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Abstract

This thesis explores the possibility of calculating the permeability of mate-

rials with regression based of classi�cation software instead of using famous

physics formulae, like the Kozeny-Carman equation. The reason for this is

that regarding permeability, no universal and exact formula has been dis-

covered to date; the existing formulae depend on the constitution of the

materials. The chosen model is based on classi�cation from support vector

machines. This classi�cation algorithm was chosen because support vector

machines have a history of showing accuracy comparable to those of other

methods in recognizing various data and because they have a rigorous math-

ematical base. The thesis consists of a theoretical part and an applied one,

where the �rst describe the basis on which the results rely and the second

explains how certain parameters are calculated and used for the classi�ca-

tion algorithm to perform well. It is shown that the classi�cation algorithm

surpasses the famous Kozeny-Carman equation in terms of accuracy of the

calculations for �bre structures. It is also shown that it su�ces to extract

parameters from two dimensional images of the three dimensional structures

to gain equal precision as if the whole three dimensional structure is taken

into account. This raises hope that microscopy images can be used to cal-

culate the permeability of materials. Finally it is shown that the content

of the training set is more important than its size for the support vector

machine to perform well.
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Chapter 1

Introduction

Permeability is a measure of the ability of a material to allow 
uids to pass

through it. The notion of permeability was developed much thanks to the

works of Henry Darcy who, with empirical studies, put forth the law named

after him:

u = −
κ∆p

µL

where u is the 
uid velocity1, κ is the permeability, µ the viscosity2 and ∆p

is the pressure di�erence.

Permeability depends only on the properties of the material and not

of the 
uid and a formula commonly used for calculating the permeability

of a material is the Kozeny-Carman equation. The equation was �rst put

forward by Josef Kozeny in 1927 and then two times modi�ed by Philip C.

Carman, once in 1937 and later in 1956 [7] and in one of its simpler forms

it looks like the following:

κ = ψ
φ3

T2S2

where κ is permeability, φ is the porosity of the bed, S is the speci�c surface,

T is the Tortuosity of the material and ψ is a constant acquired by empirical

studies of the given material in a laboratory or by curve �tting the formula

with a set of measured permeabilities. It is a cumbersome process to acquire

the constant and results in a formula which may not be as precise as required,

e.g. it is approximately valid for sands but not for clays [21].

This report will study the possibilities of predicting the permeability of

a material by using a Support vector machine (SVM).

A support vector machine is a computer program with a learning algo-

rithm used for classi�cation and regression analysis of given data.

1The discharge per area.
2A measure of the 
uids resistance to gradual deformation.
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1.1. RESTRICTIONS

The original algorithm was developed by Vladimir N. Vapnik and became

famous in the '90s when it showed accuracy comparable to other methods

in recognizing handwritten text [5]. The today standard version of the

algorithm (called soft margin SVM) was derived by Vladimir N. Vapnik.

and Corinna Cortes in 1995 [22].

Some reasons for using SVM when dealing with classifying data is that

training the program is easy and that it scales well to high dimensional data.

The trade-o� between error and classi�er complexity can also be controlled

exactly.

A weakness is that we need to �nd a good kernel function [14] but a good

�rst step is to choose the radial basis kernel and use cross-validation to �nd

certain parameters [9].

1.1 Restrictions

There are several equations for calculating permeability, as seen in Chapter

3, but only the Kozeny-Carman equation was used to compare accuracy with

the Support vector machine. There are also several versions of the Kozeny-

Carman equation but only the simple version presented above was used.

These choices were made since the report was focusing on the accuracy of

the Support vector machine and not of the permeability equations (although

at least one comparison had to be made to have a reference point on how

accurate we can hope to be).

There are several libraries for performing Support vector machine calcu-

lations and libsvm by Chih-Chung Chang and Chih-Jen Lin was chosen [8].

This since the library is available to around 20 programming languages, it is

well documented and has a great tutorial [9] on how to start working. The

library itself also has a multitude of options and is able to perform �ve types

of Support vector machine calculations with four built in kernel functions.

MATLAB was chosen as programming language since it is widely used

[12] and has great toolboxes for optimization and curve �tting. No compar-

ison was made between the calculation speed of the libsvm package imple-

mented in di�erent languages, since the average calculations took less than

half a minute which was considered reasonable.

1.2 Material

The workload was distributed between studying literature and applying the

theory on given data together with analysis of the results.

The literature studied for the theoretical part of the thesis was Pattern
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1.2. MATERIAL

Recognition and Machine Learning by C.M. Bishop [4], The Elements of

Statistical Learning by Trevor Hastie et.al. [13] among others [11], [18].

The data for the �ber structures were acquired from Katarina Logg at

SIK (Swedish Institute for Food and Biotechnology) and were created with

a software called Geodict [23]. The data portrayed three dimensional �-

bre structures and from these structures two dimensional analogs were ex-

tracted.

First the SVM was trained with information computed from the three di-

mensional structures and was re�ned until satisfaction was achieved. After-

wards corresponding information was calculated from the two dimensional

equivalents. Henceforth when required to distinguish the two SVMs the

SVM with three dimensional data will be known as the 3D SVM and the

two dimensional alternative as the 2D SVM.

1.2.1 3D Structures

The structures were created with di�erent degrees of anisotropy. Anisotropic

means that the �bres have a greater probability of being aligned into one

direction than the rest. The opposite of anisotropy is isotropy which means

that the �bres are distributed evenly in all directions (so that it looks almost

the same from every direction). The measure of anisotropy is called DT in

this article and it consists of a vector of three elements: the probability that

the �bres are distributed in respective direction. In the structures acquired

from Geodict the probability of two of the directions were chosen to be

the same, so that only one parameter was required to represent anisotropy.

Thus a value of 13 meant that the structure was isotropic and a di�erent

value meant it was anisotropic (in one direction or the other) (Fig. 1.1).

From these structures a number of parameters were extracted. First

two parameters which could be used with the the Kozeny-Carman equation

were obtained, namely the SVP value of the structure: a measure on the

fraction of total volume consisting of solid material (the complement of

the void ratio) and also the speci�c surface area (the area divided by the

volume). Second Geodict performed simulations to �nd out the diameters

of the biggest spheres which could penetrate the material from di�erent

starting points, and also the length of the paths these spheres took. Finally

the program found out the pore-size distribution, calculated from taking

the volume of the biggest spheres which could �t in the void of the material

at di�erent positions. The data was in some case multidimensional. For an

overview of the data acquired and information on how it was treated see

Chapter 4 and especially Table 4.1 for reference.

The permeabilities of the structures were calculated using the Lattice
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1.2. MATERIAL

Boltzmann method with a software called Gesualdo - a program package

for modeling 
ow and di�usion through heterogeneous biomaterials. The

program was written by Tobias Geb�ack and Alexei Heintz at the department

of Mathematical Sciences at Chalmers University of Technology and the

University of Gothenburg.

The library used for performing the SVM calculations in the computer

was libsvm [8] and it was implemented with MATLAB.

(a) An anisotropic �bre structure with

15% SVP.

(b) An isotropic �bre structure with

60% SVP.

Figure 1.1: One can easily see the di�erence between the anisotropic and

the isotropic structures in this case. The blue strings are streamlines; they

represent the path of a liquid passing through the material.

1.2.2 2D Structures

Thirty images were extracted for each 3D structure, 10 for each direction

(Fig. 1.2). The white pixels (pixels with value 1) represent �bre and black

pixels (pixels with value 0) represent pores. To make it realistic four sets of

images were extracted. The �rst set contained images of depth 1, that is,

perfect 2D slices of the 3D material (Fig. 1.2(a) and 1.2(b)). The other sets

contained the same images but with depth 3, 7 and 10 respectively. Depth

was created by just performing a logical OR operation between the pixels of

consecutive images so that the �nal image would contain every �bre pixel

from each image. As seen in Fig. 1.2(c) and 1.2(d) the depth of the images

will greatly a�ect the DT and SVP values. From these images some of the

parameters mentioned above were approximated (for reference see Chapter

4.2).
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1.2. MATERIAL

(a) An anisotropic �bre structure with

60% SVP with depth 1.

(b) An isotropic �bre structure with

60% SVP with depth 1.

(c) An anisotropic �bre structure with

60% SVP with depth 10.

(d) An isotropic �bre structure with

60% SVP with depth 10.

Figure 1.2: In the �rst row of images one can easily see that one image is

anisotropic and the other isotropic and that they have di�erent SVP

values. In the second row it is harder distinguish the degree of anisotropy

from the �rst image since it is almost all white. The SVP value will also

be miscalculated.
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Chapter 2

Support vector machines

When dealing with mathematical theory it is often useful to �rst study

simple applications of the theory and gradually making the applications

more general until we reach the theoretical level. This way confusion is

greatly avoided since the material is allowed to get absorbed by the reader

in a pleasant pace. Because of this the following pages will describe a simple

problem solved by a SVM and gradually the exact de�nitions and theorems

will appear.

2.1 Introductory problem

Consider the following problem: a set of three dimensional data points is

given where the �rst dimension is in binary form and the other two are real

numbers and the task is to search for a correlation between the real data

and the binary one. A way of representing this data is by drawing it in

a two dimensional graph and to let the binary data be represented by the

shape of the point and the real to represent the position (Fig. 2.1(a)).

When the data is represented in this way it is very tempting to draw a

line which splits the plane in two and to say that the binary value of the

data is determined by whether the data is positioned to the right or left to

the line. We begin with splitting our set of data into a smaller set of training

data; this is done so that when we have drawn our line we can study the

lines behaviour with respect to the whole set and see if it divides the sets

well (Fig. 2.1(b)). We now de�ne our problem:

Find a, b, c such that ax+ by > c for red dots, and ax+ by 6 c for blue
dots.

Our line can now be used to predict the binary value of the data given the

the position of the point. However, without any speci�c rules two or more
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2.1. INTRODUCTORY PROBLEM CHAPTER 2. SVM

lines could work well with dividing the given data, so which line should be

chosen (Fig. 2.2)?

We want the line to be as far away from both sets of data as possible,

so let d1 de�ne the minimal distance1 between our line and the nearest red

dot2 and d2 between the line and the nearest blue dot. Let d1 + d2 = ε,

then the line which optimally cuts the plane in half can now be de�ned as

the line with d1 =
ε
2 , d2 =

ε
2 (Fig. 2.3(a)).

After the line is in place we will assume any new dot appearing to the

right of the line to be blue and to the left red (Fig. 2.3(b)). We have to

remember though that there are some limitations with this model. Since it

is not always possible to �nd a line which splits the two sets perfectly we

sometimes have to make sacri�ces and miss-classify some dots to make the

method work. In Fig. 2.4(a) one red dot was misclassi�ed since it would

be impossible to split the sets perfectly. We could assume that the dot is

there due to some calculation or measurement error, but we have to be more

careful if they are too many strange dots. We also have to choose training

data with caution. Choosing a bad training set may result in drawing a line

which does not split the two sets optimally at all, as seen in Fig. 2.4(b).

We just predict 273 of our 300 points right and we can make the accuracy

even lower by choosing the sets carefully.

If we want to extend our capabilities to even handle data which cannot

be split by a line we can just perform a transformation which makes our data

linearly divisible. Take the following example: we have data which seems to

be placed in a circle, then we just perform a transformation from Cartesian

to polar coordinates after which we can �nd our splitting line easily (Fig.

2.5). It is not always easy to �nd a transformation which makes the data

linearly divisible, but more on that later.

We can also use support vector machines for linear regression (Fig. 2.6).

Assume we have data we want to approximate by a line. We de�ne the

perfect line to be a line such that if we create a tube with our line in the

middle and of width 2ε, we have minimized the distances between the tube

and the data points which lie outside the tube. The data points which lie

inside the tube are not considered.

In the �gure the red dots represent data which lie outside the tube. The

smaller the distance between the tube and the red dots, the better we say

our approximation is.

1With distance we obviously mean euclidean distance.
2Sometimes we have to study the distance between the line and several close dots.

More on that later.
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2.1. INTRODUCTORY PROBLEM CHAPTER 2. SVM

(a) Our original set.

(b) Our training set.

Figure 2.1: We start with splitting our set.
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2.1. INTRODUCTORY PROBLEM CHAPTER 2. SVM

Figure 2.2: Both lines divide the plane well.
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2.1. INTRODUCTORY PROBLEM CHAPTER 2. SVM

(a) The optimal line splitting the training set.

(b) The optimal line splitting the whole set.

Figure 2.3: Our solution. The encircled dots are the ones from the training

set closest to our line.
10



2.1. INTRODUCTORY PROBLEM CHAPTER 2. SVM

(a) One misclassi�ed dot.

(b) Many misclassi�ed dots.

Figure 2.4: Problems which may occur.
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2.1. INTRODUCTORY PROBLEM CHAPTER 2. SVM

⇓

Figure 2.5: We transform data to make it simpler to divide.
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2.1. INTRODUCTORY PROBLEM CHAPTER 2. SVM

Figure 2.6: The red data points lie outside the tube and are thus

considered, and the blue ones are inside the tube and therefore neglected.
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2.2. OPTIMAL HYPERPLANES CHAPTER 2. SVM

2.2 Optimal Hyperplanes

The Support vector algorithm introduced by Vapnik in 1995 was divided

into two parts, one part concerning �nding the optimal hyperplane and one

introducing a notion of soft margins, so the same approach will be dealt

here [22].

We begin by de�ning the set of training patterns (the subset of red and blue

dots in Chapter 2.1)

T = {(yk, xk) : k = 1, ..., l; yk ∈ {−1, 1} ∀k; xk ∈ Rn}

Let us also de�ne subsets of T containing just data with the same value of

yk (sets with dots of the same colour).

T+ = {(yk, xk) ∈ T : yk = 1}

T− = {(yk, xk) ∈ T : yk = −1}

T is said to be linearly separable if there exists a vector w and a scalar b

such that the following inequality is valid for all elements in T :

yi(w · xi + b) > 1, i = 1, ..., l

The optimal hyperplane

w0 · x+ b0 = 0

will be the uniquely de�ned plane which separates the elements of T with

respect to their yi value with a maximal margin. This hyperplane will

determine the direction w
‖w‖ where the distance between the closest points

from T+ and T− is maximal. The optimal distance will be denoted δ(w, b)

and is given by:

δ(w, b) = min
{x:(y,x)∈T+}

(x− b) ·w
‖w‖

− max
{x:(y,x)∈T−}

(x− b) ·w
‖w‖

=

Z
Z
ZZ

−
bw

‖w‖
+ min

{x:(y,x)∈T+}

x ·w
‖w‖

Z
Z
ZZ

+
bw

‖w‖
− max

{x:(y,x)∈T−}

x ·w
‖w‖

=

min
{x:(y,x)∈T+}

x ·w
‖w‖

− max
{x:(y,x)∈T−}

x ·w
‖w‖

The hyperplane does therefore not depend on b but solely on w. The

optimal hyperplane has distance:

δ(w0, b0) =
1− (−1)

‖w0‖
=

2√
w0Tw0

=
2

‖w0‖

14



2.3. SOFT MARGINS CHAPTER 2. SVM

This can be written as the following optimization problem (Fig. 2.3):

minimize
w,b

‖w‖

subject to yi(w · xi + b) > 1, i = 1, ..., l

This optimization problem is hard to solve, since it involves a square root

(in the norm), but fortunately the square root is a monotonically increasing

function so it is possible to substitute ‖w‖ with 1
2‖w‖

2 without a�ecting

the optimal solution3.

The vectors on which the data points with the smallest distance to the

optimal hyperplane lie is called the support vectors and are shown as encir-

cled dots in Fig. 2.3(a).

2.3 Soft Margins

Assume there is no hyperplane to split our data perfectly with yi = 1 on one

side and yi = −1 on the other, then we want a hyperplane which splits our

data as well as possible while still maximizing the distance to the nearest

well split example. So we need to de�ne what we mean with as well as

possible.

Let us start with de�ning a slack variable ξi which is a measure on

the degree of misclassi�cation of our data. Let our objective function be

increased by a function which penalizes non-zero ξi so that the optimization

will balance between a large margin and a small error penalty. Graphically

ξi represents the distances between point xi and the support vector with

the same y value4.

In Fig. 2.4(a) this would be the smallest distance between the red dot

on the right and the line between the two encircled dots on the left. If our

penalty function is linear we get the following (Fig. 2.4):

minimize
w,b,ξ

1

2
‖w‖2 + C

l∑
i=1

ξi

subject to yi(w · xi + b) > 1− ξi, i = 1, ..., l
ξi > 0, i = 1, ..., l

(2.1)

where C is a constant. If the data is classi�ed well by the above methods

we say that it is linearly classi�able.

3The constant 1
2
is just there to simplify calculations and does not a�ect the result.

4Notice that if ξi > 1 the data point is misclassi�ed.
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2.4. NONLINEAR CLASSIFICATION CHAPTER 2. SVM

2.4 Nonlinear classification

Assume the set S contains data that cannot be split well with hyperplanes,

then we say that the data in S is nonlinearly classi�able. Since our method

with optimal hyperplanes only splits linearly classi�able data well we must

transform the elements in S to become just that. So we want to �nd a

bijective mapping φ which maps all elements in S to the set S∗ where the

elements of S∗ are linearly classi�able. Often it is too hard to �nd the ex-

plicit mapping φ and in these cases we perform the famous kernel trick [17]

which is based on Mercer's Theorem :

Def. Let Λ be a compact, non empty subset of Rn. A function K : Λ×Λ→
R is said to be a kernel function if it is continuous, symmetric and positive

semi-de�nite.

Thm. Any kernel function K(x,y) can be expressed as an inner product

K(x,y) = φ(x) ·φ(y) for some mapping φ in a high-dimensional space.

Therefore we could either know the explicit mapping φ and take the dot

product to perform the transformation or we can take a kernel and use

it right away without knowing what φ looks like. The most used Kernel

functions are shown in Table 2.1.

Name Function

Homogeneous polynomial K(xi, xj) = (xi · xj)d
Inhomogeneous polynomial K(xi, xj) = (xi · xj + 1)d

Gaussian radial basis function K(xi, xj) = e
−γ‖xi−xj‖2

Hyperbolic tangent K(xi, xj) = tanh(κxi · xj + c)

Table 2.1: Common kernel functions.

To add non-linearity to problem 2.1 we just exchange xi with φ(xi) where

φ is a mapping as discussed in this Section.

We will now use orthogonal projection to decompose w into a sum of

two functions w = u + v, where u ∈ Span{φ(x1), ..., φ(xl)} and v in its

orthogonal complement (so u · v = 0). That is we can express the solution

to problem 2.1 as:

w =

l∑
i=1

βiφ(xi) + v

16



2.5. REGRESSION CHAPTER 2. SVM

With this fact along with Mercer's theorem we have

w · φ(x) =
l∑
i=1

βiφ(xi) · φ(x) =
l∑
i=1

βiK(xi, x)

So we do not need to know what φ looks like as long as we know K. Intro-

ducing this to our minimization problem 2.1 we get the following:

minimize
w,b,β,ξ

l∑
i=1

l∑
j=1

βiβjK(xi, xj) + C

l∑
i=1

ξi

subject to yi(

l∑
i=1

βiK(xi, x) + b) > 1− ξi, i = 1, ..., l

ξi > 0, i = 1, ..., l

As mentioned before, a commonly used kernel for SVM is the radial basis

kernel. This is due to that the radial basis function maps the data into

an in�nite dimensional Hilbert space, which allows us to even classify data

which is far from linear. The proof of this is simple:

e(−γ||x−y||
2) = e(−γ(x−y)

2) = e(−γ(x
2−2x·y+y2)) =

= e−γx
2

e−γy
2

∞∑
i=1

γi2ixiyi

i!
= e−γx

2

[1,
√
2γx, ...] · e−γy2 [1,

√
2γy, ...] =

= 〈φ(x), φ(y)〉 .

It is easy to see that we have mapped the data into an in�nite dimensional

Hilbert space.

2.5 Regression

First let I ⊂ Rn denote the space of input patterns. With Support vector

regression the goal is to �nd an as 
at as possible function f(x) for the train-

ing points (yi, xi), xi ∈ Rn, yi ∈ R, that has at most ε deviation from the

actual measured targets yi for all training data. In the linear case we have

f(x) = w · x+ b, w ∈ I, b ∈ R and 
atness here means a small (euclidean)

norm on w. Formally this is written:

17



2.5. REGRESSION CHAPTER 2. SVM

minimize
w,b,ε

1

2
‖w‖2

subject to (w · xi + b) − yi 6 ε, i = 1, ..., l
yi − (w · xi + b) 6 ε, i = 1, ..., l
ε > 0

In the same manner as with problem 2.1 we introduce slack variables ξi, ξ
∗
i

to make the solution feasible. Similarly they represent the smallest distance

between a data point and its support vector. Mathematically this is written

(Fig. 2.6):

minimize
w,b,ξ,ξ∗,ε

1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ
∗
i )

subject to (w · xi + b) − yi 6 ε+ ξi, i = 1, ..., l
yi − (w · xi + b) 6 ε+ ξ∗i , i = 1, ..., l
ξi, ξ

∗
i > 0, i = 1, ..., l, ε > 0

Where C > 0 determines the trade o� between 
atness of the function f and

the amount to which deviations larger than ε are tolerated. If the training

point is at most at distance ε from f(x) (inside the tube in Fig. 2.6) then

ξi or ξ
∗
i equals zero .

From [20] we can also introduce an additional parameter ν ∈ (0, 1] which

is an upper bound on the fraction of training errors allowed and a lower

bound on the fraction of support vectors. The formal de�nition of the

problem in this case becomes:

minimize
w,b,ξ,ξ∗,ε

1

2
‖w‖2 + C(νε+ 1

l

l∑
i=1

(ξi + ξ
∗
i ))

subject to (w · xi + b) − yi 6 ε+ ξi, i = 1, ..., l
yi − (w · xi + b) 6 ε+ ξ∗i , i = 1, ..., l
ξi, ξ

∗
i > 0, i = 1, ..., l, ε > 0

(2.2)

and �nally, in case of non linearity, we may also introduce a kernel function

to the problem, by changing xi to φ(xi), and performing the trick from

the previous section. Minimization problem (2.2), also known as ν-SVM,

with the help of the radial basis kernel function is what was used predicting

permeabilities in this report.
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Chapter 3

Permeability

In south of France, in the city of Dijon, Henri Darcy investigated the 
ow

of water through homogeneous sand beds. This led to the discovery of his

empirical law. The apparatus used by Darcy to deduce his law is pictured

in Fig. 3.1.

Darcy concluded that:

Q = KA
h(1) − h(2)

L
(3.1)

where:

Q is the volumetric 
ow rate of the liquid (volume of liquid passing per unit

of time).

A is the cross-sectional area to the 
ow.

h(1) − h(2) is the di�erence in water level elevations, at the in
ow and

out
ow reservoirs.

L is the length of the sand bed (the sand bed was a cylinder �lled with sand

and water was pouring through) [3, p. 110].

The constant K is a coe�cient of proportionality, called hydraulic conduc-

tivity. In an isotropic material one can de�ne this constant as expressing

the ease with which a 
uid 
ows through the tortuous (curved) void space,

the coe�cient therefore depends therefore both on the material and 
uid.

The hydraulic conductivity K can be expressed K = κρgµ where g is the

gravity acceleration, ρ is the density of the 
uid (measured in (kg/m3)), and

µ is the viscosity of the 
uid, (a measure of a 
uids resistance to gradual

deformation by shear or tensile stress, measured in (m2/s)). As we can

see ρ and µ are properties of the 
uid, but clearly the constant K depends

on the material as well, which leaves us to study the constant κ called the

permeability.
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CHAPTER 3. PERMEABILITY

Figure 3.1: Darcy's apparatus. Water is injected to the left and 
ows

through the sand �lled tube. The liquid's pressure drop is measured by

calculating the height di�erence in water level elevation at in
ow and

out
ow. It is empirically shown that the volumetric 
ow rate of the liquid,

Q, is proportional to the cross-sectional area A, the pressure and the

length of the sand bed L.

By expressing K as above, along with letting u = Q
A (average 
uid velocity)

this gives rise to a common version of Darcy's law, namely:

u = −
κ∆p

µL
(3.2)

where −∆p is the pressure di�erence (−∆p = ρg(h(1) − h(2))).

Relevant solid properties are: pore-size distribution, shape of pores, tor-

tuosity of passages T , speci�c surface S and porosity φ. These features all

a�ect the permeability κ. Permeability depends thus only on the con�gu-

ration of the void space and not on the properties of the 
uid.

Permeability is measured in the SI unitm2 but has also a frequently used

unit named Darcy where 1 D = 0.9869233 (µm)2. Often the approximation

1 D ≈ 1 (µm)2 is used.

Many formulae are developed to calculate permeability of porous ma-

terials, since no formula has been found which calculates permeability for

structures of any constitutions. Di�erent formulae works for di�erent ma-

terials, so it is important to specify which material the formula is meant to

work with.

An early empirical formula for calculating the permeability of a sand
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3.0. KOZENY-CARMAN EQ. CHAPTER 3. PERMEABILITY

bed is:

κ = Cd2

where d is a measure on the diameter of the grains forming the material

and C is a dimensionless constant. In 1943, Krumbein and Monk suggested

C = 6.17 · 10−4 [2, p. 31].
Another formula for sand beds is the Fair and Hatch formula developed

from dimensional considerations, and veri�ed experimentally

κ =
1

β

((1− φ)2

φ3
α

100

∑
m

Pm

dm

)2−1

where β is a constant found by experiment to be 5, α is a grain shape factor,

Pm is the weight fraction of sand held between adjacent sieves and dm is

the geometric mean diameter of the adjacent sieves [2, p. 31].

3.1 The Kozeny-Carman equation

A widely used equation though, is the famous Kozeny-Carman equation.

Imagine that we have a material where every pore is cylinder shaped.

Assume now that we have an area cross-sectional to the 
ow A and a pore

cross-sectional area Ap, then

Ap = Aφ

where φ is the porosity.

One can express Qdt 1, the volume of liquid passing through the pore

in time dt, as:

Qdt = Adsφ

where ds is the line element crossed in time dt.

Now if vp is the average velocity of the liquid through the pore and u

the average 
uid velocity in the material2 the following relationship can be

established:

vpAp = uA = Q

From this, with vp = ds
dt , we can write:

u =
Ap

A
vp = φvp (3.3)

1Where Q is the volume per unit time from Equation 3.1 and dt the time step.
2u = Q

A
As in Equation 3.2
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3.1. KOZENY-CARMAN EQ. CHAPTER 3. PERMEABILITY

By solving the Navier-Stokes equation for the Poiseuille 
ow in a cylinder

it can be deduced that:

vp = −
∆pψA2p

LµC2p
(3.4)

where Cp is the circumference of the pore. By putting together Equations

3.3 and 3.4 the following relationship can be established:

u =
Ap

A
vp = −

∆pψA3p

LAµC2p

With our assumption that the pore has cylindrical shape, the surface of the

pore is CpL where L is the length of the tube. We also have:

Ap

Cp
=
Ap

Cp

LA

LA
=
Ap

A

AL

CpL
=
φ

S

where S is the speci�c surface of the tube (area over volume). We can thus

write Equation 3.4 as:

u = −
∆pψφ3

LµS2

And by Equation 3.2:

κ = ψ
φ3

S2
(3.5)

This equation is called the Kozeny-Carman equation and the constant ψ

was originally, by empirical studies, chosen to be around 0.5. Nowadays

the constant is usually numerically adjusted to �t a training set of known

permeabilities for a certain structure since it may vary a lot for di�erent

constitutions. The equation can be extended by introducing the Tortuosity

which yields the equation3:

κ = ψ
φ3

T2S2
(3.6)

This equation has some limitations: it has geometrical assumptions, e.g.

the pores are viewed as cylinders. Therefore it is not suitable for certain

materials, as clayey soil for example. The formula does also not take into

account anisotropy, which gives problem if the permeabilities of one direc-

tion is far greater than the other (since the equation would give the same

value for each direction).

Finally Darcy's law is used. This law holds for silts, sands and gravelly

sands, but as the size grows and the velocity increases and inertial e�ects

must be taken into account.[19, p. 100{104][3, p.119][6].

3Note again that permeability only depends on the properties of the material, not 
uid.
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Chapter 4

Methods

This chapter is split into three sections: the �rst section is dealing with

whole 3D models of the structures, the second one with the 2D analogs

and the third with how stress tests were performed on the 2D SVM. The

goal of the �rst part was to get the SVM perform at least as good as the

Kozeny-Carman and the goal of the second was trying to make the simpler

2D SVM model perform at least as good as its 3D counterpart. The stress

tests were performed to see if and when the 2D SVM would break, to gain

more understanding on how it works.

4.1 3D Structures

The feature data for the SVM for the 3D structures was acquired from Geo-

dict, as stated earlier, and is shown in Table 4.1. To begin with, since some

features were represented by hundreds of numbers, instead of inputing all

data directly into the SVM model (and thus letting the SVM treat each

number as a separate feature) �rst some calculations were made to approxi-

mate these features with just a couple of numbers. The �rst obvious change

was to take the path length data and combine it with the maximum particle

diameter and de�ne this as the maximum path volume (the path is viewed

as a long cylinder). The mean and standard deviation was chosen to repre-

sent the path volume curve, thus we could approximate those features with

just two parameters. One could ask if calculating the path volume has an

impact on the SVM; if the result would be better if path length and max-

imum particle diameter were treated by itself. According to our empirical

studies this is not the case, so it was chosen that they would be merged, to

create a smaller, more comprehensible model.

The Pore size distribution was described with just its approximated

mean and standard deviation. The surface area, SVP and DT values were
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4.1. 3D STRUCTURES CHAPTER 4. METHODS

Data Size Description

Permeability [m2] 1 A measure of the ability of

a 
uid to be transmitted

through the structure.

DT [%] 1 A measure on isotropy

SVP [%] 1 Percent of total volume

consisting of solid material

Speci�c surface 1 The speci�c surface of the

structure.

Max. Particle Diameter

[µm]

500 The diameter of the

biggest sphere which can

penetrate the material

from di�erent starting

points

Path Length [µm] 500 The length of the path

created when letting the

sphere penetrate the mate-

rial.

Pore size distribution [%] 20-70 How many percent of the

void the largest spheres in

the void constitutes.

Table 4.1: The original data acquired from Geodict.

already one dimensional, so they needed not be trimmed. See Table 4.2 for

reference.

The SVM treated the mean and standard deviation as separate features,

thus creating a model of 8 dimensions (one for the output i.e. Permeability

and 7 for the input). Last but not least all input data was scaled to the

compact interval [0, 1] since the SVM works best with normalized data [8].

Our data was stored in a matrix where every row held our compressed data

for each structure. Now we randomly permuted the rows and selected the

last 15 rows to become our test data while the above 75 rows became our

training data.

The C, γ and ν parameters in (2.2) were found with an algorithm based

on MATLAB's built-in function fminsearch on the test set of permeabilities.

We calculated one set of parameters for each direction and when the optimal

parameters were chosen the support vector machine was put to the test on

all data on this speci�c direction.

After the above process was tested to be accurate the process was re-
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Data Size

Permeability 1

DT 1

SVP 1

Speci�c surface 1

Maximum Path Volume 2

Pore size distribution 2

Table 4.2: Our data transformed.

peated but this time we removed columns of our matrix to �nd out which

data we could remove while still preserving accuracy.

The Kozeny-Carman equation (3.6) contains a constant ψ and a value T

called Tortuosity and since Tortuosity is somewhat messy to calculate we

let ψ̂ = ψ
T2

and used fminsearch to �nd the ψ̂ which minimized the rel-

ative error1. We thus used the following version of Kozeny-Carman when

calculating the permeability:

k = ψ̂
φ3

S2
.

We �rst tried to calculate just a single value for ψ̂ for each direction (a

total of 3 di�erent ψ̂); this can be seen as omitting Tortuosity from the

Kozeny-Carman equation as in (3.5). As seen in Fig. 5.3, this gave such

a bad approximation of the permeabilities we had to reconsider (the calcu-

lated permeabilities are o� by up to 100-150% from their measured values,

with a mean of 30% error). We had to make a choice in how we would

approximate the Tortuosity well enough and so we decided that if a struc-

ture had the same DT values we viewed it as the "same structure" when

we performed the curve �tting, so we got 6 di�erent values for ψ̂ for each

direction (Fig. 5.4). We could not use the line �tting method to calculate

one value of Tortuosity per structure since obviously it would lead to an

unrealistic situation. We really tried to make the Kozeny-Carman equation

as good as possible though. For example the formula does not take into

account the anisotropy, as stated in Chapter 3, and therefore the value of

ψ̂ was recalculated for di�erent DT values, so that it would optimize the

equation to each direction and get a better result.

1The relative error η = |1 −
κapprox

κ
| where κ is the permeability. The relative error

was used so that the optimization would not neglect errors in the small permeabilities in

favour of the large ones.
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4.2 2D Structures

By studying the results of the SVM with data from the 3D structures it

was decided that the following values were to be approximated: DT, SVP,

Speci�c surface and Pore size distribution.

Recall that the images were binary with a pixel being one if the pixel

represented a �bre unit and zero if it represented a pore unit. For every

structure, the values in the list mentioned above were calculated for each

direction.

By de�nition the SVP value is just the fraction of solid material in the

structure, so the quotient of the sum of the pixels and the size of the image

was taken.

The Speci�c surface was simply approximated by taking the circumference

of the connected regions of pores divided by the area of the image.

The DT value was approximated by �rst calculating the lineal-path function

described in [15] with a Monte Carlo method. The lineal-path function

describes the probabilities that line segments of di�erent lengths which start

in the �bre-part of the structure will �t entirely in that region and not

traverse any pore-parts.

The algorithm starts by randomly choosing starting points in the �bre-

part of the material. If the pixel n steps to the right of a starting point is

still a �bre then a line of length n is counted as a success. After counting the

number of successes for all starting points and repeating for every n = 1, ..., R

where R is a chosen maximum radius, the number of successes is divided by

the number of starting points to give the horizontal lineal-path function. In

the same manner the vertical lineal-path function is calculated (Fig. 4.1).

For each image the two functions were extracted. The functions were

found to be exponential functions with y-intercept in 12, but with di�erent

slopes for each orientation of the line. Therefore a curve �tting of the type

e−ax was made and the DT value was chosen to be the quotient of the

curves' respective constants a.

The Pore size distribution was approximated with an algorithm reverse engi-

neered from the one used in Geodict but adapted for two dimensions instead

of three (Fig. 4.2). The algorithm is as follows:

2Since we always start in the �bre part of the material, lines without length will always

�t entirely in the �bre part
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1. Load an image and perform a distance transform d on it.3.

2. Initialize an array S as big as the image. Let S=0.

3. Split the interval I = [0,max
x∈A

(d(x))] in N subintervals of equal width.

4. Create an array H of length N.

5. For each subinterval Ij with start in N and stepping down to 1:

(a) Find every pixel with d(x) ∈ Ij.
(b) Let S(y) = j for ||x− y|| 6 d(x) if S=0.

(c) Count the number of pixels with S(x) = j and save it in H(j).

6. Normalize H so that
∑N
j=1Hj = 1.

Finally the mean of the calculated values was taken for each image in all

three directions to generate one of each values per structure.

To calculate all data for the 2D Structures with 10 images per direction

for 90 structures (so a total of 2700 images) took around 30 minutes in

MATLAB, where a mere 2 minutes were for calculating everything except

the pore-size distribution.

A couple of tests were performed with the 2D SVM. The �rst was ob-

viously to compare it with the 3D SVM when every image had depth 1.

Afterwards the error growth when images gained depth was checked. Fi-

nally the error growth when decreasing the amount of images per structures

and directions was checked. To make it easier to follow every error was

divided by the lowest error to capture the growth of the errors.

The constants approximated were also compared with the ones bundled

with the 3D structures.

3This is further explained in [10]. The distance transform for a binary image calculates

for each pixel the distance between that pixel and the nearest nonzero pixel of the image.
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(a) The loaded image.

(b) The lineal-path functions

Figure 4.1: The calculated horizontal and vertical lineal-path functions for

one image. As seen in the second plot the probability is slightly higher that

a horizontal line will �t inside the �bre-part of the material rather than a

vertical one, agreeing with the image we perform the calculations on.
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Figure 4.2: The top image shows the biggest spheres in the void in colour

and the solid material in white. The bar to the right shows a measure on

how much each sphere contributes to the permeability of the material. The

bottom image shows the calculated pore-size distribution of the image.
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4.3 Stress tests

Three stress tests were performed to see if and when the 2D SVM would

break and become useless.

The �rst was to see if the SVM could handle to estimate the permeability

for �bre structures with SVP values di�erent than the ones in the training

set. Each new structure had an SVP value of 20 or 40%. This was done to

give some insight in how important the content of the training set is.

The second test was to see what would happen to the SVM if the train-

ing set was extremely small (just 20% of the total amount of structures)

but contained structures with all di�erent SVP values. This would further

explore the importance of the contents of the training set.

The third and �nal test was to see how well the SVM estimated the

permeability of a di�erent kind of structures than �bre structures, given a

training set of �bre structures. The new set of structures had permeabilities

many magnitudes larger than the ones in the training set. This was to see

how our approach would work with new notably di�erent structures.

For these tests new structures were created. First a set of �bre structures

with SVP values between the ones already existing. This set was used for

the �rst two stress tests.

A set of structures made up of spheres instead of �bres was also created.

They were created using the reaction limited cluster aggregation method

[16] (Fig. 4.3). They had permeabilities up to a thousand times as big as

the �bre structures. This set was used in the third stress test.

Figure 4.3: A sphere structure created with the reaction limited cluster

aggregation method. The structures in the set were created with SVP

values in the range of 0.02 to 0.08 resulting in extremely high

permeabilities.
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Result

The training set was the same for all tests performed. It was created by

randomly permuting the structures and choosing the �rst N of them (where

N is a number between 1 and the number of structures obviously). Later

the model created by the SVM was used to predict the permeability for all

structures. The �rst test performed was to see how big training set was

needed for accurate prediction. In Fig. 5.1 the relative error1 of predicting

the permeability for the 2D SVM given di�erent sizes of the training set

is shown. As seen in the �gure the training set must be above 60% of the

total amount of structures for the maximal relative error to be under 0.1

and the mean to be under 0.02. For the succeeding tests a training set of the

reassuring size 70% of the total amount of structures was chosen. This can

seem like a high number but it is needed since there were so many di�erent

types of structures present.

The following Section of this Chapter will compare the 3D SVM with

the Kozeny-Carman equations (3.5) and (3.6), to examine if the 3D SVM

is comparable. The next Section will compare the 3D SVM with its 2D

counterpart, to inspect whether or not the same precision can be achieved

with less information.

5.1 3D Structures

As seen in Fig. 5.2, the mean relative error for the SVM is around 0.01

if all feature data is present, which means a percentage error of 1%. The

Kozeny-Carman equation on the other hand has a mean relative error of 0.2

i.e. 20%, which is around twice the maximum error of the SVM and also

over 20 times bigger than the SVM's mean (Fig. 5.4).

1As stated before the relative error η = |1−
κapprox

κ
| where κ is the permeability.
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While excluding features from the input data the result was approxi-

mately the same in all directions, so the �gures will just show the prediction

in the X direction. If any data except DT was removed the error was almost

not a�ected at all (Fig. 5.5(a)). If DT was removed though the mean error

became 7% and the maximum 30%, so the maximum error got a threefold

increase (Fig. 5.5(b)). If everything except DT was removed the program

obviously became useless as well, but surprisingly by just adding SVP, Spe-

ci�c surface or Pore Size distribution the program worked with a mean error

of just 2% (Fig. 5.5(c)).

Note that the values of C and γ are di�erent for every plots, so removing

data resulted in di�erent optimal values for our constants.

Figure 5.1: The bigger the set the better the prediction, as expected. The

error is measured from predicting the permeability in the X direction with

the 2D SVM. The x-axis shows the percentage of the total amount of

structures used in the training set.
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Figure 5.2: The upper plots show the predicted (red) permeabilities vs the

measured (blue) and the lower plot shows the relative error of the methods

in X,Y and Z direction respectively.
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Figure 5.3: Permeabilities calculated with the Kozeny-Carman equation

with one value for ψ̂ for each direction. ψ̂ was chosen to minimize the

relative error, as explained in Section 4.
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Figure 5.4: Permeabilities calculated with the Kozeny-Carman equation

with 6 values for ψ̂ for each direction. ψ̂ was chosen to minimize the

relative error, as explained in Section 4. This makes it look like the

approximation is bad for structures with a small SVP value while the

relative error remains fairly constant over all the structures.
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(a) SVM without SVP in the X direction.

(b) SVM without DT in the X direction.

(c) SVM with just DT and Speci�c surface in the X direction.
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5.2 2D Structures

As mentioned before, it is the shape of the curve rather than the exact value

of the curve which is important for the SVM. The shapes of the curve were

rather well captured from the 2D images as seen in Fig. 5.6.

As seen in Fig. 5.5 the 2D SVM is comparable with the 3D SVM in

accuracy of its calculations.

The error when adding depth (Table 5.1) was small. The mean error

with images of depth 10 was just 1.10 times the error when having perfect

images of depth 1.

The error grew faster when the amount of images used to calculate the

parameters were removed (Table 5.2). We have to remember though that

the largest maximum error was still just 16%, which is still under 0.8 of the

mean error of the Kozeny-Carman equation and below 0.2 of the maximum

of the Kozeny-Carman equation. A test was also made using 50 images

instead of 10, but no di�erence in error was found.

Image depth Max Error Mean Error

1 1.00 1.00

3 1.09 1.02

7 1.36 1.09

10 1.47 1.10

Table 5.1: Error growth when adding depth to the images.

Amount of images Max Error Mean Error

10 1.00 1.00

7 1.49 1.47

3 1.51 1.46

1 1.83 1.56

Table 5.2: Error growth when removing the number of images per

direction used to calculate the parameters.
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Figure 5.5: Comparison between the error of the 2D and 3D SVM with the

same type of feature data.

(a) The DT curve approximated. (b) The SVP curve approximated.

(c) The Speci�c surface curve ap-

proximated.

(d) The Pore size distribution mean

curve approximated.

Figure 5.6: The approximated parameters with ten images of depth one for

each direction. All curves are normalized so that focus is drawn towards

the shape of the curves.
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5.3 Stress tests

When calculating the permeability of a set of �bre structures with a di�erent

SVP value than the ones in the training set the mean relative error is raised

to 6% and the maximum relative error is raised to 40%. From Fig. 5.7(a)

it is easy to see that it is almost only the new structures which contribute

to the error.

As seen in Fig. 5.7(b), the 2D SVM works well with a small training

set if the data inside it is relevant. The structures in the testing set had

SVP values in the same range as the ones in the training set, so the errors

from the �rst stress test were not present. The relative error is evenly

distributed between the training and testing set indicating that the little

shape di�erence between the solid part of these structures does not matter

much.

When predicting the permeability of a set of sphere structures the SVM

greatly underestimates the permeability of the new structures (they have a

permeability much larger than the ones in the training set). As seen in Fig.

5.7(c), since the training set contains small permeabilities, the SVM will

continue to assume the predicted permeabilities to be in the same range.

The SVM also greatly mis-classi�es the permeabilities in the training set.

The Kozeny-Carman equation was used to calculate the permeabilities

of new sphere structures as well. This time the Kozeny-Carman equation

performed rather well. The largest relative error was around 20%.
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(a) Prediction of the permeability of �bre structures with a di�erent SVP value than what

is in the training set.

(b) Prediction of the permeability of �bre structures with a small training set containing

every di�erent kind of SVP values.

(c) Prediction of the permeability of sphere structures with a permeability many magni-

tudes larger than what is in the training set.
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Discussion

It seems SVM is a good method for approximating permeability. Not only

does it outperform the Kozeny-Carman equation with all input features

present, it still works better when almost all of them are excluded. It must

be noted though, that the Kozeny-Carman equation has a low error for big

permeabilities and a high for small ones. The mean error for permeabilities

over 1 is approximately 7%, so it is comparable with the SVM for high

permeabilities but not for low.

With just the DT and either SVP, Speci�c surface or Pore Size Distribu-

tion present the SVM got a mean error of under 4%, so with a good way of

approximating the DT value one could have an SVM calculate permeability

better than Kozeny-Carman with less data. Acquiring data for permeabil-

ity calculation is time consuming, so we were always trying to minimize the

amount of data needed for a precise estimation.

By studying the feature data it seems the four parameters mentioned

above are the key for our program to work. One could argue that it is

cheating comparing Pore Size Distribution with the others since it adds two

features instead of one to the SVM thus facilitating classi�cation. Indeed

with just the standard deviation the program is unusable and with just the

mean it is just slightly better. If the classi�cation gets better by adding

dimensions to the feature set or that both mean and standard deviation are

needed to get a grip on the distribution is hard to tell. To defend the use

of both mean and standard deviation of the distribution one may compare

it with adding one of the above features along with another feature which

is not related (for example the mean of maximum path volume). This does

not improve classi�cation at all, so it seems the relevance of the features is

much more important than how many they are, which is logical.

The maximum path volume can be regarded as super
uous, since it

does not contribute much to lowering the error. Note that representing the
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maximum particle diameter and path length separately does not help at all,

it still gives the same result as when the features are fused.

One could ask why it is relevant to create a 2D equivalent of the 3D

SVM. The obvious answer is that it is more feasible to extract 2D images

of a structure via microscopy than gain full 3D information of the complete

structure. Another aspect is computational workload. One 3D structure is

a cube containing 3003 pixels with a binary value in each pixel which means

they occupy 27 Megabyte of space on a computer 1. This is not a lot but

imagine having one thousand structures with 10003 pixels per structure and

it requires 100 Gigabyte of space. The 2D images on the other hand have no

depth which means that if, for example, 30 images are chosen to represent

the structure (10 images per direction), then the required space for a 3003

cube decreases ten-fold and for a 10003 it is reduces 33-fold. It is thus easier

to work with 2D images and the time to compute parameters as pore-size

distribution is greatly reduced.

One could perhaps expect higher error rate in the 2D images with depth

than actually attained. The strength of the SVM is that it just considers the

relationship between the features of each structure and not their absolute

value. Thus if there is a measurement error in one feature but this error is

scaled so that the relationship is preserved, then the SVM will work just as

well. To make the SVM worse the error must be in such way that it makes

the relationship between the features change. This makes it more resistant

to errors in some cases.

As seen in the stress tests one must train the SVM on data similar to

the one it will be used for. All data must for example share SVP value for

the SVM to work well. There are certainly more parameters than this which

a�ects the preciseness of calculations. This is a drawback if one has not yet

discovered what makes the data similar. One solution to this problem is

to let a large random subset of the data be the training set, which makes

it probable the training set contains enough relevant data of same types

of structures as the ones in the testing set. But as seen in the �rst stress

test size is not enough if the contents are bad. One could therefore �rst

create multiple small randomized training sets for the SVM and explore

the contents of the ones which give the best result. One cannot draw the

conclusion that shape di�erence between structures a�ect the result of the

SVM since the structures compared had SVP values so di�erent that the

errors noticed in the �rst stress tests were present. The structures also only

had small shape di�erences in two dimensions. The 2D �bre images almost

look like images of circles and makes it hard to distinguish them from the 2D

1Even though the images are binary most programming languages store logical values

in 1 byte (8 bits) instead of 1 bit due to speed losses when calculating with single bits.
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sphere images. To verify if the shape of the solid part of the material is of

importance, new test must be performed with structures which look di�erent

in two dimensions but with SVP values in the same range. The exactness

of the Kozeny-Carman equation when calculating the permeability of the

new structures also indicates that their shape is not very di�erent from the

shape of the �bre structures. The new structures satisfy the assumptions of

the equation well.

Studying the stress tests it can be concluded that if all the structures

have the similar shape and have permeabilities in the same range and both

the training set and testing set contain structures with similar SVP values,

then the 2D SVM will perform well.

6.1 Future studies

The following subjects were partially or not answered in this thesis and are

subject to future research:

1. Study how di�erent type of noise in the images will a�ect the results.

2. Find e�ective ways of removing noise without compromising the result.

3. Discover new ways to obtain the best parameters C, γ, ν for the SVM

and guarantee that a global minimum is found and not just a local.

4. Investigate how well the SVM calculates permeability for materials

which in 2D look di�erent than the ones in the training set.

5. Further explore how the contents of the training set will a�ect the

exactness of the predicted permeabilities.

6. Run the 2D SVM on real microscopy data to verify if it works as well

as with simulated data.

7. Procure more or alternative relevant features for calculating perme-

ability with the SVM.
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Chapter 7

Conclusions

In this thesis the following conclusions are drawn from the results acquired:

1. The support vector machine studied in this thesis performs better than

the Kozeny-Carman equation in calculating the permeability. The rea-

son for this is that the support vector machine takes more geometrical

di�erences into account than the Kozeny-Carman equation.

2. The two most important features when calculating permeability for

the structures studied in this thesis were shown to be the DT and

SVP values. The DT value is a measure of the anisotropy of the

structure and the SVP is the fraction of volume of solid material in

the structure.

3. It is enough to study two dimensional images of three dimensional

structures to get as good precision with the support vector machine.

This makes it plausible that two dimensional microscopy data su�ces

to estimate permeability.

4. It seems as if both the training and testing set have structures with

permeabilities and SVP in the same range, then the support vector

machine will predict the permeability with small error. If either the

permeabilities or the SVP values are very di�erent in the two sets, the

support vector machine will not work well.

5. A large training set is important to get good results (this way the

problems mentioned in the previous paragraph are often avoided).

Actually the contents of the set is more important than its size, but

populating the training set with numerous structures is a good start

to make the support vector machine work well.
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