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Efficient Analysis of Large Aperiodic Antenna Arrays
Using the Domain Green’s Function Method
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Abstract—An efficient method-of-moments (MoM) based do-
main decomposition technique, viz., the domain Green’s function
method (DGFM), is presented for analyzing large antenna arrays.
The DGFM is a perturbation technique where mutual coupling
between array elements is accounted for during the formulation
of an active impedance matrix for each domain/array element.
The active current distribution on the entire array geometry is
obtained by solving the smaller matrix equations related to the
elements, and not that of the problem as a whole. This leads to a
significant saving in both runtime and memory usage. The method
also takes into account the edge effects attributed to the finite size
of the array, complex excitations with nonlinear phase shift and
is not limited to periodic array configurations. The DGFM is an
approximation and assumes a slowly varying current distribution
between domains. A novel way to mitigate the aforementioned, by
including secondary coupling effects, is also discussed. Further-
more, an efficient active impedance matrix fill strategy is presented
where the active impedance matrix summation is truncated to
include only a certain number of terms. Parallelization using
both distributed and shared memory programming models have
also been applied to the DGFM, to further optimize runtime and
memory usage.

Index Terms—Domain decomposition, finite antenna arrays,
method-of-moments (MoM), non-periodic arrays.

I. INTRODUCTION

NALYZING large, finite, irregular-spaced antenna arrays
is of interest to various research groups. One such an
application for which nonuniform spaced array configurations
is specifically well-suited, are for high-sensitivity imaging in
the field of radio astronomy—an example being the aperture
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arrays for the low-frequency spectrum of the next-generation
radio telescope, the Square Kilometre Array (SKA), viz.,
SKAT1-low [1].

Although the SKA1-low aperture array configurations are
typically sparse, with interelement spacing greater than half a
wavelength, mutual coupling can still affect the performance
of the array and should be accounted for in the analysis as
accurately as possible. Using conventional full-wave simula-
tion techniques, such as the method-of-moments (MoM), is
typically not an option, because the arrays being considered can
consist of a large number of elements. For the SKA1-low, it is
estimated that the number of elements is in the order of 250 000
operating over the 50-350 MHz band [1]. Analyzing such
large problems places a considerable burden on computational
resources in terms of runtime and memory usage.

Various techniques for analyzing large, finite arrays have
been presented over the last few decades. Small to moderate
sized arrays can be analyzed using full-wave methods such
as the Method-of-Moments (MoM). However, for electrically
large array configurations, the MoM results in very long sim-
ulation runtimes and significant memory usage. To this end,
a variety of approximation techniques have been developed
to simulate large array configurations, e.g., the infinite array
plus spectral windowing method [2], macro basis function
techniques, such as the characteristic basis function method
(CBFM, [3]), the synthetic function expansion (SFX, [4]), and
the MBF method in [5], as well as iterative techniques, such as
the adaptive integral method (AIM) [6] and the precorrected
fast Fourier transform (pFFT) method [7].

The technique presented here for the analysis of such
large, irregular arrays is the domain Green’s function method
(DGFM) [8], [9]. The DGFM is a perturbation technique that
is fundamentally based on the work done by Skrivervik and
Mosig which was developed for printed array antennas using
the multi-layered Green’s function [10], [11]. In the current
work, the method is formulated for the scalar free-space Green’s
function and applied on a higher block-matrix factorization
level. Mutual coupling between array elements is accounted for
with the formulation of an active impedance matrix for each of
the domains.! The latter can become the dominant operation
in the total solution time for very large array configurations.
To overcome this limitation, the DGFM is extended by first
sorting the elements according to descending mutual coupling
strength in the active array environment. The sorting criteria
that is used, accounts for both the complex excitation and the

ISometimes referred to as scan impedance matrix.
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distance between the domains. The aforementioned is then
used to truncate the summation of the active impedance matrix
calculation to include only a certain number of terms.

As discussed in [10], [11], a perturbation approach such as
the DGFM requires that the current distribution between the el-
ements be slowly varying. For this very reason, the accuracy of
the DGFM deteriorates when investigating off-broadside scan
angles for a phased array example, as will be illustrated and dis-
cussed in Section V.

Furthermore, a novel technique is proposed for improving
the accuracy of the DGFM. The technique is based on applying
an approximate solution obtained iteratively with a Jacobi de-
composition of the DGFM block matrix factorization [12]. The
DGFM has also been integrated as part of an efficient array
analysis tool in the commercial computational electromagnetics
software package, FEKO [13].

This paper is organized as follows. In Section II-A, the
DGFM is introduced and its mathematical formulation is pre-
sented. A comparison with macro basis function techniques,
such as the CBFM [14], is presented in Section II-B. An accel-
eration strategy for calculating the active impedance matrices
is discussed in Section III. The parallelization of the DGFM
is explained in Sections IV and in V simulation results are
presented for various irregular array configurations consisting
of log-periodic type elements called the Zig-Zag, based on
work presented in [15] and [16]. The work is then concluded in
Section VI with a summary and also some recommendations for
future research. A method for improving the solution accuracy
of the DGFM, that is based on the Jacobi decomposition of the
block factorized MoM matrix, is discussed in Appendix A.

II. THE DOMAIN GREEN’S FUNCTION METHOD

A. Mathematical Formulation

Consider the simple array configuration illustrated in Fig. 1
consisting of M identically discretized elements, with /V; basis
functions per element. We begin by applying the infinite array
assumption as done in [10], i.e., that the unknown surface cur-
rents on all the array elements are identical to the surface cur-
rent on the element that we wish to analyze, scaled by the com-
plex array excitation coefficients. The aforementioned may be
written as

Ch

Je(r + ) ~ oA

Ji(’l‘) = akiJi('r) (l)
where J;M-, and Cj; are the unknown surface currents and
known complex excitation coefficients of array elements & and
1, respectively. The term ay; is the complex weighting factor
that is used to express the relationship between the currents.

In accordance with the domain decomposition paradigms, the
MoM matrix equation ZJ = V for the entire problem can be
block-partitioned as

le 212 ZL"\/I Jl Vl
221 222 221\/1 J2 V2

C . =1 2
ZN[ 1 ZAJ M J M VAM
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r i.th element

Fig. 1. Antenna array consisting of M elements with N; unknowns each.

By using (1), we can calculate the total active current distribu-
tion, i.e., the solution to(2), by solving smaller block matrices.
To illustrate this, consider that by applying(1), the currents on
domains 2, . . ., M may be expressed in terms of the current on

domain 1 as

Jo =andi; I3 =asd; v = anndr (3)
By substituting (3) in (2), we can then solve for the active current

distribution on domain 1, i.e.,
Vi =[Z11 +{anZin+ - - + anriZiag))
M
= [Z arrzlzlvrtl J1 = Zzlim‘Jl (4)

m=1

where the excitation-dependent Z3“* is called the active
impedance matrix, that accounts for both the self-coupling as
well as the mutual coupling from the surrounding active array
environment.

On a similar basis, we can calculate the active impedance
matrices for each of the array elements. In general, the ac-
tive impedance matrices of the domains are different, i.e.,
Z2" % Z° for n # m. The resulting current distribution on
the array elements n» and m is therefore perturbed in the sense
thatJ,, # umdim for n # m as per our initial assumption.

The runtime for the DGFM scales as O(M x N?) as opposed
to O((M x N;)?) should the MoM be used for the entire struc-
ture. Likewise, the memory usage scales according to O(N?)
and not O((M x N;)?). It should be noted that the DGFM tech-
nique presented here does not allow for the calculation of em-
bedded element patterns (EEP), as it would mean that all neigh-
boring elements are not excited, i.e., C, = 0 in (1). Hence, and
in contrast to an all-excited array, the effect of mutual coupling
due to a local excitation is not accounted for. The same limi-
tation applies to calculating the scattering matrix for the array.
Appendix A discusses a method for correcting the excitation
coefficients, C}, so that first-order coupling effects are also ac-
counted for whenever spatially localized solutions for the cur-
rent are to be expected. The aforementioned ensures that C, # 0
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even for the case where only one element is excited. In the fol-
lowing, however, we will focus on the all-excited array case.

B. Comparing the DGFM With MBF Techniques

The DGFM shares a few commonalities with macro basis
function (MBF) techniques such as the characteristic basis func-
tion method (CBFM) [14], [17] that are based on partitioning
the problem into a number of smaller subdomains. A compar-
ison between the DGFM and the CBFM, as presented in [3] for
disjoint domains, will be discussed here.

For the CBFM, the total unknown current distribution on a
domain can be expressed as a linear combination of primary
and secondary CBFs,2 each weighted with an unknown com-
plex constant, (3,,[3]. For illustration, consider the current on
domain 1, which may then be expressed as

M

- Z Blm 2;11217nJ1771 . (5)
—_———

m=2

Ji~gin Jn
~—~—

Prim.CBF Sec.CBFs

The first term in (5) is the primary CBF and is calculated
as the current on the subdomain in isolation and the secondary
CBFs, i.e., the terms m = 2,..., M, represents the current in-
duced on subdomain 1, by using as excitation the primary CBFs
of the surrounding elements.

For the DGFM, the initial current distributions that are as-
sumed on each of the domains, are taken as the primary CBFs
only. Note, however, that these primary CBFs are not generated
explicitly beforehand. For the DGFM, we require only the rel-
ative relationship between the current on domains p and ¢, i.e.,
J,, and J, which may be expressed as (¢f. Appendix A)

<A7 Jp1>
(A dg1)

Ctpg (6)
forp,q=1,2..., M, where J,; and J,; are the primary CBFs
on domains p and ¢, respectively, and A is a testing vector (e.g.,
a vector filled by ones). As illustrated in (6), the ratio between
the primary CBFs is in turn identical to the ratio of the applied
voltage excitation coefficients of the subdomains p and g, i.e.,
the a-coefficients defined in (1). The DGFM therefore does not
require the initial calculation of a set of primary CBFs, which
is of O(M x N?) and increases to O(M x N2 + (M x N;)?)
when adding also secondary CBFs, as discussed in [19], at the
cost of compromising the solution accuracy only slightly.

The next difference between the CBFM and the DGFM is
clear when comparing the M2 x M? reduced impedance ma-
trix setup for the CBFM [3], which represents the interaction
between the CBFs generated on each of the A domains, with
the active impedance matrix setup for the DGMF as explained
in Section II-A. Following [17], the CBFM reduced matrix en-
tries may be calculated as

CBF
ZEPF = (1T, ZE0,0) )
with Z?;VG the coupling submatrix also used in (2).

Accurate coupling is modeled with (7), by accounting for
the interaction between two CBFs using the full-wave coupling

2In [18] tertiary CBFs were also used to model a connected patch array.
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RWG
ZP q

matrix, . For the DGFM, mutual coupling between the

domains is approximated by weighting ZE;VG with the known
apq-coefficient. In terms of accuracy, the DGFM does therefore
not account for spatially localized first-order coupling effects, as
in the CBFM; however, it still accounts for spatially extended
global coupling effects on account of the infinite array assump-
tion, unlike the CBFM. Another difference that can be noted, is
that the CBFM allows for better treatment of multiple excita-
tions (MRHS), since the active impedance matrices in (4) have
to be recalculated for every array excitation.

The benefit to using the DGFM is clear when comparing the
computational costs, in terms of runtime and memory usage,
with that of the CBFM. As already mentioned, the DGFM does
not require the initial calculation of a set of primary and sec-
ondary CBFs. Another difference is the cost associated with
calculating the active impedance matrices compared to that of
setting up the reduced matrix equation. For the CBFM, calcu-
lating (7) for each of the domains p = 1,...,M and ¢ =
1,..., M scalesas O(M* x N?). The cost of calculating the ac-
tive impedance matrix equations in (4), scales as O(M? x N?),
i.e., a saving of O(M?).

Itis however to be noted that the effect of applying techniques
such as the ACA [17], that accelerates the matrix vector product

in (7), by approximating Z?;VG as a low-rank decomposition,
~RWG
y4 , has not been considered. In [20], the cost of calculating

thpeq reduced impedance matrix has also been addressed by using
a low-order harmonic-polynomial function as a compact rep-
resentation for the reduced matrix entries in (7). This harmonic
polynomial expression is obtained by precomputing the reaction
integrals in a limited set of relative positions between domains.

In addition, M CBFs per domain are typically not used, as
the number of CBFs per domain can be reduced by applying
a Gram—Schmidt orthogonalization [3], or a singular value de-
composition (SVD) [17] to retain only a limited number of or-
thonormal CBFs. If we consider on average 1. CBFs per do-
main, with L < M, then the cost for calculating the reduced
impedance matrix in (7) reduces from O(M* x N?) to O(M? x
L? x N?). It should however be noted that the cost of applying
the Gram—Schmidt orthogonalization, or the SVD, to reduce the
number of CBFs per domain adds additional complexity to the
CBFM algorithm as explained in [19].

The CBFM and the DGFM also differ in terms of memory
usage. The memory requirement for calculating the primary
CBFs scales as O(N?), as we need to store the LU factorization
of the self-interaction matrix of each domain, i.e., (Z5w)~1
that is of size N, x N;. Another (’)(Nf) is required for storing
the coupling matrices, ZE;VG, used when generating the sec-
ondary CBFs in (5) and also when calculating the reduced
matrix entries in (7). In addition to the aforementioned, storing
the CBFM reduced impedance matrix scales as O(M*). The
memory requirement for the DGFM scales only as O(N?) for
storing the active impedance matrix of each domain. The com-
putational complexity of the DGFM and CBFM formulation,
as presented in [3] for disjoint arrays, is summarized in Table I.

The computational complexities of the CBFM and DGFM
algorithms have been qualitatively compared in this section,
and their relative accuracies have been examined. It has been
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TABLE 1
ORDER OF CPU-TIME AND MEMORY USAGE FOR CERTAIN PHASES OF
THE CBFM AND DGFM WHEN APPLIED TO THE ARRAY GEOMETRY
OF FIG. 1, CONSISTING OF A{ DISJOINT ELEMENTS EACH WITH
N; SUBSECTIONAL BASIS FUNCTIONS

Method: CBFM DGFM
MoM matrix
setup time O((M x N;)?) | O(M x N;)?)

Calculation of

Primary basis O(M x N2) NA
Calculation of
Secondary basis O((M x N;)?) NA
Calculation of
reduced matrix O(M* x N2) NA
Calculation of active
impedance matrices NA O(M? x N2)

Memory usage
(whole solution)

O(2N2 + M%) O(N?)

shown that although the DGFM is less accurate than MBF tech-
niques—such as the CBFM for cases where higher order cou-
pling is required—one gains a saving in both memory usage and
runtime for cases where it can be used.

Finally, it is worth noting that the DGFM can be enhanced by
the CBFM for the analysis of large disjoint arrays consisting of
subarray tiles, as explained in [21].

III. ACCELERATING THE ACTIVE IMPEDANCE
MATRIX CALCULATION

As noted in Section II-B, calculating the MoM impedance
matrix for the M element array scales as O((M x N;)?), and
can rapidly become the dominant part in the solution phase for
the DGFM, especially for large arrays. In the following sections,
we explore a scheme for reducing this cost, viz., by truncating
the summation that is present in the calculation of the active
impedance matrices. This requires that the active impedance
matrix terms in (4) be sorted beforehand, and is explained in
the following subsection.

A. Sorting the Terms of Z:**

The active impedance matrix of the ith domain may be ex-
pressed as follows:

act
L =2+ oun+toanlis+ -+ oamiliv
M
= E ik
k=1

with &, as defined in (1), i.e., ag; = C/Ct, where C, and
C; are the applied excitation coefficients on domains % and i,
respectively.

In order to sort the terms in (8), the following scalar quantity
is defined for each element:

®)

o ol
T _
¢ |ril

)

Equation (9) therefore accounts for both the relative excita-
tion magnitude and physical separation between the elements
k and i, respectively. The distance between the elements 7y,
illustrated in Fig. 1, assumes that the elements are not rotated
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arbitrarily with respect to each other. This sorting is done prior
to the analysis of each element and, for optimal performance,
the Quicksort algorithm is used [22].

B. Truncating the Z:*-Summation

If (8) is sorted according to (9), then this would represent a
decreasing function and the number of terms used in the summa-
tion can be truncated to some value, M., that defines the radius
of convergence for each of the elements, i.e., M. = M x R,
with I?. a factor between 0 and 1. The active impedance matrix
is then approximated as follows:

act
L7 =L+ o+ ovilipt -+ ol

-

M. terms
M,

~ E a;w;Z?;k.
k=1

The complexity of the matrix-fill phase can therefore be re-
duced to O((12. x M x N;)?> + M x §), where IR, is the con-
vergence radius between 0 and 1, and S is a small factor related
to the sorting of the DGF terms, using (9).

Numerical results will be illustrated in Section V, which will
discuss the effect of truncating the active impedance matrix
summation.

(10)

IV. PARALLELIZATION OF THE DGFM USING
HyBRID MPI/OPENMP

The DGFM is particularly suited to a distributed paralleliza-
tion strategy using routines such as the message passing inter-
face (MPI) [23]. Each parallel process that forms part of the
computational domain is allocated a certain number of array el-
ements to analyze. The final result, i.e., the active current distri-
bution for the entire array, is then combined at the end, when
each process has completed the analysis of its subset of the
problem.

Inherent to such a distributed programming model, is the
fact that each process is allocated its own section of memory,
which in turn leads to unnecessary overhead in the event that
the processes are located on the same machine, operating in a
shared memory environment. Another parallel programming
paradigm, OpenMP [24], has emerged in recent years, which
allows one to run multiple threads of one process in parallel
on such an architecture. What makes OpenMP attractive is
the avoidance of memory duplication if multiple parallel pro-
cesses/threads need to access the same data.

The DGFM uses a hybrid OpenMP/MPI parallelization
scheme, whereby the MPI library is used for distributed
parallelization and OpenMP threading for intra-node com-
munication. The aforementioned is currently applied to the
LU-decomposition of the active impedance matrices.

V. NUMERICAL RESULTS

To illustrate the efficiency of the simulation techniques de-
scribed in the previous subsection, irregular-spaced sparse ar-
rays of log-periodic type structures are analyzed. The element
used is called the Zig-Zag, and is explained in more detail in
Section V-A.



LUDICK et al.: EFFICIENT ANALYSIS OF LARGE APERIODIC ANTENNA ARRAYS USING THE DGFM

=

Schematic Single Polarization

(@)

1583

1000

- FEKO (Rin)
L —e— NEC (Rin)
800 —— FEKO (Xin)
-=- NEC (Xin)
600 |
400t
£
<
S 200t
£
x
£ or
o
-200 |
-400 |
-600 |-
-800 ; : . . . . . ;
50 100 150 200 250 300 350 400 450 500
Freq [MHz]
(®)

Fig. 2. (a) Schematics representation and single-polarization of the Zig-Zag antenna and (b) the real and imaginary part of the input impedance of the single-
polarized element simulated with FEKO and NEC, respectively. (a) Schematic representation of the Zig-Zag geometry and a single-polarized antenna with the
arms folded. (b) Real and imaginary parts of the input impedance for the single-polarized Zig-Zag antenna, simulated with FEKO and NEC.

A. Test Example 1: the Zig-Zag Array Element

The element used in the following array configurations is
called the Zig-Zag. The geometry is derived from that of a log-
periodic antenna, as introduced by DuHamel [15]. Here, the ge-
ometry is simplified to a triangular tooth or Zig-Zag structure,
as proposed by DuHamel in [25]. The Zig-Zag geometry is pre-
sented in Fig. 2(a) where the trapezoidal tooth structure is illus-
trated (left) as well as the manner in which it is folded to obtain a
single-polarized antenna. The Zig-Zag element is folded to limit
the footprint of the antenna to 1 m?[26] in accordance with the
SKAT1-low specifications [1].

The real and imaginary components of the input impedance
of the single-polarized (folded) Zig-Zag element are presented
in Fig. 2(b). The results were obtained with FEKO [13] and the
numerical electromagnetics code (NEC) [27], respectively.

The input impedance oscillates around 300 €2 over a fairly
wide frequency band, ranging from 70 MHz to 450 MHz, in line
with the requirements of the SKA1-low frequency range. Two
single-polarized elements can also be rotated 90° with respect
to each other, in order to achieve dual-polarization. In the next
section, an array of such dual-polarized Zig-Zag elements will
be analyzed with the DGFM.

B. Test Example 2: A 26-Element Array of Dual-Polarized
Zig-Zag Antennas

To illustrate the effect of limiting the mutual coupling during
the calculation of Z;°" to the N, dominating elements, a 26 el-
ement array consisting of dual-polarized Zig-Zag antennas, il-
lustrated in Fig. 3(a), is analyzed using the MoM and DGFM
with R, values of 100%, 50% and 0%, respectively. For R, =
0%, only self-coupling for the element is assumed. The element
spacing ranges from between A/2 to 3A at 70 MHz. Although
spacings of \/2 are clearly denser than normally needed in an
irregularly spaced array, it is chosen as such to illustrate the ef-
fect of various K. values on the accuracy of the DGFM. The
element is discretized by using 325 elementary basis functions,
leading to a total of 8450 unknowns.

The far-field gain pattern is analyzed along the ZX-plane for
scan-angles of # = 0° and # = 60°, and is illustrated in Fig. 3(c)
and (d). The DGFM results for R, = 100% compare well with
those obtained by the MoM solution. Included in the results are
those obtained for R, = 0% and R. = 50% values. Fig. 3(e)
and (f) illustrates the errors in dB for B, = 0% and R, = 50%
compared to the DGFM with R, = 100%. As can be noted in
Fig. 3(e) and (f), the error is slightly larger than 1 dB for cer-
tain off-broadside angles. The reason for the aforementioned, is
as follows. For a slowly varying excitation law, the initial con-
dition that the currents be identical on all subdomains, except
for a complex scaling factor, is particularly true for near-broad-
side scan angles and for antenna elements that support only a
low number of antenna modal currents. These limitations were
also observed in [28], where a similar perturbation approach has
been described for the CBFM.

The computational complexity of the DGFM compared to the
MoM is summarized in Table II. The matrix fill-time for the con-
ventional DGFM (i.e., with B. = 100%) is similar to that of
the MoM; however significant savings can be observed in the
matrix solution phase (which is dominated by the LU-decom-
position) as well as in the memory usage.

Table IIT summarizes the runtimes for the matrix fill phase,
associated with the various I2. values. From the results it can
be concluded that the accuracy of the DGFM can be controlled
by changing the value of R..

To illustrate the efficiency of the parallelization of the DGFM
as discussed in Section IV, the 26-clement array was simulated
using five compute nodes. The measured runtime speedup is
shown in Fig. 4 and compares well to the ideal case.

C. Test Example 3: A 529-Element Irregularly Spaced Array
of Zig-Zag Elements

Following the methodologies explained in Sections III and
IV, a larger 529-element dual-polarized Zig-Zag array was an-
alyzed by using eight distributed parallel processes on a Linux
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Fig. 3. Application of the DGFM to a Zig-Zag antenna displayed in (a), in an array configuration displayed in (b). The directivity patterns for scan-angles of
@ =0°¢=0°and(@=60°,¢ = 0°)are presented in (c) and (d), respectively. The errors in the directivity for different R.. values are presented in (e) and (f),
where R, = 100% is used as reference. All results are obtained for the active array environment where all the elements are excited equally and simultaneously.
(a) Dual-polarized Zig-Zag element geometry. (b) Array configuration containing 26 irregularly spaced Zig-Zag elements. The element spacings ranges from A/2
to 3A, at an operating frequency of 70 MHz. (c) Total directivity pattern (dBi) for a scan-angle of & = (°, ¢ = 0°. (d) Total directivity pattern (dBi) for a
scan-angle of § = 60°, ¢ = 0°. () Error (dB) in the calculated directivity for R, = 0% and R. = 50% compared to R. = 100%. Considered scan angle:
(6 =0°,6 = 0°). (f) Error (dB) in calculated directivity for R. = 0% and R, = 50% compared to R. = 100%. Considered scan angle: (6§ = 60°,¢ = 0°).

TABLE 11
RUNTIME AND MEMORY REQUIREMENT FOR SIMULATING A 26-ELEMENT
Z1G-ZAG ARRAY USING THE MOM AND DGFM

Method: MoM DGFM
(R: = 100%)
Time for
matrix setup 326.24 sec 379.69 sec

Time for

matrix solution 188.616 sec 0.83 sec

Memory usage

(whole solution) | 1.072 GByte 7.56 MByte

EMO6AT platform with 2 x quad core processors. The array ge-
ometry is illustrated in Fig. 5. The array consists of 171925
elementary basis functions with inter-element spacings again
ranging from between A/2 and 3, at an operating frequency of
70 MHz. Convergence threshold values of 2, = 0% and R, =
50% were used for the analysis. The computational complexity
of the simulations is summarized in Table IV. The far-field gain

—— Ideal Speed-up (S, = N;) —-———- Measured Speed-up ‘

Speed-up (S1/S)

1 2 3 4 5 6 7 8 9 10
Number of Processes (N,)

Fig. 4. Runtime speedup measured for the 26-element Zig-Zag element array.

patterns for § = 0° and § = 60° are illustrated in Fig. 5.
From the results it can be seen that the errors in the modeled
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Fig. 5. Applying the DGFM to the Zig-Zag antenna displayed in Fig. 3(a) in a 529-element array configuration. The gain patterns for scan-angles of (8 = 0°,
@ = 0°)and (¢ = 60°, ¢ = 0°) are presented in (b) and (c), respectively. All results are obtained for the active array environment where all the elements are
excited equally and simultaneously. (a) Array configuration containing 529 irregularly spaced Zig-Zag elements. The element spacings ranges from A/2 to 37,
at an operating frequency of 70 MHz. (b) Total gain pattern (dB) for a scan-angle of & = 0°, @ = 0°. (c) Total gain pattern (dB) for a scan-angle of # = 60°,

@ = 0°.

TABLE III
RUNTIME AND MEMORY REQUIREMENT FOR SIMULATING A 26-ELEMENT
Z1G-ZAG ARRAY USING DIFFERENT £. VALUES

Method: DGFM DGFM DGFM
(Re = 100%) | (R. =50%) | (R. =0%)
Number of coupling
terms for DGF (IV.) 29 15 1
Time for
matrix setup 379.69 sec 199.43 sec 1.22 sec

mutual coupling only have a minor effect for —80° < ¢ <
—50° and 50° < # < 80°, and even less for £45° off-ver-
tical for SKA1-low. The technique introduced in this paper has
permitted a computationally efficient investigation to be under-
taken. This can be applied to other candidate antennas, such as
the log periodic proposed in [16].

VI. CONCLUSION AND RECOMMENDATIONS

In this work, the DGFM was presented as a technique that
may be applied to large irregular array configurations, such as

TABLE IV
RUNTIMES AND MEMORY REQUIREMENTS FOR THE ANALYSIS OF THE
Z1G-ZAG ARRAY CONFIGURATION OF FIG. 5 ON A LINUX EM64T PLATFORM
WITH 2 X INTEL XEON QUAD CORE PROCESSORS AT 2.67-GHz CLOCK
RATE EACH. THE DGFM WITH 2., = 0% AND 12, = 50% WAS USED,
WITH EIGHT PARALLEL PROCESSES

Method: DGFM DGFM
(R: = 0%) (Re = 50%)
Total solution
time 14.23 min 2.27 hours
Memory usage
(per process) 143.1 MByte | 143.1 MByte

those being considered for the SKA low-frequency aperture ar-
rays. The formulation of the DGFM is such that mutual cou-
pling can be controlled by setting a convergence radius, I2.., for
the elements being analyzed, as explained in Section III-A. In
doing so, the matrix fill phase of the DGFM can be accelerated
quite significantly. Future work would be directed towards ob-
taining an optimal value for ., based on the array geometry, as
well as including the support for arbitrary rotations of the array
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elements. In Section IV, it was also indicated how the DGFM
can be accelerated by using parallel programming. At the time
of writing, only the matrix solution phase of the DGFM, i.e.,
the LU-decomposition, supported parallelization with OpenMP
threading. A further extension to this part of the DGFM, would
be also to apply this shared memory programming paradigm to
the matrix-fill phase, which was discussed in Section I1I-A.

In Appendix A, a method for improving the solution accuracy
of the DGFM has been discussed to more accurately incorporate
spatially concentrated coupling effects in addition to the global
coupling solutions (spectral Floquet waves) that are inherent
to the infinite-array-type of assumption in the DGFM. The im-
provement is based on the Jacobi decomposition of the block
factorized MoM matrix which not only allows for the analysis
of more concentrated localized excitation schemes—or more
rapidly varying currents on the array elements—but also the cal-
culation of embedded element patterns (EEPs) and reveals com-
monalities with other MBF methods such as the CBFM. Since
the focus in this paper is on the all-excited sparse array case of
weakly coupled antenna elements, the aforementioned will be
investigated more rigorously in future work.

APPENDIX
DGFM IN RELATION TO JACOBI-GENERATED CBFSs

A connection is shown between the effective domain excita-
tion coefficients C, in the DGFM and the multiple-scattering
CBFs in the CBFM as well as a manner in which the accu-
racy of the DGFM can be improved. The ideas are based on
the Jacobi iterative solver as described in [29], [30], while the
connection between Krylov subspace solvers and macro-basis
functions have been described more recently in [31]. We begin
by writing the block-partitioned matrix (2) as (Z°"+2°")J = V,
where Z°" is the block-diagonal part of Z, while Z°" contains
the off-diagonal moment matrix blocks. Upon multiplying both
sides by (Z°™)~1, and by realizing that Jo = (Z°") "1V is the
induced current on the array structure in the absence of subdo-
main coupling, one obtains

J= |:|+ (2011)71203} -1 J(]
=Y [-@™ 1z, (11)
n=0

where the term [l + (Z®")~'Z°"] =1 has been rewritten with
the aid of the infinite geometric series (1 — r) ™! = Y7 ™.
Convergence is achieved if the magnitude of the eigenvalue of
the principal eigenvector of (Z°")~1Z°% is less than unity [12],
which is typically the case for radiating disjoint subdomains as
considered in this work, for which the successively induced cur-
rents are expected to decay rapidly in an iterative multi-scat-
tering context. By using the block partitioning in (2), the full-
wave MoM solution (11) can also be written as

M —1
J1 J01 - Zm:l,m;él Z11 ZlmJOm + -
M —1
J2 _ J02 - Zm:l,'m;éZ 222 Zf_)mJ()m, T
N M -1
M JO;M - Zm:l,m;ﬁ]\/[ AH\JZEVImJOm +oe

(12)
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where Jo,, = (Zmm) Vo is the induced current on the mth
subdomain in isolation. Note that J;,,, corresponds to the pri-
mary CBF as generated by the CBFM for subdomain . Fur-
thermore, Z;&:Lm#p Z;pl Z,,,dom is the contribution of all the
secondary CBFs to the domain p [see (5)]. Hence, the final MoM
solution for the current on each subdomain is the sum of the pri-
mary, secondary, tertiary CBFs, and so on, with known excita-
tion coefficients in accordance with the known voltage excita-
tion vector V and the Jacobi-iterative method in (12).

We can now express the ratio of first-order accurate currents
on the domains p and ¢, by using the first two terms in the Jacobi-
iterative method in (12), as follows:

M —
— <A7J0P - Zm,:l,myﬁp ZPPIZPmJOW’> (13)

M -1
<A7 JO‘I - Zm:l.m#q qu Z’IT”JO"’>

M)
“re = A

forp,q = 1,2..., M. As explained in Section II-B, ignoring
the first-order coupling terms on the RHS of (13), results in the
zeroth-order approximation oy == (A, Jop) /(A Jog), (Where A
is a vector filled by ones). This is equivalent to taking the ratio
of the initially induced currents (i.e., primary CBFs) without ac-
counting for mutual coupling effects. This is the same as taking
the ratio of the applied voltage excitation coefficients of the sub-
domains p and ¢, i.e., the initial assumption made for the DGFM
in (1).

Equation (13) provides a means to compute the c,, coeffi-
cients in (1) more accurately by including first-order coupling
effects used to model spatially concentrated solutions more ac-
curately in addition to the spatially extended solutions already
incorporated in the infinite-array-type of assumption used by the
DGFM. In the above, two relatively inexpensive Jacobi itera-
tions need to be performed—ypossibly even limiting the inclu-
sion of only the near-coupling effects—which is then followed
by the DGFM for solving the system rapidly through an infi-
nite-array-type assumption leading to a block-diagonal system
of linear equations, as opposed to taking a large number of Ja-
cobi iterations or building and solving a reduced matrix equa-
tion as in the CBFM. Furthermore, since the paper focusses on
sparse arrays of all-excited weakly coupled antenna elements,
the proposed refinement in (13) was unnecessary to achieve the
results with an accuracy as reported in this paper. Finally, it is
conjectured that (13) also allows for the introduction of an «
scaling vector, rather than an « scaling factor used in (3), to in-
crease the accuracy even further in case currents are expected
to varying strongly between neighboring domains.
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