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ABSTRACT (150 - 200 words) 

Knowledge regarding the characteristics of national building stocks is fundamental to 

understanding how the energy performance of the building stock can be improved. To 

facilitate large diversity and a number of buildings for such analyses, this paper presents a 

methodology by which national building stocks may be aggregated through archetype 

buildings. The methodology has been implemented and verified in four EU countries in 

regions with different climates, namely France, Germany, Spain and the UK. These countries 

account for about half of the final energy consumption of the EU-28 buildings. The analysis 

includes the residential and non-residential sectors (residential sector only for Germany). The 

number of archetypes per country has been defined according to different categories of 

building type, construction year, climate region and the main fuel source for heating purposes. 

The accuracy of the description is validated by simulating energy demand using the ECCABS 

Building Stock Model, and comparing the final energy demand modelled with corresponding 

statistical data. The total final energy demand calculated for these countries differs from 

available statistics by between -6% and +2 %, which is considered satisfactory. The proposed 

description of the building stock is being used as a basis for analyzing the potential for and 

cost of energy conservation measures.  
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1. INTRODUCTION 

1.1. Background 

Knowledge regarding the characteristics of building stocks is fundamental to understanding 

how the energy performance of the building stock can be improved [1][2]. What are the size 

and structure of the building stock in the European Union (EU)? Are there sufficiently robust 

data for the buildings in each member state (MS) upon which to base studies of the energy use 

of these building stocks? Kohler and Hassler [1] used the German building stock as a case 

study and concluded that most studies are strongly limited by the absence of reliable statistical 

data, and international research confirmed the global scale of this knowledge gap [3]. Similar 

conclusions have been reached by other analysts [4][5][6][7]. Nevertheless, despite the 

apparent paucity of consistent data, there has been a surge in recent years in the development 

and use of energy consumption models depicting national building stocks [8].  

 

For the purpose of modelling its energy demand, a building stock can be described through 

representative buildings in terms of sample buildings or archetypes [2]. Sample buildings are 

designated as representing actual buildings (with data obtained from measurements) of the 

existing stock. As the building stock of a country consists of buildings with varying 

characteristics, an extensive sample of the buildings is required in order to derive an accurate 

picture of the thermal characteristics of the building stock. Therefore, establishment of such a 

sample would require significant efforts towards measuring and quantifying the parameters of 

a building sample. However, archetypal buildings are statistical composites of the features 

found within a category of buildings in the stock [3] derived from available data of the 

national building stock. Thus, despite the paucity of real building data, archetype buildings 

can be derived. 

 

Although these descriptions do not include all relevant parameters for determining the energy 

demand, the literature provides descriptions of the building stock for several EU countries 

according to certain categories of samples and/or archetypes (cf. for France: [9][10]; for 

Germany: [11][12]; for Spain: [13][14]; and for the UK: [15][16][17][18][19]). For instance, 

only heated floor areas or the number of buildings are provided. On an EU level, there are 

examples of a more comprehensive description of a set of existing buildings [20], including 

the noteworthy effort to gather relevant data in the European TABULA Project [21], which 

has recently mapped data of existing residential buildings of 13 MSs. However, TABULA 

[21] has only very recently presented a quantification of the frequency in the building stock of 

the existing buildings described (no quantification is given in [20]). Therefore, despite such 

buildings constituting so-called typologies, they are not representative in a way that would 

allow an extrapolation of the description of the buildings to represent all residential and non-

residential buildings in each of the EU MSs investigated.  

 

Besides different use and building traditions, a description of the building stock should reflect 

the climate zone where the building stock is located. The studies by Ciscar [22] and 

Tsikaloudaki [23] propose that the climates within EU could be represented by three or five 

zones, respectively, dependent on whether only heating [22] or both heating and cooling [23]  

degree days are calculated. To the authors’ knowledge, no studies representative of the EU 

have described the building stocks of these zones climatically. Thus, there is much additional 

work to be done in order to arrive at a description of the characteristics of EU buildings on a 

level which may serve as a basis for modelling the effect of improvements in energy 

performance. Buildings in the EU are a particularly interesting object of study, not only 

because the EU has a concrete regulatory framework and a set of energy and environmental 
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targets, but also because the building sector accounts for 35%–40%
1
 of the final total energy 

consumption (25%–27% residential, 10%–13% non-residential) in EU-28 and 25%–40% of 

the associated carbon dioxide (CO2) emissions
2
 (15%–27% residential, 11%–21% non-

residential), as shown in Figure 1.  

 

Figure 1. Percentage of residential and non-residential buildings in the final total energy consumption 

(i.e. all sectors) of the EU-28 and selected MSs. 2011 data from the Eurostat database [24]. 

 

 

This study assesses the possibility of describing the EU building stock for the purpose of 

forming a basis for analyzing the effect and costs of applying different energy conservation 

measures (ECMs) to the entire EU building stock
3
 starting with key member states. More 

specifically, the aims are as follows: 

A. To review the existing building stock data for EU, identifying key issues and main 

data gaps for the purpose of defining archetype buildings 

B. To describe a methodology for building stock aggregation applicable to selected EU 

countries and to the residential and non-residential sectors  

C. To apply and evaluate the methodology by describing and aggregating building 

stocks of four selected EU countries, then comparing the modelled energy use in the 

stocks with the statistical data available. 

The four MSs selected for the study include France, Germany, Spain and the UK which 

together account for 58% and 52%, respectively, of the final energy demand and CO2 

emissions of buildings in EU-28, as shown in Figure 2. Since they belong to each of the EU 

climate zones given in [22][23], they are also representative of all EU climates. In 

accomplishing all three aims, a step forward is made by means of structuring and compiling 

                                                 
1
 All the ranges given in this paragraph cover the percentages given in the databases [24][34] for EU-27 (as a 

total) and for the six most densely populated countries: France, Germany, Italy, Poland, Spain and the UK. Thus, 

there may be MSs for which the percentages differ from the ranges given here. 2011 data from the Eurostat 

database [24]. 
2
 Year 2011 data from the Odyssee database [34]. 

3
 The authors are currently working on an analysis of the potentials and costs for energy saving and 

corresponding CO2 emission reductions for Spain [113] and on similar studies for the three other countries 

investigated. Since these works are not yet available, for an application of the modeling methodology to analyze 

energy use of residential buildings in an EU country not included in this paper (Sweden), see [114].  
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the information, as well as defining a methodology to be used in building stock modeling with 

the above geographical and sectorial scope. 

 

Figure 2. Share of the buildings of the four selected MSs in the final energy consumption of the EU-28 

building sector (12831 TWh for residential and non-residential). 2011 data from the Eurostat 

database [24]. 

 

 

The following section of the paper addresses Aim A by reviewing building stock data and 

availability, providing a framework of definitions to be used throughout the paper. Section 2 

presents the methodology for building stock aggregation, which is implemented in four 

selected EU countries; thus, this section addresses Aims B and C. Section 3 focuses on Aim C 

by giving a cross-country comparison of the building stock with respect to the building 

characteristics determining the energy demand. Section 4 discusses the results and Section 5 

summarizes the findings with respect to the three aims cited above. 

1.2. Building stock data and availability 

Building stocks are generally divided into Residential (R), also called domestic or household 

sector, and Non-Residential (NR) buildings, also known as the tertiary or services sector. In 

the R sector, due to the constant transferring between these categories [25], allocations of 

main, secondary residences and vacant units are difficult to analyze. However, since there has 

been greater political attention paid to the R sector, especially in social housing [1], there are 

generally better statistics and knowledge on the R sector than on the NR sector. The NR 

sector has until recently mostly been documented in terms of isolated buildings for technical 

or cultural reasons (public buildings, industrial monuments, etc.), with the primary focus on 

buildings that are perceived as individually outstanding works of art [1]. Information 

available on the building stock has typically been gathered through two basic approaches:  

 Census data, compiled for the establishment of a register of new building construction 

statistics. This type of register includes all new buildings but generally provides only 

basic information on the stock based on the designed construction project, such as the 

use of the building, the number of buildings or area. Such information is typically 

reported in national and subsequently international statistics.  

15% 

21% 

9% 

13% 

42% 

Building sector in France

Building sector in Germany

Building sector in Spain

Building sector in United Kingdom

Building sector in the Rest of EU
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 Surveys, which are additional studies of the existing buildings through a number of 

selected buildings carried out with a specific purpose. Surveys provide a wide range of 

post-occupancy information about buildings, including their technical characteristics, 

fuel usage and occupant behaviors. Such information is required for the categorization 

of the stock and is a prerequisite for modelling energy use in the building stock. As a 

consequence, the countries that have assessed energy-saving and CO2-mitigation 

potentials have conducted major surveys of their building stocks, e.g., the UK [26], 

Scotland [27], Belgium [28], and Sweden [29]. 

Individual billing data and sub-metering may also be available and can be used as 

complementary information for characterizing building stocks. In recent years, energy 

certificates [30][31][32] and other information linked to geographical information systems 

[33] have appeared as additional means of data gathering, although mostly on a regional scale.  

 

Data from the above approaches is compiled on the EU and international levels and three 

readily accessible databases provide data on the building sector, namely Eurostat [24], 

ODYSSEE [34], and the Greenhouse Gas and Air Pollution Interactions and Synergies 

(GAINS) Database [35]. These databases are updated on a regular basis and their main 

contents are summarized in Table 1. It is clear from the table that Odyssee provides the most 

complete dataset, including energy consumption for R and NR buildings per fuel and end use. 

However, not all data categories are included in the database. Eurostat provides only final 

energy consumption for R and NR buildings and is quite similar to corresponding data by 

Odyssee. The GAINS Database also includes data disaggregated by single- and multi-family 

dwellings, as well as data projections according to some scenario-based assumptions. In all 

cases, data on CO2 emissions are only given on an aggregated level; e.g. Eurostat only gives 

total greenhouse gas emissions (GHG) (in CO2eq) with no details for the building sector. 

Another database, the MURE II Policy Database [36], provides information on energy 

efficiency policies and measures carried out in the MSs of the EU, thus compiling all building 

regulation codes in force in each MS. 

 

In addition to these databases, some European projects (e.g. EPA-NR [37], EL-TERTIARY 

[38], and TABULA [21]), have compiled the information available on the building stock of a 

given country or set of countries. Ó Broin [39] has mapped the available data, indicators, and 

models related to the energy demands of European buildings. Pérez-Lombard et al. [6] have 

reviewed the data on energy use in buildings worldwide over the past 30 years (not 

continuously but in snapshots when the information became available). The recent BPIE Data 

Hub [40] is an open data portal for statistical data on the European building stock and 

includes all countries. Data are to be presented according to categories, such as building stock 

inventory, building stock performance and climatic zones, as well as different building types 

and owner profiles. However, the current BPIE Data Hub Portal still does not provide data for 

all categories. Although these studies and databases listed in Table 1 provide a valuable 

overview of the EU building stock, until recently the data could not be used directly for an 

archetype-based modelling of the energy performance of the stock because of the lack of 

physical description of the buildings required for such an analysis and because there has been 

no quantification of the number of buildings in the building stock. However, TABULA and 

Data Hub are now updated on a regular basis and their contents have significantly increased 

by the end of  2013. Yet, these data were not available at the time when the present work was 

carried out (2010-2013) and, thus, could not be applied here. 
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Table 1. Summary of international data sources for the energy consumption levels and characteristics 

of the European building sector. 

  

 

2. METHODOLOGY FOR BUILDING STOCK AGGREGATION  

The description of a building stock through archetype buildings proposed in this study follows 

four steps: segmentation, characterization, quantification and validation of the final energy 

demand in the building stock for a reference year. For the latter, a detailed and dynamic 

Building Stock Model is used which was previously validated as described in [41]. Data were 

compiled through several surveys conducted on a country basis, for which corresponding 

reports are available for downloading [42][43][44][45]. 

2.1. Segmentation 

In the segmentation process, the number of archetype buildings required to represent the 

building stock of the country is determined. The number of archetype buildings is obtained 

from the combination of the different segmentation criteria: 

 building type, defined from the use of the building, its layout (one or several floors) and 

the way it is attached to neighbouring buildings (e.g. detached, semi-detached or terrace 

houses); 
 construction year, determined from the updates of the building regulation codes but also 

according to historical events and changes in construction technologies;  
 main heating system; and  

 climate zone (within a country), defined in accordance to the climate zoning suggested for 

winter periods in the building regulation codes. Meteorological data from the most 

densely populated city in the climate zone is considered representative of the climate in 

the zone and is generated by Meteonorm [46]. 

 Odyssee[34] Eurostat[24] GAINS[35] 

Years included From 1980 From 1990 2005-30 

Building characteristics    
Stock of dwellings  Yes

(1, 2, 3, 4)
  Yes

(1, 3)
 

Total floor area Yes
(1, 3, 5, 6)

  Yes
(1, 3)

 
Floor area of dwellings (average) Yes

(1, 3)
   

Energy consumption levels    
Final energy consumption, residential sector Yes

(7, 8, 9)
 Yes

(9)
 Yes

(3, 10, 11)
 

Final energy consumption, tertiary sector Yes
(5, 7, 9)

 Yes
(9)

 Yes
(8, 10, 12 )

 

CO2 emissions    
CO2 emissions  Yes

(6)
  Yes 

Total CO2 emissions (with electricity) Yes
(6)

  Yes 
(1)

Data provided disaggregated into single-family dwellings and multifamily dwellings. 
(2)

Data provided disaggregated into individual/collective central heating and room heating, as well as 

oil/coal/gas/district heating/electric/wood space heating.
 

(3)
Data provided disaggregated into existing and new. 

(4)
Only permanently occupied dwellings. 

(5)
Data provided disaggregated into hotels/ restaurants, health and social actions, education/research, 

administration, private services, offices and trade (wholesale and retail). 
(6)

Data provided disaggregated into households and services.
  

(7)
Data provided disaggregated into space heating, hot water and cooking. 

(8)
Data provided disaggregated into coal, oil, gas, heat, wood and electricity.  

(9)
Data provided also with climatic corrections.

 

(10)
Data provided disaggregated into space heating and hot water, lighting and appliances. 

(11)
Data provided disaggregated into cooling and heating. 

(12)
Data provided disaggregated into cooling, heating and ventilation. 
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It is estimated that these criteria provide a good representation of the energy demand of the 

buildings. Besides, they facilitate data compilation (i.e. matching the form of data sources) as 

identified in the literature [9][13][14][20][47][48][49]. The segmentation was applied to both 

R and NR buildings in all countries studied, except for Germany where the R stock alone was 

included. Table 2 summarizes the archetype buildings obtained for each county.  

 
Table 2. Segmentation categories and resulting number of archetype buildings obtained for the four 

countries investigated. C, commercial; L, leisure; MFD, multifamily dwelling; NR, non-residential; O, 

office; R, residential; SCL, sports, culture and leisure; SFD, single-family dwelling; T, terraced 

house; X, other. 

Categories France  

99 archetypes 

Germany  

122 R archetypes 

Spain  

120 archetypes 

UK  

252 archetypes 

Building 

type 

3 R[10]: SFD, 

private and public 

MFDs; 

5 NR [50][51]: C, 

E, H, O, SLC
1
 

5 [54]: SFD
3
, prefabricated 

houses, T, MFD
4
, MFD <10 

floors, MFD >10 floors
5
  

2 R: SFD, MFD;  

4 NR: C, SLC, 

O, X. 
6 R [56]: detached, semi-

detached, T, bungalow; 3 

NR [57]: O, warehouses, 

retail
10

 

Construction 

year 

3 R [10]: before 

1975, before 

1975 refurbished, 

after 1975; 

3 NR [52][53]: 

before 1977, 

1977-2000, after 

2000 

10: before 1918
6
, 

framework buildings before 

1918, 1919-48, 1949-57, 

1958-68, 1969-79, 1980-83, 

1984-94, 1995-2002, 2003-

09 

4: before 1975, 

1975-79, 1980-

2005, 2006-08
9
 

7 [58][59][60][61]: before 

1985, 1986-1991, 1992-95, 

1996-2002, 2003-06, 2007-

10, and after 2010 

Heating 

system 

2 R [10]: electric 

heating, other 

source for 

heating
2 
 

Non-applicable
7
 Non-applicable

7
 2 [56]: central and non-

central
11

  

Climate zone 3 (H1to H3) [52]: 

Paris, Toulouse, 

Marseille  

3: Essen, Stuttgart, Munich
 8
 5 (A to E) [55]: 

Málaga, Seville, 

Barcelona, 

Madrid, Burgos  

4 [62]: London, 

Birmingham, Newcastle, 

Glasgow 

(1)
 Which account for 80% of the final energy use of the NR sector in this country. 

(2)
 For NR buildings there are no data available that would allow a division by category with respect to the 

sources of energy for heating purposes. 
(3)

 Including two-family dwellings. 
(4)

 With maximal four floors and eight to ten apartments. 
(5)

 Mostly from the 1960s and 1970s. 
(6)

 Except framework buildings. 
(7)

 Data availability did not allow a segmentation of the building stock according to their type of heating system.
 

(8)
 Found by adjusting the four recommended zones for calculating the heating load after the DIN EN 12831 to the 

political division of the territory in sixteen states [33]. 
(9)

 This last period of construction is only applicable to the NR sector. 
(10)

 These NR building types are known as the Valuation Office’s bulk classes and cover about 70% of all ratable NR 

buildings, but exclude for instance hospitals, schools, churches, etc. 
(11)

 Assumed that premises which currently have non-central heating system are all built before 1985. The average 

internal temperature for centrally heated dwellings is assumed to be 17.5 °C while it is 14°C for non-centrally heated 

premises. 

 

2.2. Characterization 

In the characterization step, each archetype is described by its technical characteristics (i.e. 23 

inputs as listed in [41]) based on the parameters from the segmentation provided in Table 3. 

The four countries include a total of 593 archetype buildings. Although all inputs and 

assumptions are of relevance, such a matrix of data is rather extensive and would be too 
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comprehensive to fit into a journal paper. Instead, a summary of a common procedure for 

gathering all the data as well as the sources used, on a country basis, is provided. In addition, 

selected country-specific values of the data are also provided for the purpose of understanding 

the levels of detailing as well as the differences between the countries. Further details on the 

characterization of the archetypes, including values for all inputs, are given in the 

corresponding country reports [42][43][44][45].  

 
Table 3. Segmentation categories and relevant building data depending on the category. 

Categories Relevant building data dependent on the category 

Building type Effective heat capacity of the building 

Floor area 

External surface area 

Internal gains 

Minimum desired indoor temperature 

Maximum desired indoor temperature 

Sanitary ventilation rate  

Window area 

Construction year Average U-value of the building 

Ventilation rate  

Heating system Indoor temperatures 

Fuels used 

Climate zone Average U-value of the building 

Outdoor climate data 

 

 

Reports from official authorities responsible for dwellings (e.g. Ministry of 

Dwellings/Energy/Environment in the four countries) provide information on the physical 

characteristics of the buildings. National building energy codes have been used to determine 

the indoor conditions and thermal properties of the building envelope, i.e., the period of 

construction is translated into U-values according to the building codes on a country-basis 

(seen mainly from the construction year in Table 2). The reliance on the building codes 

implies that the buildings have been constructed in each period of time according to the 

regulations and that they are operated according to their technical requirements; nevertheless, 

the literature does not provide any systematic check on regulatory compliance. The nature of 

the task is data intensive; thus, the references in this section are numerous but provided for 

transparency; furthermore, mostly national sources and other branch-specific journals have 

been used to obtain building data. Unknown surfaces of envelope (such as facades, cellars, 

roofs and windows) and building geometry are obtained according to the so-called 3CL-DPE 

Method [63], based on the floor area heated, the number of levels/floors, assumptions of the 

building form and attachment to neighbouring buildings’ of each building as defined by the 

3CL-DPE Method. The fuel use is allocated to the R and NR archetypes separately. In all four 

countries, it has been possible to separately allocate different fuels and technologies for space 

heating and hot water. Both for the fuel types and the efficiencies of the different heating 

technologies, data were found only at level of aggregation that would not allow for 

differentiation of each archetype. 

 

For French buildings, U-values are determined for the different construction periods 

according to building regulations; for the R sector from [64][65][66] and for the NR sector 

from [67]. There are no data for the U-values of the oldest R and NR buildings per climate 

zone, and the U-values of the H3 climate zone are assumed to be 15% higher than those of the 

other two zones [68]. Ventilation rates for R buildings are between 0.23 and 0.51 l/s/m
2
 as 
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extracted from [67], and for NR buildings these are between 0.37 and 1.47 l/s/m
2
 from [43] 

[68][69]. Since no data have been found for France, natural ventilation rates for R buildings 

are 0.40 l/s/m
2
 as calculated according to the 3CL Method [10] and for the NR buildings from 

[43]. Heat gains from occupants are calculated considering metabolic gains at low activity 

(i.e. sitting) [70], except for the sports, culture and leisure (SCL) buildings where heat gains 

from occupants correspond to higher activity levels. Heat gains from lighting, equal to their 

electricity consumption, for R buildings are calculated by adding 3W/m
2
 to each 100 lux of 

installed illuminance [67], with a minimum illuminance of 300 lux required in households 

(since the heated floor area of the household is different for each archetype, the heat gain also 

differs between archetypes). For NR buildings, heat gains from lighting range from 3.1 to 

11.5 W/m
2
 and are calculated from the lighting consumption [71] assuming the operating 

schedules and occupancy patterns shown in [43]. Heat gains from appliances in R buildings 

are 2.1 W/m
2
 for an average SFD of 103.8 m

2
 and 3.4 for an average MFD of 66.0 m

2 
[21]. 

For NR buildings, gains from appliances range from 1.1 to 4.7 W/m
2
 [44][72]. Due to the lack 

of data, building materials in France are assumed to be similar to those of Catalan buildings 

because of their proximity and common building technology [73]. The distribution of energy 

sources within R buildings is taken from [74], where the percentages of each heating system 

per climate zone are specified. Thereafter, these values have been separated into SFD and 

MFD according to the division proposed by [75]. Regarding NR buildings, the percentages 

for climate zone H1 are taken for offices (O) and commercial (C) buildings from [76], and for 

educational (E) buildings from [77]. The remaining archetype buildings have the same 

average shares of 47.5% electricity, 28.1% gas, 19.8% oil, and 4.6% other fuels as provided 

by [78]. Data regarding the efficiency of the boilers installed in the buildings were lacking at 

a national level; therefore, average values were considered based on [79].  

 

For German R buildings, all U-values are taken from [54]. In Germany, natural ventilation is 

prevalent for supplying fresh air to the buildings. The share of buildings with a mechanical 

ventilation system is less than 1.5% and only around half of them have heat recovery (the 

latter is disregarded). Additionally, 10% of the newly constructed buildings are equipped with 

ventilation systems [80]. Sanitary (natural) ventilation rates
4
 are between 0.60 ACH and 0.85 

ACH, depending on the construction year. Values for heat gains from appliances and 

occupancy range, respectively, were between 1.78 W/m
2
 and 2.66 W/m

2
 and between 1.11 

W/m
2
 and 2.00 W/m

2
 for the different building types according to [81]. Heat gain from 

lighting is 0.27 W/m
2
 for all buildings, calculated from the energy use for lighting per person 

and per year [82], as well as the average number of person per household given in Eurostat 

[24] and the average floor area of a German dwelling [80]. Hot water demand is between 1.16 

W/m
2
 and 3.38 W/m

2
 for the different building types. The distribution of different types of 

heat and hot water generators/producers was acquired from [80]. The efficiencies of the 

heating and hot water systems were extracted from [83]. 

 

For Spanish buildings, the period of construction was translated into U-values according to 

the building codes [55][84][85]; for buildings constructed before the implementation of the 

first thermal regulation in 1975, the average U-value is based on [20][86]. Ventilation rates 

for R buildings are between 0.42 and 0.51 l/s/m
2
 as taken from [55] and for buildings 

constructed before 1975 these are taken as the infiltration rate of 4 ACH reported in [55]; for 

NR buildings, between 0.55 and 0.83 l/s/m
2
 from [86]. Heat gains from occupants, lighting 

                                                 
4
 Here, ventilation rates are given the units provided in the original reference (ACH or l/s/m

2
). Transformation 

between these two units requires some assumptions with respect to the volume of indoor air (thus heated floor 

area) that would distort the original data. 
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and appliances were extracted from the appendices of the Spanish building code [87]. 

Average hot water demands for R buildings are provided in [55] and corresponding values for 

NR buildings are based on [73]. Building materials are similar to those of Catalan buildings 

[73]. Fuel shares for heating and hot water demand are extracted from [88]. A certain share of 

Spanish R buildings without any heating system [89] is assumed for each climate zone (A: 

55%, B: 13%, C: 14%, D: 8%; E: 8%).  

 

The U-values of the buildings in the UK are based on the requirements of building code Part 

L during each time period. The U-values for the buildings constructed before 1985 are taken 

from [15][16][17]. The sanitary ventilation rate for R buildings is 0.3 l/s/m
2
 [86][90] and for 

NR buildings, these range from 0.9 to 1.2 l/s/m
2
 (based on the average rate per person and the 

required air changes per hour [71]). NR buildings built after 1985 are assumed to have a 

mechanical ventilation system and after 1990, they are also assumed to have a heat recovery 

system. Natural ventilation rates for R buildings built after 1996 meet legislative requirements 

[58][59][60][61] and the  ventilation rates for older buildings are taken from [17]; for NR 

buildings, infiltration rates span from 0.5 to 1.0 ACH [45]. Average heat gain from lighting 

for R buildings is 0.9 W/m
2
 (calculated from [15] and in accordance to [45]); for NR 

buildings, heat gains from lighting range from 4.3 to 10.8 W/m
2
 [91]. Average heat gains 

from appliances for R buildings range from 2.4 to 5.5 W/m
2
 as calculated from [15]; for NR 

buildings, they are 3.0 W/m
2
 for warehouses calculated from [59], for offices 4.3 W/m

2
 and 

for retail 7.3 W/m
2
 [45]. Average heat gains of occupants of R buildings range from 0.5 to 1.6 

W/m
2
 (calculated based on the number of persons per household [56] and the metabolic heat 

gain from occupants); for NR buildings, these range from 1.39 to 3.31 W/m
2
 as calculated 

from the occupancy of warehouses, offices and retail [45]. Average hot water demand for R 

buildings is 103 litres per household per day for all dwelling types [17]; for NR buildings, this 

range spans from 0.9 to 1.6 W/m
2
 [91]. For the UK, different fuel shares have been assigned 

to R buildings, depending on whether they have central or non-central heating [56], and to NR 

buildings, the fuel mix is based on [92]. Efficiency of the boilers (2006 to 2010) is cited based 

on [17][56][93][94]. 

2.3. Quantification 

The quantification step determines the distribution of archetype buildings in order to be 

representative of the building stock, i.e. the so-called weighting coefficient is the number of 

buildings of the stock which are represented by each archetype building. National statistics 

are generally sufficient to quantify the number of buildings and their total floor area. When 

the number of buildings and heated floor areas was not available for each year, it has been 

constructed from information by using construction and demolition rates for a precise year. 

With respect the heated floor areas, the sources usually do not specify if gross or net areas are 

involved. 

 

In France the number of buildings is taken from [14][95]. The number of social dwellings 

existing in 1975 is given in [96] and the existing public MFD in 2007 is provided in [97]. A 

refurbishment rate of 45,000 renovations per year has been assumed based on the figure for 

the period 1977-2005 given in [98]. The number of NR buildings is calculated from the total 

existing surface of NR buildings given in [37], per construction period [99] and appliying 

annual growth rates [100], and the average heated floor areas per building. These average 

heated floor areas per building for R buildings are given in [66]; for NR buildings, floor areas 

for NR-C and NR-E are calculated based on the average heated floor area in 2004 found in 

[101]; for NR-Hand for NR-SCL from [64]. The number of R buildings in Germany and their 

heated floor areas are given for all archetype buildings in [102]. The adjustments required to 
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separately quantify high towers and apartment blocks (which Diefenbach and Loga [102] 

consider to be one building type) are presented in [44]. The number of Spanish buildings and 

their heated floor areas are taken from [89][103]. Demolition rates related to number of 

buildings and per floor areas are 0.13% and 0.24%, respectively, and are calculated from 

[104]. Finally, the total number of buildings in the UK per region and time period has been 

derived from the BRE’s domestic and non-domestic fact files [45][57].  

2.4. Validation of the final energy demand for a reference year 

To validate the building stock aggregation, the final energy demand is calculated using the 

defined archetype buildings as input to the model and comparing the results with 

corresponding values of energy use found in national and international statistics for a 

particular reference year. The energy demand is calculated using the Energy, Carbon and 

Cost Assessment of Building Stocks (ECCABS) Model [41]. Since in the EU, space heating 

remains the most relevant energy demand in buildings and since it is difficult to obtain 

accurate statistics of cooling demand (i.e. partly included in electricity use), cooling demand
5
 

has not been included in the analysis. Although for the building-stock modelling such as in 

this paper the validation is only possible at an aggregated level and there are generally no data 

per end use or building type, the accuracy of the energy balance for one building (in the 

ECCABS Building Stock Model) has been validated previously by comparative and empirical 

means for an existing Swedish residential building and a Spanish office building [41]. This 

indicates that the accuracy of the model should be sufficient for studying the energy use of the 

entire national buildings stocks for which the critical part are access to available statistics and 

input data, rather than the level of detail in the modelling. In any case, if snapshots of data 

exist for a particular end use or building type, these data are presented further down in this 

section for comparison. In order to start compensating for this lack of data, in Section 3.1 

modelling data from this work is provided homogeneously for all countries and 

comprehensively for all end uses and building types. 

 

The ECCABS Building Stock Model is dynamic and detailed (according to the classification 

of calculation procedures in EN ISO 13790) and is a bottom-up engineering model (according 

to the classification by Swan and Ugursal [2]). The main advantage of this method over the 

monthly/quasi-steady-state method (as defined in EN ISO 13790) is that the hourly time 

intervals enable direct input of hourly patterns of heating and ventilation, as well as of heat 

gains (occupants, lighting and appliances). Unlike steady-state methods, such as relying on 

heating degree days, this model allows for the calculation of indoor temperature and based on 

this measurement, the exact heating and ventilation requirements (indoor temperature is 

generally assumed as a constant in monthly/quasi-steady-state methods). Since the final aim 

of the archetypes is to provide a basis for investigating ECMs, a dynamic and detailed model 

is required in order to (1) investigate ECMs that involve building site management and user 

behavior (i.e. demand side management) and (2) analyze the effects of applying ECMs on 

indoor temperature. The model consists of two parts: a Simulink model, which solves the 

energy balance for buildings, and a code written in Matlab [105], which handles the input and 

output data from the Simulink model. The net energy demand of each representative building 

is calculated based on the physical and thermal properties of the buildings and their thermal 

inertia, a description of the heating and ventilation systems, energy usage and climate 

                                                 
5
 Although cooling demand is calculated in the model, the model output has not been used in this paper. For an 

example of how the modeling methodology used here, including the cooling demand, has been used to study the 

impact of climate change on the energy performances of buildings in Stockholm, see [115].  



12 
 

conditions. The energy balance is calculated every hour and the results are summed up to give 

the annual values of all energy flows (transmission, radiation, ventilation and internal gains), 

as well as the resulting net and final energy demands per end use and building type. Each 

building is treated as one thermal zone. A full description of the Building Stock Model is 

available [41]. 

 

As  seen from Table 4, the difference between the resulting final energy demand as obtained 

from the ECCABS Model using the archetype buildings of this work and  Eurostat [24], 

Odyssee [34] and Gains [35] statistics range from -6% to +2%, depending on the country. 

Although international statistics yield similar data for each country, national sources report 

data that slightly differ from the above sources.  

 

Table 4. Deviation of the resulting final energy demand (TWh) in the reference year as obtained from 

the modelling using the archetype buildings derived in this study from the corresponding data 

available in statistics for the different countries studied. The sources used for the comparison are 

specified in the table.  

Country Subsector This work From statistics Deviation from statistics 

France R 454.7 472.1 [34] 

460.0 [106] 

-4% 

-4% 

 NR 191.8 188.3 [107] +1% 

Germany R 684.2 

 

680.0 [108] 

688.3 [109] 

+1% 

-1% 

Spain R 178.4 175.2 [24] 

176.2 [35] 

+2% 

+2% 

 NR 91.9 

 

98.6 [24] 

97.7 [35] 

-6% 

-5% 

UK R 571.8 563.7 [92] +1% 

 NR 81.4 79.9 [92] +2% 

 

Data on energy demand disaggregated by end use is only available for France and Germany. 

For France, ADEME [106] reports final energy demand that, per end use, significantly differs 

from the results of this study (i.e. demand for heating is 22% lower than  in this study, for hot 

water 15% higher, and for electricity 24% lower) despite the fact that the above reported final 

total energy demand is similar to the demand obtained here. Yet, there are no details on the 

methodology applied in [106], and therefore, it has not been possible to find the reason for the 

simulation discrepancies in this study. For Germany, Statistisches Bundesamt [108] gives a 

total energy demand that is 3% higher than our calculations, a hot water demand that is 27% 

lower than our results, whereas space heating demand is 14% higher. The demand reported 

for appliances and lighting is similar to our results. Considering that the overall agreement  

is -6% to +2% as depending on country, and that hot water demand accounts for 7–20% of the 

total energy use in the four residential sectors investigated, the comparison appears to be 

satisfactory. 

3. RESULTS 

The number of subtypes in the categories of building type and construction year differs most 

greatly between the countries since these reflect historical events, tradition in building styles, 

changes in construction techniques and building regulation codes, as summarized in Table 2. 

With respect to the building type, the form of data sources generally allows for a clear 

differentiation between R and NR building data. The number of subtypes in each sector 

required to resolve the building stock differs from the simplest division into only SFD and 
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MFD, as in Spain, to the more detailed differentiation of four or five subtypes as required for 

Germany and the UK. With respect to the number of climate zones within a country, the 

division required obviously increases with the variations in altitude and latitude within the 

country and whether there is ocean exposure. The fewer such variations in Germany result in 

only three weather zones, whereas five weather zones are necessary for Spain.  

 

As indicated in the previous Section 2.2, the characterization of the buildings is mostly based 

on building code regulations and a wide range of national sources. Typically, significant 

uncertainties arise during data compilation and validation of building statistics as in the 

present study [110]. To address to what extent these input uncertainties affect the validation 

of the aggregated description, the influence of each input/building characteristic on the total 

energy demand obtained from the modelling is quantified by normalized sensitivity 

coefficients as proposed by Firth et al. [16]. Normalized sensitivity coefficients (Sj, i) represent 

the corresponding percentage change in the output variables of the model given a 1% change 

in the input, and are calculated according to the equations in page 33 in [16]. Table 5 

exemplifies the results of the sensitivity analysis for the residential sector, including the six 

input parameters with the greatest effect on the energy demand modelled. For all countries, 

the input value of minimum indoor temperature (Tmin) has the greatest impact on the energy 

demand modelled. As commented in Section 2.4, the indoor temperature is calculated every 

hour. Heating demand is defined as the heating power required to maintain the indoor air 

temperature above the given level Tmin. In the model, the heating system is turned ON if the 

indoor air temperature is lower than a minimum indoor temperature. Otherwise, the heating 

system is turned OFF.  

 

Table 5. Summary of input parameters for R buildings mostly determinant of the final energy demand 

of the R sector (i.e. with highest normalized sensitivity coefficient Sj, i) as resulting from the sensitivity 

analysis for the different countries studied.  

France Germany Spain UK 

Parameter Sj, i Parameter Sj, i Parameter Sj, i Parameter Sj, i 

Tmin 1.62 Tmin 1.52 Tmin 2.05 Tmin 1.63 

U 0.71 S 0.75 Vcn 1.82 U 0.88 

S 0.71 U 0.75 S 0.84 S 0.87 

A 0.30 Wc 0.71 U 0.84 A 0.21 

Vc 0.16 A 0.45 A 0.27 Hw 0.20 

Hw 0.15 Vc 0.36 Sw 0.11 Wf 0.07 

 

 

As shown in Table 5, the properties of the building envelope have the second highest impact 

on the energy demand. Such properties naturally include the average U-value of the envelope 

(U), as well as the surface of the envelope (S) and the characteristics of the windows (i.e. area, 

Sw, and percentage of window frame, Wf). Finally, hot water demand (Hw) is important in the 

R sector since it corresponds to 9-20% of the final total energy demand for the four countries 

investigated. However, for the NR sector (not shown in Table 5), ventilation and lighting are 

more relevant than hot water demand; i.e. the normalized sensitivity coefficients 𝑆𝑖,𝑗  for NR 

obtained for the ventilation rates range from 0.16 to 0.26; for lighting, from 0.11 to 0.15; and 

for appliances, from 0.05 to 0.15. In summary, the two parameters most determining of 

energy demand have been defined assuming, for the U-values, that the buildings have been 

constructed according to the building codes and, for indoor temperatures, that the buildings 

are operated according to their technical and healthy requirements. In other words, these 

parameters have not been defined empirically due to data unavailability as described in 
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section 2.2., and correspondingly there is considerable uncertainty about the assumed values. 

In the following paragraphs, modelling assumptions and results with respect to these 

parameters are presented in greater detail. 

 

Figure 3 illustrates the average annual indoor air temperatures as obtained from the model for 

the SFD, MFD and NR buildings in the four MSs investigated. The ranges of temperature are 

limited by the minimum temperatures defined as inputs, generally assumed to correspond to 

the minimum indoor temperature set by each national building code or regulation. For French 

R buildings, the minimum temperature is 19 °C [111], and for NR buildings, it ranges from 

18.5 to 21 °C for the different buildings types [70]. For German R buildings, the minimum 

indoor temperature is 18 °C. For Spain, the minimum indoor temperature is 18°C for R 

buildings [85] and 21°C for NR buildings [86]. Finally, for the UK, the minimum indoor 

temperature is 17.3°C and 14.8°C for centrally and non-centrally heated R buildings, 

respectively [56]. In NR buildings, the recommended temperature for heating and cooling 

design is 21°C, 20°C and 16°C for offices, retail and factories, respectively [91]. Applying the 

assumed minimum temperatures to the ECCABS Model results in an average yearly indoor 

temperature of 19.3°C and an average indoor temperature during the heating season (21
st
 

September to 21
st
 March) of 18.3°C for the UK R buildings. When only the winter season is 

considered (21
st
 December to 21

st
 March), 17.4 °C is obtained which is lower than the 19.5°C 

reported by Huebner et al. [112] based on the measured average temperature in living rooms 

of 248 homes during 92 winter days (November to January); although living rooms usually 

have the highest temperatures in a house and our temperatures are averages of the temperature 

for the entire dwelling.  

 

Figure 4 shows the average U-values of the buildings in each country for residential (SFD and 

MFD) and non-residential buildings, as obtained from modelling the archetypes described in 

this paper. Since the modelling allows aggregating scattered data, Figure 4 adds to the U-

values from the literature presented in Section 2.2 their distribution and quantification across 

the building stocks of the different MSs.  In general, the U-values are lower in the colder 

climate zones and higher in the warmer zones, with Spain and Germany having the highest 

and lowest average U-values, respectively, for all building types investigated. Eurostat reports 

the number of annual degree days of reference (DDn/yr) for EU countries as follows: Spain, 

2,136; France, 2,250; UK, 3,164; and Germany, 3,749. However, despite featuring the coldest 

climate, the U-values of German MFDs buildings (1.5 W/m
2
K) are higher than the 

corresponding values for UK MFDs (1.2 W/m
2
K). MFDs buildings in the UK have low 

average U-values, perhaps due to the fact that residential buildings constructed before 1985 

have an average U-value of around 1.3 W/m
2
K, as reported previously (cf. [45] for a 

summary of the U-values reported in [17][20][16]). In the other three countries, the older 

buildings (built before 1985) have U-values  > 2.0 W/m
2
K, with U-values up to 3.5 W/m

2
K in 

France for the oldest public MFDs which are not yet refurbished. Another interesting result is 

that, despite the similarity in climate between Spain and France, Spanish buildings have 

significantly higher U-values (i.e., around 1.9 W/m
2
K for all building types) than French 

buildings (i.e., 1.1 W/m
2
K for SFD, 1.6 W/m

2
K for MFD, and 1.3 W/m

2
K for NR). 

Therefore, it can be concluded that U-values are not exclusively related to climate type. 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0360132313002540
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Figure 3. Average annual indoor temperatures obtained from the modelling in this study in the 

existing building types of the different countries investigated. Bin width is 0.4º C. 
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Figure 4. Comparison of the distribution of U-values among the existing building types of the different 

countries investigated, obtained from the modelling in this work. Bin width is 0.15W/m
2
K. 
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Tables 6 to 9 summarize the final energy demand obtained by using the archetype buildings 

of Table 2 as input in the ECCABS Model, presented per building type and end use. The final 

energy demand of R building shows some correlation with climate, with the Spanish, French, 

UK and German buildings using on the average 137.8 kWh/m
2
, 200.3 kWh/m

2
, 209.2 

kWh/m
2
, 242.2 kWh/m

2
, respectively. In their turn, NR buildings in Spain, France and the UK 

use 291.8 kWh/m
2
, 252.8 kWh/m

2
 and 188.4 kWh/m

2
, respectively. Although further work is 

needed to understand why the energy demands of R buildings decrease with a warmer region, 

while at the same time these energy demands increase for NR buildings, cooling demand 

might be partially accounted for in the electricity use given as input for NR buildings. Since 

the share of space heating of the total energy demand ranges from 59%–82% in R buildings in 

the four countries investigated, the share of electricity use ranges from 11% to 24%. The latter 

is much higher in NR buildings than in R buildings and ranges from 64%–45%; while the 

share of space heating ranges from 34%– 46%.  

 

Table 6. Final energy demands (in TWh) of the French residential sector in 2005, and for the French 

non-residential building in 2009 according to end-uses and building subtypes. 

End-uses R 
R -

SFD 

R -

Private 

MFD 

R -

Public 

MFD 

NR 
NR-

O 

NR-

C 

NR-

H 

NR-

E 

NR-

SCL 

T 

Heating 285.3 201.4 41.7 42.2 93.3 25.4 28.3 20.0 13.9 5.7 378.6 

Hot water 74.6 41.0 21.5 12.2 18.0 2.0 3.4 3.0 4.8 4.9 92.6 

Electricity* 94.7 55.7 25.0 14.0 80.5 28.9 24.2 7.6 10.8 8.9 175.2 

TOTAL 454.7 298.1 88.2 68.4 191.8 56.2 56.0 30.6 29.4 19.5 646.5 

Heated floor 

Area (Mm
2
) 

2269.6 
1472.4 512.0 285.1 758.3 199.7 202.7 182.3 106.5 67.0 

3027.9 

*Electricity includes the electricity for electrical appliances, lighting, hydro pumps, fans and air conditioning; R, 

residential; NR, non-residential; T, residential and non-residential; SFD, single-family dwelling; MFD, 

multifamily dwelling; O, office; C, commercial; H, health; E, educational, SCL, sports, culture and leisure. 
 

Table 7. Existing heated floor areas and annual final energy demand (in TWh) by end use and 

building type in the German residential sector (in 2009), as obtained in this work. 

*Electricity includes the electricity for electrical appliances, lighting, hydro pumps, fans and air conditioning; R, 

residential; SFD, single-family dwelling; T, terraced; MFD, multifamily dwelling; AP, MFD<10floors; HH, 

MFD>10floors. 
 

 
 

 

 
 

 

 
 

 

 
 

 

End-uses R R -SFD R -T 
R -

MFD 
R -AP 

R -

HH 

Heating 560.6 205.7 45.8 235.6 68.5 5.0 

Hot water 47.7 13.4 5.8 19.4 8.6 0.5 

Electricity* 76.0 30.2 11.5 24.8 9.0 0.5 

TOTAL 684.2 249.2 63.1 279.8 86.1 6.0 

Heated floor Area (Mm
2
) 3269.8 1403.2 533.5 958.8 306.4 16.7 
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Table 8. Existing heated floor areas and annual final energy demand (in TWh) by end use in the 

Spanish residential sector (in 2005) and in the non-residential sector (in 2009). 

End-uses R 
R-

SFD 

R-

MFD 
NR 

NR-

C 

NR-

O 

NR-

L 

NR-

X 

T 

Heating 101.9 68.1 33.8 31.2 15.4 4.3 4.8 6.7 133.1 

Hot water 25.6 9.5 16.1 1.8 0.2 0.1 1.0 0.5 27.4 

Electricity* 35.0 14.8 20.2 59.0 37.3 6.4 7.4 7.9 94.0 

TOTAL 178.4 103.1 75.2 91.9 52.9 10.8 13.2 15.1 270.3 

Heated floor Area (Mm
2
) 1294.1 547.2 746.9 314.9 168.9 41.8 49.2 54.9 1609.0 

*Electricity includes the electricity for electrical appliances, lighting, hydro pumps, fans and air conditioning; R, 

residential; NR, non-residential; T, residential and non-residential; SFD, single-family dwelling; MFD, 

multifamily dwelling; C, commercial; O, office; L, leisure; X, other. 

 

Table 9. Existing heated floor areas and annual final energy demand (in TWh) by end use in the UK 

building sector (in 2010).  

End-uses R 
R-

SFD 
R-SD R-T 

R-B R-

MFD 
NR NR-O NR-L NR-X 

T 

Heating 338.8 102.1 75.4 2.7 126.0 32.7 29.3 13.6 4.1 11.6 368.1 

Hot water 116.1 31.0 32.1 21.5 20.3 11.3 5.4 2.1 1.5 1.8 121.5 

Electricity* 123.1 32.9 33.9 22.7 21.7 11.9 46.7 22.7 10.7 13.3 169.8 

TOTAL 571.8 164.5 140.0 45.9 166.4 55.0 81.4 38.4 16.3 26.7 653.2 
Heated floor 

Area (Mm
2
) 

2360.7 
625.4 574.0 288.7 681.6 184.3 

432.1 
135.8 114.5 181.7 

2792.8 

*Electricity includes the electricity for electrical appliances, lighting, hydro pumps, fans and air conditioning; R, 

residential; NR, non-residential; T, residential and non-residential; SFD, single-family dwelling;; SD, 

semidetached; T, terraced; B, bungalow; MFD, multifamily dwelling; O, office; L, leisure; X, other. 

 

4. DISCUSSION  

In describing and modelling energy use in building stocks, the challenge is to find a limited 

number of building parameters, guarantee their availability and maintain a reduced 

computational time, while still allowing a fair estimate of buildings’ energy use. From the 

validation of the building stock description of the aggregated data, collected at national or EU 

levels, the level of detail required by the ECCABS Model is sufficient for the assessment of 

the energy use of an entire building stock with limited computational effort. Therefore, the 

modelling procedure with the aggregated description can provide a basis for the investigation 

of the opportunities and costs for energy savings and CO2 emission reductions. Indeed such 

investigations have been recently performed by the authors [113][114]. The amount of input 

parameters allows for an assessment of a comprehensive portfolio of ECMs including changes 

in different parts of the envelope and building technical systems, as well as the increased 

supply of on-site renewables. Given the level of aggregation of input data, in particular for the 

allocation of technologies and fuels for space heating and hot water production and their 

efficiencies, it should be kept in mind that the results of the assessment are valid for the stock 

as a whole rather than for a single building. Thus, the purpose of the archetypes is not to 

provide an ultimate recommendation on how to renovate specific buildings but to identify key 

technologies and measures for groups of similar buildings, then assess technical, techno-

economic and market potentials for energy saving and CO2 emission reductions within the 

groups, as well as estimating the effects of energy policies on the groups in a building stock.  

 

In addition, using the archetypes developed in this study provides a detailed description of the 

energy use of each archetype in terms of net and final energy, end use and fuel. Thus, the 

combination of archetypal description of the work with the ECCABS Model produces an 
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efficient tool with which to generate estimates of data about a building stock that is generally 

not otherwise available, as the above mentioned data on net and final energy demands per end 

use and fuels. Such disaggregated building stock data can be used for further analysis of the 

building sector using other modelling tools. 

 

Further work is required to complete the assessment of the building stock of the entire EU. It 

is the authors’ intention to continue the work by developing corresponding archetypes for 

Italy and Poland which, together with the four countries investigated in this study, represent 

about 70% of the final total energy consumption of buildings within the EU-28. Our 

hypothesis is that these six countries would allow a good approximation of the EU building 

stock for the purpose of modelling energy use and evaluating the effect of different ECMs in 

response to EU policy measures. To analyze the data from these countries, the methodologies 

used for describing and modelling the building stock may need to be further adapted to 

account for region-specific characteristics. Furthermore, the possibility of simplifying the 

number of weather zones within a country should be investigated. While our aggregation 

results in fifteen zones for the four countries investigated (an increase in the number of zones 

is expected when including Italy and Poland in the analysis) the above mentioned literature 

proposes that a smaller number of climate zones should be sufficiently representative of the 

EU climates. If the division into several climate zones per country proposed in this work is 

not accounted for, the aggregated description proposed here results in a total of 212 

archetypes for the four MSs investigated (33 for France, 50 for Germany, 24 for Spain and 

105 for the UK). Work would be necessary to investigate how the grouping of the four 

countries studied according to the three or five climate zones proposed in [22][23] would 

affect the methodology used in this paper. 

5. CONCLUSIONS 

The building stocks of four EU countries, which account for over half of the final energy use 

of buildings within the EU-28, have been described through archetype buildings, including 

the residential and non-residential sectors. Using the archetypal descriptions as input to the 

ECCABS bottom-up Building Stock Model yields a final total energy demand which differs 

by between -6% and 2% from statistics for the four countries investigated, which is 

considered satisfactory considering the level of aggregation. The building stock description 

presented through archetype buildings provides a good estimate of the thermal performance of 

the building stocks; thus, the level of detail appears sufficient to allow an assessment of the 

effects of applying different ECMs to the building stocks investigated for the current data 

availability.  

 

In the course of this study, it has become clear that for the EU countries investigated, it is 

possible to derive datasets regarding the size, physical and technical structure of the existing 

building stock to define the archetype buildings even though the amount of data available 

significantly differs between the four countries investigated and data for the NR sector are 

generally more sparse. Specifically, data available in national statistics are sufficient to 

quantify for each of the countries studied the number of buildings and their floor areas. Data 

reported by official authorities responsible for dwellings provide information on building 

physical characteristics. National building codes can be used to determine the indoor 

conditions and thermal properties of a building envelope. International statistical data such as 

from Eurostat, Odysee or GAINS databases are sufficient for the validation of the results 

obtained at a country level for the overall R and NR sectors, but there is a lack of statistics for 

validating the modelling results for different subtypes. Nevertheless, these data are neither 

empirical nor consistent, and ownership and access issues arise. Consequently, there is still a 
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need to quantify and analyze the robustness of key data (i.e. indoor temperatures, fuel source 

for heating and its efficiencies, retrofitting rates, and the frequency of each archetype building 

in the total stock) and understand their roles in a long-term transformation of a building stock. 
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