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Abstract Amobile platform for fluxmeasurements of VOCs (alkanes and alkenes), SO2, and NO2 emissions
using the Solar Occultation Flux (SOF) method and mobile differential optical absorption spectroscopy
(DOAS) was used in four different studies to measure industrial emissions. The studies were carried out in
several large conglomerates of oil refineries and petrochemical industries in Southeast and East Texas in
2006, 2009, 2011, and 2012. Themeasured alkane emissions from the Houston Ship Channel (HSC) have been
fairly stable between 2006 and 2011, averaging about 11,500 kg/h, while the alkene emissions have shown
greater variations. The ethene and propene emissions measured from the HSC were 1511 kg/h and 878 kg/h,
respectively, in 2006, while dropping to roughly 600 kg/h for both species in 2009 and 2011. The results were
compared to annual inventory emissions, showing that measured VOC emissions were typically 5–15 times
higher, while for SO2 and NO2 the ratio was typically 0.5–2. AP-42 emission factors were used to estimate
meteorological effects on alkane emissions from tanks, showing that these emissions may have been up to
35–45% higher during the studies than the annual average. A more focused study of alkene emissions from a
petrochemical complex in Longview in 2012 identified two upset episodes, and the elevation of the total
emissions during the measurement period due to the upsets was estimated to be approximately 20%. Both
meteorological and upset effects were small compared to the factor of 5–15, suggesting that VOC emissions
are systematically and substantially underestimated in current emission inventories.

1. Introduction

The Houston-Galveston-Brazoria area, which includes eight counties in the vicinity of Houston, Texas, is a
nonattainment area for the 2008 National Ambient Air Quality Standard for ozone. Ground-level ozone is formed
through a chemical process in the atmosphere, fueled by sunlight and emissions of volatile organic compounds
(VOCs) and nitrogen oxides (NOx). Many large metropolitan areas in the U.S. have trouble meeting ozone stan-
dards since urban areas generally have a high concentration of anthropogenic sources of VOCs and NOx.
However, the Houston area is special due to its high concentration of refineries and petrochemical industries.
These industries are primarily associated with VOC emissions but also have a significant NOx contribution.

Measurements during the 2000 TexAQS (Texas Air Quality Study) and the 2006 TexAQS II indicated that
the best emission inventories available at the time significantly underestimate industrial VOC emissions
in Houston [Kleinman et al., 2002; Karl et al., 2003; Ryerson et al., 2003; Wert et al., 2003; Jobson et al., 2004;
De Gouw et al., 2009; Parrish et al., 2009; Mellqvist et al., 2010b; Washenfelder et al., 2010]. Several studies also
concluded that industrial VOC emissions contribute significantly to ozone formation [Kleinman et al., 2002;
Ryerson et al., 2003; Wert et al., 2003; Jobson et al., 2004; Gilman et al., 2009; Kim et al., 2011].

Industries are required to report the emissions from their activities to the state governments according to
guidelines from the United States Environmental Protection Agency (EPA). The industries typically estimate
their emissions with emission factors calculated using methods and formulas described in AP-42, Compilation
of Air Pollutant Emission Factors [United States Environmental Protection Agency (USEPA), 2013]. VOC emissions
from refineries and petrochemical industries are typically dominated by evaporative losses from storage
tanks and process equipment. NOx and SO2 emissions, on the other hand, primarily come from external
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combustion sources. This difference in types of emission sources makes VOC emission estimates inherently less
reliable. External combustion is generally intentional and takes place in a limited number of places in a facility,
often under controlled conditions with emissions released through flue gas channels which can be monitored to
verify emission. Flares are an exception though. Estimates of SO2 emissions from combustion are arguably even
more reliable due to sulfur mass balance constraints; i.e., they are limited by the amount of sulfur in the burnt fuel.
Evaporative losses of VOCs, on the other hand, can potentially occur in every unit in which petroleum products are
stored, processed, or transported. Units that are malfunctioning, in need of maintenance, or irregularly operated
can have drastically elevated emissions without giving any other indication. These types of irregular emissions can
remain unnoticed if measurements of diffuse emissions are notmade. Methods for quantitativelymeasuring these
types of VOC emissions exist but are intrinsically more difficult due to the diffuse nature and the large number
(tens of thousands) of potential sources. Estimates of VOC emissions from refineries and petrochemical industries
are therefore rarely verified by quantitative measurements. Since reported total VOC emissions from a facility
are typically a very small fraction (typically in the order of 0.01–0.02%) of its throughput, emissions would
remain insignificant in any type of mass balance even if they were many times larger than reported.

In this paper we present measurements of VOCs, SO2, and NO2 from four campaigns in Southeast and East
Texas carried out during 2006, 2009, 2011, and 2012. Additionally, a Solar Occultation Flux (SOF) spectral
evaluation routine for alkanes is presented in detail and evaluated on the basis of its ability to quantify alkane
mass columns in typical VOC mixtures from refineries. The measurement results are compared to emissions
reported to the State of Texas Air Reporting System (STARS), and the representativeness of the results is
discussed in relation to meteorological conditions, based on the use of the AP-42 emission factors.

2. Methods

All emission measurements presented in this article are based on the two methods, Solar Occultation Flux
(SOF) and mobile DOAS (differential optical absorption spectroscopy). Both of them are based on the same
principles for measuring total fluxes, instead of just concentrations, of industrial emission plumes. They take
advantage of the ability of open path absorption spectroscopy methods to measure column concentrations.
An emission flux is calculated from a series of column concentrations measured while traversing a plume
crosswind together with some form of wind velocity measurement. The difference between the methods is
mainly in the spectroscopy. SOF [Mellqvist et al., 2010b] is based on infrared measurements of direct sunlight,
while mobile DOAS [Galle et al., 2002] is based on UV measurements of scattered sunlight.

2.1. Solar Occultation Flux

The Solar Occultation Flux method (SOF) is based on infrared measurements of direct sunlight from a mobile
platform, typically a small truck, using a Fourier transform infrared (FTIR) spectrometer with a solar tracker.

Figure 1. Absorbance spectra for 1mg/m2 of each of the n-alkanes from ethane to n-decane and isopentane degraded to
8 cm�1 spectral resolution.
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The solar tracker continuously guides the sunlight into the spectrometer as the truck moves and turns, and
infrared spectra are recorded consecutively. These spectra are evaluated for absorption by molecular species
in the industrial emission plume. A detailed description of the principles for SOF measurements and its
application for measurements of ethene and propene is given in Mellqvist et al. [2010b].

In addition to ethene and propene, this study focuses on SOF measurements of alkanes. The evaluation of
ethene and propene are based on narrow absorption lines in the interval 900–1000 cm�1 which are very
specific to each species, while the alkane evaluation is based on a much broader absorption band in the
region 2700–3000 cm�1. This is called the C-H stretch band, since it corresponds to vibrational excitations of
carbon-hydrogen bonds. Since C-H bonds are present in most VOCs, they typically have absorption features
in this band. Figure 1 shows the absorbance spectra for all n-alkanes from ethane to decane downgraded to a
spectral resolution of 8 cm�1, which is typically used for these measurements. They are all fairly similar, and
most of the variations are among the shorter alkanes, while the shape seems to almost converge the longer
the carbon chain gets. Additionally, all alkanes have almost the same total absorption, i.e., the area under
each absorbance spectra, for equal mass columns. These properties make it possible to approximate the
combined absorption of any mix of alkanes fairly well with the combination of just a few of their absorbance
spectra, and this combination will also approximate the total mass column of the alkanemix. This is important
because the number of absorption spectra included in a spectral fitting routine has to be limited to avoid
numerical instability, overfitting, and sensitivity to noise. To determine which absorption spectra to include in
the evaluation, their similarities were quantified by pairwise calculation of cross sensitivity, i.e., how well the
mass column of one alkane is approximated by a simple linear least squares fit to the absorbance spectrum of
the other, and cross correlation. The cross sensitivity is a measure of how well a species approximates the
mass column of another species in a spectral evaluation, while cross correlation is a measure of how good the
spectral fit would be. In a spectral evaluation with several species included, absorption by another species is
most likely to be approximated by the species it has high cross correlation with, since the spectral evaluation
strives to optimize the spectral fit. The result of this is presented in Figure 2. This confirms the picture that the
largest variations are among the shorter alkanes, while the longer ones aremore similar to each other. For this
reason it is more important to include the absorbance spectra of several shorter alkanes in the spectral fitting
routine, while a single long alkane is sufficient to approximate the rest of them. This is also additionally
motivated by the fact that gaseous emissions are typically dominated by shorter alkanes since they are more
volatile. Accurate determination of alkane columns is further complicated by the presence of branched
alkanes and cycloalkanes, which diverge slightly more in cross sensitivity from straight alkanes of similar
carbon number. Isopentane is also included in Figure 1 as an example of this, showing that it is fairly similar in
shape to straight alkanes but with somewhat lower total absorption, i.e., the area under the graph. However,

Figure 2. Cross sensitivity and cross correlation between each pair of n-alkanes from ethane to n-decane. The cross sensi-
tivity is the ratio of the evaluated mass column to the true mass column, when evaluating the species on the y scale as the
species on the x scale in a simple linear least squares retrieval in the interval 2700–3005 cm�1. The cross correlation is the
correlation coefficient between the two absorbance spectra in the same interval.
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since the fraction of branched alkanes and cycloalkanes in VOC emissions from petroleum industries is
typically low, the error of fitting them as straight alkanes is fairly limited.

A combination of ethane, propane, n-butane, isopentane, and n-octane was chosen to be included in the
spectral fitting routine for the alkane measurements in this paper. The inclusion of isopentane was motivated
by its relatively high abundance in VOC emissions compared to other branched alkanes and cycloalkanes.
Absorption spectra for these species from the Pacific Northwest National Laboratories database [Sharpe et al.,
2004] were downgraded to 8 cm�1 resolution and were fitted by multivariate regression to the absorbance in
the interval 2700–3005 cm�1. Absorption spectra for water and methane, synthesized with line parameters
from the HITRANdatabase [Rothman et al., 2005], were also included in the fitting routine, which was performed
in the QESOF software [Kihlman, 2005]. The total alkane mass column was calculated as the sum of the fitted
mass columns of all the included alkanes. Figure 3 shows an example of a spectral fit and the alkane compo-
nents fitted. The 8 cm�1 spectral resolution was empirically determined to be a good compromise between
measurement signal-to-noise, sampling time, and sensitivity to spectral interference from other species.

In order to validate the accuracy of the alkane mass columns determined by this spectral fitting routine, data
[Texas Commission on Environmental Quality (TCEQ), 2013] from an automated gas chromatograph in a Continuous
Ambient Monitoring Station (CAMS), C169 located close to the Houston Ship Channel (HSC) (29.7062492°,
�95.2611301°) and operated by TCEQ (Texas Commission on Environmental Quality), were used to approximate
typical refinery VOC compositions in Houston. Data from September 2006, the time of the first measurement
campaign, was filtered for hourly averages where wind speed was above 1.4m/s and wind direction was in the
interval 69°–87°. In these wind directions the emissions from refineries in the HSC should dominate the VOC
concentrations measured at CAMS 169. Seven such instances were found during September 2006. For each of
these instances an artificial solar spectrum was synthesized with absorption by different VOCs in the proportions
measured by the auto-GC. These spectra were downgraded to the resolution of the spectral retrieval, 8 cm�1, and
evaluated by the spectral fitting routine described above. The evaluated alkane mass columns were then com-
pared to that used for synthesizing the solar spectra. The results of this are presented in Table 1. The evaluated
alkane mass overestimated the true alkane mass by 3–7%, which is small compared to the uncertainty in flux
calculations due to wind speed uncertainty. This overestimation is due to a combination of the errors of fitting all
alkanes to a finite set and the spectral interference from other VOCs with weaker absorption in the same region.

Methane is typically treated separately from other VOC emissions because it has much lower ozone formation
potential. Fortunately, the alkane evaluation routine described above has low sensitivity to methane.
Methane has absorption in this band but primarily in narrow lines. Because of the relatively high background
concentration of methane, these lines are practically depleted of light after passing through the full atmo-
spheric column. This is illustrated in Figure 4. Due to the nonlinearity of Beer-Lamberts law at such strong

Figure 3. (top) SOF spectrum measured in a VOC plume and a reference spectrum measured outside of the plume. (bottom)
Absorbance in the plume relative to the reference, fitted absorbance, and the fitted components of ethane, propane, butane,
isopentane, and octane.
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absorption, the apparent absorption of additional methane at 8 cm�1 resolution is approximately a factor of
17 lower than it would be without the atmospheric methane background column. The absorption spectrum
of methane is still included in the alkane spectral fitting routine but mainly to improve the spectral fit and not
to quantify methane. Quantitative measurement of atmospheric methane using solar FTIR is possible but
generally requires high-resolution measurements [Angelbratt et al., 2011].

2.2. Mobile DOAS

For mobile DOAS measurements UV spectra of solar light scattered in the atmosphere are measured with a UV
spectrometer, typically a Czerny-Turner spectrometer with a CCD detector. The spectrometer is typically connected

Table 1. VOC Composition in the Plume Downwind of a Large Refinery Complex in the HSC During Seven Episodes in the 2006 Study as Measured by an Auto-GC
at CAMS 169a

Molar mass

Date and Time

2 Sep 2006,
19:00

4 Sep 2006,
17:00

9 Sep 2006,
21:00

9 Sep 2006,
22:00

20 Sep 2006,
11:00

20 Sep 2006,
12:00

26 Sep 2006,
16:00

Wind speed (m/s) 1.70 1.43 2.28 1.88 2.55 2.86 1.43
Wind direction (deg) 76 72 87 86 69 76 77
Units g/mole ppbv ppbv ppbv ppbv ppbv ppbv ppbv
Alkanes
Ethane 30.1 17.93 2.59 3.46 4.59 10.51 7.52 3.64
Propane 44.1 20.20 1.23 1.71 2.22 9.40 4.84 2.09
n-Butane 58.1 12.85 1.14 0.87 0.58 8.74 4.97 1.07
i-Butane 58.1 4.87 0.37 0.68 0.60 3.84 2.41 1.03
cyc-Pentane 70.1 1.01 0.09 0.16 0.04 0.43 0.23 0.05
i-Pentane 72.2 16.07 1.35 1.43 0.47 6.69 4.17 0.74
n-Pentane 72.2 12.52 0.80 0.94 0.24 4.23 2.37 0.42
cyc-Hexane 84.2 2.17 0.09 0.14 0.04 0.49 0.24 0.04
2,2-Dimethylbutane 86.2 0.33 0.04 0.08 0.03 0.20 0.11 0.02
n-Hexane 86.2 2.40 0.18 0.48 0.14 1.21 0.71 0.19
3-me-Hexane 100.2 0.45 0.05 0.14 0.05 0.32 0.22 0.05
n-Heptane 100.2 0.65 0.05 0.13 0.04 0.33 0.21 0.04
n-Octane 114.2 0.31 0.04 0.09 0.02 0.19 0.11 0.03
i-Octane 114.2 0.36 0.10 0.18 0.08 0.58 0.24 0.08
n-Nonane 128.2 0.07 0.01 0.02 0.01 0.05 0.03 0.01
n-Decane 142.2 0.04 0.01 0.02 0.03 0.05 0.03 0.01
Alkenes
Ethylene 28.0 4.16 0.46 0.75 0.50 1.96 1.51 0.66
Propylene 42.1 3.94 0.24 0.99 0.92 1.66 0.90 0.42
1,3-Butadiene 54.1 0.44 0.40 0.16 0.18 0.12 0.12 0.48
t-2-Butene 56.1 0.68 0.13 0.09 0.07 0.12 0.10 0.12
1-Butene 56.1 0.65 0.14 0.06 0.03 0.36 0.20 0.09
c-2-Butene 56.1 0.52 0.07 0.06 0.04 0.09 0.07 0.07
Isoprene 68.1 0.20 0.24 0.01 0.01 0.22 0.10 0.10
t-2-Pentene 70.1 0.69 0.04 0.07 0.02 0.08 0.05 0.02
1-Pentene 70.1 1.07 0.06 0.05 0.02 0.12 0.08 0.03
c-2-Pentene 70.1 0.32 0.02 0.04 0.01 0.04 0.03 0.01
Styrene 104.1 0.07 0.00 0.29 3.58 0.02 0.11 0.16
Aromatics
Benzene 78.1 0.82 0.12 0.21 0.11 0.64 0.57 0.22
Toluene 92.1 2.40 0.26 0.49 0.27 0.70 0.54 0.41
m+ p-Xylene 106.1 0.42 0.07 0.24 0.10 0.25 0.17 0.17
o-Xylene 106.1 0.13 0.02 0.10 0.10 0.10 0.08 0.06
Ethylbenzene 106.1 0.18 0.03 0.10 0.09 0.09 0.06 0.07
Mass fractions
Alkanes 84.7% 76.4% 71.1% 44.0% 87.9% 85.3% 70.4%
Alkenes 9.4% 15.5% 15.5% 48.9% 6.6% 7.6% 16.3%
Aromatics 5.9% 8.1% 13.4% 7.0% 5.4% 7.1% 13.4%
Retrieved/true alkane mass 1.044 1.051 1.062 1.058 1.035 1.036 1.065

aThe uncertainty of the alkane spectral retrieval has been estimated by applying it to solar spectra with absorption by VOCs added synthetically proportionally
to themeasured concentrations. Themass ratios between the evaluated alkane columns and the total alkane columns added synthetically are given at the bottom
of the table. The mass fractions of alkanes, alkenes, and aromatics are also presented to give an overview of the composition.
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with a light guide to a zenith-looking telescope. The principles for mobile DOAS measurements are described in
detail by Galle et al. [2002], Johansson et al. [2008, 2009], Rivera et al. [2009, 2010], and Johansson et al. [2014] to-
gether with its application for measuring SO2 and NO2 in Johansson et al. [2008] and Rivera et al. [2009, 2010] as
well as formaldehyde (HCHO) in Johansson et al. [2008, 2009], Rivera et al. [2010], and Johansson et al. [2014].

The measurements in 2009, 2011, and 2012 used a 303mm focal length Czerny-Turner spectrometer
(ANDOR Shamrock 303i) with a 1024 × 255 pixel, thermoelectrically cooled CCD detector (Newton
DU920N-BU2) which was connected with a liquid light guide, 3mm in diameter, to a zenith-looking quartz
telescope with a 75mm diameter and a 20 mrad field of view. The holographic grating used (1800
grooves/mm) together with a 300μm entrance slit gave a 0.63 nm spectral resolution in the 309–351 nm
wavelength region that the CCD was set to cover. The telescope was equipped with an optical band pass
filter (Hoya), blocking wavelengths above 380 nm to reduce stray light in the spectrometer. This is a highly
light-sensitive DOAS system originally developed for airborne measurements of ship emissions using
downward looking DOAS [Berg et al., 2012]. This was the same system and setup as in Johansson et al.
[2014], and NO2 was evaluated with the same spectral fitting routine as formaldehyde in that paper. This
routine involved fitting cross sections for HCHO [Cantrell et al., 1990], NO2 [Vandaele et al., 1998], O3

[Burrows et al., 1999], (O2)2 collision complex [Hermans et al., 1999], a ring spectrum, and a polynomial of
order 3 in the 324–350 nm spectral window. Wavelength calibration of the spectrometer was made with
respect to the Fraunhofer lines present in all solar spectra. SO2 was also evaluated from the same spectra using
a 310–325nm spectral window where SO2 [Bogumil et al., 2003], O3 [Burrows et al., 1999], a ring spectrum, and
a polynomial of order 3 were fitted. Apart from spectral window and cross sections fitted, the two routines
were identical. The QDOAS software [Fayt, 2011] was used for the wavelength calibration, degradation of cross
sections, ring spectrum synthesis, and spectral fitting. Further details of the NO2/HCHO evaluation routine can
be found in Johansson et al. [2014]. During the 2006 study, a commercial mini-DOAS system was used instead
of the one described above. This system collected less light and therefore required longer exposure times to
achieve the same accuracy. The mobile DOAS results from this study was previously published in Rivera et al.
[2010] together with a complete description of the system used.

2.3. Wind Measurements

Accurate wind information is of major importance for flux calculations for both SOF and mobile DOAS. Even
though considerable effort is put into obtaining high-quality wind measurements, wind uncertainty is typi-
cally the largest error source for flux measurements. Measurements of wind height profiles throughout the
boundary layer were taken during all four campaigns using GPS tracking radiosondes launched with helium
balloons. Since the number of radiosonde launches on a given measurement day varied between five and
zero, profiles derived from these launches were not available sufficiently close in time to the measurement

Figure 4. High-resolution solar spectrum (blue) after passing through the full atmospheric methane column and the
same solar spectrum downgraded to a resolution of 8 cm�1 (black). Although not obvious from the low-resolution
spectrum, the strong absorption lines are depleted of light.
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transects. Hence, the radiosonde data were complemented by wind measurements from local ground sites,
mainly from the TCEQ-operated network of Continuous Ambient Monitoring Stations (CAMS) [TCEQ, 2013].
Ground wind speed data were normalized to radiosonde measurements to compensate for systematic wind
speed differences as a function of height. Average winds over the first 500m (350m for the 2012 Longview
study) of the wind profiles were used both for flux calculations and for normalization of ground wind data, as
described inMellqvist et al. [2010b]. Flux calculations were made using height profile averages when available
sufficiently close in time to the measurement transect and normalized ground wind data for other cases. The
variations between the different wind data sets were used to estimate the wind uncertainty. This is not a
measurement uncertainty but rather the uncertainty due to the variation in the wind on the spatial and
temporal scales that the windmeasurements differ from the time and place of the columnmeasurements. As
an example, Figure 5 shows a comparison between height profile averages and simultaneous normalized
ground wind measurements from CAMS sites in the Beaumont/Port Arthur area during the 2011 study. The
estimated wind uncertainties based on these comparisons are presented in Table 2 for the different studies.
The range of uncertainties given represents the 1σ variabilities of a number of ground wind stations com-
pared to sonde profile averages. The estimated uncertainties were similar in most years, with the exception of
2012 in Longview, where especially the wind direction uncertainty was larger. This was suspected to have
been at least partly caused by measurement errors in some of the ground wind measurements.

2.4. Emission Inventories

Emission inventory data were extracted from the STARS (State of Texas Air Reporting System) emission in-
ventory for comparison to the measured emission rates. Emissions are reported to STARS by the industries on
an annual basis and are typically based on calculations using emission factor formulas such as found in AP-42,
Compilation of Air Pollutant Emission Factors [USEPA, 2013]. Data for 2006, 2009, and 2011 was extracted,

and total emissions of the species of interest were
computed as the sum of all point source emissions
within each studied area. Emission inventories were
not yet available for 2012. Speciation in the emission
inventories did not perfectly match the speciation of the
measurements. For comparison with the SOF alkane
measurements, all emissions speciated as either alkanes
or alcohols were added, as well as unspeciated VOCs
and vaguely speciated VOCs, such as “crude oil” and
“naphtha.” Alcohols were included since they typically

Figure 5. Comparison of different wind measurements in the Beaumont/Port Arthur area during the 2011 study. For each radio-
sonde launch the wind profile averages from ground up to 100m and 200m and simultaneous rescaled measurements at the
ground stations C119, C136, and C303 and from a local radar profiler are plotted against the profile average from ground up to
500m. The solid line represents perfect agreement, and the dashed lines show plus/minus the average of the standard deviations
of the differences (relative differences for the wind speed) between the ground sources and the radiosonde profile average.

Table 2. Wind Speed and Wind Direction Uncertainties
for the Four Studies as Estimated From the Variation
Between Sonde Profile Averages and Normalized
Ground Wind Measurements

Year
Wind Speed
Uncertainty

Wind Direction
Uncertainty

2006 15–27% 11–33°
2009 11–29% 10–26°
2011 16–30% 11–23°
2012 25–34% 30–34°
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have absorption cross sections similar in shape and strength to alkanes in the C-H stretch spectral region. The
unspeciated and vaguely speciated VOCs were included since they are probably dominated by alkanes in
general but may contain some species that the alkane measurements are not sensitive to. NOx emissions are
reported to the inventories, while only NO2 is measured with mobile DOAS. According to airborne measure-
ment carried out in parallel to the SOF measurements during the 2006 study [Rivera et al., 2010], the typical
NO2/NOx ratio was 0.75, which suggests that measured NO2 emissions should be expected to be on average
25% lower than the reported emissions. The measured emissions of ethene, propene, and SO2 were all possible
to compare directly to the equivalent inventory species. Table 3 shows the total number of industrial sites and
point sources within those sites reporting emissions of the species of interest to the inventories for Harris
County, which contains all of the HSC and parts of Mont Belvieu, in 2006, 2009, and 2011. Alkane emissions
(including alcohols and unspeciated VOC) are the most common, and almost every site reports something in
this category, while ethene and propene are significantly less common. The number of point sources has stayed
relatively constant, although there seems to have been a noticeable dip from 2006 to 2009. To what extent this
represents changes in operations, as opposed to changes in reporting procedures, is not known.

The emissions are reported on an annual basis so even when converted to kg/h they should be thought of as
annual average emissions. Since there can be large variations in emissions from a source within a year,
instantaneous emissions cannot be expected to always match the annual average emissions. However, since
each area contains a large number of sources in several independently operated facilities and measurements
have been performed on multiple days and in different years, the measured emission should at least be
expected to be roughly the same as the reported annual average emissions on average.

3. Results

The measurement results in this article were aggregated from four different studies of industrial emissions
performed in Southeast and East Texas in the period 2006–2012. A map of the region is shown in Figure 6.
The first study was a part of the Second Texas Air Quality Study (TexAQS II) [Parrish et al., 2009], and
measurements lasted from August to September 2006. This study tried to cover as many refinery and
petrochemical industry areas in the Greater Houston area as possible. As a result, the total number of
measurements for each area was fairly low. An example of an alkane measurement series from this study is
shown in Figure 7. This measurement was performed on 25 September 2006 in Houston Ship Channel, and
separate plumes from a large number of facilities can easily be distinguished in the northerly wind. The
second study was a part of the Study of Houston Atmospheric Radical Precursors [Lefer, 2009], and
measurements lasted from April to June 2009. In this study, the measurements were focused on three areas:
the HSC, Mont Belvieu, and Texas City. This allowed for a larger number of measurements, spread over more
days, to be collected. Figure 8 shows an example of a combined alkane and alkene measurement series from
this study. This measurement was performed in Mont Belvieu on 5 June 2009, and three separate plumes are
detected. The simultaneous measurements of alkane, ethene, and propene suggest that they are only partly
coemitted, and especially propene seems to have a separate source. The third study, lasting from April to May
2011, was a stand-alone field study covering the same areas as in 2009, as well as the Beaumont/Port Arthur
area. A single day of measurements was also conducted at a petrochemical complex in Longview. An example
of an alkane measurement series from this study is shown in Figure 9. This measurement was performed on 3
May 2011 and covered a number of the largest alkane emission sources in the Beaumont/Port Arthur area but
not all of them. The fourth study was performed during May 2012 and was focused entirely on the

Table 3. Total Number of Sites and Sources and Total Reported Average Emissions in the Emission Inventories for Harris
County for All Measured Species and for the Years of the Studies

Species

Number of Sites Number of Sources Total Emissions (kg/h)

2006 2009 2011 2006 2009 2011 2006 2009 2011

Alkanes 261 262 266 10,052 8,398 8,822 1,597 1,224 1,293
Ethene 49 41 51 1,055 798 830 123 104 88
Propene 50 46 53 1,148 844 853 179 102 92
NOx 228 234 240 2,449 2,255 2,331 3,241 1,877 1,664
SO2 203 207 210 2,192 1,957 2,011 2,730 2,004 1,256

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020485

JOHANSSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1980



petrochemical complex in Longview. This allowed for a comprehensive set of measurements to be collected,
giving a clearer picture of day-to-day variations. Figure 10 shows an example of a combined alkene and NO2

measurement series from this study. This measurement was performed at the petrochemical complex on 7May
2012. The measurement series for ethene and propene are closely correlated, but there is a clear spatial

Figure 6. Map of Southeastern and Eastern Texas with zoomed in boxes around the areas studied. The areas are marked in
red and denoted by their abbreviated names.

Figure 7. Alkane measurement transect covering all of the Houston Ship Channel (HSC) performed on 25 September 2006.
Each measurement is indicated on the map with a circle and a line. The size and color of the circle indicates the magnitude
of the alkane columnmeasured, and the line indicates the direction the wind is blowing from. Below themap is a plot of the
alkane column as a function of crosswind distance. This transect provided one alkane flux measurement for the HSC area.
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separation between them and the NO2 plume. However, this is most likely primarily caused by the different
measurement angles of SOF and mobile DOAS. Ethene and propene are measured with SOF, which measures
along the path of the direct sunlight, while NO2 is measured with mobile DOAS, which measures in the zenith
direction. This measurement was made in the morning when the sun was fairly low and in the east, which
makes the alkene plume appear further to the west. Detailed results from all four studies are presented in
Mellqvist et al. [2010b, 2007, 2010a] and Johansson et al. [2011, 2012].

The measurement results from all these studies have been aggregated to give an overview and enable
comparison over time and between the different areas. These aggregated results are presented in Table 4

Figure 8. Measurement transect of alkanes, ethene, and propene covering all of Mont Belvieu performed on 5 June 2009.
Each measurement is indicated on the map with a circle and a line. The size and color of the circle indicates the magnitude of
the alkane column measured, and the line indicates the direction the wind is blowing from. Below the map is a plot of the
columns of all species as a function of crosswind distance. This transect provided one flux measurement each for alkanes,
ethene, and propene from Mont Belvieu.

Figure 9. Alkanemeasurement transect covering a number of industries in the Beaumont/Port Arthur area performed on 3
May 2011. Each measurement is indicated on the map with a circle and a line. The size and color of the circle indicates the
magnitude of the alkane columnmeasured, and the line indicates the direction the wind is blowing from. Below the map is
a plot of the alkane column as a function of crosswind distance. This transect provided one alkane flux measurement each
for five subareas in Beaumont/Port Arthur.
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together with annual average emissions reported to the emission inventories for the corresponding areas.
For each area, species and year, the table shows the total number of measurements, mean and standard
deviation of the emission flux measured, and the reported annual average emission. In some cases, total
emissions for an area was calculated as a sum of emissions from subareas and the number of flux measure-
ments were not the same for all subareas. For these cases, mean emissions from the subareas were summed,
standard deviations were root-sum-squared, and the number of total flux measurements is given as a range
from the lowest number of measurements on a subarea to the highest. Reported emissions are the sum of the
annual routine emissions for all point sources within an area, converted to average hourly emissions.

Many emissions seem to have been quite stable over the years. The mean total alkane emissions from the
HSC have been within ±10% of 11,500 kg/h for all three studies. At the same time there are some large dif-
ferences from year to year. The total propene emissions from the HSC, for example, were approximately
1500 kg/h in 2006 but dropped to roughly 600 kg/h in 2009 and 2011. However, as described in more detail in
Mellqvist et al. [2010b], the variability in the propene emissions measured from the HSC in 2006 was excep-
tionally large, indicating temporary upset emissions. Despite some significant variations from year to year
and from area to area, there is a clear pattern of measured VOC emissions (alkanes, ethene, and propene)
exceeding reported emissions with almost an order of magnitude on average, while no similar pattern exists
for SO2 and NO2. This pattern is highlighted in Figure 11, where the ratios between measured emissions and
reported annual average emissions have been plotted for each year, species, and area. Reported emissions
for 2011 were used for the 2012 ratios, since 2012 data were not yet available. Most ratios for SO2 and NO2

emissions are gathered fairly close to 1, while the ratios for alkanes, ethene, and propene are mostly within
the interval of 5–10. There are of course differences between the areas and the years, but they are generally
dwarfed by the difference between the species. The most striking exceptions to the overall pattern are the
SO2 emissions from Texas City. The reported SO2 emissions from Texas City have steadily declined during the
period of these studies, but no such decrease has been observed in the measurements. Instead, the mea-
suredmean emissions increased from 2009 to 2011, giving a measured to reported ratio of almost 12 in 2011.
However, all SO2 measurements in Texas City in 2011 were performed during a single day, which makes this
comparison very sensitive to short-term variations. The unusually large discrepancy in 2011 SO2 emissions
from Texas City might be attributable to large nonroutine emissions during that single day. A large propor-
tion of reported SO2 emissions in Texas City are attributed to flares, which might have significant variability.
Measurement with Multi-Axis DOAS [Stutz et al., 2011] were performed in parallel with the mobile DOAS
measurements during the 2009 study and estimated the average SO2 emissions during the period to be
510 kg/h, approximately halfway between the mobile DOAS result and the reported annual emissions.

Figure 10. Measurement transect of ethene, propene, and NO2 covering the petrochemical complex in Longview
performed on 7 May 2012. Each measurement is indicated on the map with a circle and a line. The size and color of the
circle indicates the magnitude of the ethene column measured, and the line indicates the direction the wind is blowing
from. Below the map is a plot of the columns of all species as a function of crosswind distance. This transect provided a flux
measurement each for ethene, propene, and NO2 from Longview.
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Since the Longview study in 2012 was focused on only a single industrial complex, an unusually large number
of measurements were performed. In total, 67 measurements of ethene emissions, 60 of propene emissions,
and 92 of NO2 emissions were performed on 8 different days in a 9 day period. This gives a fairly detailed picture
of how much total emissions from an industry varies during a week. The histograms in Figure 12 show the
distribution of fluxes for all measurements of these three species. During the measurement period, two epi-
sodes with atypical emissions were identified. On the afternoon of May 7, ethene emissions were significantly
elevated after having been at more typical levels earlier in the day. Similarly, propene emissions were elevated
during May 10. These elevated emissions were suspected to be due to upsets or irregular operation. The
measurements from these episodes are shown separately in the histograms in Figure 12. Excluding these two
episodes, the variability of the measured fluxes is fairly small for all three species. For ethene the average
emission of all SOF transects is 205±57kg/h, excluding the presumed upset. Similarly, the average propene
emission is 172±77 kg/h without presumed upset emissions. No upset episodes were identified for the NO2

emissions. The average NO2 emission during the whole study was 118±33kg/h. The flux distributions for
ethene and NO2, with the identified upset for ethene excluded, are approximately Gaussian in shape with
standard deviations of about 30% of the mean. Measurement variability of this magnitude is often intrinsic to
local wind field variability not captured by the wind measurements and not necessarily indicative of the true
emission variability. The propene flux distribution, on the other hand, is a bit more irregular with larger vari-
ability, even after excluding the identified upset episode. This is probably more than can be explained by wind
variability alone, indicating that propene emissionswere less constant during the period, although still relatively
stable. This study suggests that apart from isolated upset episodes, the total emissions from a petrochemical
complex like this is fairly stable on the time scale of slightly more than a week. The average emissions for all
transects, including the upset episodes, were 249±130 kg/h for ethene and 211±122 kg/h for propene, which
is 21% and 22% higher than without the upset episodes. This is only a single site and a fairly limited period,
but if it is taken to be representative of typical conditions, it would indicate that nonroutine emissions
account for a relatively small part of total annual emissions, even though they can dominate the
momentaneous emissions at times. This conclusion is also compatible with the broad patterns of the
measurements in other areas presented in this study, even though the lower number of measurements in
those areas makes it more difficult to clearly separate routine emissions from upset events. A notable
example to this pattern, however, is the 2006 propene measurement in the HSC, which indicated huge
variations in emissions over short time periods. This may, however, have been a rare event, since nothing
similar has been seen after that.

Figure 11. Ratios of emissions measured with SOF and mobile DOAS to annual average emissions reported to State of
Texas Air Reporting System (STARS) for each year, species, and area. The markers indicate the ratio of the mean of all flux
measurements to the reported emissions, while the error bars indicate ratio of themean plus/minus one standard deviation to
the reported emissions. The error bars only represent the variation in the flux measurements and not the uncertainty in
measurements or in reported emissions. The x scale only indicates the year of the measurements; the x position within a year
has no meaning. Reported emissions for 2011 were used for the 2012 ratios since 2012 data were not yet available.
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4. Discussion
4.1. Measurement Uncertainty

The main uncertainty associated with SOF and mobile DOAS flux measurements generally comes from the
uncertainty in the wind field. Uncertainties for the measured wind speeds and wind directions were esti-
mated from comparisons of wind profile averages to normalized ground wind measurements. The estimated
uncertainties are given in Table 2. Since the calculated flux is proportional to the wind speed, the uncertainty
of the wind speed carries over to the flux proportionally. For the wind direction uncertainty, however, the
impact on the flux is not linear and also depends on how orthogonal themeasurement transect is to the wind
direction. To estimate the flux uncertainty due to wind direction uncertainty, measurement situations were
simulated with wind errors drawn from a normal distribution based on the estimated wind direction uncer-
tainties, and the average absolute flux error was calculated from a large number of simulations. This was done
for 90° and 75° angles between the transect and wind direction to represent the typical range of measure-
ment scenarios and for the estimated wind direction uncertainties of all four studies. The results are given in
Table 5. This uncertainty estimate is somewhat conservative, since large wind direction errors can usually be
avoided by estimating the wind direction from geometric constraints, i.e., the approximate locations of the
sources and where the plume was detected. For the 2012 study, the comparisons of wind profile averages to
normalized ground wind measurements gave unusually large wind direction uncertainty estimates, but the
simple measurement geometry with only one large industrial complex enabled the actual wind direction
uncertainty to be significantly limited by geometrical constraints. To avoid a needlessly conservative uncer-
tainty estimate in this case, wind errors were restricted to amaximum of ±15° in the simulations for this study.

The cross-section uncertainties are generally well established by the experimentalists who have measured
them. The infrared cross sections for the VOCs have an uncertainty of 3–3.5% [Sharpe et al., 2004], while the
UV cross sections have uncertainties of 2.8% for SO2 [Bogumil et al., 2003] and 4% for NO2 [Vandaele et al.,
1998]. Additionally, retrieval errors of 10–20% have been estimated for the different species. This is the
combined effect of instrument and retrieval stability on the total columns for a plume transect [Mellqvist et al.,
2010b]. For the alkane retrieval this also includes the 6% mass retrieval uncertainty established above. All
these uncertainty sources have been combined by root-sum-square to a composite flux measurement

Figure 12. Histograms showing the distribution of all fluxmeasurements of ethene, propene, and NO2 during 2012. Ethene
emissions were significantly elevated during the afternoon on 7 May, and similarly, propene emissions were higher than
usual on 10 May. Fluxes measured during these episodes are plotted as separated additive histograms.

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020485

JOHANSSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1986



uncertainty range for each species and study. The maximum and minimum for each range were calculated
using the maximum and minimum uncertainties of both wind speed and wind direction. These are given in
Table 5. In most cases, the composite uncertainty is approximately 20–35%. The high retrieval error estimated
for propene (20%) was due to instrumental problems that were primarily present during the 2009 and 2011
studies. These problems primarily affected measurements of small propene columns. Many of the propene
measurements actually had a lower retrieval error than this, but 20%was used in the composite errors in Table 5.

4.2. Representativeness of Measurements

In Table 4 and Figure 11, the results of the SOFandmobile DOASmeasurements are compared to reported annual
average emissions. The relevance of this comparison depends on whether measurements during shorter periods,
a few weeks in these cases, can be expected to be representative for the average emissions over a full year. One
argument against this is that temporary emissions or upsets, which only last a limited time period, may be
overrepresented in the SOF measurements. Examples of this include emissions occurring during tank cleaning
operations, ship loading, flaring, and accidental releases. This type of events occurs rather frequently and might
typically last for 1–24h. Hence, it is likely that some of the SOFmeasurements include emissions from such events.
This type of event is likely to be the explanation for upset emission identified in the Longview measurements in
2012, as illustrated in Figure 12. This example showed that it is possible to discriminate between such upsets and
average emissions if a large number ofmeasurements are performed but that the influence of the upset emissions
was relatively small on the estimated average emissions.

The industrial areas studied in this paper consist of a large number of independent sites, especially the HSC,
and short-term upsets should occur in at least some of the sites during each transect. On the other hand, it is
unlikely that they occur in a large fraction of them at the same time, and hence the relative elevation of the
total emissions from all of them will be much smaller than for the sites where the upset occurs. The fact that
the emissions, for instance, of alkanes from the HSC, show relatively small variations from transect to transect
and over several years, as shown in Table 4, indicates that the SOF measurements are representative for long
time periods and that the impact of longer term upset emissions is averaged out. On the other hand, this was
not the case for the 2006 propene measurements in the HSC, where the emission showed large temporal
variability that was attributed to flaring activity in petrochemical plants [Mellqvist et al., 2010b]. These
emissions decreased in the later years and have since been more stable. This shows that upsets can have a
significant impact on total emissions in some cases and that measurements over longer periods or repeated
studies over several years might be needed to make such distinctions.

Another potential reason why the measurements presented in this paper might not be representative for the
annual average emissions is that there might be systematic differences in meteorological conditions be-
tween the measurement periods and the whole years that could have a large effect on the emission rates of
some facilities. All four studies were conducted during the warmer half of the year, during daytime and in
clear conditions. All these factors would be expected to contribute to higher than average ambient tem-
perature and solar insolation. Wind speeds might also have been unrepresentative during the studies, which
might have caused higher than average emissions. The emission sources most sensitive to meteorological
conditions are probably storage tanks for crude oil and for refined products. Ambient temperature and solar

Table 5. Error Budget for the Flux Measurements During the Different Studiesa

Alkanes Ethene Propene SO2 NO2

Cross-Section Uncertainty 3.5% 3.5% 3.5% 2.8% 4%
Retrieval Error 12% 10% 10%, 20% 10% 10%

Year Wind Speed Wind Direction Composite Flux Measurement Uncertainty
2006 15–27% 8–12% 21–32% 20–31% 26–36% 20–31% 20–31%
2009 11–29% 7–10% 18–33% 17–32% 24–37% 17–32% 17–33%
2011 16–30% 5–8% 21–33% 20–33% 26–37% 20–33% 20–33%
2012 25–34% 4–12% 28–38% 27–38% 32–41% 27–38% 28–38%

aThe cross-section uncertainties and estimated retrieval errors depend mainly on the species, while the wind speed
and wind direction errors have been estimated separately for each year but apply equally to all species. These four error
sources are combined by root-sum-square to a composite flux measurement uncertainty for each species and year. The
highest and lowest composite uncertainties in the ranges given were calculated using the lowest and highest uncer-
tainties for both wind speed and direction.
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insolation affect the liquid surface temperature of the product in tanks which in turn affect the vapor
pressure and thereby evaporation. Wind speed primarily affects losses in external floating roof tanks.
Ethene, propene, and other products that are gaseous under ambient conditions are stored in pressurized
tanks, which should not be expected to have losses significantly affected by meteorology. Temperatures
and pressures of feedstocks and products in process steps are typically monitored and regulated and
thereby not significantly affected by ambient conditions. Effects of ambient temperatures, solar radiation,
and wind speed are included in the formulas for estimation of storage tank losses in AP-42, Compilation of
Air Pollutant Emission Factors [USEPA, 2013], EPA’s primary compilation of emission factor information,
which most emission estimates reported to the emission inventories are based on. To estimate the effects
of the differences in meteorological conditions, the campaign periods, and the entire years, formulas from
AP-42were used to estimate the emissions from an external floating roof tank storing crude oil (Tank A) and
from an internal floating roof tank storing gasoline (Tank B). These were chosen to represent the most
typical tanks with significantly meteorology-affected emissions. Emissions from these tanks were esti-
mated on a monthly basis using monthly averages of the hourly meteorology data. The meteorological
data consisted of measurements of ambient temperature, solar radiation and wind speed from the TCEQ
monitoring station C1015 [TCEQ, 2013]. Annual average emissions were calculated as the average of
monthly emissions for all months in each year. Average emissions during each campaign were calculated
using averages of the meteorological data for the duration of the campaign. Figure 13 shows the effects of
using meteorological data from these different periods in 2006, 2009, and 2011 on calculated emissions
from Tank A and Tank B. Meteorological data were missing from C1015 for October and November 2011, so
average values for the same months in 2006 and 2009 were used instead. For Tank B the intrayear varia-
tions in emissions are quite similar from year to year, while for Tank A there are larger differences between
the years, and especially 2011 stands out. The reason for this is that, according to the AP-42 emission
factors, emissions from external floating roof tanks are sensitive to wind speed, while emissions from
internal floating roof tanks are unaffected by wind. During the summer half of 2011, winds speeds were
significantly higher than during the same periods in 2006 and 2009, especially in April and May. For this
reason, the calculated emissions from Tank A for the campaign period were approximately 65% higher
than the annual average, while for 2009 it was only 39% higher and for 2006 it was 8% lower. For Tank B the
corresponding differences were smaller: 26%, 14%, and 6% higher during the campaign periods in 2006,
2009, and 2011, respectively.

The differences in calculated emissions presented in Figure 13 are only the seasonal variations. There are of
course also day-to-day variations and differences between daytime and nighttime. Assessing these variations

Figure 13. Emission rates from Tank A (external floating roof tank with crude oil) and Tank B (internal floating roof tank
with gasoline) calculated using emission factor formulas and meteorological data averaged over different time periods.
Circles indicate emissions calculated using monthly averages, and bars indicate emissions calculated using averages over
the campaign periods, as well as the extent of these campaigns. Yearly averages of the monthly emissions were calculated
and indicated with horizontal lines.
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using the AP-42 formulas requires applying the formulas
on time scales of single days or even hours or at least to
averages of meteorological from nonconsecutive time
periods on such scales. This is not how the formulas in AP-42
are typically applied and not what they were designed for.
Instead, emissions are typically calculated using monthly or
even annual averages. Since the campaign periods were of
similar time scales as months, the campaign averages in
Figure 13 are probably comparable to monthly averages. To
estimate the variations on shorter time scales, the AP-42
formulas have been applied to averages of meteorological
data from daytime hours (9:00–18:00 CDT) on the days in
each campaign when SOF measurements were made.
Applying the formulas in this way is likely to give
overestimated differences compared to averages for the
whole campaign, primarily because the surface tem-
perature in a tank might not follow changes in ambient
temperature and solar radiation on the scale of hours or
days in the same way as it does on the time scale of
months or years. There might be memory effects from
the ambient temperatures and solar radiation in previous
hours or days, which are likely to be averaged out over a
month. The differences given by applying the formulas like
this can, however, be thought of as upper estimates of
actual differences. Table 6 shows the differences between
the daytime averages of the SOF measurement days and
whole campaign averages for ambient temperature, solar
radiation, and wind speed, and the differences to the
calculated emissions from Tank A and Tank B from using
averages of measurement days instead of campaign
averages. These effects are shown for each meteorological
parameter separately as well as the combined effect.
Additionally, the last two columns show the differences
between campaign averages and annual averages (as shown
in Figure 13), as well as the total effect of both seasonal and
shorter term variations. The total effect typically adds up to
35–45% for both tanks, with the exception of Tank A in 2011.
This exceptionally large effect was due to the strong winds
during the campaign. The winds were so strong that the
campaign average was outside the applicable range of the
AP-42 formulas, 0–15mph, and hence there was no extra
effect due to the short-term variations.

The calculated total effects should be considered as upper
estimates, since they assume that there are no memory
effects from the cooler nighttime conditions suppressing
the daytime emissions. Assuming that storage tanks rep-
resent roughly two thirds of the emissions from typical
refineries [Kihlman, 2005] and that emissions from process
steps are not significantly affected by meteorological
conditions, the total meteorological effects estimated
above indicate that the alkane emissions measured from
refineries in this paper may be 20–30% higher than the
annual average.Ta
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Neither meteorological effects nor elevated emissions due to upset events seem to be even close in
magnitude to the discrepancies between measurements and emission inventories, and hence these discrep-
ancies most likely represent an underestimation of the continuous routine emissions by the inventories.

5. Conclusions

Total emissions of alkanes, ethene, propene, SO2, and NO2 from a number of large industrial areas dominated
by refineries and petrochemical industries weremeasured during four measurement campaigns in the period
2006–2012. The measurement error analysis indicates uncertainties typical within 20–35%. In comparison to
annual average emissions reported to emission inventories, the VOCs (alkanes, ethene, and propene) stood
out with measured emissions typically exceeding reported emissions by factor of 5–15, while measured SO2

and NO2 emissions were much closer to reported emissions. A tank model analysis of the effect of wind
speed, solar radiation, and ambient temperature on tank emissions shows that the alkane emissions mea-
sured from tanks in this study may have been up to 35–45% higher than the annual average, and in 2011 that
effect may have been even larger for crude oil tanks due to exceptionally strong winds. These meteorological
effects are not nearly large enough to explain the discrepancies between SOF measurements and emission
inventories, and they are also not applicable to process emissions and alkene emissions from petrochemical
industries. A detailed study of alkene emissions from a petrochemical complex in Longview indicated that
upset emissions can cause an increase in total emissions on the order of 20% compared to the continuous
routine emissions. Upset emissions are of course highly irregular by nature, but the relatively limited variation
in the other VOC emission measurements presented confirms the notion that total emissions are typically
dominated by routine emissions rather than by upset emissions.

Since neither upset emissions nor meteorological effects can account for the large emission discrepancies,
the conclusion from these results is that current emission inventories, based on emission factor calculations,
systematically fail to quantify continuous industrial VOC emissions and that reliable estimates of these
emissions can currently only be obtained from measurements.
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