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Charge transport in InAs nanowire Josephson junctions
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2Division of Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden
3Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China

(Received 8 November 2013; revised manuscript received 16 May 2014; published 23 June 2014)

We present an extensive experimental and theoretical study of the proximity effect in InAs nanowires connected
to superconducting electrodes. We fabricate and investigate devices with suspended gate-controlled nanowires
and nonsuspended nanowires, with a broad range of lengths and normal-state resistances. We analyze the main
features of the current-voltage characteristics: the Josephson current, excess current, and subgap current as
functions of length, temperature, magnetic field, and gate voltage, and compare them with theory. The Josephson
critical current for a short-length device, L = 30 nm, exhibits a record high magnitude of 800 nA at low
temperature that comes close to the theoretically expected value. The critical current in all other devices is
typically reduced compared to the theoretical values. The excess current is consistent with the normal resistance
data and agrees well with the theory. The subgap current shows a large number of structures; some of them are
identified as subharmonic gap structures generated by multiple Andreev reflection. The other structures, detected
in both suspended and nonsuspended devices, have the form of voltage steps at voltages that are independent
of either the superconducting gap or length of the wire. By varying the gate voltage in suspended devices, we
are able to observe a crossover from typical tunneling transport at large negative gate voltage, with suppressed
subgap current and negative excess current, to pronounced proximity junction behavior at large positive gate
voltage, with enhanced Josephson current and subgap conductance as well as a large positive excess current.
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I. INTRODUCTION

Semiconducting nanowires (NW) have been a focus of
intensive research for their potential applications as building
blocks in nanoscale devices [1–4]. The nanoscale dimension
of the semiconducting nanowires, comparable to the electronic
Fermi wavelength, also makes them an attractive platform for
studying the fundamental phenomena of quantum transport.
By tuning the Fermi wavelength by means of electrostatic
gates, one gets access to such quantum phenomena as conduc-
tance quantization [5,6], and quantum interference effects [7].

Another research interest has been the proximity effect in
nanowires induced by connecting them to superconducting
electrodes (S) [8,9]. In such devices, S-NW-S, the nanowire
serves as a weak link through which a supercurrent can flow
due to the presence of the phase difference between the
superconducting condensates [9–11].

Among a variety of nanowires tested in experiments,
nanowires of InAs play a central role [8,10]. This is due to their
material properties: high electron mobility, low effective mass,
and pinning of the Fermi level in the conduction band that
permits highly transparent galvanic S-NW contacts. Hybrid
devices of InAs nanowires have demonstrated Andreev subgap
conductance [6,12,13], Josephson field effect [9,10], and
Cooper-pair beam splitting [14]. More recently, the nanowire
hybrid devices attracted new attention following theoretical
predictions of Majorana bound states in NW-S proximity
structures [15–17].

*abay@chalmers.se
†per.delsing@chalmers.se

In spite of intensive research, no systematic investigation
of the proximity effect in InAs nanowires has been reported,
leaving open important questions about the consistency of the
observed transport phenomena and theoretical views of the
proximity effect.

In this paper, we report on extensive experimental studies
of current-voltage characteristics (IVC) of a large variety
of hybrid devices made with InAs nanowires connected
to aluminum electrodes. These Al-InAs NW-Al devices in-
clude suspended and nonsuspended nanowires and nanowires
with different lengths, which are tested at different tem-
peratures, magnetic fields, and gate voltages. We measure
the main proximity-effect characteristics: Josephson critical
current, excess current, and subgap current features, and
we make a quantitative comparison with relevant theoretical
models.

Our main conclusion is that the most properties of the
proximity effect can be qualitatively understood and quan-
titatively reasonably well fit on the basis of existing theory.
In particular, the record high Josephson critical current of
800 nA, observed in the shortest studied nanowire (with
30 nm separation between superconducting electrodes) is close
to the theoretical bound for ballistic point contacts [18]. In
longer devices, the decay of the critical current with length
is consistent with a crossover from the ballistic to diffusive
transport regime, followed by a crossover from a short- to
long-junction behavior.

In the gate-controlled suspended devices, we observe a
crossover from a distinct S–normal-metal–S (SNS)-type be-
havior, with large positive excess current and enhanced subgap
conductance, to tunneling S-insulator-S (SIS)-type behavior, in
accordance with gradual depletion of the conducting channels
by the gate potential and increase of the wire resistance.
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We also observe subgap current features associated with
multiple Andreev reflection (MAR) transport [19]. In addition
to those MAR features, we systematically observe subgap
features, which are not associated with MAR but have some
different origins. These features are not related to phonon-
induced resonances [20], and they do not seem to have an
electromagnetic origin. They appear on the IVCs as voltage
steps, strikingly similar to the voltage steps generated by phase
slip centers in superconducting whiskers [21,22].

The structure of the paper is as follows: After describing
the device fabrication and experimental setup in Sec. II,
we summarize the normal-state conduction properties of
the devices in Sec. III, which give the necessary input for
choosing an appropriate theoretical model of the proximity
effect described in Sec. IV. Then, in the following sections,
we discuss the superconducting transport properties: excess
current in Sec. V, Josephson current in Sec. VI, subgap current
in Sec. VII, and variation of the current under the gate potential
in Sec. VIII. Section IX contains conclusive remarks.

II. EXPERIMENTAL DETAILS

A. Sample fabrication

The devices we have investigated are of three types:
nanowires placed directly on the substrate with either
(a) two superconducting contacts or (b) multiple contacts, and
(c) suspended devices with local gates (Fig. 1). All devices are
made on standard Si substrates capped by 400-nm-thick SiO2.

The nanowires are grown by chemical beam epitaxy [23].
In the growth process, metal-organic gaseous sources are
thermally cracked to their components and the growth ma-
terials are directed as a beam towards an InAs substrate
placed in the growth chamber. At the optimal temperature,
the nanowire growth is catalyzed by Au aerosol particles that
have been distributed on the substrate. The sizes of the Au
seeds determine the diameter of the nanowires. In this paper,
the nanowires are taken from a single growth batch with an
average diameter of 80 nm.

To fabricate the nonsuspended devices, InAs nanowires are
first transferred to a Si substrate and their relative positions
with respect to predefined marks are determined with the
help of scanning electron microscope (SEM) images. The
extracted locations are then used to pattern superconducting
Ti/Al (5/150-nm-thick) contacts on top of the nanowires. De-
pending on the intended device length, i.e., distance between
source and drain electrodes, the superconducting contacts are
defined by either single-step or double-step electron-beam
(e-beam) lithography [11]. The shorter devices (L < 100 nm)
are defined by the double-step e-beam lithography, whereas
the longer devices (L � 100 nm) are defined by the single-step
e-beam lithography. A SEM image of a typical two-terminal
device (L ≈ 100 nm defined by the single e-beam lithography)
is shown in Fig. 1(a). The inset image shows a short-length
device of L ≈ 60 nm defined by the double-step e-beam
lithography.

To fabricate the suspended devices, a standard Si substrate
is first patterned with interdigitated Ti/Au stripes [24]. InAs
nanowires are then transferred to the already patterned Si
substrate and some of the nanowires end up on top of the

FIG. 1. SEM images of investigated devices. (a) Short-length
device of type A defined by a single-step electron-beam lithography
(inset shows a short-length device defined by a double-step e-beam
lithography). (b) Device of type B has multiple contacts on a single
nanowire separated by different lengths. (c) Three-terminal device
with a suspended nanowire and a nearby local gate; the gate is 15 nm
below the nanowire.

interdigitated metal stripes. The stripes are patterned in a
two-step fabrication process in order to get a height difference
of 15 nm between every two adjacent stripes. This allows the
nanowires to rest on the thicker electrodes (65 nm thick), while
being suspended above the substrate and the thinner electrodes
(50 nm thick). With the help of SEM images, the positions of
suitable nanowires are found and superconducting electrodes
Ti/Al (5/150 nm thick) are defined on selected nanowires with
e-beam lithography. A SEM image of a suspended device is
shown in Fig. 1(c).
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FIG. 2. (Color online) Normal-state IVC (blue line) and
superconducting-state IVC (red line) for a device of length L ≈
150 nm (sample B5a). The superconducting IVC shows normal-
state ohmic behavior (Rn = 1.07 k�) at |V | > 2�/e, enhanced
conductance and current features at subgap voltages |V | � 2�/e,
and the Josephson current.

To get good transparency of the metal-nanowire inter-
faces, an ammonium polysulfide solution (NH4Sx) cleaning
process [11,25] has been used prior to evaporation of the
superconducting contacts. The samples are then characterized
at room temperature and stored in a vacuum box before further
measurements at low temperatures.

B. Experimental setup

Current-voltage characteristics of the devices are measured
in a dilution refrigerator with a base temperature of 15 mK.
The IVCs are recorded in either a current- or voltage-bias con-
figuration. In the current-bias mode, the current is determined
by a high-resistance bias resistor in series with the device.
As we increase the current, the voltage across the device
is simultaneously measured with a differential amplifier. In
the voltage-bias mode, a voltage is directly applied across
the device while the current is measured simultaneously by a
transimpedance amplifier. To decrease noise coupling to the
devices, the electrical lines in the measurement setup are well
filtered and thermally anchored at different temperature stages
of the refrigerator. The measurement setup is also designed to
measure IVCs as a function of temperature and magnetic field.

C. Current-voltage characteristics

A typical IVC is shown in Fig. 2 for a device of length
L ≈ 150 nm (sample B5a in Table I). Above the critical
temperature, the IVC (blue line) exhibits ohmic behavior
with a normal-state resistance of Rn = 1.07 k�. The critical
temperature, Tc = 1.1 K, for the devices was determined from
samples with shorted electrodes, i.e., without any nanowire.
This value agrees well with the temperature at which the
Josephson current disappears in the samples with strong
Josephson coupling. At temperatures well below Tc, the IVC
(red line) shows three distinct conductance regimes: (i) For

TABLE I. Measurement values for devices of different types.
Type-A devices are nanowires with two superconducting contacts.
Type-B devices are defined on a single nanowire with multiple
contacts. Adjacent junctions in the B-type devices are marked with
alphabetic letters. Type-C devices are suspended devices with local
gates. The nanowires are taken from the same growth batch of
approximately 80 nm in diameter.

Device L (nm) Rn (k�) Im (nA) eImRn/� eIexcRn/�

A 1 30 0.16 800 1.02 1.52
2 90 0.55 95 0.40 0.87
3 100 0.56 54 0.23 0.75
4 220 1.04 30 0.24 0.76

B 5a 150 1.07 50 0.41 1.20
5b 170 1.28 40 0.39 1.28
5c 180 1.34 36 0.37 1.31
5d 190 1.37 35 0.36 1.11
6a 110 1.84 23 0.32 1.21
6b 200 2.40 12 0.21 0.81
6c 250 2.72 9 0.20 0.77
6d 500 4.21 3 0.10 0.71
6e 600 4.82 1 0.04 0.64

C 7 200 2.23 15 0.24 1.30
8 150 3.3 13 0.34 1.17
9 130 2.19 28 0.47 1.02

10 300 3.80 6 0.17 1.23
11 150 5.01 2.6 0.10 0.78
12 200 3.6 7.5 0.21 1.11

voltages |V | > 2�/e, the IVC shows a linear behavior with
the same resistance as in the normal state, Rn. (ii) For smaller
voltages |V | < 2�/e, the resistance is approximately Rn/2
and exhibits subgap features. (iii) At the zero voltage V = 0,
the device switches to zero resistance, exhibiting a Josephson
current.

In the next sections, we perform quantitative analysis of the
IVC based on a detailed characterization of the normal-state
current transport in the wire.

III. NORMAL-STATE TRANSPORT

In order to characterize the normal-state properties of the
junctions, dc measurements have been performed on several
devices with a broad range of lengths and resistances. Mea-
surement results for representative devices are summarized
in Table I. The devices are divided into three groups, A, B,
and C, corresponding to the two-terminal, multiterminal, and
suspended devices, respectively, as shown in Fig. 1.

The normal-state resistance as a function of length for
devices B5 and B6 is plotted in Fig. 3. The resistance of each
device increases linearly with length, with approximately the
same resistance per unit length, R/L ≈ 6 �/nm. Here, the re-
sistance values are taken from the two-point measurements that
also include interface resistance. From the length dependence
of the resistance in Fig. 3, we extract the contact resistance
by extrapolating to zero length. For device B5, we find that
contact contribution is less than 180 �, while for device B6, it
is approximately 1.2 k�.
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FIG. 3. (Color online) Normal-state differential resistance as a
function of length for devices B5 (blue line) and B6 (green line). The
two devices show approximately the same resistance per unit length
6 �/nm. Extrapolation to zero length gives the full contact resistance,
which is less than 180 � for B5 and 1.2 k� for B6.

Taking advantage of multiple contacts of the B-type
devices, we perform two- and four-point measurements of
the resistance, which allows us to determine the number of
conducting channels and the channel average transparency.
The two- and four-point resistance expressions can be written
for perfect interfaces as R2p = Rq/(NTt ) and R4p = Rq(1 −
Tt )/(NTt ), respectively [26], where Rq = h/2e2 = 12.9 k�

is the quantum of resistance, N is the number of channels,
and Tt is the average transparency of the channels. Taking
two- and four-point resistance measurements on the same
section, we find that our nanowires have a spread in the
number of channels ranging between 50 and 100 channels.
For instance, for junction B5c, we measured R2p = 1.34 k�

and R4p = 1.18 k�, giving the number of channels,

N = Rq

R2p − R4p

≈ 80. (1)

This is consistent with the contact resistance found for device
B5, and implies perfect S-NW interfaces with transparency
close to unity. For the same junction, we can then extract the
average transparency Tt = 0.12 for the channels.

Assuming only a surface layer of nanowire to be conduct-
ing, in analogy with the 2-Dimensional Electron Gas (2DEG)
conductivity in planar InAs devices, such a large amount of
conducting channels would give an unrealistically small value
for the Fermi wavelength. On the other hand, assuming the
whole bulk of the wire to be conducting, we find the electronic
Fermi wavelength λF to depend logarithmically on the number
of channels, as

λF (N ) = 2πrw

αl,n

≈ A − B ln(N ). (2)

This result is arrived at by solving the Schrödinger equation
in a cylinder of radius rw and counting the number of modes
(channels) that cross the Fermi level. In Eq. (2), αl,n is the

TABLE II. Summary of the extracted parameters for the nanowires.

Fermi wavelength λF 22 nm
Fermi wave vector kF 2.9 × 108 m−1

Fermi velocity vF 1.3 × 106 m/s
Mean free path �e 46 nm
No. conducting channels 55
Superconducting gap � 160 μeV
Clean coherence length ξ0 1300 nm
Diffusive coherence length ξD 245 nm
Diffusion constant Ddiff 200 cm2/s
e�/π� 12.6 nA

nth zero of the Jl th Bessel function, where l labels the last
mode that contributes to transport. The coefficients A and B in
Eq. (2) are functions of the nanowire radius; for rw = 40 nm,
A = 42.4 nm and B = 7.63 nm, and varying the radius by
±10% changes both coefficients by approximately ±2%.
We can bracket the Fermi wavelength between λF ≈ 17 nm
(100 channels) and λF ≈ 22 nm (50 channels) for rw =
40 nm. Our values are consistent with the ones reported for
planar InAs 2DEG (λF ≈ 18 nm) [27] and for InAs nanowires
(22 � λF � 33 nm) [7]. In the further discussions, we adopt
the values λF = 22 nm and N = 55 for all of the junctions.

Furthermore, we use the measured resistance per unit
length, R/L = 6 �/nm, together with the expression for the
Drude conductivity, σ = ne2τ/m, to evaluate a mean free
path for the nanowires of �e = 46 nm. The corresponding
Fermi velocity vF = �kF /m∗ ≈ 1.3 × 106 m/s is evaluated
by using an electronic effective mass m∗ = 0.026me of bulk
InAs, where me is the free-electron mass. The effective mass
of electrons m∗ for planar InAs 2DEG has been estimated to
be in a range from 0.024 to 0.04me [27,28]. The normal-state
properties of the nanowires are summarized in Table II.

IV. THEORETICAL MODEL

The major difficulty for theoretical interpretation of the
experimental data is the very large spread of the wire lengths.
Indeed, the shortest wire (30 nm) is in the ballistic point
contact regime (L < �e,ξ0, with ξ0 = �vf /2πkBTc), while
the longest wire is in the diffusive long-junction regime
(L > �e,ξD , with ξD = √

�eξ0). The majority of the junctions
are in the intermediate crossover region. Furthermore, all
of the tested junctions exhibit the Josephson effect. This
implies that the current transport is fully coherent and requires
theoretical modeling within the framework of the coherent
MAR theory [29–32]. To overcome this difficulty, we adopt a
simple and tractable model, with which we can bridge between
the ballistic and diffusive transport regimes, and describe the
crossover to the long-junction behavior [33]. The model setup
is shown in Fig. 4. We assume that the two superconducting
leads are connected to the nanowire by highly transmissive
contacts, which are treated as fully transparent. The nanowire
is disordered due to elastic scattering by impurities and crystal
imperfections. This is treated in the Born approximation, and
the mean free path estimated from the experiments �e = 46 nm
infers a scattering rate � = vF /�e ≈ 2.8 × 1013 s−1. Strong
defects are included and treated as a single interface having
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FIG. 4. A schematic picture of the theoretical model for the
nanowire junctions: Superconducting electrodes (S) are connected
by a disordered nanowire of length L, which also contains crystalline
defects. The latter are modeled with a lumped scatterer situated in the
middle of the wire and having effective transparency D. The applied
voltage is assumed to mostly drop at the scatterer.

the same effective transparency D for all conducting channels.
This defect is assumed to be in the center of the nanowire, and
the applied voltage is assumed to drop at the defect.

Using the quasiclassical Green’s function methods de-
scribed in Refs. [34,35], we calculate the IVC as a function
of device length and transparency by solving the coherent
MAR problem. The current is calculated at the scatterer [34]
and expressed through the boundary values, ĝR/L = ĝ( �̂pF ,x =
±0; ω), of the quasiclassical Green’s function for a given
channel,

ĝ( �̂pF ,x; ω) =
(

g( �̂pF ,x; ω) f ( �̂pF ,x; ω)

f̃ ( �̂pF ,x; ω) −g( �̂pF ,x; ω)

)
, ĝ2 = −π2.

(3)

The Green’s function is computed by solving the Eilenberger
equation in the right and left parts of the nanowire,

i��vF · �∂xĝ( �̂pF ,x; ω)

+ [ε(x; ω)τ̂3 − �̂imp(x; ω),ĝ( �̂pF ,x; ω)] = 0, (4)

complemented with the Zaitsev boundary conditions at the
scatterer and NW-S interfaces [34–36]. τ̂3 is the third Pauli
matrix in Nambu space. In Eq. (4), we introduce the impurity
scattering via the impurity self-energies,

ε(x; ω) = �ω − ��〈g( �̂pF ,x; ω)〉pF
, (5)

�̂imp(x; ω) = ��〈f̂ ( �̂pF ,x; ω)〉pF
, (6)

where 〈·〉pF
is average over directions (± �̂pF ). The matrix f̂ is

the anomalous (off-diagonal) part of the Green’s function ĝ.
The components (f,f̃ ) of f̂ describe the pairing correlations
leaking into the nanowire and the two are related by symmetry
as f̃ ( �̂pF ,x; ω) = −f ∗(− �̂pF ,x; −ω∗).

V. EXCESS CURRENT

We start with a discussion of the excess current at large
voltage, which is a robust feature of the proximity IVC.
The excess current Iexc is extracted from the current-voltage
characteristics at large voltage bias using the asymptotic
form I (V > 2�/e) ≈ V/RN + Iexc + O(�/eV). The excess
current contains contributions both from the single-particle and
from the two-particle Andreev currents, and it linearly scales
with the energy gap �(T ) (see, e.g., Ref. [37]). In Fig. 5(a), the

FIG. 5. (Color online) (a) Current-voltage characteristics of the
device B5a with length L = 150 nm and normal-state resistance Rn =
1.07 k�. The excess current is extracted by extrapolating the IVC
from high voltage to zero voltage. (b) Excess currents as a function
of temperature are shown for device B5 (L = 150, 170, 180, and
190 nm). The excess currents follow the superconducting energy gap
�(T ) (light green line).

excess current is obtained for the device B5a by extrapolating
a linear fit of the IVC measured at V > 2�/e (blue dashed
line) giving Iexc = 150 nA. To verify that the measured
excess current derives from Andreev scattering processes, the
experimentally extracted excess current is plotted as a function
of temperature in Fig. 5(b). As can be seen, the amplitude of
the excess current follows the temperature dependence of the
superconducting gap �(T ).

The excess current also depends on the transparency and
the length of the nanowire device. In Fig. 6, we present
the computed excess current as a function of device length
together with Iexc extracted from the measurements. The
maximum values of the theoretical curves correspond to the
point-contact limit (L = 0), and they are in good agreement
with analytical results [37], Iexc = (8/3π )(e�/�) per channel
for D = 1 and Iexc ≈ D2(e�/�) for D � 1. When the wire
length is increased, the excess current decreases. This was
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FIG. 6. (Color online) The computed excess current as a function
of length and effective transparency of the device. The units of the
excess current are given on the left axis for the single channel and
on the right in nA assuming that all channels have the same average
transparency. The length of the device is given both in units of the
mean free path (bottom x axis) and in nm (top x axis). The vertical line
indicates the length L = √

�Ddiff/� ≈ 1.1ξD , where the Thouless
energy, ETh = �Ddiff/L

2, equals the superconducting gap; this length
separates the short-junction limit (ETh 	 �) from the long-junction
limit (ETh � �). The stars and crosses are the experimental data
from Table I; as can be seen, the most devices are in the intermediate
limit where ETh ≈ �.

also found, experimentally and theoretically, in ballistic 2DEG
InAs [27], and computed for fully diffusive junctions [38,39].
In our case, the experimental values fall on curves with a
typical effective transparency between 0.2 and 0.4 being only
weakly device dependent between batches of nanowires. These
values compare favorably with Tt = 0.12 extracted from the
two-point and four-point measurements in the normal state.

One device, A1 (L = 30 nm), however, stands out, showing
a high transparency ofD ≈ 0.87. For this junction, with highly
transmissive ballistic point contact, one should anticipate the
largest critical current.

VI. JOSEPHSON CURRENT

Next, we discuss the Josephson critical current as a function
of length, temperature, and magnetic field. The maximum
values of the Josephson current, Im, are extracted from the
experimentally obtained IVC at the base temperature of 15 mK
and are shown in Table I. The maximum currents exhibit a
range of values depending on the resistance and length of the
devices, from a few to 800 nA. Similarly, the characteristic
voltage, i.e., the ImRn product, also exhibits a range of values,
from 20 to 130 μV.

FIG. 7. (Color online) The computed critical current Ic as a
function of length and effective transparency of the device. The units
of the maximum current are given on the left axis for the single
channel and on the right in nA assuming that all channels have the
same average transparency. The length of the device is given both in
units of the mean free path (bottom x axis) and in nm (top x axis).
The single markers are the experimental values of the maximum
Josephson current Im reported in Table I.

Theoretically, the Josephson current-phase relation is
computed using boundary values of the Green’s function,
ĝ( �̂pF ,x; ω), in Eqs. (3) and (4). The expression reads [36]

Is(φ) = 8πeTD
h

∑
ωn>0

〈
fRfL sin φ

2− D(gRgL−fRfL cos φ +1)

〉
pF

.

(7)

The sum is over all Matsubara frequencies, ωn = πkBT (2n +
1), T is the temperature, and φ is the phase difference over the
junction. The critical current is obtained by maximizing the
supercurrent.

The maximum Josephson currents presented in Table I,
together with a theoretical critical current fit, as a function
of length, are plotted in Fig. 7. The shortest junction exhibits
the largest Josephson current, as expected, with the theoretical
fit of the transparency, D ≈ 0.65. This is very close (75%)
to the theoretical limit defined by the transparency extracted
from the analysis of the excess current. The other junctions fall
in the transparency region 0.05 < D < 0.1, which is smaller
(approximately by a factor of 4) compared to the transparency
extracted from the excess current.

A similar or even larger reduction of Josephson current is
commonly observed in nanowires, and it is also common in
2DEG InAs Josephson junctions [27]. Such an effect is not
well understood; perhaps it could be related to some depairing
mechanism, for example, due to magnetic scattering.

One would expect a certain suppression of the Josephson
current extracted from the IVC measurement compared to
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FIG. 8. (Color online) Maximum Josephson current as a function
of temperature for two devices of length L = 30 and L = 170 nm.
Note the different scales for the current magnitude. Theoretical fits
to the critical current for both devices are shown. The transparency
chosen to fit the data is taken from the low-temperature values for Im

in Fig. 7.

the equilibrium critical current due to the effect of phase
fluctuations. However, our analysis shows that the majority
of our junctions are overdamped, and the suppression of the
critical current in this regime is relatively small and cannot
account for the whole suppression effect. Indeed, the capac-
itances of the devices are estimated in the range C ∼1–5 fF;
cf. Ref. [11]. Assuming C = 5 fF and the junction resistance
R0 ∼ 100 � at plasma frequency ∼1 GHz corresponding
to the free-space impedance, we estimate the quality factor
Q = √

2eIcC/�R0 � 0.1 for the representative junction with
critical current, Im = 50 nA. This estimate refers to an unbi-
ased junction; the Q factor further decreases when the current
bias is applied. For such an overdamped regime, Q � 1, the
switching probability is significantly suppressed [40] and IVC
can be modeled with the Ambegaokar-Halperin theory [41].
This conclusion is supported by the absence of hysteresis on
IVC. The IVC measurement takes approximately one minute,
so that the sample spends approximately a few seconds close to
Im. Assuming the temperature of electromagnetic fluctuations
is close to the base temperature of 15 mK due to a careful noise
filtering [42], we find that the suppression effect accounts for
approximately 20% of the theoretical value for the majority of
the junctions with critical currents exceeding 10 nA. For the
shortest junction with Im = 800 nA, the suppression is even
smaller: about a few percent.

The maximum Josephson current is also investigated as a
function of temperature for several devices. The maximum
currents for the shortest-length device A1 (L ≈ 30 nm and
Rn = 0.16 k�) and for the somewhat longer device B5b

(L ≈ 170 nm and Rn = 1.15 k�) are shown in Fig. 8. At
the base temperature T =15 mK, the devices have maximum
Josephson currents of Im = 800 and 40 nA, respectively.
The data for the shortest device agree well with theory in
a broad range of temperatures. The longer device exhibits
a concave-shaped decay at higher temperatures and deviates
from the theoretical fit. The qualitatively similar shape of
Ic(T ) has been theoretically found for diffusive junctions
with highly resistive interfaces (SINIS) [43] and explained
with enhancement of electron-hole dephasing in the proximity

FIG. 9. (Color online) (a) Normalized maximum Josephson cur-
rent (blue dots) as a function of magnetic field for device B5b

(L = 170 nm) along with the extracted superconducting energy gap
(red dots). The red line is �(B) = �(0)

√
1 − (B/Bc)2. This fit (black

line) is made to the gaplike feature in the dV/dI (V,B) data displayed
in (b).

region due to large dwell time. Such an effect is similar to the
effect of increasing length of the junction (cf. Ref. [39]). Given
such a similarity, we may conclude that although device B5

has transparent S-NW interfaces, the model [43] might better
capture the effect of the junction length.

At the base temperature of 15 mK, we also have obtained
IVCs as a function of magnetic field. The magnetic field is
applied perpendicular to the superconducting leads. The nor-
malized maximum Josephson current and the superconducting
energy gap as a function of magnetic field are plotted in Fig. 9
for device B5b with L = 170 nm. The superconducting gap
�(B) is fitted to the expression �(B) = �(0)

√
1 − (B/Bc)2

from which we extract Bc = 67 mT. The maximum current
decreases and is totally suppressed above Bc. No Fraunhofer
oscillations are observed in any of the devices, consistent with
a suppression of superconducting energy gap in the leads.

VII. SUBGAP CURRENT

Now we proceed with discussion of the IVC in the subgap
region, V < 2�/e, as a function of temperature and magnetic
field, and for different nanowire lengths. A typical plot of the
differential resistance as a function of voltage is presented
in Fig. 10(a). The resistance drops from Rn = 1.15 k� at
V 	 2� to RSG ≈ 0.7 k� at V ≈ 260 μV, which corresponds
to the gap value, 2�/e. Such a drop of resistance in the subgap
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FIG. 10. (Color online) (a) Differential resistance dV/dI as a
function of voltage for device B5b (L = 170 nm and Rn = 1.15 k�).
The resistance substantially decreases at V ≈ 2�/e and exhibits
symmetric resistance (peaks/dips). (b) An image plot of differential
resistance dV/dI as a function of voltage and temperature. As the
temperature is increased, the first two peaks, marked by two arrows,
smoothly move towards lower voltages, consistent with the decrease
of the superconducting energy gap �(T ). However, the voltage
positions of the other peaks are independent of temperature.

region is a characteristic of Andreev transport in transmissive
SNS junctions [44]. Furthermore, the differential resistance
shows a second feature at approximately half the gap voltage,
V ≈ 130 μV= 2�/2e [shown by the arrow in Fig. 10(a)].

The positions of both of these features scale with the
temperature dependence of the superconducting gap �(T ), as
shown in Fig. 10(b). This unambiguously indicates the MAR
transport mechanism. Similar features associated with MAR
are observed in all measured devices; in some devices, we also
observed a third MAR feature at 2�/3e.

We have also measured the dependence of positions of
the resistance features as a function of magnetic field. The
differential resistance of device A4 as a function of magnetic
field is shown in Fig. 11. In this device, the three MAR features
are present (marked by arrows), which move smoothly towards
lower voltages following the magnetic field dependence of the
gap �(B).

Besides the MAR features, the IVC of all the measured
devices exhibit a number of structures at lower voltages, whose
positions are independent of both temperature and magnetic
field; see Figs. 10 and 11. These structures are therefore
not associated with MAR. However, they are related to the
superconducting state in the electrodes since they do not persist
above the critical temperature and critical magnetic field, and
even disappear somewhat earlier.

FIG. 11. (Color online) (a) Differential resistance dV/dI as a
function of voltage for device A4. There are three MAR features
indicated with arrows. (b) An image plot of differential resistance
dV/dI as a function of voltage and magnetic field. As the magnetic
field is increased, the MAR resistance peaks smoothly move toward
lower voltages, consistent with the decrease of the superconducting
energy gap �(B). However, the voltage positions of the other peaks
are independent of magnetic field.

The origin of these structures is not clear. In Ref. [20],
similar structures were reported for suspended NW devices
and attributed to resonances resulting from coupling of the ac
Josephson current to mechanical vibrations in the wire. The

FIG. 12. (Color online) Voltage positions of the temperature-
independent differential conductance peaks as a function of length
for devices of type A, B, and C. Horizontal lines indicate the multiples
of the voltage V ≈ 24 μV.
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fact that we observe such structures not only in suspended
but also in nonsuspended wires rules out this explanation.
Furthermore, the phonon resonances would appear at voltages
corresponding to the phonon eigenfrequencies, i.e., depend
on the wire length (∝1/L). We systematically measured
the length dependence of the low-voltage, temperature-
independent structures; the results are presented in Fig. 12. The
positions of the structures do not depend on the wire lengths for
suspended or nonsuspended devices. The positions are given
by the integer multiples of the same voltage, V ≈ 24 μV.

The fact that the positions of the temperature-independent
structures are the same in different junctions makes it unlikely
that they are related to external electromagnetic resonances,
but rather result from some general intrinsic mechanism. To get
a better insight into the origin of the temperature-independent
subgap structures, we analyzed the shape of the IVC; see
Fig. 13. In all investigated junctions, the IVC have a staircase

FIG. 13. (Color online) Current-voltage characteristics at low
voltages for device A1 (length L = 30 nm and normal-state resistance
Rn = 0.16 k�). The device shows successive voltage jumps with
the resistance continuously increasing just after each voltage jumps.
(b) Similarly, the current-voltage characteristics for somewhat longer
devices, B5a and B5b (L = 150 and 170 nm), show similar voltage
steps at low voltages.

shape and consist of a number of successive voltage steps.
Between the steps, the current continuously grows with
the differential resistance increasing after every step. Such
a behavior may be explained by successive emergence of
normally conducting domains in the wire as soon as the current
exceeds the critical value. This picture closely resembles the
resistive states in superconducting whiskers containing phase
slip centers (PSC) [21,22]. Although one cannot in a straight-
forward way extend the PSC scenario in truly superconducting
whiskers [45] to the proximity-induced superconductivity in
nanowires, one cannot exclude the possibility of the formation
of some kind of spatially inhomogeneous resistive state in the
proximity region.

VIII. GATE DEPENDENCE

In this section, we investigate the gate dependence of
the IVC in the superconducting state of suspended devices
of type C shown in Fig. 1(c) and in Table I. The data
presented in the previous sections are obtained at the zero
gate voltage for the conduction regime with multiple open
conducting channels. Here we discuss the change of the
IVCs in this regime with variation of the gate voltage. An
opposite, few-channel transport regime at large negative gate
voltage, showing quantization of the normal conductance and
the Josephson critical current, was investigated in Ref. [11].

In our device, the gate voltage controls the local carrier
concentration in the nanowire and thereby affects the strength
of the proximity effect. Due to a strong capacitive coupling
of the gate to the wire, this variation is significant, allowing
us to observe a crossover from the SNS- to SIS-type regime
of the current transport at low temperature. According to the
theory [30,46], the IVC of the transparent wire should exhibit,
besides a large Josephson current, a large excess current both in

FIG. 14. (Color online) Normal-state conductance and maxi-
mum Josephson current as a function of a local-gate voltage for device
C11. After opening of the first conducting channel at Vg ≈ −5 V, the
overall conductance and critical current increase linearly with the
gate voltage. Inset: the ImRn product as a function of gate voltage.
The constant value indicates that the maximum current is correlated
with the normal-state conductance.
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FIG. 15. (Color online) Current-voltage characteristics for de-
vice C12 of length L = 200 nm for different gate voltages, Vg =
−2.16,−1.86,−1.64,−1.40,−0.93,0.92 V (from bottom to top). The
IVC exhibit crossover from the tunneling regime, with small subgap
current and negative excess current, to the SNS regime, with enhanced
subgap conductance and positive excess current.

the subgap voltage region and at the large voltage. On the other
hand, more resistive wires should exhibit a small Josephson
current, a suppressed subgap current, and a crossover to deficit
(negative excess) current at large voltage.

The dependence of the maximum Josephson current on the
gate voltage is shown in Fig. 14 for the suspended device
C11 (L ≈ 150 nm). The change of the maximum current (blue
lines) varies in sync with the change of the differential conduc-
tance (red lines). Owing to the n-type nature of the nanowires,
the conductance and the maximum Josephson current are
strongly suppressed at large negative gate voltages, Vg < −5
V. Changing the gate voltage towards positive values results
in linear increase of the averaged conductance and maximum
Josephson current, with the latter reaching the value of Im = 4
nA at Vg = 3 V. Simultaneously, the IcRn product saturates at
the value ImRn = 12.5 μV, and remains constant over a wide
range of gate voltages, as shown in the inset in Fig. 14.

In Fig. 15, we present a set of IVCs for the suspended device
C12 (L ≈ 200 nm and Rn = 3.6 k�) for gate voltages ranging
from Vg = −2.16 to Vg = +0.92 V. At large positive gate
voltage, i.e., at large conductance, the IVC shows significant
excess current and enhanced subgap conductance, indicating
a highly transmissive SNS regime. In the opposite limit of
large negative gate voltage (small conductance), the IVC has
a typical form for SIS tunnel junctions with negative excess
current [39] and strongly suppressed subgap conductance. The
suppression of the subgap conductance is explained by the
small probability of MAR processes at small voltage, which

scales with Dn, where n = 2�/eV is the number of Andreev
reflections. In the tunneling regime with small D � 1, the
subgap conductance is exponentially small. At the interme-
diate gate voltages, the device exhibits continuous crossover
between these two regimes, in accordance with the theoretical
predictions for contacts with varying transparency [30,46].

IX. CONCLUSION

We have investigated, both experimentally and theoreti-
cally, the proximity effect in InAs nanowires connected to
superconducting electrodes. We have fabricated and investi-
gated a large number of nanowire devices with suspended
gate-controlled nanowires and nonsuspended nanowires, with
a broad range of lengths and normal-state resistances. We
measured current-voltage characteristics and analyzed their
main features: the Josephson current, excess current, and
subgap current as functions of length, temperature, magnetic
field, and gate voltage, and compared them with theory. The
devices show reproducible resistance per unit length and
highly transmissive interfaces. The measured superconducting
characteristics are consistent and agree reasonably well in
most cases with theoretically computed values. The maximum
Josephson current for a short-length device, L = 30 nm,
exhibits a record high magnitude of 800 nA at low temperature
that comes close to the theoretically expected value. The
maximum Josephson current in other devices is typically
reduced compared to the theoretical values. The measured
excess current in most of the devices is consistent with the
normal resistance data and agrees well with the theory. The
subgap current shows a large number of structures; some of
them are identified as subharmonic gap structures generated
by MAR. The other structures, detected in both suspended and
nonsuspended devices, have the form of the voltage steps at
voltages that are independent of either the superconducting
gap or the length of the wire. By varying the gate voltage in
suspended devices, we were able to observe a crossover from
typical tunneling transport, with suppressed subgap current
and negative excess current at large negative gate voltage,
to pronounced SNS-type behavior, with enhanced subgap
conductance and large positive excess current at large positive
gate voltage.
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