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Analytic Solutions to the Dynamic Programming
sub-problem in Hybrid Vehicle Energy Management

Viktor Larsson, Lars Johannesson and Bo Egardt

Abstract—The computationally demanding Dynamic Program-
ming (DP) algorithm is frequently used in academic research to
solve the energy management problem of an Hybrid Electric
Vehicle (HEV). This paper is focused exclusively on how the
computational demand of such a computation can be reduced.
The main idea is to use a local approximation of the gridded
cost-to-go and derive an analytic solution for the optimal torque
split decision at each point in the time and state grid. Thereby
it is not necessary to quantize the torque split and identify
the optimal decision by interpolating in the cost-to-go. Two
different approximations of the cost-to-go are considered in the
paper: i) a local linear approximation, and ii) a quadratic spline
approximation. The results indicate that computation time can be
reduced by orders of magnitude with only a slight degradation in
simulated fuel economy. Furthermore, with a spline approximated
cost-to-go it is also possible to significantly reduce the memory
storage requirements. A parallel Plug-in HEV is considered in
the paper but the method is also applicable to an HEV.

I. INTRODUCTION

During the last fifteen years significant attention has been
given to the topic of optimal energy management for Hybrid
Electric Vehicles (HEVs) and Plug-in HEVs (PHEVs). The
task is non-trivial to solve since a priori information regarding
the future driving conditions is needed. Furthermore, the plant
model is generally non-linear with both continuous and integer
decisions, i.e. torque split between engine/motor, choice of
gear and engine on/off. Many different methods have been
proposed for solving the energy management problem. Some
examples are: rule based methods, Dynamic Programming
(DP), convex optimization, and the Equivalent Consumption
Minimization Strategy (ECMS) that is derived from the Pon-
tryagin maximum principle. Refer to [1]–[3] for a review of
different methods. This paper will focus exclusively on DP,
which has been used in numerous studies [4]–[15]. The main
advantage with DP is that it is a very versatile algorithm that
can handle a wide range of problem formulations. It provides
the global optimal solution, which cannot be guaranteed by
a rule based method. In contrast to a convex optimization
formulation, DP can handle integer decision variables without
any need for approximations or iterative methods. Moreover,
an important advantage compared to an ECMS strategy is
that state constraints can be treated in a more formal way.
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However, DP requires the problem to be gridded in time and
states, meaning that the cost-to-go is defined over a time and
state grid. As a consequence the memory and computational
demand will increase exponentially with the number of gridded
variables, an effect known as the curse of dimensionality
[16]. Due to the high computational demand, DP is generally
perceived as a method to obtain the optimal fuel economy
for a known drive cycle [5], [10], [14], i.e. as a benchmark
rather than a method that can be implemented in a commercial
system. There are, nonetheless, energy management problems
where DP is tractable; it can, for example, be used to precom-
pute an optimal strategy for a frequently driven route, such
as a city bus route or a commuter route. Previous studies
[9], [12] have shown that a near optimal fuel economy can
be obtained by optimizing the energy management based on
historical driving data logged along the route. The idea is then
to solve the DP problem offline and use the resulting cost-to-go
as feedforward information when the vehicle is driven along
the route. The computation can for example be performed
onboard the vehicle during the start of the trip, or alternatively,
it can be solved on a server and the solution can then be
transmitted to the vehicle. Regardless if the DP problem is
solved as a benchmark, or for use as precomputed feedforward
information, it is desirable to keep the computational demand
at a reasonable level. Nevertheless, even with battery State
of Charge (SoC) as the sole dynamic state, computation time
might still be several minutes. The computational bottleneck is
that a high number of DP sub-problem’s must be solved1, i.e.
the optimal control signal(s) must be determined at each point
in the time and state grid. The typical methodology used in
the literature is to quantize the continuous control signal (the
torque split) and then evaluate the gridded cost-to-go through
time consuming interpolation [7]; a step that must be repeated
for each feasible integer decision. Moreover, the DP memory
requirements can easily be several megabytes if the time and
state grid is dense.

This paper investigates how the computational demand and
the memory requirements of the DP algorithm can be reduced
in (P)HEV energy management problems. The key concept is
to derive an analytical solution for the continuous control sig-
nal in each sub-problem, thereby avoiding the need to quantize
the control signal and interpolate in the cost-to-go. However,
the idea is not to solve the non-linear Hamilton-Jacobi-Bellman
(HJB) partial differential equation, which would be non-trivial
even with a simple powertrain model. The proposed method
is to approximate the gridded cost-to-go, locally, with a low
order polynomial. The local approximation is then only used to
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compute the continuous control signal at each point in the time
and state grid. Two different approximations are considered in
the paper: i) a local linear approximation, and ii) a quadratic
spline approximation. The latter is also beneficial from a
memory point of view as the cost-to-go can be stored as a
small number of spline parameters at each time step, rather
than a vector defined over the gridded state.

Paper Outline: After the introduction a brief review of
previous work in the field is presented and the contribution
of the paper is put into context. The following two sections
presents the vehicle model and formulates the energy manage-
ment problem. Thereafter the conventional DP algorithm is
introduced and two analytic solutions to the DP sub-problem
are derived. The succeeding section investigates the solutions
obtained with the different DP algorithms. The paper is ended
with simulations, discussion and conclusion.

II. PREVIOUS WORK

Several studies have investigated how to reduce the compu-
tational demand of DP in an energy management context. The
most straightforward approach is to use a sparse grid for the
SoC state, although that will degrade the quality of the solution
to some extent. For an HEV a very sparse grid can be used
without a significant degradation [8], [15]. However, a PHEV
can drive longer distances electrically and will therefore have
two distinct modes of operation, electric and hybrid vehicle
mode. The PHEV cost-to-go will consequently contain two
different regions and be less smooth as compared to the cost-
to-go of an HEV. The solution will thus tend to degrade more
quickly as the grid size is reduced [15]. A more sophisticated
approach is to use iterative DP [13], where the idea is to solve
the problem recursively using a sparse grid; after each iteration
the position of the grid points are then updated and focused
around the optimal state trajectory obtained at the previous
iteration.

The most promising technique to reduce computational
demand, for a specific grid size, is to minimize the use of
interpolation when solving the DP sub-problem. In [14], [17]
the idea is to avoid all interpolation and only consider the set
of discrete control signals that brings the plant model to grid
points where the cost-to-go is defined, meaning that it can
be evaluated directly. The corresponding disadvantage is that
the relevant set of discrete control signals must be computed
for every sub-problem. An alternative approach is to derive
an analytic solution for the continuous control signal in each
sub-problem. Such a solution can for example be obtained if
a local linear approximation of the cost-to-go is used. The
main advantage with this method is that there is no need to
grid the continuous control signal and consequently only one
interpolation in the cost-to-go is required for every feasible
integer decision. This methodology was investigated by the
authors in [8], where a parallel HEV was considered and the
battery current was assumed to be quadratic in electric motor
torque at a given motor speed. The results showed that the DP
problem, with a sparse grid, could be solved in a less than one
second for half an hour of driving.

The previously described approaches reduces computation
time but not necessarily the memory requirements of the

cost-to-go; if a dense grid is used several megabytes can be
required. Nonetheless, within the energy management field
not much attention has been given to this topic. The typical
approach to address DP memory requirements in other fields
is to use approximate or neuro DP [18]–[20], where the key
concept is to approximate the cost-to-go, using for example
neural networks, splines or other basis functions. The idea
is then to only save the function parameters at each time
step, rather than all the values in the cost-to-go grid. In [15]
the authors proposed a method to approximate the cost-to-go
with cubic splines, mainly as a way to reduce the memory
storage requirements (the spline approximation was not used
to compute the continuous control signal).

The main contribution of this paper is to combine and extend
the previous work by the authors [8], [15]. The idea is to
further explore the use of a local cost-to-go approximation and
the possibility to derive an analytic solution for the continuous
control signal in the DP sub-problem. The paper will investi-
gate if a local linear approximation can cause problems with
the numerical stability of the DP algorithm, something that
was not considered in [8]. Furthermore, the paper will also
explore the use of a quadratic spline approximation and the
corresponding analytical solution for the continuous control
signal.

III. VEHICLE MODELLING

A post transmission parallel PHEV is considered in the
paper, meaning that the electric traction motor is mounted
directly at the final drive of the front axis. The engine is
coupled to the front wheels through a clutch, a five stepped
automatic transmission and a final drive. The configuration is
shown in Fig. 1 and the key powertrain data is shown in Table
I. The main modelling assumptions are presented next.

A simple quasi-static chassis model is considered, as the
main focus is on computational aspects rather than vehicle
modelling. The longitudinal forces acting on the vehicle chas-
sis are determined using a non-causal and inverse approach,
see [7], meaning that the torque demanded at the wheels, Td,
to follow a velocity and road slope trajectory is given by

Td = rw
(
1/2ρaCdAv

2 +mea+mg(fr cos θ + sin θ)
)
, (1)

where rw represents wheel radius; ρa density of air; Cd air
drag resistance; A vehicle frontal area; fr rolling resistance; g
acceleration of gravity; v velocity; a acceleration; θ road slope;
m vehicle mass and me equivalent vehicle mass, including
moments of inertia of the rotating parts.

The combined electrical power demand of the motor and its
inverter is modelled jointly. Two different model complexities
are considered in the paper, a quadratic model

P qpm = d0(ωm)T 2
m + d1(ωm)Tm + d2(ωm), (2)

where Tm and ωm represents motor torque and speed, and a
piecewise linear model

P linm = max
{
d−1 (ωm)Tm + d2(ωm), d+1 (ωm)Tm + d2(ωm)

}
,

(3)
where d−1 defines the linear slope when Tm < 0 and d+1
when Tm ≥ 0. The d coefficients for both models are speed
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Powertrain Data

Mass  1720 kg

Spark Ignited Engine 65 kW

Permanent Magnet 
Electric Motor 60 kW

Li-Ion Battery 8kWh

Automatic Transmission 5 gears

100 rad/s
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Fig. 1: The PHEV configuration considered and the linear least
squares approximations of the engine and the motor. Each line
represents different engine/motor speeds.

TABLE I: Powertrain data.

Chassis Parameters
Mass m 1720 kg

Air drag resistance CdA 0.68
Gearbox ratios rgb 2.6, 1.6, 1.0, 0.7, 0.5

Final gear ratio rf 4.4
Aux. load. Pa 200 W

Battery Li-Ion
Battery pack capacity Etot 8 kWh

Low/High SoC constraints [xmin, xmax] [0.25, 0.90]

Initial SoC x0 0.85

Final SoC target xf 0.30

Engine 4 Cyl. Spark Ignited
Max power Pe,max 65 kW

Electric Motor Permanent Magnet
Max power Pm,max 60 kW

dependent, non-negative and determined by linear least squares
from a power loss map. The instantaneous mass fuel rate of
the engine is approximated to be affine in engine torque Te
at given engine speed ωe. Consequently the instantaneous fuel
cost is given by

g = cf
(
c0(ωe)Te + c1(ωe)

)
eon, (4)

where the fuel price is represented by cf and the engine state
by eon ∈ {0, 1}. The speed dependent coefficients, c, are

non-negative and determined by linear least squares from a
brake specific fuel consumption map. Fig. 1 illustrates the
approximations of the motor and the engine. The gear ratio and
efficiency of the final drive at the front axis are represented by
rf and ηf respectively. Note that the efficiency depends on the
sign of the torque demand at the wheels, if the torque demand
is positive ηf = ηf0 , otherwise ηf = η−1f0 . Furthermore, the
gears of the automatic transmission, k ∈ {1, 2, ..., 5}, are
represented by a drive ratio rgb(k) and a mechanical efficiency
ηgb(k). A Li-Ion battery is considered and it is modelled as
an equivalent circuit with a constant internal resistance Rin in
series with an open circuit voltage Voc that is affine in SoC
[21]. Letting the state x be SoC, the resulting state equation
becomes

ẋ = f(x, Pb) = −
Voc(x)−

√
V 2
oc(x)− 4RinPb

2RinQ
, (5)

where Q denotes cell capacity. With Pa representing auxiliary
power loads the requested net battery power is

Pb = Pm + Pa. (6)

The net torque of the powertrain at the wheels is

Tp = ηfrf
(
Tm + re(k)Te

)
+ Tb, (7)

where re(k) = ηgb(k)rgb(k) represents the effective gear ratio.
The torque of the friction brakes Tb is non-zero only if the
electric motor is torque saturated during regeneration; hence,
it is not treated as a free decision variable.

IV. THE ENERGY MANAGEMENT PROBLEM

The problem is to find the control signal trajectory that
minimizes the total energy cost for a given drive cycle. Let
uI represent the integer control signal,

uI = eon · k ∈ {0, 1, ..., 5}︸ ︷︷ ︸
UI

, (8)

i.e. choice of engine state eon and gear number k. In terms
of the torque split there is only one degree of freedom since
the net torque of the powertrain Tp should meet the torque
demand Td. The continuous control signal is thus defined by
the motor torque

uc = Tm, (9)

meaning that the engine torque is given implicitly by Eq. (7).
Assuming that the drive cycle is known a priori, the resulting

energy management problem can be formulated as

J∗ = min
u(·)

{
G
(
x(tf )

)
+

∫ tf

t0

g
(
ωe(uI(t)), Te(uc(t))

)
dt
}
,

s.t. ẋ(t) = f
(
x(t), uc(t)

)
Tp
(
uc(t), uI(t), t

)
= Td

(
v(t), θ(t)

)
uc(t) ∈ Uc

(
ωm(t), ωe(uI(t)), x(t)

)
uI(t) ∈ UI

(
v(t), θ(t)

)
x(t) ∈ [xmin, xmax]

x(t0) = x0 (10)
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where x = SoC. The instantaneous fuel cost of the engine is
given by g

(
ωe(uI), Te(uc)

)
and f(x, uc) represents the non-

linear state equation. In the above formulation there is no
explicit constraint on the final state, instead it is given as a soft
constraint that penalizes values below the desired final state,
xf . The final cost function G will therefore represent both the
soft final constraint and the cost to recharge the battery up to
the initial state x0. The motivation for using a soft constraint
is that there is no clearly defined lower SoC-limit in terms of
battery degradation. Furthermore, when computing the spline
approximation it is computationally convenient if the DP cost-
to-go is defined numerically between xmin and xmax at all time
instances. It would, however, also be possible to specify an
explicit final constraint and use level-set functions in the DP
recursion to keep track of the backward reachable set [22].
The feasible set for the continuous control signal Uc enforces
the speed dependent torque constraints of both the motor and
the engine, as well as the state dependent battery power limits.
The feasible set for integer decision UI is defined implicitly
by the drive cycle speed and torque demand.

V. THE DYNAMIC PROGRAMMING ALGORITHM

Dynamic Programming is a well know optimal control
algorithm based on Bellman’s principle of optimality [16]. The
main idea in the algorithm is to grid the problem (in time, states
and control signals) and divide it into a sequence of smaller
problems that are solved recursively, typically backwards in
time from the final time step to the first. Each point in the
time and state grid defines a DP sub-problem, in which the
sum of a stage cost and the cost-to-go (at the next time step
and state) is minimized. The stage cost is the cost associated
with a control decision at a given time step and state; the
cost-to-go represents the cost required to reach the end of the
problem along the optimal state trajectory, from a specific time
step and state.

A. Solution with the conventional DP algorithm
To solve the energy management problem with the conven-

tional DP algorithm, the problem must first be time discretized2

into n time steps and the SoC state gridded into m discrete
points, x1, x2, ..., xm, thus forming a grid of size n×m over
time and state. The cost-to-go matrix J ∈ Rn×m is then
initialized at time step n with a final cost at each of the discrete
points of the state. The problem is thereafter solved recursively
backwards in time, over the grid, until the first time step is
reached and the cost-to-go matrix is defined at all grid points.
To simplify the subsequent presentation consider the following
notation:

Definition 1. Let a DP sub-problem be defined as the problem
of finding the optimal control signals, {u∗c , u∗I} ∈ {Uc, UI},
at a specific grid point [i, j], i.e. at time step i and state xj .

Definition 2. Let Ji[j] denote the value in the cost-to-go
matrix at grid point [i, j].

2The discrete time state dynamics are determined using the Euler method
with a sample time δt of one second, i.e. x(t+ 1) = x(t) + f(x(t), uc(t)).

Definition 3. Let Ji(x) denote a value of the cost-to-go at
time step i, at a point x between the grid points where the
cost-to-go matrix is defined.

Each DP sub-problem, in the time and state grid, is then
defined by

Ji−1[j] , min
{uc,uI}∈{Uc,UI}

{
g(uc, uI)︸ ︷︷ ︸

stage cost

+ Ji
(
xj + f(xj , uc)

)︸ ︷︷ ︸
cost-to-go

}
,

(11)
where i = n, n-1, ..., 2, j = 1, ...,m; and the initialization of
the cost-to-go is defined by Jn[j] = G(xj). The computational
demand of Eq. (11) is high since the cost-to-go is not an
analytic function that can be evaluated or differentiated, instead
it is a matrix defined only at a finite number of grid points.
The cost-to-go is therefore typically evaluated by linear inter-
polation between the grid points where the cost-to-go matrix
is defined [7]. Hence, in order to solve Eq. (11) it is necessary
to quantize the continuous control signal uc into p points (for
each feasible gear in UI ) and interpolate in the cost-to-go. The
optimal control signals are then found by minimizing over the
quantized values of uc and the feasible integer decisions in UI .
Algorithm 1 summarizes the pseudocode for the conventional
DP algorithm.

Algorithm 1 Conventional DP with quantized control signal

Initialize cost-to-go matrix at final time sample
for Time steps do

for Gridded state values do
for Integer control signal do

for Quantized continuous control signal do
Compute stage cost and interpolate in cost-to-go

end for
Select continuous control that gives the lowest cost

end for
Select integer control that gives the lowest cost
Update cost-to-go matrix with cost of optimal control

end for
end for

B. Using an analytic solution for the continuous control signal
The key to reducing the computational demand of the DP

algorithm is to formulate the right hand side of Eq. (11) as an
expression that can be minimized algebraically with respect to
the continuous control signal uc, for a fixed integer decision3

ūI . Therefore define

h(uc, ūI) , g(uc, ūI) + J̃i
(
xj + f(xj , uc)

)
, (12)

where J̃i is some local approximation of the gridded cost-to-
go valid near xj . The minimizing continuous control signal
is then obtained by differentiating h with respect to uc and
solving for the case when the derivative is equal to zero,

ûc(ūI) = arg min
uc

h(uc, ūI), (13)

3It is here assumed that ūI ≥ 1, the problem is trivial if the engine is off.
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provided that h is strictly convex in uc. Note that the minimiz-
ing control signal is the unconstrained optimum, which might
be outside of the torque constraints. The constrained optimum
is therefore given by

u∗c(ūI) =

{ min Uc, if ûc(ūI) < min Uc(ωm, ωe(ūI), x)
ûc(ūI), ûc(ūI) ∈ Uc(ωm, ωe(ūI), x)

max Uc, if ûc(ūI) > maxUc(ωm, ωe(ūI), x) .
(14)

The solution to the DP sub-problem is now implicitly parame-
terized by the integer decision variable uI . Hence it is possible
to redefine Eq. (11) as

Ji−1[j] , min
uI∈UI

{
g(u∗c(uI), uI) + Ji

(
xj + f(xj , u

∗
c(uI)

)}
.

(15)

The difference between Eq. (11) and Eq. (15) might seem
subtle, but in terms of computational demand it is significant.
In Eq. (11) the continuous control signal uc must be quantized
into p points and the cost-to-go must thus be evaluated through
interpolation p times for each feasible gear decision in UI .
Using Eq. (15) only one interpolation is required for every
integer decision.

VI. DERIVING AN ANALYTIC SOLUTION
FOR THE CONTINUOUS CONTROL SIGNAL

This section will investigate two different approximations
that can be used to derive an analytic solution for the con-
tinuous control signal. The idea is to exploit that the state
x has slow time dynamics compared to the sample time of
the system, a valid assumption if the sample time is about one
second and the energy buffer is sufficiently large (i.e. a battery
is considered and not a flywheel or a super capacitor). A large
buffer implies that the state will change only slightly over one
time sample and it should therefore be sufficient to use a local
approximation of the cost-to-go in each DP sub-problem.

A. Local linear approximation of the cost-to-go
The first approach is to consider a local linear approximation

of the cost-to-go and the quadratic motor model given by Eq.
(2). The cost-to-go is then described by a first order Taylor
expansion around each grid point [i, j],

J̃i
(
xj + f(xj , uc)

)
= Ji[j] +

∂Ji
∂x

∣∣∣∣
xj

· f(xj , uc). (16)

The partial derivative with respect to the state is for simplicity
defined by the forward difference (numerical derivative) of the
cost-to-go,

si[j] =
∂Ji
∂x

∣∣∣∣
xj

=
Ji[j + 1]− Ji[j]
xj+1 − xj

. (17)

Substituting Eq. (16) into Eq. (12) yields

ha(uc, ūI) = g(uc, ūI) + Ji[j] + si[j] · f(xj , uc). (18)

The solution to the DP sub-problem can now be determined
by minimizing Eq. (18) with respect to uc. In order to do so
rewrite Eq. (18) using Eq. (2) and Eq. (4)-(9), to obtain an

−300 −150 0 150 300
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Fig. 2: The cost of the DP sub-problem h plotted vs. the control
signal uc. The star symbol indicates the minimum.

algebraic expression dependent only on the continuous control
signal uc,

ha(uc, ūI) = cf ·
(
c0

Td

ηfrf
− uc

re(ūI)
+ c1

)
+ Ji[j]− (19)

si[j]
Voc(xj)−

√
V 2
oc(xj)− 4Rin(d0u2c + d1uc + d2 + Pa)

2RinQ
,

assuming a fixed ūI 6= 0. Provided that the cost-to-go is
decreasing with respect to the state, i.e. s < 0, it is straightfor-
ward to show that ha is convex in uc using composition rules
for convex functions [23]. Fig. 2 illustrates the shape of ha.
The minimizing control signal ûc is thus given by

ûc(ūI) = arg min
uc

ha(uc, ūI)

=− d1
2d0

+
c0β0
2d0

√
d0V 2

oc(xj) + β2Rin
β1c2o + d0s2i [j]r

2
e(ūI)

, (20)

where β0 = cfQ, β1 = Rinβ
2
0 , β2 = d21− 4d0(d2 +Pa). The

optimal control signal u∗c considering the constraints Uc, is
then defined by Eq. (14). The DP algorithm with a local linear
approximation of the cost-to-go is summarized in Algorithm
2.

Algorithm 2 DP with local linear approximation

Initialize cost-to-go matrix at final time sample
for Time steps do

for Gridded state values do
Compute local linear cost-to-go approximation
for Integer control signal do

Determine continuous control with analytic solution
Compute stage cost and interpolate in cost-to-go

end for
Select integer control that gives the lowest cost
Update cost-to-go matrix with cost of optimal control

end for
end for

B. Quadratic spline approximation of the cost-to-go
The second approach is to approximate the cost-to-go with

a quadratic spline function. Thereby numerical differentia-
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tion can be avoided and the derivative information will be
more smooth. Furthermore, with a spline approximation the
analytic solution can also take second derivative information
into account when solving the DP sub-problem. Appendix A
gives a brief introduction to splines and outlines how a spline
approximation of the cost-to-go can be obtained by solving
a constrained linear least squares problem; a more detailed
description of the method is given in [15]. The disadvantage
of using a spline is that it is not possible to find an analytic
solution to the DP sub-problem with a quadratic model for the
electric motor. Therefore the piecewise linear motor model,
given by Eq. (3), is considered when the analytic solution
is computed. However, to preserve the system dynamics the
update of the cost-to-go, as defined by Eq. (15), is still
determined by the quadratic motor model, given by Eq. (2).

Suppose that a spline approximation has been computed, the
cost-to-go is then locally described by a quadratic function in
the neighbourhood of a grid point [i, j],

J̃i(xj + f̃(xj , uc)) =s0 · (xj + f̃(xj , uc))
2

+ s1 · (xj + f̃(xj , uc)) + s2, (21)

where f̃(x, uc) represents the state equation given by Eq. (5)
with the piecewise linear motor model defined by Eq. (3).
Furthermore, assume that every sub-problem will belong to a
specific spline segment, i.e. the possibility that a sub-problem
might involve two or more spline segments is neglected. To
solve the DP sub-problem rewrite Eq. (12), using Eq. (3)-(9)
and Eq. (21), to obtain an expression dependent only on uc,

hb(uc,ūI) = cf ·
(
c0

Td

ηfrf
− uc

re(ūI)
+ c1

)
(22)

+ s0 ·
(
xj + f̃(xj , uc)

)2
+ s1 ·

(
xj + f̃(xj , uc)

)
+ s2.

If J̃i is convex and nonincreasing on a spline segment it
is straightforward to show that hb is convex in uc using
composition rules for convex functions [23]. The shape of hb
is illustrated in Fig. 2 and the minimizing control signal is
given by

û†c(ūI) = arg min
uc

hb(uc, ūI)

= −d
†
1r

2
e(ūI)(RinQ(2s0xj + s1)− s0Voc(xj))2

4Rin(cfc0RinQ2 + re(ūI)s0d
†
1)2

+
V 2
oc(xj)− 4Rin(Pa + d2)

4Rind
†
1

, (23)

where d†1 represents d+1 or d−1 and û†c(ūI) represents the
two solutions, û+c and û−c . The optimal unconstrained control
signal is thus given by

ûc(ūI) =

 û+c (ūI), if u+c > 0 ∧ u−c > 0
û−c (ūI), if u+c < 0 ∧ u−c < 0

0, if u+c < 0 ∧ u−c > 0 .
(24)

The optimal control signal with respect to the constraints u∗c
is then defined by Eq. (14). The DP algorithm with a spline
approximation of the cost-to-go is summarized in Algorithm

3. Finally, note that an additional advantage with a spline
approximation is that the storage requirements are reduced as
the cost-to-go, at each time step, is represented by a small
number of spline parameters, rather than a vector defined over
all the gridded values of the state.

Algorithm 3 DP with spline approximation

Initialize cost-to-go vector at final time sample
for Time steps do

Compute spline approximation of cost-to-go vector
for Gridded state values do

for Integer control signal do
Determine continuous control with analytic solution
Compute stage cost and interpolate in cost-to-go

end for
Select integer control that gives the lowest cost
Update cost-to-go vector with cost of optimal control

end for
Store spline parameters as cost-to-go representation

end for

VII. THE BEHAVIOUR OF THE COST-TO-GO

This section will present the cost-to-go obtained at a few
different time steps for the three different DP algorithms, i.e.
the conventional algorithm with a gridded control signal and
the two approaches with an analytic solution to the DP sub-
problem. To facilitate a fair comparison the same initialization
of the cost-to-go and the same drive cycle, shown in Fig. 6,
is used for all algorithms. A PHEV is considered and the
resulting cost-to-go is therefore representative for an energy
management strategy where the battery is net discharged.

A. Conventional algorithm with gridded control signal

The shape of the cost-to-go for the conventional DP algo-
rithm, with 2000 grid points for the state, is shown to the
left in Fig. 3. The initialization of the cost-to-go at the final
sample is shown as the solid black line, which is defined by
two separate slopes. The steeper slope enforces the soft final
constraint, i.e. it penalizes low final states, and the more gentle
slope represents the cost to recharge the battery up to x0 at the
end of the drive cycle. Note that the region where the cost-to-
go has a constant and gentle slope can be interpreted as the
region in the state space from which it is possible to reach the
end of drive cycle using mainly electric energy. Consequently,
as the DP iterations progress backwards the constant and gentle
slope will gradually vanish from the solution. This effect is
clearly seen by investigating the numerical derivative of the
cost-to-go with respect to the state, shown in the right plot of
Fig. 3. It is also clear that the overall shape of the cost-to-
go remains convex throughout the backward iterations, i.e. the
derivative is in general monotonically increasing with respect
to the state.
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Fig. 3: Conventional DP with 2000 grid points for the state.
The cost-to-go J and its (numerical) derivative ∂J

∂x at a few
different time steps, n represents the final time step of the drive
cycle.

B. Analytic solution with local linear approximation

The results obtained with an analytic solution to the DP
sub-problem and the local linear cost-to-go approximation are
illustrated in Fig. 4. It is clear that the overall outcome is
very similar to what was obtained with the conventional DP
algorithm. Nevertheless, with a densely gridded state there can
be numerical problems with the cost-to-go, as exemplified by
the oscillatory behaviour in the lower left plot of Fig. 4 where
2000 state grid points are used. In contrast, if the number of
grid points is reduced to 1000 the oscillatory behaviour is no
longer present, as seen in the plot to the right.

The numerical problems can occur if it is possible for the
state trajectories of two adjacent grid points to cross during a
time step, thereby violating Bellman’s principle of optimality.
A (very) conservative bound on the maximum number of state
grid points mmax is thus defined by the battery power limits,

xmax − xmin

mmax
> 2δt ·max

uc

|f(x, uc)|, (25)

where δt represents the sample time and xmin/xmax the min-
imum/maximum values of the state in the grid; for the
modelling assumptions in this paper mmax ≈ 133. However,
practical experience has shown that it is possible to use many
more grid points without numerical problems. If a dense
grid is used, i.e. m � mmax, the principle of optimality
is typically compromised in regions where the cost-to-go
derivative is not monotonically increasing with respect to the
state, something that might occur locally. In such a case a local
non-monotonicity tends to be amplified due to the local linear
approximation of the cost-to-go. Nevertheless, the numerical
problems are typically of transient character and tends to
vanish from the solution after a few iterations. The rationale
is that it is only the control decision that is determined based
on the local linear approximation, interpolation is still used
to update the cost-to-go in Eq. (15). If a dense grid is used, a
simple but effective approach to suppress this type of behaviour
is to smooth the numerical cost-to-go derivative before the
optimal continuous control signal is computed.
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Fig. 4: Local linear approximation. The cost-to-go J and its
(numerical) derivative ∂J

∂x at a few different time steps. The
state is gridded with 2000 points in the plots to the left and
1000 points in the plots to the right.

C. Analytic solution with spline approximation
The spline approximated cost-to-go and its derivative with

respect to the state at a few different time steps are depicted
in Fig. 5. Four quadratic splines are used to represent the
cost-to-go and 2000 state grid points were used during the
DP recursion. Furthermore, to the right in Fig. 5 the spline
approximated cost-to-go is shown overlaid with the cost-to-
go obtained with the conventional DP algorithm. The overall
shape and behaviour of the two is clearly very similar. The only
substantial difference is seen during the first few backward
iterations, as illustrated in the lower right plot of Fig. 5.
The discrepancy is explained mainly by the initialization of
the cost-to-go, which is defined by two affine functions,
meaning that the derivative is non-smooth. A quadratic spline
approximation cannot accurately describe the associated ini-
tial behaviour of the cost-to-go. However, in contrast to the
local linear approximation, there are no numerical problems
visible in the derivative of the cost-to-go. This is an intrinsic
characteristic of the spline approximation, which is constrained
to be convex and thus has a derivative that is monotonically
increasing with respect to the state.

VIII. SIMULATION RESULTS

The simulation study is performed to assess how the optimal
state trajectory and fuel consumption are affected by the
cost-to-go of the three DP algorithms. However, the analytic
expression for the continuous control signal uc are not com-
pletely equivalent for the local linear cost-to-go approximation,
Eq. (20), and the spline approximation, Eq. (23)-(24), since
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Fig. 5: The spline approximated cost-to-go J̃ and its derivative
∂J̃
∂x at a few different time steps. The diamond symbols indicate
the spline knot points. The plots to the right depict the spline
approximated cost-to-go together with cost-to-go obtained with
conventional DP.

different model orders are considered for the electric traction
motor. The continuous control signal is therefore quantized
to ensure that the only difference between the simulations
is solely due to differences in the cost-to-go and not on the
expressions that are used to decide the control signal.

The vehicle model presented in Section III, with the
quadratic motor model, is simulated along the drive cycle
shown in Fig. 6. The optimal control decision at time sample
i is determined by

{u∗c , u∗I}i = arg min
{uc,uI}∈{Uc,UI}

{
g(uc, uI)+Ji+1

(
xi+1(uc, uI)

)}
,

(26)
where uc is quantized and the cost-to-go is evaluated through
linear interpolation, except for the spline approximated cost-
to-go which can be evaluated directly.

The simulated state trajectories are shown in Fig. 6 and the
resulting fuel consumption is summarized in Table II. It is clear
that the results are almost identical for all three algorithms.
The numerical problems encountered in the cost-to-go of the
local linear approximation with 2000 state grid points, shown
in Fig. 4, does not affect the overall result very much since
the problems are only present at a few time steps near the
end of the drive cycle. If the number of state grid points is
reduced to 1000, numerical problems are no longer an issue as
seen in Fig. 4; the consumption is nevertheless slightly higher
as the accuracy of the solution is degraded when the number
of state grid points is reduced. The fuel consumption for the
spline approximated cost-to-go is somewhat higher than for

Fig. 6: The drive cycle and the simulated SoC trajectories.

TABLE II: Simulation results and computation time.

DP Computation Cost-to-go Final Relative
Algorithm Time Repres. SoC Fuel Cons.

Conventional 100% (490s) 2000 grid pts. 0.3001 100.00%
Local linear 1.4% (6.9s) 2000 grid pts. 0.3001 100.04%

1.0% (5.1s) 1000 grid pts. 0.3001 100.07%
Spline 2.5% (11.9s) 4 splines 0.3002 100.19%

the local linear approximation, something that is reasonable
considering that the cost-to-go is represented by four quadratic
splines rather than thousands of grid points. The difference in
fuel consumption will decrease if the number of splines is
increased.

IX. COMPUTATION TIME

The computation time4 for the three different DP algorithms
is illustrated in Table II. All computations are performed using
MATLAB©5, except for the spline approximation which is
computed using a dedicated C-routine generated using CVX
Gen [24]. The results indicate that the computation time is
decreased by a factor of seventy using the local linear approx-
imation and a factor of forty with the spline approximation,
both compared to the conventional algorithm with an identical
grid size. The significant reduction compared to the conven-
tional algorithm is explained by the fact that there is no need
to quantize the continuous control signal when the cost-to-
go is approximated. Consequently, there is a drastic reduction
in the use of interpolation. The difference in computation
time between local linear and the spline approximation DP
algorithms is explained by the complexity of the cost-to-go
approximation. The local linear approximation is computed
by numerical differentiation. It is more computationally de-
manding to compute a spline approximation, i.e. to solve a
constrained linear least squares problem.

4Using a desktop PC with Intel i5 2320 Processor and 8GB DDR3 RAM.
5The Matlab implementations are vectorized in order to be computationally

efficient, the only for loops used is with respect to time and integer decision.
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X. DISCUSSION

It is clear that the computational burden of the DP algorithm
can be reduced significantly if the continuous control signal in
the DP sub-problem is obtained analytically. The downside
is that it is not possible to develop a generic method as a
specific analytic solution must be derived for each particular
powertrain configuration. To find a solution it is necessary
to make a trade-off between powertrain model accuracy and
the quality of the cost-to-go approximation; an oversimplified
powertrain model will result in a degraded solution and a crude
cost-to-go approximation can cause problems with numerical
stability. The main disadvantage with a local linear cost-to-go
approximation is that it can lead to a violation of the principle
of optimality, at least if the change in the state over a time step
is comparable to the distance between the state grid points.
Consequently the method is not very suitable for small energy
buffers and longer sample times.

The significant reduction in computation time and memory
demand means that it is possible to implement the proposed
method in a vehicle ECU. However, as the proposed method
is essentially an off-line computation it would also be possible
to perform the computation at a higher level. For example,
with an app on an external device such as smartphone or on
a server. The solution can then be transmitted to the vehicle
over the cellular network.

XI. CONCLUSION

The paper has investigated the possibility to use an analytic
solution for the continuous control signal when solving the
DP sub-problem in a hybrid electric vehicle energy manage-
ment problem. To derive an analytic solution two different
approximations of the cost-to-go is considered; i) a local linear
approximation, and ii) a quadratic spline approximation. The
results indicate that the computation time can be decreased
by almost two orders of magnitude with only a slight degra-
dation in simulated fuel economy. Furthermore, with a spline
approximated cost-to-go the memory storage requirements are
also reduced with about two orders of magnitude. A post-
transmission parallel PHEV was considered in the paper, but
the method will work equally well for an HEV or another
powertrain configuration, as long as an analytic solution can
be found.
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APPENDIX A
COMPUTING THE SPLINE APPROXIMATION

The idea is to compute a spline approximation, J̃i, of the
gridded cost-to-go, Ji, at time step i. The spline function is
here defined as a piecewise quadratic function, J̃i : [x0, xk]→
R, defined over a set of k disjoint subintervals called knot
spans, [xq, xq+1), q = 0, ..., k − 1,

J̃i =


P1(x) = s10x

2 + s11x+ s12 , x0 ≤ x < x1
... , ...

Pk(x) = sk0x
2 + sk1x+ sk2 , xk−1 ≤ x < xk,

(27)

where the points x0, ..., xk are the spline knot points. The
spline function is required to have C1 continuity, i.e. continu-
ous in the function and in the first derivative. Furthermore,
the spline function is required to be convex, meaning that
first derivative of the spline function should be monotonically
increasing. Hence, the quadratic polynomials must satisfy

Pq(xq) = Pq+1(xq), q = 1, ..., k − 1 (28)

P
′

q(xq) = P
′

q+1(xq), q = 1, ..., k − 1 (29)

−P
′′

q ≤ 0, q = 1, ..., k. (30)

The spline approximation of the cost-to-go vector Ji is then
defined by a constrained linear least squares problem

min
S

||C(x1:m)S − Ji(x1:m)||22 (31)

s.t. Az(x1:k−1)S = 0, z = 1, 2

BS ≤ 0,

where S is a vector containing the spline coefficients and the
Az matrices enforces the continuity constraints, i.e. Eq. (28)-
(29). The B matrix enforces the convexity constraint of Eq.
(30) and C is a block matrix, describing the state values in the
spline at the gridded values of the state where the cost-to-go
is defined. The methodology and the selection of spline knot
points are described more in depth in [15].
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