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Abstract
We study correlated transport in a Josephson junction array for small Josephson
energies. In this regime transport is dominated by Cooper-pair hopping, although
we observe that quasiparticles can not be neglected. We assume that the energy
dissipated by a Cooper-pair is absorbed by the intrinsic impedance of the array.
This allows us to formulate explicit Cooper-pair hopping rates without adding
any parameters to the system. We show that the current through the array is
correlated and crucially, these correlations rely fundamentally on the interplay
between the Cooper-pairs and equilibrium quasiparticles.

Keywords: Josephson junction array, correlated electronic transport, super-
conductivity, coulomb blockade

1. Introduction

Linear arrays of Josephson junctions display surprisingly complex behaviour which belies their
simple circuit diagrams. The earliest work on these circuits considered the strong, long-range
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interaction between charges within the array [1–5]. This Coulomb interaction between charges
decays exponentially over a characteristic length that is set by the values of the circuit
capacitances. During conduction, the repulsive interaction is counteracted by the voltage
applied across the circuit, which ‘pushes’ the charges closer together. The equilibrium charge
configuration is then reached when these two energies are balanced, resulting in a periodic
charge distribution across the array. The movement of such a periodic charge state through the
array in turn causes a periodic modulation of the current leaving the array. Through this process
the statistical correlations in the charge distribution are converted into correlations in the
current, i.e. correlated transport. The charges within a Josephson junction array (JJA) therefore
display statistical correlations in both space and time, at the few electron level. The resulting
correlated transport makes them a candidate circuit for applications in quantum metrology and
current standards [6]. In contrast to the state of the art in charge-pump metrology circuits [7, 8],
the use of JJA in metrology is currently limited by the precision of both the theoretical models
and the experimental devices.

Although qualitative agreement between semi-classical theory and experiment has been
seen in several devices [9–13], there are still many open questions involving hysteretic and
thermal effects [14, 15], the role of quasiparticles and charge noise. The ultimate goal of a
full quantum theory of these devices poses several challenges. Obtaining quantitative
agreement at the level now possible in simpler Josephson devices [16–21] is difficult due to
the interplay of charging energy, Josephson energy, charge noise and thermal effects. In
addition, most experiments have focused on current-voltage (I-V) characteristics [6, 9] or
microwave driven experiments [6, 22] which limits the amount of information available for
comparison. An important exception are recent experiments [23–25] where the correlated
transport of charges within a JJA was measured directly using a radio-frequency single-
electron transistor (rf-SET). This provided detailed temporal information about the charge
transport as well as the usual I-V characteristics. Of particular note is the observation of
correlated transport for a range of magnetic fields, suggesting a smooth transition from
normal- to super-current [24].

Using a relatively simple model, we demonstrate that correlated transport can be carried by
incoherent Cooper-pair hopping in the limit of small EJ . We study the effect of equilibrium
quasiparticles and incoherent Cooper-pair transport where the charge hopping is modelled using
P(E) theory with the arrayʼs own intrinsic impedance (in contrast to [26] where an arbitrary,
large impedance was assumed). Considering the effect of both temperature and magnetic field
on conduction, we also show that the experimentally observed response is consistent with some
level of self-heating of the array. This model opens the way forward for quantitative comparison
between theory and future experiments and the development of a full microscopic model of
transport in junction array circuits.

In the following section we derive our noise model due to the intrinsic array impedance
and discuss details of the simulation method. In section 3 we consider the conduction through
the array and show how correlated transport arises as a function of voltage. We then study the
regime where Cooper-pair and quasiparticle transport coexists and results in a novel conduction
regime (sections 4 and 5). Finally, in section 6 we consider the effect of magnetic field and the
reduction of the superconducting gap on transport through the array.
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2. Noise model for long arrays in the small EJ limit

Throughout this work, we consider a simple JJA circuit with a potential bias V applied
across the array, see figure 1. Each Josephson junction has a Josephson energy EJ , an
effective capacitance CJ and a capacitance to ground CG. The energy of the system is
given by

δ⃗ = ⃗ ⃗ + ⃗ ⃗− −( )H q q q C V qC C
1
2

(1)T
J

T1
1

1

for a particular bias V and charge configuration ⃗ = ⃗q en . The source term δ1⃗ is equal to one for
site 1 and zero everywhere else.

In contrast to previous theoretical work on JJ arrays [14, 15], we take the conjugate phase
to be across the ground capacitor CG, which makes the charge variable q

i
simply the excess

charge on the ith island, as is usually done when considering single-electron transistors.
Although this choice has no additional observable consequences, it simplifies the implementa-
tion of the kinetic Monte–Carlo (KMC) algorithm for simulating the dynamics.

New J. Phys. 16 (2014) 063019 J H Cole et al

3

Figure 1. (a) JJA circuit under consideration, consisting of a linear chain of Josephson
junctions with Josephson energy EJ and capacitance CJ . The circuit is driven by a
voltage source V and each junction sees an effective capacitance to ground CG. (b) We
compute the effective impedance of the half-array seen by a particular Josephson
junction, assuming that the rest of the array is composed of effective capacitors and the
normal tunnel resistance RT for each junction. (c) The half-array impedance is
approximated assuming the capacitive and resistive components of the array decouple
resulting in an effective parallel RC circuit.



The capacitance matrix of the system is given by
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where the inversion of this matrix can be computed very quickly numerically, but can also be
expressed analytically [27–31], a fact we employ when deriving the interaction energy and
threshold voltage. For this circuit, we define an interaction length Λ between charges in the
array, where

⎛
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and in the limit of small ground capacitance Λ ≈ C CJ G .
To understand the origin of correlated transport in a JJA, we first derive the effective

interaction energy between charges within an array. Taking the large array limit Λ≫ >N 1, we
find
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which is the energy for two charges at positions i and j in an infinite length, zero-biased array.

In the limit of ≪C CG J, we can write Λ Λ≈ ≈−C C C CsinhJ J J G
1 . The first two terms in

equation (4) are the respective charging energies and the third term is the interaction energy
between the charges, which decays exponentially over the interaction length Λ.

We can also compute the threshold voltage for quasiparticles or Cooper-pairs to be
injected from the voltage source,

⎡⎣ ⎤⎦
κ

Λ
=

−
κ

( )
V

C

e

2 exp 1 1
(5)( )

J

th

where κ = 1, 2 for quasiparticles or Cooper-pairs respectively. Both the interaction energy and
threshold voltage expressions are derived from pure energetic considerations. The details of the
array conductance and correlated transport depend critically on the form of the hopping rates for
charges within the array, which in turn depend on the charge carrier and the influence of
temperature, magnetic field and the specific noise model.

We are specifically interested in the small EJ limit so we assume that coherent oscillations
are completely suppressed and that the evolution of the system can be described using P(E)
theory [32–34]. Typically when computing the influence of noise on smaller circuits, the
dominant source is the impedance of the leads and measurement circuitry. In the case of JJ
arrays however, this leads to the conclusion that noise dominates at the edges of the array but
within the array its influence decays exponentially over the length scale Λ. Although in
principle this could lead to coherent behaviour deep within the array, we assume (as others have
done [26]) that within the array, locally generated noise dominates. We specifically consider the
noise generated by the internal impedance of the array itself, however additional contributions
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from background charge fluctuations [35] and two-state defects [16, 19, 20, 36–38] within both
the junctions and the substrate may also play a role.

To derive the internal impedance seen by a particular junction we assume that every other
junction within the array has an impedance ZJ given by a capacitor with capacitance CJ and a
resistor with resistance RT in parallel. Generally we assume that the resistance of each junction
is large as compared to the resistance quantum, although the explicit value of RT proves to be
unimportant. We neglect the Josephson inductance in the limit of small EJ .

We can now formulate the effective circuit model (figure 1(b)) for the junction impedance
ZJ and the impedance of the rest of the array ω( )Z . Using the theory of continued fractions [39]

we can derive the array impedance ω( )Z for an arbitrary length array, however the resulting
expression is unwieldy. To obtain a more useful expression, we derive an effective impedance
by considering the resistive and capacitative response of the array individually. Computing the
resistance of half an array as =R NR 2THA and the effective half-array capacitance

⎡⎣ ⎤⎦= + +( )C C C C C4 2G G G JHA , we then approximate the total impedance of the half-

array as that of the resistive and capacitative components separately (see figure 1(c)). The total

impedance seen by a junction is then given by ⎡⎣ ⎤⎦ω ω ω= + − −
( ) ( )Z i C Z 2t J

1 1

where

ω ω= +−( )Z i C
NR

2
(6)

T

1

HA

is the contribution from each half-array (assuming the resistive and capacitive responses are
decoupled). In the large impedance regime we consider ( ≫ =R R h eT K

2, ≪C CG J) this is a
good approximation when compared to the (exact) continued fraction solution.

Integrating ⎡⎣ ⎤⎦ω( )Re Zt over all frequencies, we obtain the amplitude for a delta-function

approximation to the array impedance,

⎡⎣ ⎤⎦ω
πδ ω

≈
+ + + +( )

( ) ( )

( ) ( )
Re Z

2 2

C 4C C 2C C C 4C
(7)t

G J G J G G J

which in the limit of ≪C CG J gives ⎡⎣ ⎤⎦ω π δ ω≈ ( )( ) ( )Re Z Ct J as expected [33].

Approximating for short times, we can then evaluate the integral over the time correlation
function [33] and obtain an expression for the P(E) function,
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where the effective charging energy =E Ce 2c A
2 is now that of the array impedance,

= + + + +( )( ) ( )C C C C C C C C
1

2 2
4 2 4 . (9)A G J G J G G J

As this P(E) function describes the contribution due to noise generated within the array itself,
this contributes to hopping rates for all the processes within the array. In principle, close to the
edges of the array, this noise contribution will be modified by the external impedance but for
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simplicity we ignore this extra contribution, given that the length of the array considered is ten
times the interaction length.

To study the transport of (correlated) current in the superconducting limit, we must
consider the contribution of both Cooper-pairs and equilibrium quasiparticles. Although non-
equilibrium quasiparticle distributions are possible and have been found to be an important
contribution to loss processes in small JJ circuits [40–42], we ignore these contributions as the
assumption of thermal equilibrium is adequate when considering the transport through JJ arrays
at moderate effective electron temperatures. For similar reasons, we do not consider co-
tunnelling processes in this analysis as the first order process dominates in all parameter regimes
of interest.

The rate for an equilibrium quasiparticle to move between two charge states which differ
by total energy δE is given by

⎡⎣ ⎤⎦



∫∫Γ δ ϵ ϵ

ϵ ϵ δ
ϵ ϵ δ ϵ ϵ= ′

′ +
− ′ + − ′
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∞

( ) ( )
( )

( )
( ) ( ) ( ) ( )E

R
d d

E
f f E P

1

e 0 0
1 , (10)

T
eqp 2 1

where  ϵ( ) ( )0 is the normalized BCS density of states, ϵ( )f is the Fermi function and the
change in energy δE also takes into account the chemical-potential shifts associated with
charges entering or leaving the leads. This rate scales linearly with R1 T above a characteristic
gap whose size is set by both the superconducting gap Δ and the P(E) function which is centred
around Ec.

In the limit of incoherent Cooper-pair transitions, the Cooper-pair hopping rate is simply
given by


Γ δ π δ=( ) ( )E E P E

2
. (11)Jcp

2
2

The asymmetry of this function provides a compelling argument as to why the noise should be
dominated by the large internal impedance of the array itself. If one was to derive a hopping rate
assuming vanishing impedance, this would result in a peak centred about zero and therefore
approximately diffusive charge movement within the array. Whereas in the large impedance
limit, the lossy transport derives directly from the ease with which the array can absorb energy
from the individual charges. In addition, we find that the results obtained using the high-
impedance environment are in better agreement with the experimentally observed current
voltage characteristics [24, 43].

To simulate the time evolution of a JJA we use the KMC algorithm, whereby charge
transitions are chosen stochastically based on the relative weight of the relevant transition rates
[26, 44–47]. This results in an output consisting of successive charge configurations and the
time between each transition, from which average quantities can be easily computed. For all
results we use a combination of initialization and measurement phases in the Monte–Carlo
simulation. We initialize the system in the ‘empty’ state, where there are zero charges on each
island. The system is then time-evolved according to the KMC algorithm for sufficient time that
the charge distribution within the JJ array has equilibrated (typically 105

–106 Monte–Carlo
steps). The quantities of interest are then computed over a further 106 time steps such that we
observe variances of order 1% for the average charge on a particular site within the 50 site
array.
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To study the correlated transport, we consider the charge–charge correlations within the
array as this proves to be more computationally efficient than computing the current–current

correlations directly. A key observable for JJA is the average charge on the jth site, nj .

Computing the charge–charge autocorrelation function τ( ) ( )n n 0j j on a particular site then

gives a measure of the extent to which the charge distribution within the array is statistically
correlated with itself at some later (or earlier) time τ. A further quantitive of interest is the

Fourier transform of this correlation function, ⎡⎣ ⎤⎦ τ( ) ( )n n 0j j , which gives a direct measure

of the spectral response that would be observed in experiments [23–25, 44]. Although the

Fourier transform of the charge–charge autocorrelation τ( ) ( )n n 0j j can be computed directly

[44], linearly sampling the resulting charge vector at a high bandwidth >10 GHz and then
taking the autocorrelation and fast Fourier transform directly proves to be more efficient and
less sensitive to numerical noise.

3. Array conduction

We are interested in the conduction processes of arrays in the superconducting regime, with
≪E EJ c and non-negligible superconducting gap. This means that transport with both possible

charge carriers, Cooper-pairs and quasiparticles, is strongly suppressed and therefore the
experimental observation of not only conduction, but correlated conduction in this limit is
somewhat surprising. In addition, we find theoretically that over a large range of temperatures
and voltages, correlated conduction in such circuits is largely suppressed which implies a
relatively small part of parameter space in which these correlations can be observed. To focus
on an experimentally relevant case, we consider a parameter regime (in terms of array length,CJ

and CG) which corresponds approximately to that studied in [24].
A key feature of the parameters chosen in our analysis is that the incoherent Cooper-pair

rate has its maximum ( E4 c) at the edge of the low temperature equilibrium quasiparticle gap
( Δ2 ). Therefore we choose the charging energy to be μ=E 170 eVc and the superconducting
gap Δ μ= 340 eV, see figure 2. In this regime, the position of the P(E)-function within the
quasiparticle gap, means that incoherent Cooper-pair hopping cannot be considered a resonant
process but in fact must compete directly with the equilibrium quasiparticle rates, especially for
large energy differences (larger than Δ).

Figure 2 illustrates the hopping rates for quasiparticles and Cooper-pairs as a function of
energy difference at an effective electron temperature of T = 50 mK and T = 350 mK, with

= =E E 20 8.5J c μ eV. The effect of the P(E) function is to broaden the Cooper-pair rates as
well as increasing the gapped region in the quasiparticle rates and smoothing the edge of this
gap. The net result is that over a large range of energies both Cooper-pairs and quasiparticles
can hop with approximately equal rates, especially at the typical transport voltages applied to
this system.

Throughout our analysis, we model an array of N = 50 junctions with values of the
junction capacitance =C 412.6J aF and ground capacitance =C 25.9G aF such that Λ = 4. As
we investigate the effect of varying EJ while keeping the ratio Δ =E 2c , we consider junction
resistances varying between Ω= =R R5 129 kT K and Ω= =R R125 3.23 MT K according to the
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standard relationship [48],

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

 πΔ Δ=E
R k T2e 2e

tanh
2

. (12)J
T B

The absolute magnitude of the I-V characteristics of the array depends on both EJ and
temperature. For our chosen parameters we find that conduction is sporadic with a large
variance for electron temperatures less than ≈T 150 mK as the system can become trapped in
meta-stable charge states which do not easily decay due to the large quasiparticle gap. These
trapping states are inconsistent with the observed reproducible and smooth response seen in
experiments [24] and their absence implies an effective electron temperature which is higher
than the nominal base temperature of the experiments.

A fundamental assumption of P(E) theory is that the energy associated with hopping of
charges is dissipated within the circuit itself and in the quasiparticle degrees of freedom. It is
this excess energy which can lead to higher effective electron temperatures, an effect which has
been observed in qubit [40, 49, 50] and SET experiments [35]. The effective temperature seen
by the charge carriers can depend in general on the bias conditions, junction properties, the
superconducting gap and even the timescale over which the experiment is conducted
[35, 51, 52]. For simplicity in the remainder of this analysis, we assume an electron temperature
of T = 200 mK.

Figure 3 shows the I-V response at T = 200 mK as a function of Josephson energy,
demonstrating a characteristic EJ

2 dependence (see inset to figure 3). This indicates that the
dominant processes are Cooper-pair hopping events, equation (11). More interesting is the
behaviour of the threshold for conduction, which goes through two distinct transitions. Initially
conduction rises rapidly once the voltage is greater than the threshold for injection of
quasiparticles is reached (although there is some thermal broadening of this threshold). At this
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Figure 2. Transition rate as a function of energy difference for both equilibrium
quasiparticles (dashed red/blue) and incoherent Cooper-pairs (solid red/blue), with

=E E 20J c . The P(E) peak (centred around δ =E E4 c) and the superconducting step
edge of the quasiparticle transition are broadened as a function of temperature. Close to
δ Δ=E 2 we see that the rate of quasiparticle and Cooper-pair transitions occur at similar
rates.



point the simulations clearly predict that conduction is possible, however it is at extremely low
currents which are well below the detection threshold of existing experiments. A second distinct
transition to observable current levels is observed in the range 3–4 mV, which one could
associate with the injection of Cooper-pairs. This however is not the case as the injection
threshold for Cooper-pairs is only a factor of two larger than that for quasiparticles, which is
well below the observed threshold. In fact, this second transition to a higher current state is
associated with the interplay of quasiparticles and Cooper-pairs and the ‘filling’ of the array, as
will become apparent in section 5.

4. Correlated transport within the array: low voltages

We now turn our attention to the correlated transport of charges through the array. To observe
such correlations, the low voltage (close to threshold) regime is usually considered, such that
the average charge density is low and the charges are separated by approximately Λ, see for
example [25, 53]. This conventional correlated transport regime is illustrated in figures 4(a) and
(b), where we plot the charge distribution within the array as a function of time for two different
voltages within the ‘low current’ state. At very low voltage (just above threshold), the
conduction is partially diffusive due to the relative high electron temperature (T = 200 mK). As
the voltage increases (1 mV ≲ ≲V 4 mV), the charge distributions become progressively more
correlated and more closely mimics the ‘conventional’ correlated transport in normal arrays
[53]. We see a characteristic periodic distribution of charges within the array a fixed point in
time, due to the interplay between the applied voltage and the repulsive interaction between
charges. As the charges move systematically along the array, this spatial correlation between the
charges also manifests as a temporal correlation of the type observed in experiments [25].
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Figure 3. Current-voltage characteristics as a function of EJ (logarithmic current scale)
at an effective electron temperature of T = 200 mK. The dominant effect of varying the
Josephson energy is to scale the current proportional to EJ

2. The threshold voltages for
injection of quasiparticles and Cooper-pairs, equation (5), is illustrated with arrows
whereas a further transition to a high current state occurs at higher voltages ( ≈ –V 3 4
mV). Inset: at fixed V = 15 mV, the current scales as EJ

2, indicated by the black line.



To more clearly see this temporal correlation between the charges, in figures 4(c) and (d)
we show the charge occupancy autocorrelation function as a function of delay time τ. The
damped oscillations illustrate that the charge occupancy on a particular site is correlated with
occupancy at some characteristic time later. This characteristic time corresponds to the mean
spacing between charges as they travel along the array. We see that the amplitude of the
oscillations is stronger at large voltage biases as the charges are packed more tightly together,
reducing the thermal ‘jitter’ observed just above threshold.

This temporal correlation also varies with position within the array, being strongest in the
middle, weaker at the start (as the voltage source is uncorrelated) and non-existent at the end of
the array (for this voltage bias configuration). This variation in correlation strength has been
studied previous for different bias configurations [53] and arises due to two effects. First and
foremost, for this bias configuration the average charge distribution is approximately linear
across the array, approaching zero at the end which is connected to ground. As each charge
spends a vanishing amount of time on the final site, the corresponding autocorrelation function
does not show the temporal correlations. There is also a more subtle effect which arises at low
voltage bias, due to the periodic distribution of charges being partially ‘pinned’ by the boundary
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Figure 4. Charge distribution within the array for an example Monte–Carlo instance, as
a function of time at two different bias voltages; (a) V = 1 mV, (b) V = 3 mV. Just above
the conduction threshold (V = 1 mV) we see diffusive type transport dominated by the
movement of quasiparticles. The charge distribution within the array is quasi-periodic
(correlated) but the movement of charge is partially diffusive. As the voltage increases,
the correlations become stronger due to higher charge densities and less diffusive ‘jitter’

of the charge carriers. The charge occupancy autocorrelation function τ( ) ( )n n 0j j is

plotted in (c) V = 1 mV and d) V = 3 mV for three different sites, i.e. the beginning,
middle and end of the array. We see stronger temporal correlations in the middle of the
array than at the beginning, whereas at the end we see almost no correlations. The
increased oscillation amplitude at V = 3 mV also illustrates the increase in correlation
strength at voltages and charge densities.



conditions in the array. This results in a slight but periodic modulation of the average charge
distribution. These effects have been studied in depth for the case of normal conduction in [53].
In this analysis, we are specifically interested in the interplay of normal and superconducting
processes and therefore limit ourselves to the charge occupancy statistics measured at a fixed
point in the middle of the array.

5. Correlated transport within the array: high voltages

To investigate correlated transport at higher voltages, we plot the spectral response (Fourier
transform of the charge–charge autocorrelation function) measured in the middle of the array,
see figure 5. The peaks, corresponding to temporally correlated charge states, form almost
immediately once the circuit transitions to the higher current state and are still observable up to
at least V = 13 mV. The average charge density at these voltages is ≈n 1.5 which is well
above the regime usually considered. For comparison with earlier work [53], in this model the
charge distribution has already reached a linear drop throughout the array well before the
transition to high current.

At these higher voltages, the correlations derive from a more complicated mechanism
involving both single-charge (quasiparticle) and double-charge (Cooper-pair) excitations, which
is not seen in a normal conducting array (without superconductivity). This additional transport
mechanism is responsible for the transition to a higher current state for ≳V 5 mV (see figure 3).
Here the voltage is large enough to push the charge excitations closer together so that the
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Figure 5. Spectral response of the charge–charge autocorrelation function measured in
the centre of the array, for increasing voltage in steps of 1 mV (curves vertically
displaced for clarity). As the voltage increases, the peak frequency increases linearly
with increasing current. The strength of the correlations are reduced at higher voltages
as these correspond to higher average charge densities, reducing the formation of quasi-
periodic charge states [25, 44, 53]. The dots indicate the position of the peak frequency
computed from the magnitude of the current via =f I Q

p
where Q = 2 for Cooper-

pairs, indicating Cooper-pair dominated correlated transport.



interplay between quasiparticle and Cooper-pair tunneling, with the corresponding island
charges, is energetically favourable and charges can flow freely again through the array.

The exact mechanism driving this interplay of odd and even charge states can be seen in
figures 6 and 7. Odd charge states (n = 1) form which are relatively stationary, on the time scale
of the current flow, and can sit on neighbouring sites due to the high bias voltage. These
quasiparticle states form a quasi-static background charge distribution throughout the array.
Transport then proceeds via movement of incoherent Cooper-pairs where the moving charge
states are either = +n 2 when there is a background charge of n = 0, or = −n 1 when the
background state is = +n 1. Figure 7 illustrates the conduction pathway for this transport
mechanism where the charge distribution across 10 sites within the array is depicted for a series
of example Monte–Carlo steps. Although we see a combination of charge states = −n 1, 0, 1
and 2, current is always carried by movement of Cooper-pairs from left to right.

The stability of this transport mechanisms relies on the high average charge density and the
stationary quasiparticle states (due to the gapped hopping rate, see figure 2). It is only when
both conditions are met, as a result of both high voltage and vanishing magnetic field, that we
see this transport mechanism, where incoherent Cooper-pair hopping accounts all of the current
flow through the array, once the system has equilibrated.

This new transport mechanism has a lower effective resistance as it is dominated by the
Cooper-pair hopping rate Γ ∝ EJCP

2 rather than simply the normal resistance Γ ∝ R1 TCP ,
resulting in a much higher current state than is seen at lower voltages. The interplay between

= +n 2 states and = −n 1 states means that periodic spacing between current carriers need only
be maintained for a few sites before conversion between charge states, which results in a more
even distribution of correlations throughout the array. For even higher voltages ( ≫V 10 mV),
this effect is again washed out due to higher occupancy charge states and the correlations
disappear.

This new transport regime also proves to be more robust in the presence of disorder,
particularly in comparison to the zero-bias conductance regime [54]. Performing the same
simulations with background disorder modelled as an initial random fractional charge state [55]
allows us to mimic how the system would respond to random static variations in the local
electric potential on each site. We initialize the system with charge states ∈ −( )n 1, 1 , we then
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Figure 6. Charge distribution within the array for an example Monte–Carlo instance, as
a function of time at V = 5 mV. At higher voltages (compared to figure 4) a new
mechanism for correlated transport forms, consisting of a quasi-static ‘quasiparticle gas’
through which transport is carrier by movement of Cooper-pair states. Conduction
proceeds via interconversion of even charges states ( = +n 2) moving forward through
the array and odd charge states ( = −n 1) moving backwards. As well as being strongly
correlated, this form of conduction proves to be more stable to background disorder and
results in a current several orders of magnitude larger than would be otherwise
observed.



evolve the system for enough time to reach equilibrium before collecting statistics. As the
transport mechanisms considered only move charge from one site to another, the fractional
offset due to the initial disorder is preserved modulo e1 .

This method of modelling disorder results in no significant change in the I-V
characteristics or correlation response in the high current regime. This is because the high
current regime relies on the formation of a random distribution of static ‘background’ charges,
the exact distribution of which varies from run to run. Including disorder simply selects one
particular distribution (or a subset thereof) preferentially to minimize the total energy of the
system. The transport mechanism proceeds in exactly the same fashion as without disorder, via
incoherent Cooper-pair hopping through the background charge distribution. It should be noted
that disorder does have a significant effect on the initial (quasiparticle dominated) low voltage
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Figure 7. Diagram illustrating the transport mechanism for charges in the low magnetic
field, high voltage limit. A quasi-static background of singly occupied states forms
through the array. At the boundaries of these regions (where two neighbouring sites are
n = 1 and n = 0 respectively) a dipole state can be created which consists of
neighbouring = −n 1 and n = 2 charge states. This dipole state can then immediately
separate which results in a net current as the +2 excitation moves right and the −1
excitation moves left. All charge movement events correspond to a charge of e2 moving
left to right, i.e. via incoherent Cooper-pair hopping. The creation and annihilation of
dipole states in this way allows Cooper-pair dominated transport to dominate, even in
the presence of a static background of singly occupied (+1) states.



regime, although as stated earlier, this regime is not experimentally resolvable for these
parameters.

6. Magnetic field dependence of correlated transport

A key motivation for this analysis is the experimentally observed correlated transport as a
function of magnetic field. At this point we have demonstrated that correlated transport can
occur in the zero magnetic field, small EJ limit. We now consider the characteristics of the
current flow as a function of an applied magnetic field. We assume the Josephson energy
displays the usual magnetic field dependence [48],

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 πΔ Δ
=( ) ( ) ( )

E B
eR

B B

k T2 2e
tanh

2
, (13)J

T B

therefore both the superconducting gap and EJ will contribute a magnetic field dependence to
the conduction properties. As the magnetic field increases, the closing of the superconducting
gap increases the rate of quasiparticle hopping while the Cooper-pair rate is dropping due to the
reduction in EJ . For our parameters, this results in non-monotonic variation in the current for
given voltage and the disappearance of the second (high current) transition for
Δ Δ ≲( ) ( )B 0 0.5. In figure 8 we plot the relative fraction of Cooper-pair hopping compared
to all hopping events as a function of both voltage and magnetic field. To avoid numerical noise
from the finite simulation time, we only include data for currents greater than 0.5 aA. Looking
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Figure 8. The relative fraction of Cooper-pair hopping as a percentage of the total
hopping events within the array, as a function of both voltage and magnetic field
(plotted for >I 0.5 aA). At zero magnetic field (Δ μ=( )0 340 eV), the transport is
almost entirely dominated by incoherent Cooper-pair hopping. As the magnetic field is
increased (Δ →( )B 0) the role of Cooper-pair hopping decreases and quasiparticles
dominate.



at the relative contribution of Cooper-pair to quasiparticle events, we see that for
Δ Δ ≳( ) ( )B 0 0.5 Cooper-pairs dominate in the region of interest (4 mV ≲ ≲V 15 mV). For
lower voltages, quasiparticle transport plays a more important role as the charge density within
the array is closer to zero. Quasiparticles also dominate at large magnetic fields (small
superconducting gaps) as one would expect.

We now consider the spectral response of the charge–charge correlations at fixed current
(I = 1 pA) as a function of superconducting gap size. Figure 9 illustrates the spectral response as
a function of gap size where correlated transport is observed in both the small and large gap
limits, although the correlations disappear in the intermediate regime. The frequencies where we
observe a peak in the spectral response in the low and high gap regimes differ by a factor of
two, due to the dominant charge carriers being either quasiparticles ( =Q e1 ) or Cooper-pairs
( =Q e2 ) where Q defines the magnitude of the effective charge carrier. This is consistent with
magnetic field dependence of the relative fraction of Cooper-pairs plotted in figure 8 as well as
the experimentally observed relationship between frequency response and current in [24].

Although the distribution of single occupancy excitations in the high current regime is
approximately static on the time scale of the current flow, long time fluctuations are observed
which correspond to random rearrangement of the quasiparticle background. These slow
fluctuations can be seen as fluctuations of the current response in the high current transition
regime in figure 3. This slow background charge rearrangement leads to a non-negligible zero
frequency component at low magnetic field, see figure 9. As the magnetic field is increased, this
contribution to the spectra broadens as the hopping rate for quasiparticles increases. This
transition regime corresponds to where the high current transport regime is no longer correlated
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Figure 9. Spectral response as a function of relative gap size for T = 200 mK and
=E E 20J c (curves vertically displaced for clarity). The frequency axis is normalized

f I such that for = =f I Q e1 1 for quasiparticle transport and = =f I Q e1 1 2 for
Cooper-pair transport, i.e. Q defines the magnitude of the effective charge carrier. At
small gap sizes (high magnetic fields) we see quasiparticle dominated transport, whereas
at large gap sizes (low magnetic field) we observed Cooper-pair dominated transport
plus an additional zero frequency component, related to slow rearrangement of the
background charge.



due to strong fluctuations of the quasi-static background but the overall charge density is still
too high to observe conventional (normal) correlated conduction. The exact details of this
transition depend strongly on the characteristics of the array (effective impedance, temperature,
Josephson energy). At sufficiently high magnetic field, conduction is simply dominated by
quasiparticles and we see a single frequency peak corresponding to correlated transport.

This model reproduces the observation of correlated transport in both the high and low
magnetic field limits [24], however several important questions remain. A key experimental
observation is the continuous transition from =Q e1 to =Q e2 which is not reproduced in our
simulations. Although broadening due to the finite response of the rf-SET would explain the
continuous transition, this would still require coexistence of both the =Q e1 to =Q e2
dominated phases which is not observed here. However, given that both background disorder
and the bias position of the rf-SET itself can stabilize particular quasi-static charge
configurations, a plausible explanation is that the system fluctuates between both transport
states, the result of which is then time averaged during rf-SET detection. Secondly, we have not
considered the effects of variations in the effective electron temperature and in the impedance
seen by the charges as a function of time and/or position within the array.

7. Conclusion

We have developed a model for transport due to both incoherent Cooper-pairs and equilibrium
quasiparticles which explicitly includes the ability of the array impedance itself to dissipate
energy. Such a model fundamentally modifies the response of the charge carriers and leads to
qualitatively different predictions for the array response which help to explain several
experimentally observed effects. We observe correlated transport due to incoherent Cooper-pair
hopping which can occur at higher temperatures and higher voltages than one would expect for
normal (correlated) conduction. This new correlated transport phase is carried via movement of
double excitations (Cooper-pairs) through a random distribution of stationary single excitations
(quasiparticles). The breakdown of this phase as a function of applied magnetic field is
consistent with the observation of correlated transport in both the low and high field regimes,
even for small Josephson energy.
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