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We present a semi-analytic model for low (L) to high (H) mode transition power threshold (Pth).

Two main assumptions are made in our study. First, high poloidal mode number drift resistive

ballooning modes (high-m DRBM) are assumed to be the dominant turbulence driver in a narrow

edge region near to last closed flux surface. Second, the pre-transition edge profile and turbulent

diffusivity at the narrow edge region pertain to turbulent equipartition. An edge power balance

relation is derived by calculating the dissipated power flux through both turbulent conduction and

convection, and radiation in the edge region. Pth is obtained by imposing the turbulence quench

rule due to sheared E�B rotation. Evaluation of Pth shows a good agreement with experimental

results in existing machines. Increase of Pth at low density (i.e., the existence of roll-over density in

Pth vs. density) is shown to originate from the longer scale length of the density profile than that of

the temperature profile. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882256]

I. INTRODUCTION

Elucidating the physics of the low (L)- to high (H)-

mode transition is a long standing problem since its first dis-

covery at ASDEX.1 The H-mode is characterized by the

presence of an edge pressure pedestal (i.e., edge transport

barriers) and yields high fusion performance. This is of par-

ticular importance to ITER which aims at realization of high

fusion gain deuterium-tritium (DT) plasmas with H98� 1.

Here, H98 is defined as the ratio of energy confinement time

(sE) to the energy confinement time scaling (s98) whose

expression is given by2

s98ðsecÞ ¼ 0:0562 IpðMAÞ
� �0:93

BTðTÞ½ �0:15 PðMWÞ½ ��0:69

� nð1019m�3Þ
� �0:41

MðAMUÞ½ �0:19

� RðmÞ½ �1:97�0:58j0:78;

where Ip is the plasma current, BT the toroidal field at major

radius R, P the power, n the plasma density, M the average

ion mass, � the inverse aspect ratio, and j the elongation.

Units for physical quantities are indicated in parentheses.

H-mode operation in ITER is also planned in the non-

active (hydrogen (H) and helium (He)) and the DD phases to

characterize H-mode plasmas in ITER-scale experiments

and to develop reliable edge localized modes (ELMs) control

schemes well before the D-T operation phase. Key dynami-

cal processes involved in the L-H transition physics have

been developed for the past two decades.3 The most impor-

tant concept for L-H transition physics may be the suppres-

sion/reduction of turbulence by E�B flow4,5 and subsequent

formation of a transport barrier due to the positive feedback

between mean E�B shear and turbulence suppression.

Recent theories and experiments highlight the role of zonal

flow6,7 as a trigger of the L-H transition.8–10

At present, however, there is still a gap between this

success of microscopic understanding of L-H transition

physics and its connection to macroscopic predictive capa-

bility. A notable example of this gap is the lack of theory-

based models giving a reliable, quantitative prediction of the

L-H transition power threshold (Pth). Given the absence of

such a model, experimentalists have developed empirical

scaling relations which were derived based on a statistical

analysis of an experimental database in present tokamak

experiments. A recent study in this line shows that Pth

depends primarily on average plasma density (�n), toroidal

magnetic field (BT), and plasma surface area (S)11

Pth ¼ 0:0488 �nð1020m�3Þ
� �0:717

BTðTÞ½ �0:803 Sðm2Þ
� �0:941

: (1)

Equation (1) successfully reproduces experimental results

of Pth for high density regime. However, deviations of Pth

from the prediction of this empirical law have been observed

in experiments, most notably, the increase of Pth below a

“roll-over” density (nmin)12–15 (i.e., Pth ’ �n�a with a> 0,

when �n � nmin). In most of the machines, the roll-over density

is observed to be in the range 0.1–0.3� 1020 m�3. Onea)Electronic mail: rsingh129@yahoo.co.in
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exception for this trend is the Alcator C-Mod tokamak for

which nmin is much higher with nmin¼ 0.8�1.2� 1020 m�3.

Another omission in Eq. (1) is the isotope scaling, which

shows Pth � A�b
i , with b� 1.0, where Ai is the effective

atomic mass, deduced from the comparison of Pth for hydro-

gen, DD and DT discharges.16 In the context of ITER opera-

tion which plans to obtain H-mode in non-active phase (i.e.,

using H or He discharges), this is also an issue due to the pos-

sible limitation of available power. A recent paper summa-

rizes experimental results of multi-machine assessment on Pth

for H, He, and D plasmas.17 The power threshold for He, PHe
th ,

shows a rather large variation ranging 1:0 � PHe
th =PD

th � 1:8,17

implying the ambiguity of the isotope scaling for He dis-

charges. Here, PD
th is Pth for deuterium discharges.

In these regards, it is necessary to have a physics-based

model that can predict Pth in terms of tokamak discharge pa-

rameters. Such a model necessarily should reproduce experi-

mental features mentioned above, as well as the empirical

scaling law in a statistically reliable region. The primary pur-

pose of this work is to develop a theory-based semi-analytic

expression of Pth which give a quantitative prediction of Pth.

To do so, we develop a model based on an edge power bal-

ance relation. One may regard our work as an “intermediate

step” bridging the gap between the empirical scaling law and

a complete theoretical model taking into account the full

microphysical dynamics of turbulence.

The basic idea of our power balance model came from

the observation of how a star maintain its equilibrium tem-

perature profile given the energy dissipation at a narrow, out-

ermost boundary region. Core temperatures of the Sun and

other stars adjust themselves such that the energy generation

in the core balances the radiative capacity of the outermost

radiative zone.18 Then, the intermediate convective zone

adjusts itself so as to transport all this energy flux. In a toka-

mak, the energy shedding capacity of the outermost edge

region will be determined by radiation loss and turbulent

transport (both convection and conduction) in that region.

Then, based on the analogy to the Sun, we may expect that

the core temperature of a tokamak plasma will increase rap-

idly (i.e., L-H transition occurs) when energy shedding

capacity at the edge region diminishes by some reasons, such

as due to either the suppression of edge turbulence or the

reduction of radiative loss, depending on the relative strength

of the two processes (typically turbulent transport will be

much higher in normal tokamak operation). This may result

in the formation of a sharp edge temperature gradient, which

is accelerated by the positive feedback between the mean

E�B flow and turbulent suppression.

This paper is organized as follows: In Sec. II, we derive

Pth from an edge power balance relation. We assume that

power flux coming out of the core is transported by turbulent

conduction and convection or dissipated by impurity radia-

tion in a fixed narrow edge layer. To analytically evaluate

the amount of turbulent heat transport in a narrow edge layer,

we make two assumptions. First, we assume that the high

poloidal mode number drift resistive (high-m DRBM)19–22 is

the dominant turbulence driver leading to the turbulent heat

transport prior to L-H transition. High-m DRBM driven tur-

bulence in edge and scrape-off layer (SOL) regions has been

shown in numerical simulations21,23,24 and some experi-

ments.25,26 Second, the turbulent equipartition (TEP)35–37

process is assumed to prevail in pre-transition L-mode states.

Then, we apply the conventional turbulence quench rule,

xE�B� clin, where xE�B¼ @vE�B/@r and clin is the linear

growth rate of the high-m DRBM, to obtain transition condi-

tion, hence Pth. The assumption of the prevalence of TEP

prior to L-H transition leaves one numerical factor to be

determined empirically from experimental data. Section III

is devoted to the application of the semi-analytic formula

developed in Sec. II to existing devices and ITER. The

power threshold formula is found to reproduce the character-

istic features observed in various devices and shows a rea-

sonable agreement in terms of the values of minimum Pth

and the roll-over density. Prediction of Pth for ITER shows

that reduction of edge density is a key to ensure H-mode

access in high density regime. We conclude our paper in

Sec. IV with a brief summary of main results and some

discussion.

II. A POWER BALANCE MODEL FOR L-H TRANSITION

We begin our analysis from a postulate that a narrow

region in the vicinity of the last closed flux surface, which is

named as the edge dissipation layer (EDL), is responsible

for dissipation of energy coming from the core through tur-

bulent conduction and convection, and radiative processes.

The width of EDL is the order of electron temperature scale

length, which is typically 2%–5% of the minor radius (a),

i.e., DR/LTe� 1, where DR is the EDL width and LTe

¼ �rTe=Te is the electron temperature scale length.

In typical gas-puffed L-mode discharges, neutral par-

ticles play an important role in determining edge density pro-

files. For instance, the strong correlation of neutral

penetration depth with the shape of edge density profile has

been reported previously.27,28 The density profile often

shows a “pedestal-like” structure even before L-H transi-

tion.28 The density scale length (Ln¼�n/rn) is then typi-

cally smaller than LTe
. In this case, the atomic processes such

as ionization and charge exchange will prevail and determine

density profile in EDL.29,30 One can then evaluate Ln in EDL

from an one-dimensional model of neutrals and plasma par-

ticles under the assumption of edge recycling factor of unity,

resulting in30

Ln ’ 1=nr	; r	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðji þ jcxÞji=Te

p
� 3:6� 10�19m2:

(2)

Here, ji and jcx¼hr�icx are the rate coefficients for ioniza-

tion and charge exchange processes, respectively. We use SI

units throughout the paper, except for the electron tempera-

ture and power for which keV and MW are used, respec-

tively, unless otherwise specified.

The radiative power inside EDL, Prad, can be written as

Prad ¼ nInRTV; (3)

where RT is the volumetric radiation,31 V¼ SDR the volume

of EDL with S ¼ 4p2Ra
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ j2Þ=2

p
the surface area, R (a)
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and j the major (minor) radius and elongation, respectively,

and nI ¼
P

z nz with nz denoting the density of impurity ions

in the ionization state z at a given temperature. In fact, nI and

RT are complicated functions of electron temperature31

whose values should be provided from experimental meas-

urements. In this study, however, we treat RT and nI� fZn
(where fZ is the impurity fraction) as constants in the sense

that an average over a narrow edge region would yield fairly

fixed values for them (for given plasma facing materials and

wall conditioning method) regardless of plasma discharge

parameters. Normalizing RT, n, and fZ by 10�39 MW
m3,

1020 m�3, and 10�2, respectively, one can express Prad in

MW unit

PradðMWÞ ¼ 0:1� fZð10�2Þ nð1020 m�3Þ
� �2

� RTð10�39 MW
m3ÞSDR; (4)

where normalized units are indicated in corresponding physi-

cal quantities.

To make any further analytical progress, it is necessary

to postulate on the turbulent process occurring in EDL. Until

now, there is no generally accepted theory in tokamak edge

turbulence. In this study, we hypothesize that high poloidal

mode number drift resistive ballooning mode (high-m

DRBM)19–22 is a dominant turbulent mode, which is respon-

sible for the turbulent power loss in EDL prior to L-H transi-
tion (i.e., when edge temperature is relatively low). This is

one of main assumptions in this work, the justification of

which should be made based on the comparison of our final

results and experimental data. Recent gyrokinetic simula-

tions using the GENE code indeed find that resistive balloon-

ing modes are unstable around the pedestal formation region

prior to L-H transition.24

High-m DRBMs have similar growth rates to ideal bal-

looning modes even when b is less than the critical b,

bc � bð1þ si=ZÞq2R=Ln. Here, b¼ 2l0P/B2, with P the total

pressure, q¼ rBT/RBp, with BT and Bp are toroidal and poloi-

dal magnetic fields, respectively, si¼Ti/Te, and Z is the ionic

charge. The linear growth rate (clin) of the high-m DRBM is

given by21,22

clin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2

sHð1þ si=ZÞ
RLnAi

s
; (5)

where csH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mH

p
¼ 3:09� 105T1=2

e ðm=sÞ is the ther-

mal speed of hydrogen ions and Ai is the atomic mass.

The radial correlation length of high-m DRBM is deter-

mined by balancing the compression of the polarization cur-

rent and the parallel electron current. Specifically, the relation

k2
?q

2
s clin � vek2

jj; (6)

yields the approximate radial correlation length (L0) of

high-m DRBM21

L0 �
q2

ŝ2

�eqsHR

2Xe

� �1=2
2Rð1þ si=ZÞAi

Ln

� �1=4

: (7)

In Eqs. (6) and (7), k? and k|| represent wavenumber of

high-m DRBM in perpendicular and parallel direction,

respectively, �e denotes the electron-ion collision frequency

for singly charged ions, the numerical value of which is

given by ��1
e ¼ se ¼ 6:4� 1014TeðkeVÞ3=2=nðm�3Þ, with n

the edge plasma density, qsH¼ csH/Xi, Xe is the electron

gyro-frequency and ŝ ¼ dlnqðrÞ=dlnr.

In the quasilinear theory of DRBM-driven turbulent

transport, particle and thermal diffusivities are approxi-

mately equal. One can then use the mixing length argument

to evaluate them to obtain

Dturb � ve ¼ clinL2
0 � ð1þ si=ZÞ q=ŝð Þ2 R=Lnð Þ�eq

2
e

¼ ð1þ si=ZÞ q=ŝð Þ2 R=Lnð Þ 1:79� 10�23

nT
1=2
e

n

BT

� �2

: (8)

Here, qe ¼
ffiffiffiffiffiffiffiffiffiffi
meTe

p
=eBT ¼ 1:07� 10�4T1=2

e =BT ðmÞ is the

electron gyroradius and we use lnK ¼ 17 and keV units for

Te. We remark that Eq. (8) does not necessarily imply the

same profiles for density and temperature because the edge

density profile is determined by the combination of turbulent

diffusion, particle pinch, and neutral penetration depth.

At this point, it is appropriate to introduce fundamental

assumptions in our study. We assume that the pre-transition

L-mode edge profile and turbulent diffusivity within EDL

are pertinent to turbulent equipartition (TEP)35–37 with high-

m DRBM as the dominant turbulence driver. The basic idea

of the TEP theory is that turbulent mixing leads to the ho-

mogenization of magnetically weighted, locally conserved

quantities. The result of this homogenization is n/BT � const
on a surface.36 Naulin et al. shows that the relation n/BT �
const is well established from self-consistent, flux-driven

TEP simulations with electrostatic pressure gradient driven

interchange turbulence in slab geometry.36 Note that the

characteristics of high-m DRBM and interchange turbulence

are almost identical. Under this assumption, we may treat

(n/BT)2 term in Eq. (8) as a constant, denoted by CTEP, repre-

senting the TEP effect.

Under these assumptions, the turbulent power through

EDL becomes

Pturb ¼ ðTCn þ nCeÞS
�1:79� 10�23CTEPð1þ si=ZÞðq=ŝÞ2T1=2

e ðnr	Þ2

� 1þ 1

nr	LT

� �
RS;

which can be re-written in terms of MW units

PturbðMWÞ ¼ 0:286� 10�4CTEPð1þ si=ZÞT1=2
e ðkeVÞ

� n2r2
	 1þ 1

nr	LT

� �
RS; (9)

where r* is defined in Eq. (2). To obtain Eq. (9), we use the

Fick’s law for the particle and thermal flux, Cn¼�D@n/@r
and Ce¼�ve@Te/@r, respectively, and assume that q=ŝ is

constant and order of unity, q=ŝ ’ 1. This is a reasonable

approximation in many tokamak discharges with q95� 2.5

and divertor configuration.
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To evaluate the threshold edge electron temperature

beyond which L-H transition occurs, we employ the conven-

tional turbulence suppression criterion.4 Thus, L-H transition

occurs when the E�B shearing rate exceeds the inverse of

turbulence auto-correlation time (sc), i.e., xE�B ¼ @hVE�Bi
=@r > s�1

c , where s�1
c � c in the quasi-linear limit. One can

obtain xE�B from a radial force balance relation.

There are three main contributors to xE�B involved in

L-H transition: (1) the ion diamagnetic component coming

from the ion pressure gradient (rPi), (2) the poloidal zonal

flow from poloidal Reynolds stress, and (3) the component

driven by an ion parallel flow gradient (rVk). In nominal

L-H transition involving the formation of the type-I ELMy

H-mode, it has been known that components (1) and (2) are

important with rPi being the dominant, while (3) plays an

important role in core transport barrier formation.9,32,33

Poloidal zonal flows play a crucial role in the early phase of

L-H transition by suppressing background turbulence, hence

triggering the L-H transition. The actual L-H transition,

however, occurs when the rPi component becomes domi-

nant and provides the positive feedback for further steepen-

ing of the pressure gradient, as predicted by the two

predator-one prey model34 and recently confirmed in DIII-D

experiments.9 In this regard, we can neglect rVk and zonal

flow contributions to xE�B during the positive feedback pe-

riod of L-H transition.

The rPi component can be further divided into density

(rn) and temperature gradient (rTi) driven components.

Normally, L-H transition involves the development of a

strong density gradient, as manifested by a sudden drop in

Ha/Da signal and the increase of the edge plasma density.

Thus, the pressure gradient is mostly dominated by the den-

sity gradient component during the L-H transition.

Based on above discussions, one can safely assume that

xE�B comes mostly from the density gradient

xE�B �
TiðrrnÞ2

eZBTn2
¼ siTe

eZBTL2
n

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2

sHð1þ si=ZÞ
RLnAi

s
; (10)

during L-H transition. Then, substitution of Ln� 1/nr
*

to Eq.

(10) results in an expression for the threshold electron

temperature

TeðkeVÞ½ �1=2 � 3:09� 102BTðTÞðZ=siÞðnr	Þ�3=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ si=ZÞ=AiR

p
:

We remark here that the existence of threshold edge electron

temperature for L-H transition (Te,crit) has been observed in

numerous tokamak experiments.25,38,39 Since Te,crit is a natu-

ral consequence of the turbulence quench rule by mean

E�B shear in our model, this suggests that the onset of posi-

tive feedback by the mean E�B shear will be the possible

origin of Te,crit in L-H transition.

The combination of this requirement with the power bal-

ance relation yields an expression for the L-H transition

power threshold

PthðMWÞ � PturbðMWÞ þ PradðMWÞ; (11)

where

PturbðMWÞ ¼ 0:075CTEP
Zð1þ si=ZÞ3=2

siA
1=2
i

ðnr	Þ1=2

� 1þ 1

36nr	LT

� �
� BTR1=2S; (12)

and Prad is given in Eq. (4). In Eq. (12), n and r* are normal-

ized to 1020 m�3 and 3.6� 10�19 m2, respectively.

Equation (11) is the principal result of this work.

Combined with Eqs. (4) and (12), it gives the power threshold

required for L-H transition in tokamaks under the assumption

of high-m DRBM dominant turbulent transport prior to L-H

transition. The coefficient CTEP, representing the TEP effect,

is treated as an empirical parameter, the value of which is to

be determined by the comparison between calculated Pth

using Eq. (11) and experimental results.

From Eq. (12), one can find that Pturb scales as

Pturb / ðnr	Þ1=2 þ ð1=36DRÞðnr	Þ�1=2
. The origin of the ex-

istence of the roll-over density is then obvious: it comes from

the turbulent conduction inside EDL, which is proportional to

ðnr	Þ�1=2
. This constitutes a dominant power loss channel in

low density regime where convective (/ ðnr	Þ1=2
) and radia-

tive (/ n2) losses become small. Thus, we identify that the

“U”-shaped non-monotonic density scaling in Pth originates

from the rapid increase of density scaling length, Ln¼ 1/nr*,

as density becomes low.

In our model, the turbulent conductive loss is dominant

in the low density regime, while radiative loss becomes pre-

dominant in the high density regime. The turbulent convec-

tive loss is typically much smaller than the radiative loss

when n(1020 m�3)� 0.15.

The roll-over density is then determined by the balance

between the conductive and radiative losses in low and high

density regimes, respectively. One can obtain the scaling of

the roll-over density in Pth vs. n from @Pth/@n¼ 0, giving

rise to

nmin � D�0:8
R

BT

sifZRT

� �0:4 Z2R

r	Ai

� �0:2

: (13)

The relation nmin / D�0:8
R in Eq. (13) implies that the EDL

width is the most influential discharge condition to deter-

mine nmin. In addition to DR, BT is also an important exter-

nal factor to determine nmin for given discharge parameters,

such as DR and impurity contents/levels. So, one expects

higher roll-over density as BT increases, which qualitatively

agrees with experiments. However, the BT scaling of nmin is

relatively weak compared to the experimentally inferred

scaling, nmin / BT. If we include the convective loss term,

however, @Pth/@n¼ 0 is reduced to the fifth order algebraic

equation. Then, nmin shows a stronger BT scaling, approach-

ing to nmin / B
2=3
T . The isotope scaling to nmin,

nmin / ðZ2=AiÞ0:2, is marginal.

It is instructive to look into Eq. (12) in terms of power

threshold scaling. When Pth is written in terms of a power

law for density, magnetic field, and major radius, i.e.,

Pth ¼ C�nXBY
TRZ, the exponents of them are known to satisfy

062503-4 Singh et al. Phys. Plasmas 21, 062503 (2014)



the Kadomtsev constraint, 8Xþ 5Y � 4Z¼ 3.2,40 Atomic

physics processes, such as radiation, has not been considered

to derive the constraint, while experiments show a clear de-

pendence of Pth on wall conditioning and edge neutral den-

sity. So, it is appropriate to examine if Pturb given in Eq. (12)

satisfy the Kadomtsev constraint (i.e., not taking radiative

power loss which definitely violate the constraint).

Assuming a linear relation of n to �n as observed in recent

Alcator C-Mod experiment14 and taking 1=nr	LT as the ra-

tio, Ln/LT, one can obtain

Pturb / �n0:5BTR1:5: (14)

It is easy to see that Eq. (14) satisfies the Kadomtsev con-

straint. In fact, we found a remarkable coincidence between

Eq. (14) and the empirical power threshold expression in

Ref. 2, Pth ¼ CBT �n0:75R2ð�nR2Þa with �0.25� a� 0.25 and

C¼ (0.45 6 0.1)� 0.6a (Ref. 2). The latter exactly reduces

to Eq. (14) when a¼�0.25, with the range of C value,

0.308�C� 0.484. Reference 2 suggests that the major

source of uncertainty of the power threshold prediction for

ITER comes from the uncertainty in major radius scaling,

Pth / RZ, where 1.5� Z� 2.5.2 Since Pth / R1.5 in our

model, which is the lowest exponent for the given range, our

model gives a favorable prediction for ITER power thresh-

old, as will be discussed in Sec. III.

Regarding the isotope and atomic charge scaling, Eq.

(12) indicates that Pth is proportional to Zð1þ si=ZÞ3=2=A
1=2
i .

Then, in similar discharge conditions with si� 1, Pth for deu-

terium discharges is
ffiffiffi
2
p

times lower than that of hydrogen

discharges. This is weaker than the scaling, Pth / 1/Ai.

Equation (12) also indicates that Pth for helium discharges

with He2
4 as a working gas will be 3

ffiffiffi
3
p

=8 ’ 0:65 times

lower than that of hydrogen. If we take r* into account, how-

ever, the actual ratio of Pth for deuterium and He discharges

will be a function of the ratio r̂ ¼ r	ðHeÞ=r	ðDÞ, which is a

complicated function of electron temperature and density.

Typically, r̂ is lower than 1. This may explain why Pth for

He discharges is between those of hydrogen and deuterium,

depending on discharge conditions such as wall conditioning

method, edge electron temperature and density.17

III. APPLICATION TO PRESENT DEVICES AND ITER

To calculate Pth using Eqs. (4), (11), and (12), it is nec-

essary to determine the coefficient CTEP. At present, there is

no generally accepted theory basis to determine CTEP from

first principles. So, we take an empirical approach in this

study. Namely, we evaluate CTEP from experimental data

and treat it as a fixed coefficient to calculate Pth. In this

work, we estimate CTEP using the KSTAR L-H transition

data published in Ref. 12. Table I summarizes numerical val-

ues for various plasma parameters in Eqs. (4) and (12) that

are used to calculate Pth. We note that some parameters,

such as DR, fz, and RT, are not available in the literature.

Thus, we assumed typical values for these parameters, which

are expected in KSTAR experiments.

Figure 1 shows turbulent and radiative (red and blue

dashed lines, respectively) power losses, and Pth (black solid

line) as a function of edge density. The lower triangles in

Fig. 1 represent selected experimental data points reproduced

from Ref. 12. For comparison, we also show Pth evaluated

from the empirical scaling law, Eq. (1), in a green solid line.

We found that CTEP¼ 0.008 (i.e., 0.89� 10�19 m�3/T) gives

a good agreement with experimental data, as can be seen in

Fig. 1. Of course, care should be taken of the validity of this

number because it is obtained by using some assumed values

as discussed earlier. Nonetheless, CTEP¼ 0.008 gives a rea-

sonable agreement with experimental data for other devices,

as will be shown shortly. Thus, we use CTEP¼ 0.008 to cal-

culate Pth for other devices and ITER in this study.

As discussed in Sec. II, turbulent transport is a dominant

loss channel in low density regime (n� 0.17), while radiative

loss prevails in relatively high density regime (n� 0.17). One

can clearly see the existence of the roll-over density around n
’ 0.1. This corresponds to �n ¼ 0:2, if we assume n ¼ 0:5�n
as observed in recent Alcator C-Mod experiments.14 Pth

shown in Fig. 1 (using parameters in Table I and CTEP eval-

uated from experimental data) agrees well with experimental

results reported in Ref. 12, while that calculated from the

TABLE I. Parameters being used to calculate Pth in various tokamaks.

Parameter KSTAR12 ASDEX-U13 JET15 ITER41

Working gas D D D D, H

BT (T) 2.0 2.3 2.7 5.3

R (m) 1.8 1.63 2.96 6.2

a (m) 0.5 0.5 1.25 2.0

j 1.8 1.7 1.7 1.7

S (m2) 51.7 44.9 203.7 682.7

si¼Ti/Te 1.0 1.0 1.0 1.0

r* (3.6� 10�19 m�2) 1.0 1.0 1.0 1.0

fZ(10�2) 10 10 10 5.0

RT(10�39 MWm3) 20 15 7.0 10.0

DR/a 0.05 0.02 0.03 0.05

FIG. 1. Turbulent (Pturb, red dashed) and radiative (Prad, blue dashed) power

through a narrow edge dissipation layer as a function of edge density.

Analytic (Pth¼PturbþPrad) and empirical [Pth,em, Eq. (1)] L-H transition

power threshold are shown in black and green solid lines, respectively.

Lower triangles denote some data points reproduced from Ref. 12. The TEP
coefficient (CTEP) is obtained by fitting the data points using the KSTAR pa-

rameters summarized in Table I. Semi-analytic Pth shows a good agreement

with experimental results, while empirical one shows a considerable devia-

tion at low density regime.
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empirical scaling law shows a deviation in the low density re-

gime. Such a discrepancy in Pth between the empirical scal-

ing and experimental data in the low density regime has been

also reported in some tokamaks.13–15

It is of importance to perform a sensitivity study of the

Pth curve to discharge parameters since we used some

assumed values for them to obtain CTEP. Among the parame-

ters, the width of EDL, DR, has most significant influence in

Pth in the low density regime, as shown in Fig. 2(a). Not

only Pth but also nmin is considerably affected by DR. Low

DR brings about the flattening of the minimum Pth density,

i.e., increasing the roll-over density. In contrast to this, the

impact of Prad on Pth in the low density regime due to the

uncertainties of fZ and volumetric radiation (RT) is marginal.

The change of fZ and RT has little influence on Pth in the low

density regime (n� 0.15), as shown in Fig. 2(b), where Pth

vs. n curves are plotted for three values of fZ (fZ¼ 5.0, 10.0,

and 15.0 corresponding to red, green, black, and blue lines,

respectively). Low radiation loss also gives rise to the flat-

tening of minimum Pth density. Increase of fZ brings about

the increase of the slope of Pth (i.e., increase of Pth) in high

density regime resulting in further proximity to the charac-

teristic U-shape in a Pth vs. n curve.

Next, we apply our model to existing tokamak devices

for which published data for L-H transition are available. We

have chosen two devices for this study: ASDEX-U13

and JET.15 Figures 3(a) and 3(b) show the results of Pth

calculations for ASDEX-U and JET, respectively. In these

calculations, we use CTEP¼ 0.008 which has been obtained

from KSTAR experimental data. Plasma parameters being

used to obtain Fig. 3 are also given in Table I. Again, lower

triangles in Figs. 3(a) and 3(b) denote selected experimental

data points from Refs. 13 and 15, respectively. Both show fa-

miliar “U”-shaped curves with good agreements with experi-

mental data. In Fig. 3(b), we show only data points for

MkIIGB Septum configuration at JET exhibiting a clear den-

sity roll-over in Pth. We mention that no density roll-over is

observed when septum is removed (SRP configuration).

Although not presented here, we remark that our model

does not fit quite well with Alcator C-Mod data presented in

Ref. 14. The roll-over density matches well if we use

DR/a¼ 0.01, but published Pth in Ref. 14 is 50%–100%

higher than that predicted by the model over a wide range of

density. Disparity in roll-over density between Alcator

C-Mod and other devices has been already recognized in pre-

vious works.2,11 The physics origin behind this discrepancy

is unclear yet.

Having assessed the validity of the model to existing

data, we apply our model to predict Pth in ITER. Figure 4(a)

shows predicted Pth for ITER hydrogen (blue line) and deute-

rium (black line) discharges. We used typical ITER plasma

parameters summarized in Table I. For comparison, we also

present Pth obtained from the empirical scaling in blue line.

Pth vs. n curves in ITER also exhibit an U-shaped feature with

a roll-over density around n� 0.1 (1020 m�3). When n� nmin,

our model predicts lower Pth than the empirical scaling law

for low density, while it does higher one for high density

(n� 0.4). If we assume n ¼ 0:5�n as in Fig. 1, Pth for �n ¼
0:5� 1020m�3 and 1.0� 1020 m�3 are 37.3 and 101.9 MW,

respectively. Both values are within the 95% confidence inter-

val of the empirical scaling law.11 So, accessing H-mode at

low density He discharges should be readily achieved with

the power level available in the initial phase of ITER opera-

tion, while it is problematic at high density.

FIG. 2. Sensitivity of Pth to the (a) ratio of EDL width (DR) to minor radius

(a) and (b) impurity fraction (fZ). DR has a significant influence on Pth in our

model, in particular, in the low density regime. Higher fZ results in the prox-

imity of a characteristic “U”-shape curve due to the increase of Prad in the

high density regime without affecting Pth significantly in the low density

regime.

FIG. 3. Calculations of Pth for (a) ASDEX-U and (b) JET. Plasma parame-

ters summarized in Table I and CTEP¼ 0.008 have been used. Lower trian-

gles denote some data points reproduced from Ref. 13, for ASDEX-U, and

15, for JET, respectively. Semi-analytic Pth shows reasonable agreements

with experimental data for both devices, except near the roll-over density.

Only data points for MkIIGB Septum configuration are shown in (b) exhibit-

ing a clear density roll-over in Pth.
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The current envision of accessing a high density H-

mode in ITER is to exploit hysteresis in power, i.e., access-

ing H-mode at low density and ensuing density ramp up. In

this case, we may define the “strength” of hysteresis as

(nmax� n0)/n0, where n0 is the density at which L-H transi-

tion occurs with a given power, P0 and nmax is the maximum

density that can maintain the H-mode state with P0. The

physics basis determining the hysteresis strength for given

P0 has not been established yet. Given the lack of physics

understanding, it will be necessary to reduce expected Pth at

high density to ensure high density H-mode operation in

ITER. If Pmax/P0 (Pmax is the power threshold at n¼ nmax) is

too high, we may not ensure the effect of hysteresis to main-

tain the H-mode. In our model, Pth strongly depends on den-

sity (Pth / n2) at high density due to the radiative loss, so,

the hysteresis effect might be questionable to sustain the

H-mode state. The most effective way of doing so is to

reduce the edge density and radiative losses.

Figure 4(b) shows Pth vs. line averaged density (�n) for

three different ratios of edge density to average density,

fn ¼ n=�n. Here, we assume a linear relationship between n
and �n. One can see the reduction of Pth at high density when

fn decrease. In fact, we found that Pth is less than the heating

power planned in the initial phase of ITER operation

(73 MW) when fn� 0.45. The reduction of edge density may

be achieved by using deep pellet injection as a main fuelling

tool. In this regard, it is of interest to study high density L-H

transition with deep pellet fuelling and comparison of Pth

with the gas-puffed case.

IV. SUMMARY AND CONCLUSIONS

In summary, we presented a model for L-H transition

power threshold (Pth) in tokamaks, based on a simple edge

power balance relation. Turbulent heat transport and radia-

tive losses at a narrow edge layer are assumed to be

responsible for the heat disposal coming out of a tokamak

core region. Two assumptions have been made in our ana-

lytic study:

• High- m DRBM is the dominant turbulence driver in toka-

mak edge plasmas.
• The pre-transition L-mode profile and turbulent diffusivity

pertain to turbulent equipartition.

Then, we derived Pth as a function of plasma parameters

prior to L-H transition by exploiting the turbulence quench

rule by mean E�B shear. Our model leaves an undeter-

mined coefficient, the TEP coefficient CTEP whose value has

been obtained by comparison with experimental data (in this

work, using the published KSTAR experimental data in Ref.

12). Our model reproduces features of the Pth vs. density

curves observed in present-day tokamaks. In particular, it

exhibits the characteristic feature of an “U”-shaped Pth vs. n
curve, indicating the existence of roll-over density below

which Pth increases as density decreases. It turns out that this

is due to the increase of the density scaling length in the low

density regime. This interpretation is conceptually disparate

with that of a recently published article where the two-point

scrape off layer (SOL) transport model has been employed

to evaluate Pth.42 We found that our turbulent transport

model satisfies the Kadomtsev constraint and reproduces the

empirical scaling law given in Ref. 2.

Application of our model to existing tokamak devices

shows a reasonable agreement with experimental results.

An exception for this relatively high degree of agreements

is the Alcator C-Mod tokamak in which the disparity of

minimum power threshold density between other machines

has been recognized in earlier works.2,11 The physical ori-

gin behind this discrepancy is unclear. Our model was

applied to predict Pth in ITER. Large radiation loss at high

density (n� 0.35� 1020 m�3) makes dubious to access high

density H-mode in ITER by the exploitation of hysteresis,

given the limited power level in the initial ITER operation

phase. To avoid this difficulty, we highlighted the impor-

tance of reducing edge density by deep pellet injection to

reduce Pth at high density. A comparative study of L-H

transition by varying edge density will be a good test-bed

for the validation of our model.

Finally, we remark that our work should be regarded as

a semi-analytic approach bridging the gap between empirical

scaling and rigorous derivation of PLH from microphysics.

The latter, of course, is the ultimate goal of theoretical

endeavour, which is still far from the realization due to the

complication of tokamak edge turbulence. A natural next

step will then be the consideration of power balance in the

presence of general drift wave turbulence. A way to identify

key dynamical processes involved in L-H transition is to per-

form fully nonlinear simulations. However, performing flux-

driven, global nonlinear simulations using the first principle-

based code is a challenging task. In this regard, dynamic

flux-tube simulations are interesting in elucidating the effects

of local edge conditions, such as edge temperature and den-

sity, on L-H transition and PLH. Flux-tube simulations are

not computationally demanding compared to global simula-

tions. Further, the effects of other instabilities (such as ion

FIG. 4. (a) Predictions of Pth for ITER hydrogen (Pth,H, red solid line) and

deuterium (Pth,D, black solid line) as functions of edge density. Pth from the

empirical scaling law, Eq. (1), is shown in blue solid line. ITER plasma pa-

rameters summarized in Table I have been used. (b) Pth vs. average density

(�n) for various ratio of edge density (n) to �n; fn ¼ n=�n. A linear relationship

between n and �n is assumed. Cyan dashed line indicates auxiliary heating

power at initial operation of ITER (Paux¼ 73 MW). Decrease of fn signifi-

cantly reduces Pth at ITER target operation density, �n � 0:9. When a� 0.45,

Pth is less than Paux.
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temperature gradient/trapped electron modes) that have not

considered in our study can be easily incorporated in these

simulations. This is left as a future study.
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