR ARCH

radius=((sp_len[ii]/2)**2+arch_height[nn]**2)/(2*arch_height[nn])

sec_ang=2*acos((radius-arch_height[nn])/radius)

arch_len=sec_ang*radius

CALCULATES THE PRLEMINARY NUMBER OF ELEMENTS

n_el=int(ceil(arch_len/opt_el_len))

CHOOSES AN EVEN NUMBER OF ELEMENTS

if n_el % 2 == 0:

 n_el=n_el

else:

 n_el=n_el+1

CREATES X- AND Y-COORDINATES FOR OUTER LINE OF ARCH

real_el_len=arch_len/n_el

Ys=range(n_el+1)

angle=0

for i in range(n_el+1):

 Ys[i]=radius*sin((((pi+sec_ang)/2)-angle))-

 (radius-arch_height[nn])

 angle=angle+real_el_len/radius

Xs=range(n_el+1)

angle=0

for i in range(n_el+1):

 Xs[i]=radius*cos((((pi+sec_ang)/2)-angle))+sp_len[ii]/2

 angle=angle+real_el_len/radius

Zs=[0]*len(Ys)

CALCULATES DISTANCE dPs FOR EACH ELEMENT

dPs=range(n_el)

for i in range(n_el):

 dPs[i]=sqrt((Xs[i+1]-Xs[i])**2+(Ys[i+1]-Ys[i])**2+

 (Zs[i+1]-Zs[i])**2)

CREATES CENTRE COORINDATES FOR EACH ELEMENT

Px=range(n_el)

Py=range(n_el)

Pz=[0]*len(range(n_el))

for i in range(n_el):

 Px[i]=(Xs[i+1]-Xs[i])/2+Xs[i]

 Py[i]=(Ys[i+1]-Ys[i])/2+Ys[i]

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B8

CREATES AND SORTS THE DATUM POINTS

for i in range(len(Xs)):

 myARCH.DatumPointByCoordinate(coords=(Xs[i],Ys[i],Zs[i]))

myARCH_datums_keys = myARCH.datums.keys()

myARCH_datums_keys.sort()

DPs = myARCH.datums

CREATES A WIRE BETWEEN THE DATUM POINTS

for i in range(n_el):

 myARCH.WirePolyLine(points=((DPs[myARCH_datums_keys[i]],

 DPs[myARCH_datums_keys[i+1]]),), mergeWire=OFF, meshable=ON)

CALCULATES SECTION WIDTH OF ARCH PROFILE

if type == 1:

 sec_width=max(I_b1,I_b2)

elif type == 2:

 sec_width=B_a

elif type == 3:

 sec_width=P_r

elif type ==4:

 sec_width=C_r

elif type == 5:

 sec_width=R_a[ll]

elif type == 6:

 sec_width=H_r

elif type == 7:

 sec_width=max(T_a,T_c)

elif type == 8:

 sec_width=L_a

elif type == 9:

 sec_width=T_b

#--

2.2. BRIDGE DECK

#--

CREATES BRIDGE DECK AS PLANAR SHELL ELEMENT

myDECK = mdb.models['ARCH BRIDGE'].ConstrainedSketch(

 name='__profile__', sheetSize=200.0)

myDECK.setPrimaryObject(option=STANDALONE)

myDECK.rectangle(point1=(0, 0), point2=(sp_len[ii],

 (arch_width[jj]-2*sec_width)))

mdb.models['ARCH BRIDGE'].Part(name='Bridge Deck',

dimensionality=THREE_D, type=DEFORMABLE_BODY)

mdb.models['ARCH BRIDGE'].parts['Bridge Deck'].BaseShell(

 sketch=myDECK)

myDECK.unsetPrimaryObject()

#--

2.3. HANGERS

#--

myHANGER = myModel.Part(name='Hanger', dimensionality=THREE_D,

 type=DEFORMABLE_BODY)

dH=0.05

sec_ang_h=2*acos((radius-(arch_height[nn]-deck_height))/radius)

deck_len=2*radius*sin(0.5*sec_ang_h)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B9

d_hang=deck_len/(n_hang[kk]+1)

X_start=(sp_len[ii]-deck_len)/2

CREATES COORDINATES FOR HANGERS

Xh=range(n_hang[kk])

Yh=range(n_hang[kk])

d=d_hang

for i in range(n_hang[kk]):

 Xh[i]=X_start+d

 Yh[i]=abs(sqrt(radius**2-(Xh[i]-sp_len[ii]/2)**2))-

 (radius-arch_height[nn])

 d=d+d_hang

s1 = mdb.models['ARCH BRIDGE'].ConstrainedSketch(name='__profile__',

 sheetSize=200.0)

for i in range(n_hang[kk]):

 delta=0.01

 Xhf = mdb.models['ARCH

BRIDGE'].parts['ARCH'].vertices.getClosest(

 coordinates=((Xh[i],

 Yh[i],0.0),(Xh[i]+delta,Yh[i]+delta,0.0),))

 Xh[i]=Xhf[0][1][0]

 Yh[i]=(abs(sqrt(radius**2-(Xh[i]-sp_len[ii]/2)**2))-

 (radius-arch_height[nn]))

 s1.Line(point1=(Xh[i], deck_height), point2=(Xh[i], Yh[i]-dH))

p = mdb.models['ARCH BRIDGE'].parts['Hanger']

p.BaseWire(sketch=s1)

s1.unsetPrimaryObject()

#--

2.4. HORISONTAL BRACING

#--

dHb=0.05

if n_Hbrac[rr] > 0:

 #--

 # CALCULATES SECTION HEIGHT OF HORISONTAL BRACING

 #--

 if typehb == 1:

 h_Hbrac=I_hhb

 elif typehb == 2:

 h_Hbrac=B_bhb

 elif typehb == 3:

 h_Hbrac=2*P_rhb

 elif typehb ==4:

 h_Hbrac=2*C_rhb

 elif typehb == 5:

 h_Hbrac=R_bhb[vv]

 elif typehb == 6:

 h_Hbrac=H_rhb

 elif typehb == 7:

 h_Hbrac=T_bhb

 elif typehb == 8:

 h_Hbrac=L_bhb

 elif typehb == 9:

 h_Hbrac=T_hhb

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B10

 y_frih=free_height+h_Hbrac/2

 x_frih=-sqrt(radius**2-(y_frih+(radius-

arch_height[nn]))**2)+sp_len[ii]/2

 s = mdb.models['ARCH

BRIDGE'].ConstrainedSketch(name='__profile__',

 sheetSize=200.0)

 s.setPrimaryObject(option=STANDALONE)

 s.Line(point1=(0.0, 0.0), point2=(arch_width[jj]-dHb, 0.0))

 p = mdb.models['ARCH BRIDGE'].Part(name='Hbracing',

dimensionality=THREE_D,

 type=DEFORMABLE_BODY)

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing']

 p.BaseWire(sketch=s)

 s.unsetPrimaryObject()

 del mdb.models['ARCH BRIDGE'].sketches['__profile__']

 x_dist=(sp_len[ii]-(2*x_frih))

 theta=acos((x_dist**2-2*radius**2)/(-2*radius**2))

 if n_Hbrac[rr] == 1:

 Yhb=range(n_Hbrac[rr])

 Xhb=range(n_Hbrac[rr])

 Xhbf = mdb.models['ARCH

BRIDGE'].parts['ARCH'].vertices.getClosest(coordinates=(

 (sp_len[ii]/2,arch_height[nn],0.0),(sp_len[ii]/2,arch_height[nn

],0.0),))

 Xhb[0]=Xhbf[0][1][0]

 Yhb[0]=abs(sqrt(radius**2-(Xhb[0]-sp_len[ii]/2)**2))-

(radius-arch_height[nn])

 else:

 dtheta=theta/(n_Hbrac[rr]-1)

 Yhb=range(n_Hbrac[rr])

 angle=0

 for i in range(n_Hbrac[rr]):

 Yhb[i]=radius*sin((((pi+theta)/2)-angle))-(radius-

arch_height[nn])

 angle=angle+dtheta

 Xhb=range(n_Hbrac[rr])

 angle=0

 for i in range(n_Hbrac[rr]):

 Xhb[i]=radius*cos((((pi+theta)/2)-

angle))+sp_len[ii]/2

 angle=angle+dtheta

 delta=0.01

 for i in range(n_Hbrac[rr]):

 Xhbf = mdb.models['ARCH

BRIDGE'].parts['ARCH'].vertices.getClosest(coordinates=((Xhb[i],Yhb[i

],0.0),(Xhb[i]+delta,Yhb[i]+delta,0.0),))

 Xhb[i]=Xhbf[0][1][0]

 Yhb[i]=abs(sqrt(radius**2-(Xhb[i]-

sp_len[ii]/2)**2))-

 (radius-arch_height[nn])

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B11

#---

2.5. CROSS BRACING

#--

if n_Hbrac[rr] < 3:

 use_Cbrac[ss]=0

if use_Cbrac[ss]==1:

 n_fack=n_Hbrac[rr]-1

 n_Cbrac=n_fack*2

 d_Cbrac=range(n_fack)

 dCb=0.05

 for i in range(n_fack):

 s = mdb.models['ARCH BRIDGE'].ConstrainedSketch(

 name='__profile__', sheetSize=200.0)

 s.setPrimaryObject(option=STANDALONE)

 d_Cbrac[i]=sqrt((Xhb[i+1]-Xhb[i])**2+(Yhb[i+1]-

Yhb[i])**2+

 arch_width[jj]**2)

 s.Line(point1=(0.0, 0.0), point2=(d_Cbrac[i]-dCb, 0.0))

 p = mdb.models['ARCH BRIDGE'].Part(name='Cbracing-

'+str(i+1),

 dimensionality=THREE_D,type=DEFORMABLE_BODY)

 p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)]

 p.BaseWire(sketch=s)

 s.unsetPrimaryObject()

 del mdb.models['ARCH BRIDGE'].sketches['__profile__']

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B12

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

3. PROPERTIES

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

#--

3.1. CREATES MATERIAL

#--

myArch=myModel.Material(name='Arch')

elasticProperties = (E_arch,v_arch)

myArch.Elastic(table=(elasticProperties,))

myArch.Density(table=((D_arch,),))

myDeck=myModel.Material(name='Deck')

elasticProperties = (E_deck,v_deck)

myDeck.Elastic(table=(elasticProperties,))

myDeck.Density(table=((D_deck,),))

myHang=myModel.Material(name='Hangers')

elasticProperties = (E_hang,v_hang)

myHang.Elastic(table=(elasticProperties,))

myHang.Density(table=((D_hang,),))

myHbrac=myModel.Material(name='HBracing')

elasticProperties = (E_Hbrac,v_Hbrac)

myHbrac.Elastic(table=(elasticProperties,))

myHbrac.Density(table=((D_Hbrac,),))

myCbrac=myModel.Material(name='CBracing')

elasticProperties = (E_Cbrac,v_Cbrac)

myCbrac.Elastic(table=(elasticProperties,))

myCbrac.Density(table=((D_Cbrac,),))

#--

3.2. PROFILES AND SECTIONS

#--

3.2.1 CREATES PROFILES FOR ARCH

if type == 1:

 myModel.IProfile(name='PROF', l=I_l, h=I_h, b1=I_b1, b2=I_b2,

 t1=I_t1, t2=I_t2, t3=I_t3)

elif type == 2:

 myModel.BoxProfile(name='PROF', b=B_b, a=B_a,

 uniformThickness=OFF, t1=B_t1, t2=B_t2, t3=B_t3, t4=B_t4)

elif type == 3:

 myModel.PipeProfile(name='PROF', r=P_r, t=P_t)

elif type ==4:

 myModel.CircularProfile(name='PROF', r=C_r)

elif type == 5:

 myModel.RectangularProfile(name='PROF', a=R_a[ll], b=R_b[mm])

elif type == 6:

 myModel.HexagonalProfile(name='PROF', r=H_r, t=H_t)

elif type == 7:

 myModel.TrapezoidalProfile(name='PROF', a=T_a, b=T_b)

elif type == 8:

 myModel.LProfile(name='PROF', a=L_a, b=L_b, t1=L_t1, t2=L_t2)

elif type == 9:

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B13

 myModel.TProfile(name='PROF', b=T_b, h=T_h, l=T_l, tf=T_tf,

 tw=T_tw)

CREATES SECTION NAMES FOR ARCH

SEKT=range(n_el)

for i in range(n_el):

 SEKT[i]='Section-'+str(i+1)

CREATES SECTIONS FOR ARCH

for i in range(n_el):

 myModel.BeamSection(name=SEKT[i], profile='PROF',

 integration=DURING_ANALYSIS, poissonRatio=v_arch,

 material= 'Arch', temperatureVar=LINEAR)

3.2.2 CREATES PROFILE AND SECTION FOR DECK

mdb.models['ARCH BRIDGE'].HomogeneousShellSection(name='Section-

Deck',

 preIntegrate=OFF, material='Deck', thicknessType=UNIFORM,

 thickness=t_deck[pp], thicknessField='', i

 dealization=NO_IDEALIZATION, poissonDefinition=DEFAULT,

 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,

 integrationRule=SIMPSON, numIntPts=5)

3.2.3. CREATES PROFILES AND SECTIONS FOR HORISONTAL BRACING

if n_Hbrac[rr] > 0:

 if typehb == 1:

 myModel.IProfile(name='PROF-hb', l=I_lhb, h=I_hhb,

b1=I_b1hb,

 b2=I_b2hb, t1=I_t1hb, t2=I_t2hb, t3=I_t3hb)

 elif typehb == 2:

 myModel.BoxProfile(name='PROF-hb', b=B_bhb, a=B_ahb,

 uniformThickness=OFF, t1=B_t1hb, t2=B_t2hb, t3=B_t3hb,

 t4=B_t4hb)

 elif typehb == 3:

 myModel.PipeProfile(name='PROF-hb', r=P_rhb, t=P_thb)

 elif typehb ==4:

 myModel.CircularProfile(name='PROF-hb', r=C_rhb)

 elif typehb == 5:

 myModel.RectangularProfile(name='PROF-hb', a=R_ahb[uu],

 b=R_bhb[vv])

 elif typehb == 6:

 myModel.HexagonalProfile(name='PROF-hb', r=H_rhb,

t=H_thb)

 elif typehb == 7:

 myModel.TrapezoidalProfile(name='PROF-hb', a=T_ahb,

b=T_bhb)

 elif typehb == 8:

 myModel.LProfile(name='PROF-hb', a=L_ahb, b=L_bhb,

 t1=L_t1hb, t2=L_t2hb)

 elif typehb == 9:

 myModel.TProfile(name='PROF-hb', b=T_bhb, h=T_hhb,

 l=T_lhb, tf=T_tfhb, tw=T_twhb)

 myModel.BeamSection(name='Section-HB', profile='PROF-hb',

 integration=DURING_ANALYSIS, poissonRatio=v_Hbrac,

 material= 'HBracing', temperatureVar=LINEAR)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B14

3.2.4. CREATES PROFILES AND SECTIONS FOR CROSS BRACING

if use_Cbrac[ss]==1:

 n_fack=n_Hbrac[rr]-1

 n_Cbrac=n_fack*2

 myModel.CircularProfile(name='PROF-Cbrac', r=phi_Cbrac[tt])

 myModel.BeamSection(name='Cbrac', profile='PROF-Cbrac',

 integration=DURING_ANALYSIS, poissonRatio=v_Hbrac,

 material= 'CBracing', temperatureVar=LINEAR)

#--

3.3. ASSIGNS SECTIONS AND BEAM ORIENTATION

#--

3.3.1. ASSIGNS SECTION AND BEAM ORIENTATION FOR ARCH

CREATES SET NAMES FOR ARCH

set=range(n_el)

for i in range(n_el):

 set[i]='set-'+str(i+1)

 edg = myARCH.edges.findAt(((Px[i],Py[i],Pz[i]),),)

 reg = myModel.parts['ARCH'].Set(edges=edg, name=set[i])

 myARCH.SectionAssignment(region=reg,sectionName=SEKT[i])

 p = mdb.models['ARCH BRIDGE'].parts['ARCH']

 region=p.sets[set[i]]

 p = mdb.models['ARCH BRIDGE'].parts['ARCH']

 p.assignBeamSectionOrientation(region=region,

method=N1_COSINES,

 n1=(0.0, 0.0, 1.0))

3.3.2. ASSIGNS SECTION AND BEAM ORIENTATION FOR DECK

p = mdb.models['ARCH BRIDGE'].parts['Bridge Deck']

f = p.faces

faces = f.getSequenceFromMask(mask=('[#1]',),)

region = regionToolset.Region(faces=faces)

p = mdb.models['ARCH BRIDGE'].parts['Bridge Deck']

p.SectionAssignment(region=region, sectionName='Section-Deck',

 offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='',

 thicknessAssignment=FROM_SECTION)

3.3.3. ASSIGNS SECTION AND BEAM ORIENTATION FOR HANGERS

myModel.CircularProfile(name='PROF-hang', r=phi_hang[qq])

myModel.BeamSection(name='Hanger', profile='PROF-hang',

 integration=DURING_ANALYSIS, poissonRatio=v_Hbrac,

 material= 'Hangers', temperatureVar=LINEAR)

p = mdb.models['ARCH BRIDGE'].parts['Hanger']

e = p.edges

ASSIGNS SECTIONS AND BEAM ORIENTATION FOR HANGERS

for i in range(n_hang[kk]):

 edges = e.findAt(((Xh[i], Yh[i]-dH, 0.0),),)

 region = regionToolset.Region(edges=edges)

 p = mdb.models['ARCH BRIDGE'].parts['Hanger']

 p.SectionAssignment(region=region, sectionName='Hanger',

 offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='',

 thicknessAssignment=FROM_SECTION)

 p.assignBeamSectionOrientation(region=region,

 method=N1_COSINES, n1=(1.0, 0.0, 0.0))

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B15

3.3.4. ASSIGNS SECTION AND BEAM ORIENTATION FOR HORISONTAL BRACING

dHb=0.05

if n_Hbrac[rr] > 0:

 # ASSINGS SECTIONS FOR HORISONTAL BRACING

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing']

 e = p.edges

 edges = e.findAt(((0.0, 0.0, 0.0),))

 region = regionToolset.Region(edges=edges)

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing']

 p.SectionAssignment(region=region, sectionName='Section-HB',

 offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='',

 thicknessAssignment=FROM_SECTION)

 # ASSIGNS BEAM SECTION ORIENTATION FOR HORISONTAL BRACING

 for i in range(n_Hbrac[rr]):

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing']

 e = p.edges

 edges = e.findAt(((0.0, 0.0, 0.0),))

 region=regionToolset.Region(edges=edges)

 p.assignBeamSectionOrientation(region=region,

 method=N1_COSINES, n1=(0.0, 0.0, 1.0))

3.3.5. ASSIGNS SECTION AND BEAM ORIENTATION FOR CROSS BRACING

if use_Cbrac[ss]==1:

 for i in range(n_fack):

 p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)]

 e = p.edges

 edges = e.findAt(((0.0, 0.0, 0.0),))

 region = regionToolset.Region(edges=edges)

 p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)]

 p.SectionAssignment(region=region, sectionName='Cbrac',

 offset=0.0, offsetType=MIDDLE_SURFACE,

offsetField='',

 thicknessAssignment=FROM_SECTION)

 p.assignBeamSectionOrientation(region=region,

 method=N1_COSINES, n1=(0.0, 0.0, 1.0))

 zz=range(len(d_Cbrac))

 xx=range(len(d_Cbrac))

 yy=range(len(d_Cbrac))

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B16

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

4. ASSEMBLIES MODEL

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

ASSSEMBLIES ARCHES

a = mdb.models['ARCH BRIDGE'].rootAssembly

a.DatumCsysByDefault(CARTESIAN)

p = mdb.models['ARCH BRIDGE'].parts['ARCH']

a.Instance(name='ARCH-1', part=p, dependent=OFF)

a.LinearInstancePattern(instanceList=('ARCH-1',),

 direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0),

 number1=1, number2=2, spacing1=0.0, spacing2=0.0)

a.translate(instanceList=('ARCH-1-lin-1-2',), vector=(0.0, 0.0,

 arch_width[jj]))

p = mdb.models['ARCH BRIDGE'].parts['Bridge Deck']

a.Instance(name='Bridge Deck-1', part=p, dependent=OFF)

a.rotate(instanceList=('Bridge Deck-1',),

 axisPoint=(0.0, 0.0, 0.0), axisDirection=(1.0, 0.0, 0.0),

 angle=90.0)

a.translate(instanceList=('Bridge Deck-1',),

 vector=(0.0, 0.0, sec_width))

a.translate(instanceList=('Bridge Deck-1',),

 vector=(0.0, deck_height, 0.0))

a = mdb.models['ARCH BRIDGE'].rootAssembly

e1 = a.instances['ARCH-1'].edges

e2 = a.instances['ARCH-1-lin-1-2'].edges

a.Set(edges=e1, name='ArchL')

a.Set(edges=e2, name='ArchR')

ASSEMBLIES HANGERS

p = mdb.models['ARCH BRIDGE'].parts['Hanger']

a.Instance(name='Hanger-1', part=p, dependent=OFF)

a.LinearInstancePattern(instanceList=('Hanger-1',),

 direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0),

 number1=1, number2=2, spacing1=0.0, spacing2=0.0)

a.translate(instanceList=('Hanger-1-lin-1-2',), vector=(0.0, 0.0,

 arch_width[jj]))

ASSEMBLIES HORISONTAL BRACING

if n_Hbrac[rr] > 0:

 a1 = mdb.models['ARCH BRIDGE'].rootAssembly

 p = mdb.models['ARCH BRIDGE'].parts['Hbracing']

 for i in range(n_Hbrac[rr]):

 a1.Instance(name='Hbracing-'+str(i+1), part=p,

dependent=OFF)

 a1.rotate(instanceList=('Hbracing-'+str(i+1),),

 axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0),

 angle=270.0)

 a1.translate(instanceList=('Hbracing-'+str(i+1),),

 vector=(Xhb[i], Yhb[i], dHb/2))

ASSEMBLIES CROSS BRACING

if n_Hbrac[rr] < 0:

 use_Cbrac[ss]=0

if use_Cbrac[ss]==1:

 zz=range(len(d_Cbrac))

 xx=range(len(d_Cbrac))

 yy=range(len(d_Cbrac))

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B17

 for i in range(len(d_Cbrac)):

 alpha=asin((Yhb[i+1]-Yhb[i])/d_Cbrac[i])*180/pi

 beta=atan(arch_width[jj]/(Xhb[i+1]-Xhb[i]))*180/pi

 zeta=atan((Yhb[i+1]-Yhb[i])/arch_width[jj])*180/pi

 yy[i]=sin(alpha*pi/180)*dCb/2

 if zeta==0:

 zz[i]=sin(beta*pi/180)*dCb/2

 else:

 zz[i]=yy[i]/tan(zeta*pi/180)

 xx[i]=sqrt((dCb/2)**2-yy[i]**2-zz[i]**2)

 a1 = mdb.models['ARCH BRIDGE'].rootAssembly

 p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)]

 a1.Instance(name='Cbracing-'+str(i+1)+'-1', part=p,

 dependent=OFF)

 a1.translate(instanceList=('Cbracing-'+str(i+1)+'-1',),

 vector=(xx[i]+Xhb[i], yy[i]+Yhb[i], zz[i]))

 a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-1',),

 axisPoint=(xx[i]+Xhb[i], yy[i]+Yhb[i], zz[i]),

 axisDirection=(0.0, 0.0, 1.0), angle=alpha)

 a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-1',),

 axisPoint=(xx[i]+Xhb[i], yy[i]+Yhb[i], zz[i]),

 axisDirection=(0.0, -1.0, 0.0), angle=beta)

 Xdp=range(n_fack)

 Ydp=range(n_fack)

 Xnext=range(n_fack)

 Ynext=range(n_fack)

 theta=range(n_fack)

 for i in range(len(d_Cbrac)):

 alpha=asin((Yhb[i+1]-Yhb[i])/d_Cbrac[i])*180/pi

 beta=atan(arch_width[jj]/(Xhb[i+1]-Xhb[i]))*180/pi

 zeta=atan((Yhb[i+1]-Yhb[i])/arch_width[jj])*180/pi

 yy[i]=sin(alpha*pi/180)*dCb/2

 if zeta==0:

 zz[i]=sin(beta*pi/180)*dCb/2

 else:

 zz[i]=yy[i]/tan(zeta*pi/180)

 xx[i]=sqrt((dCb/2)**2-yy[i]**2-zz[i]**2)

 a1 = mdb.models['ARCH BRIDGE'].rootAssembly

 p = mdb.models['ARCH BRIDGE'].parts['Cbracing-'+str(i+1)]

 a1.Instance(name='Cbracing-'+str(i+1)+'-2', part=p,

 dependent=OFF)

 a1.translate(instanceList=('Cbracing-'+str(i+1)+'-2',),

 vector=(Xhb[i]+xx[i], Yhb[i]+yy[i],

 arch_width[jj]-zz[i]))

 a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-2',),

 axisPoint=(Xhb[i]+xx[i], Yhb[i]+yy[i],

 arch_width[jj]-zz[i]),

 axisDirection=(0.0, 0.0, 1.0), angle=alpha)

 a1.rotate(instanceList=('Cbracing-'+str(i+1)+'-2',),

 axisPoint=(Xhb[i]+xx[i], Yhb[i]+yy[i],

arch_width[jj]-zz[i]), axisDirection=(0.0, 1.0,

0.0), angle=beta)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B18

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

5. INTERACTION

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

mdb.models['ARCH BRIDGE'].ConnectorSection(name='Pin-fixed',

 assembledType=UJOINT)

mdb.models['ARCH BRIDGE'].ConnectorSection(name='Pin',

 translationalType=JOIN, rotationalType=ROTATION)

mdb.models['ARCH BRIDGE'].ConnectorSection(name='Fixed',

 translationalType=JOIN, rotationalType=ALIGN)

datum1 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[1]

#--

ADDING COUPLING BETWEEN HANGERS AND BRIDGE DECK

#--

ONLY RUN IF HANGERS EXISTS

if n_hang[kk] > 0:

 #CREATES PARTITIONS IN THE BRIDGE DECK BETWEEN THE HANGERS

 a = mdb.models['ARCH BRIDGE'].rootAssembly

 for i in range(n_hang[kk]):

 v1 = a.instances['Hanger-1'].vertices

 v2 = a.instances['Hanger-1-lin-1-2'].vertices

 f1 = a.instances['Bridge Deck-1'].faces

 pickedFaces = f1.findAt(((Xh[i], deck_height,

 arch_width[jj]/2),))

 a.PartitionFaceByShortestPath(point1=v1.findAt(

 coordinates=(Xh[i], deck_height, 0.0)),

 point2=v2.findAt(coordinates=(Xh[i], deck_height,

 arch_width[jj])), faces=pickedFaces)

 # DEFINE COUPLING BETWEEN THE HANGERS AND BRIDGE DECK

 v11 = a.instances['Bridge Deck-1'].vertices

 v12 = a.instances['Hanger-1'].vertices

 for i in range(n_hang[kk]):

 a = mdb.models['ARCH BRIDGE'].rootAssembly

 v1 = a.instances['Bridge Deck-1'].vertices

 v2 = a.instances['Hanger-1'].vertices

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xh[i],

 deck_height, sec_width)),

 v2.findAt(coordinates=(Xh[i], deck_height, 0.0))),

),

 mergeWire=OFF, meshable=OFF)

 e1 = a.edges

 edges1 = e1.findAt(((Xh[i], deck_height, sec_width/2),))

 region=regionToolset.Region(edges=edges1)

 csa = a.SectionAssignment(sectionName='Pin-fixed',

 region=region)

 a.ConnectorOrientation(region=csa.getSet(),

 localCsys1=datum1)

 v3 = a.instances['Bridge Deck-1'].vertices

 v4 = a.instances['Hanger-1-lin-1-2'].vertices

 a.WirePolyLine(points=((v3.findAt(coordinates=(Xh[i],

 deck_height,

 arch_width[jj]-sec_width)), v4.findAt(coordinates=(Xh[i],

 deck_height, arch_width[jj]))),),

 mergeWire=OFF, meshable=OFF)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B19

 e1 = a.edges

 edges1 = e1.findAt(((Xh[i],deck_height,arch_width[jj]),))

 region=regionToolset.Region(edges=edges1)

 csa = a.SectionAssignment(sectionName='Pin-fixed',

 region=region)

 a.ConnectorOrientation(region=csa.getSet(),

 localCsys1=datum1)

#--

ADDING COUPLING BETWEEN HANGERS AND ARCH

#--

if n_hang[kk] > 0:

 for i in range(n_hang[kk]):

 a = mdb.models['ARCH BRIDGE'].rootAssembly

 v1 = a.instances['ARCH-1-lin-1-2'].vertices

 v2 = a.instances['Hanger-1-lin-1-2'].vertices

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xh[i],

Yh[i], arch_width[jj])),v2.findAt(coordinates=(Xh[i],

Yh[i]-dH, arch_width[jj]))),),mergeWire=OFF,

meshable=OFF)

 e1 = a.edges

 edges1 = e1.findAt(((Xh[i],Yh[i],arch_width[jj]),))

 region=regionToolset.Region(edges=edges1)

 a.SectionAssignment(region=region,

sectionName='Pin')

 v3 = a.instances['ARCH-1'].vertices

 v4 = a.instances['Hanger-1'].vertices

 a.WirePolyLine(points=((v3.findAt(coordinates=(Xh[i],

 Yh[i], 0.0)), v4.findAt(coordinates=(Xh[i],

 Yh[i]-dH,0.0))),),mergeWire=OFF,meshable=OFF)

 e1 = a.edges

 edges1 = e1.findAt(((Xh[i], Yh[i], 0.0),))

 region=regionToolset.Region(edges=edges1)

a.SectionAssignment(region=region,

sectionName='Pin')

#--

ADDING COUPLING BETWEEN HORIZONTAL BRACING AND ARCH

#--

if n_Hbrac[rr] > 0:

 for i in range(n_Hbrac[rr]):

 a = mdb.models['ARCH BRIDGE'].rootAssembly

 v1 = a.instances['ARCH-1-lin-1-2'].vertices

 v2 = a.instances['Hbracing-'+str(i+1)].vertices

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xhb[i],

 Yhb[i], arch_width[jj])),

v2.findAt(coordinates=(Xhb[i],

 Yhb[i], arch_width[jj]-(dHb/2)))),),

 mergeWire=OFF, meshable=OFF)

 e1 = a.edges

 edges1 = e1.findAt(((Xhb[i], Yhb[i],

 arch_width[jj]-(dHb/2)),))

 region=regionToolset.Region(edges=edges1)

 a.SectionAssignment(region=region, sectionName='Fixed')

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B20

 v1 = a.instances['ARCH-1'].vertices

 v2 = a.instances['Hbracing-'+str(i+1)].vertices

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xhb[i],

 Yhb[i], 0)), v2.findAt(coordinates=(Xhb[i], Yhb[i],

 (dHb/2)))),), mergeWire=OFF, meshable=OFF)

 e1 = a.edges

 edges1 = e1.findAt(((Xhb[i], Yhb[i],(dHb/2)),))

 region=regionToolset.Region(edges=edges1)

 csa = a.SectionAssignment(sectionName='Fixed',

 region=region)

 a.ConnectorOrientation(angle1=90.0, region=csa.getSet(),

 localCsys1=datum1)

#--

ADDING COUPLING BETWEEN CROSS-BRACING BRACING AND ARCH

#--

if use_Cbrac[ss]==1:

 # Create partition in the Arch alligned with the cross-bracing

 for i in range(n_Hbrac[rr]-1):

 dist=sqrt(Xhb[i]**2+(Yhb[i]**2))

 angle=acos((dist**2-2*radius**2)/(-2*radius**2))+

 real_el_len/radius

 Ynext[i]=radius*sin(((pi+sec_ang)/2)-angle)-

 (radius-arch_height[nn])

 Xnext[i]=radius*cos(((pi+sec_ang)/2)-angle)+sp_len[ii]/2

 theta[i]=atan((Ynext[i]-Yhb[i])/(Xnext[i]-Xhb[i]))

 Xdp[i]=Xhb[i]+xx[i]

 Ydp[i]=Yhb[i]+(tan(theta[i])*xx[i])

 for i in range(n_Hbrac[rr]-1):

 a.DatumPointByCoordinate(coords=(Xdp[i], Ydp[i], 0.0))

 for i in range(n_Hbrac[rr]-1):

 a.DatumPointByCoordinate(coords=(Xdp[i], Ydp[i],

 arch_width[jj]))

 e11 = a.instances['ARCH-1'].edges

 e12 = a.instances['ARCH-1-lin-1-2'].edges

 d11 = a.datums

 datum_list=d11.keys()

 for i in range(n_Hbrac[rr]-1):

 a.PartitionEdgeByPoint(edge=e11.findAt(coordinates=(

 Xdp[i], Ydp[i], 0.0)), point=d11[datum_list[i+1]])

 for i in range(n_Hbrac[rr]-1):

 a.PartitionEdgeByPoint(edge=e12.findAt(coordinates=(Xdp[i],

 Ydp[i], arch_width[jj])),

 point=d11[datum_list[n_Hbrac[rr]+i]])

 Xdp2=range(n_fack)

 Ydp2=range(n_fack)

 Xnext=range(n_fack)

 Ynext=range(n_fack)

 theta=range(n_fack)

 for i in range(n_fack):

 dist=sqrt(Xhb[i+1]**2+(Yhb[i+1]**2))

 angle=acos((dist**2-2*radius**2)/(-2*radius**2))-

 real_el_len/radius

 Ynext[i]=radius*sin(((pi+sec_ang)/2)-angle)-

 (radius-arch_height[nn])

 Xnext[i]=radius*cos(((pi+sec_ang)/2)-angle)+sp_len[ii]/2

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B21

 theta[i]=atan((Xnext[i]-Xhb[i+1])/(Ynext[i]-Yhb[i+1]))

 Xdp2[i]=Xhb[i+1]-xx[i]

 Ydp2[i]=Yhb[i+1]-(xx[i]/tan(theta[i]))

 for i in range(n_fack):

 a.DatumPointByCoordinate(coords=(Xdp2[i], Ydp2[i], 0.0))

 for i in range(n_fack):

 a.DatumPointByCoordinate(coords=(Xdp2[i], Ydp2[i],

 arch_width[jj]))

 e11 = a.instances['ARCH-1'].edges

 e12 = a.instances['ARCH-1-lin-1-2'].edges

 d11 = a.datums

 datum_list=d11.keys()

 for i in range(n_fack):

 a.PartitionEdgeByPoint(edge=e11.findAt(coordinates=(Xdp2[i],

 Ydp2[i], 0.0)),

point=d11[datum_list[2*n_fack+1+i]])

 for i in range(n_fack):

 a.PartitionEdgeByPoint(edge=e12.findAt(coordinates=(

 Xdp2[i], Ydp2[i], arch_width[jj])),

 point=d11[datum_list[3*n_fack+1+i]])

if use_Cbrac[ss]==1:

 a.DatumCsysByThreePoints(name='Datum csys-2',

 coordSysType=CARTESIAN, origin=(0.0, 0.0, 0.0),

 point1=(0.0, -1.0, 0.0), point2=(1.0, 0.0, 0.0))

 csysdatum=mdb.models['ARCH BRIDGE'].rootAssembly.datums.keys()

 datum11 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[

 csysdatum[len(csysdatum)-1]]

 Xcb=range(len(Yhb))

 Ycb=range(len(Yhb))

 Zcb=range(len(Yhb))

 for i in range(n_fack):

 a = mdb.models['ARCH BRIDGE'].rootAssembly

 v1 = a.instances['ARCH-1'].vertices

 v2 = a.instances['Cbracing-'+str(i+1)+'-1'].vertices

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp[i],

 Ydp[i], 0)), v2.findAt(coordinates=(xx[i]+Xhb[i],

 yy[i]+Yhb[i],zz[i]))),),mergeWire=OFF,meshable=OFF)

 e1 = a.edges

 edges2 = e1.findAt(((xx[i]+Xhb[i],yy[i]+Yhb[i],zz[i]),))

 region=regionToolset.Region(edges=edges2)

 v1 = a.instances['ARCH-1-lin-1-2'].vertices

 v2 = a.instances['Cbracing-'+str(i+1)+'-1'].vertices

 Coord = v2.getClosest(coordinates=((Xhb[i+1]-xx[i],

Yhb[i+1]-yy[i],arch_width[jj]-zz[i]),(Xhb[i+1]-

xx[i],Yhb[i+1]-yy[i],arch_width[jj]-zz[i]),))

 Xcb[i+1] = Coord[0][1][0]

 Ycb[i+1] = Coord[0][1][1]

 Zcb[i+1] = Coord[0][1][2]

 a.DatumCsysByThreePoints(name='Datum csys-2',

 coordSysType=CARTESIAN, origin=(Xhb[i]+xx[i],

 Yhb[i]+yy[i], zz[i]), point1=(Xcb[i+1], Ycb[i+1],

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B22

 Zcb[i+1]), point2=(Xhb[i]+xx[i], Yhb[i]+yy[i],

 arch_width[jj]-zz[i]))

 csysdatum=mdb.models['ARCH

BRIDGE'].rootAssembly.datums.keys()

 datum11 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[

 csysdatum[len(csysdatum)-1]]

 csa = a.SectionAssignment(sectionName='Pin-fixed',

 region=region)

 a.ConnectorOrientation(angle1=-90, axis1=AXIS_3,

 region=csa.getSet(), localCsys1=datum11)

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp2[i],

 Ydp2[i], arch_width[jj])), v2.findAt(coordinates=(

 Xcb[i+1], Ycb[i+1],Zcb[i+1]))),),

 mergeWire=OFF, meshable=OFF)

 e1 = a.edges

 edges1 = e1.findAt(((Xcb[i+1], Ycb[i+1],Zcb[i+1]),))

 region=regionToolset.Region(edges=edges1)

 a.SectionAssignment(region=region, sectionName='Pin')

 Xcb=range(len(Yhb))

 Ycb=range(len(Yhb))

 Zcb=range(len(Yhb))

 for i in range(n_fack):

 a = mdb.models['ARCH BRIDGE'].rootAssembly

 v1 = a.instances['ARCH-1-lin-1-2'].vertices

 v2 = a.instances['Cbracing-'+str(i+1)+'-2'].vertices

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp[i],

 Ydp[i], arch_width[jj])), v2.findAt(coordinates=(

 Xhb[i]+xx[i],Yhb[i]+yy[i],arch_width[jj]-

 zz[i]))),), mergeWire=OFF, meshable=OFF)

 e1 = a.edges

 edges2 = e1.findAt(((Xhb[i]+xx[i], Yhb[i]+yy[i],

 arch_width[jj]-zz[i]),))

 region=regionToolset.Region(edges=edges2)

 v1 = a.instances['ARCH-1'].vertices

 v2 = a.instances['Cbracing-'+str(i+1)+'-2'].vertices

 Coord = v2.getClosest(coordinates=((Xhb[i+1]-xx[i],

 Yhb[i+1]-yy[i], zz[i]),(Xhb[i+1]-xx[i],

Yhb[i+1]-yy[i], zz[i]),))

 Xcb[i+1] = Coord[0][1][0]

 Ycb[i+1] = Coord[0][1][1]

 Zcb[i+1] = Coord[0][1][2]

 a.DatumCsysByThreePoints(name='Datum csys-2',

 coordSysType=CARTESIAN, origin=(Xhb[i]+xx[i],

 Yhb[i]+yy[i], arch_width[jj]-zz[i]),

 point1=(Xcb[i+1], Ycb[i+1], Zcb[i+1]),

 point2=(Xhb[i]+xx[i], Yhb[i]+yy[i], zz[i]))

 csysdatum=mdb.models['ARCH

 BRIDGE'].rootAssembly.datums.keys()

 datum11 = mdb.models['ARCH BRIDGE'].rootAssembly.datums[

 csysdatum[len(csysdatum)-1]]

 csa = a.SectionAssignment(sectionName='Pin-fixed',

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B23

 region=region)

 a.ConnectorOrientation(angle1=-90, axis1=AXIS_3,

 region=csa.getSet(), localCsys1=datum11)

 a.WirePolyLine(points=((v1.findAt(coordinates=(Xdp2[i],

 Ydp2[i], 0.0)), v2.findAt(coordinates=(Xcb[i+1],

 Ycb[i+1], Zcb[i+1]))),), mergeWire=OFF,

meshable=OFF)

 edges2 = e1.findAt(((Xcb[i+1], Ycb[i+1], Zcb[i+1]),))

 region=regionToolset.Region(edges=edges2)

 a.SectionAssignment(region=region, sectionName='Pin')

#--

BOUNDARY CONDITIONS

#--

a = mdb.models['ARCH BRIDGE'].rootAssembly

#BC-1 - ARCH @ x = 0

v1 = a.instances['ARCH-1'].vertices

verts1 = v1.findAt(((Xs[0], Ys[0], Zs[0]),))

v2 = a.instances['ARCH-1-lin-1-2'].vertices

verts2 = v2.findAt(((Xs[0], Ys[0], arch_width[jj]),))

region = regionToolset.Region(vertices=verts1+verts2)

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Arch-1',

createStepName='Initial', region=region, u1=SET, u2=SET,

u3=SET, ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET,

 distributionType=UNIFORM, fieldName='', localCsys=None)

#BC-2 - ARCH @ x = SPAN LENGTH

v1 = a.instances['ARCH-1-lin-1-2'].vertices

verts1 = v1.findAt(((Xs[n_el], Ys[n_el], arch_width[jj]),))

v2 = a.instances['ARCH-1'].vertices

verts2 = v2.findAt(((Xs[n_el], Ys[n_el], Zs[n_el]),))

region = regionToolset.Region(vertices=verts1+verts2)

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Arch-2',

 createStepName='Initial', region=region, u1=SET, u2=SET,

 u3=SET, ur1=SET, ur2=SET, ur3=SET, amplitude=UNSET,

 distributionType=UNIFORM, fieldName='', localCsys=None)

#BC-3 - BRIDGE DECK @ x = 0

e1 = a.instances['Bridge Deck-1'].edges

edges1 = e1.findAt(((0.0, deck_height, arch_width[jj]/2),),)

region = regionToolset.Region(edges=edges1)

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Deck-1',

 createStepName='Initial', region=region, u1=SET, u2=SET,

 u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET,

 distributionType=UNIFORM, fieldName='', localCsys=None)

#BC-3 - BRIDGE DECK @ x = SPAN LENGTH

e1 = a.instances['Bridge Deck-1'].edges

edges1 = e1.findAt(((sp_len[ii], deck_height, arch_width[jj]/2),),)

region = regionToolset.Region(edges=edges1)

mdb.models['ARCH BRIDGE'].DisplacementBC(name='Deck-2',

 createStepName='Initial', region=region, u1=UNSET, u2=SET,

 u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET,

 distributionType=UNIFORM, fieldName='', localCsys=None)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B24

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

6. MESH

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

a = mdb.models['ARCH BRIDGE'].rootAssembly

elemType1 = mesh.ElemType(elemCode=S4R, elemLibrary=STANDARD,

 secondOrderAccuracy=OFF, hourglassControl=DEFAULT)

elemType2 = mesh.ElemType(elemCode=S3, elemLibrary=STANDARD)

elemType3 = mesh.ElemType(elemCode=B31, elemLibrary=STANDARD)

elemType4 = mesh.ElemType(elemCode=T3D2, elemLibrary=STANDARD)

ASSIGNS ELEMENT TYPE TO BRIDGE DECK

f1 = a.instances['Bridge Deck-1'].faces

pickedRegions =(f1,)

a.setElementType(regions=pickedRegions, elemTypes=(elemType1,

 elemType2))

partInstances =(a.instances['Bridge Deck-1'],)

a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

a.generateMesh(regions=partInstances)

ASSIGNS ELEMENT TYPE TO ARCH

e1 = a.instances['ARCH-1-lin-1-2'].edges

e2 = a.instances['ARCH-1'].edges

pickedRegions =(e1,)

a.setElementType(regions=pickedRegions, elemTypes=(elemType3,))

pickedRegions =(e2,)

a.setElementType(regions=pickedRegions, elemTypes=(elemType3,))

partInstances =(a.instances['ARCH-1-lin-1-2'],)

a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

a.generateMesh(regions=partInstances)

partInstances =(a.instances['ARCH-1'],)

a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

a.generateMesh(regions=partInstances)

ASSIGNS ELEMENT TYPE TO HANGERS

if n_hang[kk] > 0:

 e1 = a.instances['Hanger-1-lin-1-2'].edges

 e2 = a.instances['Hanger-1'].edges

 pickedRegions =(e1,)

 a.setElementType(regions=pickedRegions,elemTypes=(elemType3,))

 pickedRegions =(e2,)

 a.setElementType(regions=pickedRegions,elemTypes=(elemType3,))

 partInstances =(a.instances['Hanger-1-lin-1-2'],)

 a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

 a.generateMesh(regions=partInstances)

 partInstances =(a.instances['Hanger-1'],)

 a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

 a.generateMesh(regions=partInstances)

ASSIGNS ELEMENT TYPE TO HORISONTAL HANGERS

if n_Hbrac[rr] > 0:

 for i in range(n_Hbrac[rr]):

 e1 = a.instances['Hbracing-'+str(i+1)].edges

 pickedRegions =(e1,)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B25

 a.setElementType(regions=pickedRegions,

 elemTypes=(elemType3,))

 partInstances =(a.instances['Hbracing-'+str(i+1)],)

 a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

 a.generateMesh(regions=partInstances)

ASSIGNS ELEMENT TYPE TO CROSS BRACING

if use_Cbrac[ss]==1:

 for i in range(n_fack):

 e1 = a.instances['Cbracing-'+str(i+1)+'-1'].edges

 pickedRegions =(e1,)

 a.setElementType(regions=pickedRegions,

 elemTypes=(elemType3,))

 e2 = a.instances['Cbracing-'+str(i+1)+'-2'].edges

 pickedRegions =(e2,)

 a.setElementType(regions=pickedRegions,

 elemTypes=(elemType3,))

 partInstances =(a.instances['Cbracing-'+str(i+1)+'-1'],)

 a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

 a.generateMesh(regions=partInstances)

 partInstances =(a.instances['Cbracing-'+str(i+1)+'-2'],)

 a.seedPartInstance(regions=partInstances, size=0.5,

 deviationFactor=0.1, minSizeFactor=0.1)

 a.generateMesh(regions=partInstances)

CREATE NODE SET FOR THE TOP NODE

a = mdb.models['ARCH BRIDGE'].rootAssembly

n1 = a.instances['ARCH-1'].vertices

x_coord = range(len(n1))

y_coord = range(len(n1))

z_coord = range(len(n1))

for i in range(len(n1)):

 x_coord[i] = n1[i].pointOn[0][0]

 y_coord[i] = n1[i].pointOn[0][1]

 z_coord[i] = n1[i].pointOn[0][2]

y_node = max(y_coord)

index= (y_coord.index(y_node))

v1 = a.instances['ARCH-1'].vertices

verts1 = v1.findAt(((x_coord[index], y_coord[index],

 z_coord[index]),))

a.Set(vertices=verts1, name='topnode')

CREATE NODE SET FOR 1ST QUARTER NODE

index2 = int(ceil(len(x_coord)/4))

v1 = a.instances['ARCH-1'].vertices

verts2 = v1.findAt(((x_coord[index2], y_coord[index2],

 z_coord[index2]),))

a.Set(vertices=verts2, name='q1node')

CREATE NODE SET FOR 2ND QUARTER NODE

index3 = int(ceil(len(x_coord)*3/4))

v1 = a.instances['ARCH-1'].vertices

verts3 = v1.findAt(((x_coord[index3], y_coord[index3],

 z_coord[index3]),))

a.Set(vertices=verts3, name='q2node')

CREATE NODE SET FOR ALL THREE NODES

verts4 = verts1+verts2+verts3

a.Set(vertices=verts4, name='all3nodes')

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B26

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

7. STEPS

#<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

#--

CREATES FREQUENCY STEP

#--

mdb.models['ARCH BRIDGE'].FrequencyStep(name='Frequency',

 previous='Initial',minEigen=0.1, maxEigen=10.0,

 normalization=MASS)

#--

CREATES RANDOM RESPONSE STEP

#--

mdb.models['ARCH BRIDGE'].PsdDefinition(name='rekt',

 data=((1.0, 0.0, 0.1), (1.0, 0.0, 10.0)))

mdb.models['ARCH BRIDGE'].RandomResponseStep(name='RR',

 previous='Frequency', freq=((0.1, 10.0, 10, 3),),

 directDamping=None, compositeDamping=None,

rayleighDamping=None,

 structuralDamping=None, directDampingByFrequency=((0.1,

 damping), (10.0,damping)))

regionDef=mdb.models['ARCH BRIDGE'].rootAssembly.sets['all3nodes']

mdb.models['ARCH BRIDGE'].fieldOutputRequests['F-Output-

2'].setValues(

 variables=('U', 'RU'), region=regionDef, sectionPoints=DEFAULT,

 rebar=EXCLUDE)

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B27

BRIDGE_DATA.py
#--

BRIDGE_DATA.PY

By: Jonathan Johansson, Daniel Josefsson

#--

INPUT FILE - SHALL BE PLACED IN THE SAME DIRECTORY AS MAIN SCRIPT

#--

GEOMETRY INPUT

#--

BRIDGE GEOMETRY

sp_len=[] #Span length [m]

arch_height=[] #Arch height [m]

deck_height= #Bridge deck height above the spring line

t_deck=[] #Thickness of deck [m]

arch_width=[] #Width between the two arches [m]

opt_el_len= #[m]

free_height= #Free height [m] Value according to VGU

 #Type of section for arch

 # 1 = I-profile, 2 = Box, 3 = Pipe,

 # 4 = Circular, 5 = Rectangular,

type= # 6 = Hexagonal, 7 = Trapezoidal

 # 8 = L-profile, # 9 = T-profile

#GEOMETRY HANGERS

n_hang=[] #Number of hangers [-]

phi_hang=[] #Diameter for hanger

#GEOMETRY HORIZONTAL BRACING

n_Hbrac=[] #Number of horizontal bracing beams

 #Type of section for horisontal bracing

 # 1 = I-profile, 2 = Box, 3 = Pipe,

 # 4 = Circular, 5 = Rectangular,

type= # 6 = Hexagonal, 7 = Trapezoidal

 # 8 = L-profile, # 9 = T-profile

#GEOMETRY CROSS-BRACING

use_Cbrac=[] #Set 1 if cross bracing shall be used,

 #otherwise set value 0

phi_Cbrac=[] #Diameter for horizontal bracing

#--

MATERIAL INPUT

#--

damping= # Damping coefficient [Timber = 0.01]

#DEFINE MATERIAL FOR ARCH

E1_A = #[Pa]

E2_A = #[Pa]

E3_A = #[Pa]

v12_A = #Poisson ratio[-]

v13_A = #Poisson ratio[-]

v23_A = #Poisson ratio[-]

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B28

G12_A = #[Pa]

G13_A = #[Pa]

G23_A = #[Pa]

D_arch= #[kg/m^3]

#DEFINE MATERIAL FOR DECK

E1_D = #[Pa]

E2_D = #[Pa]

E3_D = #[Pa]

v12_D = #Poisson ratio[-]

v13_D = #Poisson ratio[-]

v23_D = #Poisson ratio[-]

G12_D = #[Pa]

G13_D = #[Pa]

G23_D = #[Pa]

D_deck= #[kg/m^3]

#DEFINE MATERIAL FOR HANGERS

E_hang = #[Pa]

v_hang = #Poisson ratio[-]

D_hang= #[kg/m^3]

#DEFINE MATERIAL FOR HORISONTAL BRACING

E1_Hb = #[Pa]

E2_Hb = #[Pa]

E3_Hb = #[Pa]

v12_Hb = #Poisson ratio[-]

v13_Hb = #Poisson ratio[-]

v23_Hb = #Poisson ratio[-]

G12_Hb = #[Pa]

G13_Hb = #[Pa]

G23_Hb = #[Pa]

D_Hbrac= #[kg/m^3]

DEFINE MATERIAL FOR CROSS-BRACING

E_Cbrac = #[Pa]

v_Cbrac = #Poisson ratio[-]

D_Cbrac = #[kg/m^3]

#--

SECTION TYPES FOR ARCH

#--

#--# I

I_t1=[]

I_t2=[]

I_t3=[]

I_b1=[]

I_b2=[]

I_h=[]

I_l=[]

#--# Box

B_b=[]

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B29

B_a=[]

B_t1=[]

B_t2=[]

B_t3=[]

B_t4=[]

#--# Pipe

P_r=[]

P_t=[]

#--# Circular

C_r=[]

#--# Rectangular

R_a=[]

R_b=[]

#--# Hexagonal

H_r=[]

H_t=[]

#--# Trapezoidal

T_a=[]

T_b=[]

#--# L

L_a=[]

L_b=[]

L_t1=[]

L_t2=[]

#--# T

T_b=[]

T_h=[]

T_l=[]

T_tf=[]

T_tw=[]

#--

SECTION TYPES FOR HORISONTAL BRACING

#--

#--# I

I_t1hb=[]

I_t2hb=[]

I_t3hb=[]

I_b1hb=[]

I_b2hb=[]

I_hhb=[]

I_lhb=[]

#--# Box

B_bhb=[]

B_ahb=[]

B_t1hb=[]

B_t2hb=[]

B_t3hb=[]

B_t4hb=[]

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B30

#--# Pipe

P_rhb=[]

P_thb=[]

#--# Circular

C_rhb=[]

#--# Rectangular

R_ahb=[]

R_bhb=[]

#--# Hexagonal

H_rhb=[]

H_thb=[]

#--# Trapezoidal

T_ahb=[]

T_bhb=[]

#--# L

L_ahb=[]

L_bhb=[]

L_t1hb=[]

L_t2hb=[]

#--# T

T_bhb=[]

T_hhb=[]

T_lhb=[]

T_tfhb=[]

T_twhb=[]

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B31

OUTPUT.py
#--

OUTPUT.PY

By: Jonathan Johansson, Daniel Josefsson

#--

SCRITP THAT EXTRACTS DISPLACEMENTS AND EIGENFREQUENCIES FOR THE

ARCH BRIDGE ANALYSIS CREATED BY THE SCRITP ARCH_BRIDGE.py

BRIDGE_DATA.py MUST BE PLACED IN THE SAME FOLDER AS OUTPUT.py

#--

1. IMPORTS PROGRAMMING COMMANDS FROM ABAQUS

#--

from abaqus import *

from abaqusConstants import *

import __main__

import odb

import math

import odbAccess

import odbSection

import odbMaterial

import section

import regionToolset

import displayGroupMdbToolset as dgm

import step

import part

import material

import assembly

import interaction

import load

import mesh

import optimization

import job

import sketch

import visualization

import xyPlot

import displayGroupOdbToolset as dgo

import connectorBehavior

import time

session.journalOptions.setValues(replayGeometry=COORDINATE)

#--

2. RUN INDATA FILE

#--

execfile('BRIDGE_DATA.py')

#--

3. NUMBER OF PARAMETERS VARYING AND LOOP OVER ALL PARAMETERS

#--

a = range(len(sp_len))

b = range(len(arch_width))

c = range(len(n_hang))

d = range(len(R_a))

e = range(len(R_b))

f = range(len(arch_height))

g = range(len(t_deck))

h = range(len(phi_hang))

k = range(len(n_Hbrac))

l = range(len(use_Cbrac))

m = range(len(phi_Cbrac))

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B32

n = range(len(R_ahb))

o = range(len(R_bhb))

name=range(len(a)*len(b)*len(c)*len(d)*len(e)*len(f)*len(g)*len(h)*

len(k)*len(l)*len(m)*len(n)*len(o))

i=0

for ii in range(len(sp_len)):

for jj in range(len(arch_width)):

for kk in range(len(n_hang)):

for nn in range(len(arch_height)):

 for ll in range(len(R_a)):

 for mm in range(len(R_b)):

 for pp in range(len(t_deck)):

 for qq in range(len(phi_hang)):

 for rr in range(len(n_Hbrac)):

 for ss in range(len(use_Cbrac)):

 for tt in range(len(phi_Cbrac)):

 for uu in range(len(R_ahb)):

 for vv in range(len(R_bhb)):

name[i]=str(int(sp_len[ii]))+''+str(int(arch_width[jj]))+'-

'+str(int(arch_height[nn]))+'-'+str(int(n_hang[kk]))+'-

'+str(int(phi_hang[qq]*1000))+'-'+str(int(n_Hbrac[rr]))+'-

'+str(int(t_deck[pp]*1000))+'-'+str(int(R_a[ll]*1000))+'-

'+str(int(R_b[mm]*1000))+'-'+str(int(R_ahb[uu]*1000))+'-

'+str(int(R_bhb[vv]*1000))+'-'+str(int(use_Cbrac[ss]))+'-

'+str(int(phi_Cbrac[tt]*1000))

 i=i+1

for j in range(len(name)):

 # ---

 # 3.1 OPEN .ODB FILE

 # ---

 odb = session.openOdb('Input\\'+name[j]+'.odb')

 assembly = odb.rootAssembly

 # ---

 # 3.2 Obtaining the displacements

 # ---

 session.viewports['Viewport: 1'].setValues(displayedObject=odb)

session.odbData['Input\\'+name[j]+'.odb'].setValues(activeFrame

 s=(('Frequency', ('0:-1',)),))

 U = session.xyDataListFromField(odb=odb, outputPosition=NODAL,

variable=(('U', NODAL, ((COMPONENT, 'U3'),)),),

nodeSets=('Q1NODE', 'Q2NODE', 'TOPNODE',))

 # ---

 # 3.3 Obtaining the RMS-displacements

 # ---

 session.viewports['Viewport: 1'].setValues(displayedObject=odb)

 session.odbData['Input\\'+name[j]+'.odb'].setValues(

activeFrames=(('RR', ('0:-1',)),))

 RU = session.xyDataListFromField(odb=odb, outputPosition=NODAL,

variable=(('RU',NODAL,((COMPONENT, 'RU3'),)),),

nodeSets=('Q1NODE', 'Q2NODE','TOPNODE',))

 # ---

 # 3.4 Obtaining the eigenfrequencies

 # ---

 freq_bulk = odb.steps['Frequency'].historyRegions[

CHALMERS, Applied Mechanics, Master’s Thesis 2014:35
B33

'Assembly ASSEMBLY'].historyOutputs['EIGFREQ']

 freq = range(len(freq_bulk.data))

 for i in range(len(freq_bulk.data)):

 freq[i] = freq_bulk.data[i][1]

 # ---

 # 3.5 Writing the obtained data to an output file

 # ---

 outputFile = open('Output\\'+name[j]+'_RMS.txt','w')

 for i in range(len(RU[0])):

outputFile.write('%10.20E\t%10.20E\t%10.20E\t%10.20E\n' %

(RU[0][i][0],RU[0][i][1],RU[1][i][1],RU[2][i][1]))

 outputFile.close()

 outputFile = open('Output\\'+name[j]+'_U.txt','w')

 for i in range(len(U[0])):

outputFile.write('%10.20E\t%10.20E\t%10.20E\t%10.20E\n' %

(freq[i],U[0][i][1],U[1][i][1],U[2][i][1]))

 outputFile.close()

 # ---

 # 3.6 Delete created xy-data

 # ---

 n_data = len(session.xyDataObjects)

 xyname = session.xyDataObjects.keys()

 for i in range(n_data):

 del session.xyDataObjects[xyname[i]]

 # ---

 # 3.7 Closing .odb file

 # ---

 odb.close()

#--

4. WRITE A .TXT FILE WITH THE FILENAMES FROM THE ANALYSIS

#--

outputFile = open('Output\\Filename.txt','w')

for j in range(len(name)):

 outputFile.write(name[j].replace('-','\t')+'\n')

outputFile.close()

