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Abstract

Shadow mapping is a common approach to visualizing shadows in real-time

graphics applications such as games. Given the performant nature of these

applications, often limited resources are reserved for this task despite shad-

ows providing a strong and important visual cue in computer generated

graphics.

With this work we introduce a new shadow mapping algorithm that

aims for optimal resource usage while being comparable in quality to other

popular approaches. A tile based partitioning scheme is provided to facilitate

dynamic customizability and allow for adaptive distribution of resources at

run time which leads to more efficient use of memory resources. Detailed

results for memory and execution costs are presented and comparisons to

commonly used previous work are made.
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1

Introduction

1.1 Background

Shadows are a fundamental visual cue detailing both object placement and

movement in a scene. They make a significant contribution towards immer-

sion in video games and computer animated films utilizing three-dimensional

graphics. While films have reached a very high standard in visual fidelity,

video games, being an interactive medium, require a more stringent ap-

proach. A lot of effort and resources are invested in many different aspects

of the technology required to drive a modern high budget game. Player input

needs to be handled, the game world needs to be simulated, audio needs to

be processed and finally the world representation needs to be rendered. All

of this should happen fast enough in order to have time to repeat the pro-

cess several times per second and present the player with a continuous and

smooth picture. In contrast, when creating computer generated graphics for

film significantly more resources are available. Several orders of magnitude

more time is available for each frame to render with the additional benefit

of a controlled computer environment often offering an impressive level of

capabilities. Nevertheless, the visual standard of real-time rendering quickly
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CHAPTER 1. INTRODUCTION 2

approaches photorealism, yet shadows still remain a subject with much room

for new research.

Shadows in computer and video games are usually calculated by having

an understanding of the scene from the shadow casting light’s point of view.

The depth of the scene from this view is recorded and used to decide what

lies in shadow and what does not. When rendering a frame of the game

world to show on screen, each pixel queries the light view information and

uses it to decide if it is in shadow or not. The camera view used to display

the game world does not necessarily see the same part of the world as the

shadow casting light. As such, each pixel in the camera frame does not

always map to a pixel in the light view frame. Given the discrete nature of

both the light and camera views, the resulting shadows will inevitably be

based on incomplete information.

In practice, only a few resources are allocated to shadows in a game so

that all other parts of the engine have room in the memory and process-

ing time available. This dissertation explores a new algorithm for rendering

real-time shadows and, like the majority of previous research in this field, we

focus on increasing visual fidelity with a priority on real-time performance.

Attempts at modifying established shadow rendering algorithms are made

and new ideas are introduced. While some goals are achieved, certain weak-

nesses in our algorithm are identified that suggest a generic solution is not

necessarily the optimal choice.

The requirements to render shadows vary between different circumstances.

For example, a directional light representing the sun affects a larger amount

of objects and casts a different type of shadow compared to an omnidirec-

tional light, such as a desk lamp inside a small room. An implementation

can cover all scenarios although the sacrifice of not being able to apply spe-

cific optimizations is then made. Thus this research focuses on a subset of

shadow types, namely, shadows as cast by directional lights. We do not con-

sider filtering, which is an algorithm agnostic detail and our implementation

does not interfere with its application.
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1.2 Outline

Shadows, being such an important part of computer graphics, is a major

research subject. Chapter 2 gives a brief overview of previous research re-

lated to real-time shadow algorithms. We focus primarily on algorithms

related to this thesis and what is utilized in modern video games and real-

time rendering. In Chapter 3, the Irregular Adaptive Shadow Maps (IASM)

algorithm - the primary focus of this dissertation - is described with com-

prehensive implementation details. Chapter 4 presents the results of the

research associated with this thesis and gives an indication of how the new

algorithm compares to commonly used previous work, more specifically Cas-

caded Shadow Maps (CSM). In Chapter 5 we discuss the dissertation and

the various decisions that were made during implementation, as well as touch

upon improvements that can be made and ideas to extend the work. Finally,

Chapter 6 concludes the thesis with a concise summary.



2

Related Work

This chapter will give an overview of previous research done related to shad-

ows in computer graphics. The focus will be shadow mapping algorithms,

and more specifically, non-filtered partition based techniques as they apply

to directional lights. However, for adequate coverage, additional work is

mentioned that did not strictly influence the implementation of this disser-

tation.

2.1 Shadow Maps

The z-buffer is a two-dimensional array of values representing the depth of

a scene as seen from an arbitrary point of view [6]. Such a buffer, populated

with the distance to the scene from the point of view of a light source,

stores depth information for any geometry ”seen” by that light, as accurately

as allowed by the resolution of the buffer. The original shadow mapping

implementation [34] uses a z-buffer, when rendering the final image to display

on screen, to decide what parts of the image should be shadowed. Each pixel

is transformed to the view point of the light source and its depth is tested

4



CHAPTER 2. RELATED WORK 5

against the values already present in the light depth buffer. If the pixel’s

depth is larger than the current value at the location it is not visible to the

light and thus needs to be shadowed.

As noted in this initial shadow mapping proposal, this algorithm is not

without problems. Due to the discrete nature of the depth buffer and the per-

spective of the camera view, transforming pixels from camera space to light

space introduces aliasing and quantization artifacts. The limited resolution

of the z-buffer can also introduce a type of artifact known as self-shadowing.

In this scenario, a slanted plane, in respect to the shadow casting light,

will inaccurately receive a shadow when no object is blocking the light from

reaching the plane. This can partially be mitigated by applying a bias value

[27] when sampling the depth buffer. This bias, however, is object specific

and difficult to select for a globally optimal result.

The Midpoint Shadow Maps [36] implementation attempts to solve some

of these problems by recording not just the closest distance to the light but

also the second closest one. The average of the two is then used as the depth

in the light z-buffer. This moves the depth comparison from the surface

of an object into the middle of the geometry, hiding the artifacts caused

by numerical imprecisions. For this to work, back-face culling cannot be

applied, which is often a desired optimization where polygons facing away

from the camera are not rendered and thus the execution cost is lowered. If

back-face culling were to be applied, the second distance could potentially

come from a far away surface. This would give a false representation of the

average depth of shadow casting objects, leaving certain shadowed areas to

pass the depth test and be illuminated. Dual Depth Shadows [33] addresses

this by clamping the bias value to a predefined constant when the distance

between the two registered depth values is too large. Conversely, Second-

Depth Shadow Mapping [32] proposes that using the second closest distance

is enough to not require a bias value at all to get rid of the self-shadowing

artifacts.
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The depth resolution when rendering a shadow buffer maps onto the

space defined by the light frustum along its view direction. Noting this, a

simple and algorithm agnostic improvement, known as fitting, can be imple-

mented by optimizing the frustum to only include the space containing any

shadow casting geometry that could potentially cast a shadow intersecting

the view frustum [5].

2.2 Warped Shadow Maps

Directional light shadows are rendered with an orthogonal projection to cor-

rectly represent light sources far away. The lack of perspective produces a

consistent sampling density across the entire shadow map. Since the final

render of a scene is usually rendered with a perspective projection, to give an

impression of depth and accurate object size and placement, the sampling

density in the shadow map would ideally be greater closer to the viewer.

This would minimize artifacts and unnecessary waste of memory for distant

objects. An attempt to reduce perspective aliasing, an artifact caused by

inadequate shadow buffer resolution, is made by Perspective Shadow Maps

[30]. The idea is to map the view frustum to the unit cube, creating a

perspective distortion where closer objects appear larger than farther ones.

The scene in this state is rendered to the shadow map, resulting in a higher

density close to the camera. With this algorithm, however, the shadow qual-

ity varies greatly with the light source position and direction since the light

direction vector will be modified if the view direction is not perpendicular

to it. The reparameterization of the shadow map also causes distant ob-

jects to have a reduced presence in the shadow map, lowering the quality

of the shadow for these while self shadowing artifacts become more difficult

to avoid as the bias value applied will need to vary based on the sample

location in the shadow map.
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Most issues introduced by Perspective Shadow Maps are caused by the

shadow map warping being done in view space. This observation is made

and the suggestion to apply the warp in light space instead is presented by

Light Space Perspective Shadow Maps [35]. A frustum with the forward

vector parallel to the shadow map plane is found and used to distort the

scene before rendering to the shadow map. This affects the shadow map

plane but leaves the light direction vector intact. Furthermore, the distance

from the near plane to the perspective reference point can be freely chosen,

which gives control over the level of distortion. This could be used to avoid

drastic quality loss for objects far away.

The Perspective Shadow Maps approach can be extended with a low

resolution pre-pass rendering of the scene where information is gathered

and used to choose optimal perspective distortion parameters [7]. It is also

proposed to split the shadow map rendering into several smaller light frusta

in order to take advantage of local similarities in the shadow map.

A shadow map improvement similar to above mentioned perspective dis-

tortions is given by Trapezoidal Shadow Maps [24]. The camera frustum is

approximated by a tightly bound trapezoid from the light’s point of view

which, when mapped to the shadow buffer, improves resolution for objects

near the camera. In addition, the carefully selected trapezoid provides a

closer fit around the area that falls inside the camera frustum, thus the

resulting shadow map better utilizes each texel.

2.3 Partitioned Shadow Maps

Warping algorithms are primarily used to provide higher sampling density

closer to the viewer while sacrificing, possibly unused, resolution farther

away. A similar, although cruder, effect can be achieved by splitting the

shadow processing along the view direction and allocating different resolu-

tions to each split, as proposed by Cascaded Shadow Maps [11], Parallel
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Split Shadow Maps [38] and Z-partitioning [22]. Warping alters the shadow

map most when the incident light vector is perpendicular to the view vector

and converges to the original shadow mapping algorithm when the two vec-

tors are parallel. In contrast, partitioning does not depend on the position

or direction of the light.

The algorithm splits the view frustum into an arbitrary number of cas-

cades and a shadow map is rendered for each, causing some objects in the

scene to potentially be rendered multiple times. The implementation of

Parallel-Split Shadow Maps [37] shows how this can be avoided by utilizing

the geometry shader stage of newer hardware.

Partitioning the shadow map presents the possibility to render different

sized shadow maps for different parts of the scene, as we have used to great

extent in our algorithm, further explained in Chapter 3. Culling algorithms

need to be used in order to only render geometry needed for each cascade,

although objects on split boundaries stand in need of being rendered in two,

possibly several, shadow maps, depending on the partitioning scheme.

Separating-Plane Perspective Shadow Mapping [25] proposes a method

where a plane can be found to split the light frustum such that one side uses

a focused shadow map and the other a perspective distorted algorithm to

optimally increase sampling density in each area under given circumstances.

While this method does not extend any algorithms, it helps pick the best

performant one at a minuscule performance cost.

Another example of the increased quality achieved from focused shadow

maps is demonstrated by Sample Distribution Shadow Maps [19]. Here,

regular z-partitioning is used with the addition of programmatically deter-

mining the tightest light frustum needed for each cascade. This can greatly

increase the depth range available for the shadow map while at the same

time removing the requirement for manual tweaking of constant parameters.

A slightly different partitioning algorithm, which has successfully been

used in games on both personal computers as well as consoles, is demon-

strated by Facetted Shadow Mapping [31]. The shadow map is divided into
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facets, each with their own custom distortion matrix. When an object is

rendered into the shadow map, the correct facet needs to be selected and its

matrix used to transform the object before rendering. The same process is

needed during shading when the shadow map is sampled. Using facets to

partition the shadow map allows for circular distortion on the shadow map,

providing higher precision in the center. This suits some scenarios better

than others; for example, when the point of interest is not the camera.

2.4 Adaptive Shadow Maps

A scene very rarely has a constant distribution of geometry complexity across

the entire frame. Moreover, in most scenarios, as the point of view moves

around a virtual world, any one area in screen space experiences temporal

differences in geometry. A static partitioning of a shadow map does not help

in this case. The next logical step is to dynamically change the partitions

and update them to better represent the current scene. This is exactly what

is accomplished with Adaptive Shadow Maps (ASM) [12]. Instead of storing

a single, two-dimensional shadow buffer, the information is stored in a quad

tree where each node contains a part of the shadow map. This layout allows

the shadow map to have a non-uniform resolution with the ability to update

individual nodes as required by the scene. An edge detection algorithm is

used to find shadow boundaries and refine the resolution needed for that

part of the shadow buffer until the optimal resolution has been reached or

the dedicated shadow memory has been depleted.

The iterative edge detection algorithm used by ASM has been found to be

expensive and not always lead to accurate shadow resolutions. Resolution-

Matched Shadow Maps [21] improves upon this research by observing that in

most plausible scenes geometry continuity in view space leads to continuity

in light view space. The edge detection step is removed and higher resolution

is requested for all shadow texels that map to a pixel in the view image.
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A very similar approach to Adaptive Shadow Maps was introduced by

Queried Virtual Shadow Maps (QVSM) [14]. A quad-tree is again used to

split the shadow buffer and refine the shadow resolution non-uniformly with

the major difference being the heuristics used to determine when the opti-

mal resolution for a node has been reached. While the ASM implementation

relies on edge detection, QVSM uses the occlusion query mechanism in the

Graphics Processing Unit (GPU) to count how many fragments have been

output by the pixel shader for a single shadow map node. When the differ-

ence in fragment count between one refinement step and the next is below

a set threshold the target resolution is deemed to have been reached.

Fitted Virtual Shadow Maps [13] explores a different method for splitting

the available shadow buffer resolution by relying on deferred shading as the

rendering setup. During a pre-pass render of the scene, the shadow space

location of each view space pixel, as well as the required resolution at that

location in the shadow buffer, is stored for later use. This data is then

processed on the Central Processing Unit (CPU) and a kd-tree is created

where each leaf node describes a part of the shadow buffer used to shadow

the scene.

Tiled Shadow Maps [4] divides the light view into constant sized, rectan-

gular tiles using a recursive binary cut algorithm. The input to this subdi-

vision algorithm is a weight grid extracted during a separate low resolution

rendering pass of the scene from the light’s point of view. The weight values

are calculated by observing pixels with depth discontinuity and using the

distance between the shadow caster and the receiver along with the distance

to the viewer. The observation that the larger the distance between shadow

caster and receiver is the higher the shadow resolution required to minimize

artifacts is made.
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2.5 Sampling

The Shadow Silhouette Maps [29] algorithm builds upon the observation

that shadow maps are only problematic at shadow boundaries. The work

extends the traditional shadow map with an additional silhouette map where

edges on geometry silhouettes are rasterized and stored for reconstruction

during shading. When sampling the shadow map, the silhouette map pro-

vides a more accurate representation of the edges to improve the depth test

performed on pixels close to shadow boundaries.

A slightly different approach to solving artifacts caused by lacking reso-

lution is proposed by Alias-Free Shadow Maps [1]. The algorithm utilizes an

unorthodox shadow buffer where the visible pixels in view space are trans-

formed to light space and stored explicitly. The scene is then rendered from

the light point of view and the previously transformed pixels are tested for

exact visibility results. The shadow buffer stores information for only (yet

all) view space pixels which leads to pixel perfect shadows. This algorithm

can be taken one step further by treating each pixel as a projected facet from

the tangent plane of the visible point [26]. Occluders are projected onto the

facet and used to determine sub-pixel occlusion allowing for anti aliasing of

shadow boundaries.

Yet another unconventional shadow map approach is presented in Recon-

structable Geometry Shadow Maps [9]. Instead of the rasterized depth, the

vertex information for the whole occluding triangle is store in the shadow

map. This allows for reconstruction of the triangle and the occluding point

when sampling the shadow map during shading. A potential problem is

caused by GPUs not generating fragments for triangles that do not cover

the center of the pixel, leading to incomplete information along shadow

edges. Sub-Pixel Shadow Maps (SPSM) [20] extends this work with the

addition of Conservative Rasterization [15], which guarantees the full area

of a triangle has a presence in the buffer after rasterization. Since only the
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triangle closest to the light is stored in each texel false-negatives can occur

during shadow tests because of missing triangles in the buffer. To solve this

SPSM recreates the eight additional triangles stored in the sampled texel’s

3x3 neighborhood for more accurate results.

Further research explores adaptive sampling rates with Rectilinear Tex-

ture Warping (RTW) [28]. The algorithm starts with a scene analysis pass

where a two-dimensional importance map is created. This step is done by

rendering an initial geometry pass from the light point of view, the camera

view with all shading information except shadows, or by combining the two

methods. The importance map is then transformed into two one-dimensional

warping maps, defining a warping grid used to shift texels when rendering

into as well as sampling the shadow map. The RTW shadow map algorithm

uses shadow buffer space more optimally than other similarly performant ap-

proaches. Unfortunately, the warping can also bend triangle edges causing

artifacts on shadow boundaries unless the geometry is highly tessellated.

2.6 Filtering

Shadow mapping algorithms utilizing filtering approach the aliasing problem

from a different direction. Instead of maximizing the effective resolution of

the shadow map, the binary end result (lit or in shadow) for each pixel is

filtered over an area. As such, some of these methods are often orthogonal to

previously mentioned research, including the implementation of this thesis.

The ubiquitous Percentage Closer Filtering [27] samples the shadow map

several times and stores the binary results in a table which is then averaged

to get the final filtered value. This value is used to decide how strongly

shadowed the pixel is, effectively creating a non physically based penumbra.

Deep Shadow Maps [23] modifies the shadow buffer format to store a

visibility function for each pixel. These functions give the level of light at

an arbitrary depth along the primary ray for each pixel. Percentage Closer
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Filtering can be applied when computing the functions, which removes some

of the work required when sampling the shadow map. However, between the

cost of this preprocessing and the enlarged shadow buffer requirements, this

algorithm is not suitable for real-time applications.

Expanding upon Deep Shadow Maps, Opacity Shadow Maps [17] utilizes

the GPU by rendering the scene several times and clipping the geometry

at different positions along the light direction vector. The resulting opacity

maps provide several snapshots of the geometry along the depth of the scene

and are used to compute the per pixel visibility functions.

Variance Shadow Maps [10] presents yet another different representation

of the shadowing data required to shade a scene. Each texel of the shadow

map stores the mean and mean squared of a distribution of depths. These

values are used to compute the mean and variance of that distribution which

in turn provide a bound on the percentage of the distribution that is greater

than a given depth value. The mean and mean squared values can cor-

rectly be averaged, thus can the shadow map benefit from both software

and hardware filtering.

A disadvantage of Variance Shadow Maps is highlighted when a distribu-

tion variance is large, which can be caused by a group of objects overlapping

each other with large depth discontinuities. The visibility approximation in

this situation is not accurate enough and light leaks can occur, illuminating

areas that should be in shadow. Layered Variance Shadow Maps [18] pro-

vides a simple, although slightly more memory costly, solution. The depth

range is split into several layers each with their own warping function opti-

mal for a specific depth value. At sampling time the correct layer is chosen

to give the best possible result.

Convolution Shadow Maps [2] provides a way to filter data required to

shade a scene, similar to Percentage Closer Filtering with the additional ben-

efit of supporting pre-filtering and hardware mip-mapping. This is achieved

by replacing the shadow test function with a Fourier series expansion. A sum
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of weighted basis functions is applied to the shadow map data and filtering

the result of the basis function will directly filter the resulting shadow. In

practice a relatively high memory cost is required for adequate results.

Exponential Shadow Maps [3] improves upon Convolution Shadow Maps

by removing the costly Fourier expansion and instead storing ecz in the

shadow map, where z is the regular shadow space depth and c is an empiri-

cally chosen constant. Similarly to the basis functions used in Convolution

Shadow Maps this value can be pre-filtered and is much cheaper to store. If

the shadow map is filtered however, the chance to introduce artifacts grows

with the size of the convolution kernel. The solution, as described by the

Exponential Shadow Maps work, is to detect these artifacts and fall back to

using Percentage Closer Filtering in these situations.

2.7 Shadow Volumes

Shadow Volumes [8][16] do not require the additional depth buffer to gen-

erate shadows like the previously mentioned algorithms. Instead, object

silhouettes are extruded along the light direction and the volumes created

define the shadowed areas. When shading is done, containment within a

volume indicates the point is in shadow. The GPU’s stencil buffer is used in

order to split the projected scene into lit and shadowed areas. This requires

that all shadow volume faces are rendered themselves and can incur a large

rasterization overhead.



3

Irregular Adaptive Shadow

Maps

3.1 Implementation Details

The Irregular Adaptive Shadow Maps algorithm has been implemented with

the help of Microsoft Direct3D 11 API and requires a GPU with support

for Shader Model 5 to run. Certain features, like unordered access resources

and structured buffers, have been used that are not available in previous

versions.

A framework was written in C++ for Microsoft Windows 7 to handle

windowing, input and resource loading. Additionally, a Wavefront OBJ

loader was developed for geometry import required for testing. The OBJ

format was extended with a custom binary format for improved loading

times.

A forward and a deferred rendering path were implemented to allow for

thorough testing of the shadow algorithm. As described in this chapter, the

two rendering paths both open up possibilities for various extensions and

improvements to the implementation of IASM.

15
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3.2 The Shadow Buffer

Traditionally, a shadow buffer is generated by rendering a depth only pass

from the point of view of the light. The results are rasterized into a depth

texture that is later used when shading the scene to decide which points

lie in shadow and which are lit. Certain algorithms, e.g. partition based

algorithms like CSM, can use several textures to represent different parts

of the scene. Similarly, IASM splits the shadow buffer into several parts,

however, it does not use texture resources to represent that data. Instead, a

single structured buffer is used to cover the entire shadow area. Unlike CSM

and other statically partitioned algorithms, the structured buffer we use

allows for dynamic distribution of resolution based on arbitrary heuristics,

which we give an example of in section 3.4. The structured buffer used

in this work utilizes 32 bit floats to store the depth values. There is no

restriction on what precision can be used however. On the contrary, since

the structured buffer is not dependent on the GPU’s support for texture

formats, it becomes trivial to use any custom precision.

In our implementation, the shadow buffer is split into 4x4 square tiles

where each tile covers the same amount of area in light space. In order to

utilize most of the shadow buffer, the light frustum is placed in such a way

that the camera moves along the circumference of the circle contained within

the square covered by the orthographic light frustum. Figure 3.1 shows a

top-down view of how the light frustum is placed, relative to the camera, as

the camera rotates.

3.3 Scene Analysis

The structured shadow buffer allows for replication of a traditional texture

based shadow buffer when resolution is split evenly across all tiles. As previ-

ously described, however, it also enables us to dynamically move resolution
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Figure 3.1: As the camera rotates, the light frustum is posi-
tioned in front of the camera to maximize the usage of the
shadow buffer.

from one tile to another when needed. An important heuristic for this pro-

cess is to analyze the scene, rendered from the point of view of the camera,

and decide what parts of the resulting image require more or less shadow

resolution.

During rendering of the scene we utilize a second structured buffer to

store a per-tile summed importance value used to optimally set up the

shadow buffer for the following frame. Each pixel is attributed a value

based on how far away from the camera its world space position is. We

use equation 3.1 to extract a pixel’s importance value pi, where w is the

fourth component of the pixel’s screen-space homogeneous coordinates and

m and k are range constants. The higher the value of k, the farther away

a pixel can be and still make a large contribution to the importance buffer.

Constant m modulates the importance value based on the distance from the

camera. The expression (1−w/k) requires clamping to range [0, 1] to ensure

the importance distribution is not ruined by negative values. This provides

a mechanic for identifying tiles that cover the larger amount of geometry

close to the camera.
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pi = 1 + m(1− w/k) (3.1)

Considering our tile to pixel ratio and the parallel nature of the GPU,

we are guaranteed to have concurrent writes to the same memory location.

To obtain identical results between frames and avoid jittering artifacts, the

importance value writes will need to be atomic and thus utilize the DirectX

11 exposed function InterlockedAdd.

3.4 Tile Resolution Distribution

A varied set of heuristics has been explored to find a feasible and visually

adequate solution to partitioning the finite resolution available for each tile.

Chapter 5 describes a number of different algorithms. Here we present the

best performing one as identified in the limited time we spent investigating.

A set of 16 resolutions are defined that serve as the total shadow buffer

resolution after each is assigned to a tile. The per-tile importance data

gathered during the scene analysis step is sorted, giving each tile a rank

based on its importance value. This rank describes what resolution each tile

gets, e.g. the highest ranked tile gets the highest resolution, as demonstrated

by figures 3.2 and 3.3. This results in the tiles covering areas close to the

camera receiving a larger resolution than tiles covering areas farther away

when the importance buffer is built as per the steps presented in the previous

section. A further possibility is to bypass the importance buffer entirely and

set the tile resolutions to a predefined distribution when the layout of the

scene is known, e.g. during in-game cutscenes.
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Figure 3.2: The shadow buffer resolution distribution before
scene analysis (left) is adapted to the camera position within
the light frustum (right). The tiles are ranked based on their
importance with the closer tiles receiving the larger part of
the available resolution.

3.5 Shadow Rendering

The shadow map is rendered in 16 passes, one for each tile. Before rendering

the shadows, every object in the scene is frustum culled using the four side

planes of each tile’s frustum, ignoring the near and far planes. The near and

far planes are calculated individually for each tile every frame depending on

the scene geometry. In the forward renderer, the geometry is first partially

culled with the four side planes after which the bounding spheres of the

objects that pass the culling test are used to find the shortest and longest

distances to the light for each tile. These two values define the near and

far planes for the tile frusta. In the deferred renderer, the near and far

planes are obtained from the pixel shader during the G-buffer pass where

all geometry is rendered to extract the parameters required for the lighting

passes. A shadow matrix is used to transform the pixel’s position to light

space and the resulting depth is atomically stored to a structured buffer

after a min/max comparison with previous values. This provides us with a

tight fitting frustum for each tile adaptively set based on the geometry in
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Figure 3.3: The tile importance buffer (left) is used to de-
cide how to partition the available shadow buffer resolution
(right). Note how the empty bottom and top right tiles are
deemed unimportant and thus receive the lowest available
resolution even though they are spatially close to the cam-
era.

the scene.

The shadow buffer, as previously explained, is stored as a structured

buffer. Considering that we will not be rendering to a traditional depth

buffer, the shadow pixel shader does not require any render targets to be

bound. Instead, we have our structured buffer bound as an Unordered Access

View (UAV) and write the depth values to it manually. This is fortunate

because the unorthodox split of the buffer into tiles results in a tiled memory

layout incompatible with the conventional linear (or GPU specific tiled)

texture access as performed by the hardware (figure 3.4).

Listing 3.1 shows how we translate a rasterized fragment’s position in the

pixel shader to its relevant linear memory space index. The tile resolution

and its reciprocal are constants passed in to the pixel shader as tr and ts

respectively. The reciprocal is used to transform the fragment position to

the [0, 1] range and the tile resolution allows for conversion of the resulting
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Figure 3.4: The pixel shader responsible for shading the scene
requires a view of the shadow map as if stored in a single
texture (left) while the memory layout used is per-tile linear
(right).

normalized position to an index inside the tile. The third shader constant i0

represents the current tile’s first element’s position in the structured shadow

buffer. Finally, like all previous writes to structured buffers, we write the

depth atomically.

float2 uv = float2(pos.x * ts, pos.y * ts);

uint idx = i0 + floor(uv.y * tr) * tr + floor(uv.x * tr));

uint depth = asuint (1.f - pos.z);

uint oldDepth;

InterlockedMax(shadowBuffer[idx].depth , depth , oldDepth );

Listing 3.1: The screen-space pixel position is used to find the pixel’s location
in the structured buffer. The depth value is then written atomically to avoid
data loss when several writes to the same location in memory take place.
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3.6 Scene Rendering

Mapping a texture onto a single tile, as described in the previous section,

requires only a negligible amount of additional work. When shading the

scene, however, we need to map a texture onto the entire shadow buffer.

In this situation the tiles’s sequential storage introduces an extra layer of

complexity.

We begin by making the shadow matrices available to the shaders. The

main shadow matrix S0 covers the entire shadow buffer while the tile ma-

trices S1−16 represent the per-tile fitted frusta. The world position of the

fragment is transformed into shadow space with the help of S0 and its pro-

jection is used to identify which shadow tile it overlaps, as illustrated by

listing 3.2.

pt = bpfd/tc (3.2)

it = pt0 + pt1n (3.3)

The tile index it is given by equations 3.2 and 3.3, where pf represents

the two-dimensional fragment coordinates on the image plane, t and d are

the tile and shadow buffer dimensions respectively, and n is the width of the

shadow buffer in tiles.

The implementation details for this step differ slightly between the for-

ward and deferred renderers. The forward path uses the vertex shader to

transform the world position into each shadow tile space with the matrices

S1−16. This puts less of a burden on the pixel shader, which in practice is

often the more costly one. The disadvantage, however, is made clear by the

tile index not being available in the vertex shader, requiring all 16 matrix

transforms to be calculated for the results to be available in the pixel shader.
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float4 shadowPos = mul(worldPos , S0);

...

float2 uv = (shadowPos.xy + 1.f) / 2.f;

uv.y = 1.f - uv.y;

const float q = 4;

uint tileX = (uint)floor(uv.x * q);

uint tileY = (uint)floor(uv.y * q);

uint tileIndex = NUM_TILES_X * tileY + tileX;

Listing 3.2: The pixel’s position projected to shadow space is used to identify
what shadow tile the pixel is contained within.

The resulting depth values are stored in four float4 vectors and passed to

the pixel shader. A fragment’s tile index is used to choose which of these 16

depth values is picked for the shadow comparison.

In a highly tessellated scene it is likely that a single matrix multiplication

in the pixel shader is preferred instead. For the deferred rendering path it is

not feasible to do the transforms in the vertex shader as that would mean all

16 depth values would need to be stored in the G-buffer, greatly increasing

the memory cost. Instead, the tile index is stored in the G-buffer and the

matrix multiplication with the correct tile matrix is done during the shading

pass.

For the shadow comparison to be possible, we need to map a fragment’s

position, projected onto the shadow casting light’s image plane, to an index

in the structured shadow buffer. To facilitate this, a tile resolution array

and an accumulated resolution array are passed as constants to the frag-

ment shader. The tile resolution array stores each tile’s resolution for that

frame while the accumulated resolution array holds the sum of the squared

resolutions for all previous tiles. The formula
∑n−1

i=0 r2i is used to find the

accumulated value for tile n, where ri is the tile resolution for tile i. In

essence, this provides each tile with the knowledge of where it is located

in the structured buffer’s memory. Adding the accumulated resolution to a
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fragment’s tile index gives us the fragment’s index in the structured buffer

and the location of the light view depth sample required for doing the shadow

comparison for that fragment.

A fragment’s tile index is calculated by finding where the image plane

coordinates of the fragment overlap the tile and extracting the corresponding

index for that location. The tile overlap is equivalent to the remainder

from the component-wise division of the shadow buffer space coordinates by

the tile dimensions. Since we work with screen-space coordinates, we first

convert to the [0, 1] range and then proceed by using equations 3.4 and 3.5

to find the fragment’s index in the shadow buffer. Here, r is the resolution

of the tile containing the fragment, i0 is the accumulated resolution for that

same tile, and ib is the sought shadow buffer index.

pb = b(pf − ptd/t)nrc (3.4)

ib = i0 + pb0 + pb1r (3.5)
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Results

4.1 Test Environment

The implementation of Irregular Adaptive Shadow Maps for this dissertation

was done exclusively on an Intel i7-950 3.07 GHz CPU running Windows 7

x64 with 12 GB of RAM. The GPU used was an NVIDIA GeForce GTX 660

Ti with 2 GB of GDDR5 video memory. Performance was measured with

the Visual Studio edition of NVIDIA Nsight version 3.2.2. The Direct X 11

Cascaded Shadow Maps sample was integrated into the IASM framework

and used for comparison.

Two different scenes were used for acquiring the results. The first one

consists of a ground plane and several instances of a tree model. The tree’s

contiguous geometry results in a tight bounding box more likely to pass

frustum culling tests. The second scene is made up entirely of one model

depicting two buildings and adjacent objects like stones, etc. The large

bounding box enclosing this scene virtually guarantees to fail all frustum

culling tests for the shadow map tiles, demonstrating a worst-case scenario

for the algorithm.

25
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4.2 Visual Fidelity

The following images are captured at a resolution of 1280x720 pixels. The

IASM tile resolutions are 1x1024, 2x512, 1x256, 4x128, 2x64, 2x32 and 4x16.

The precision of the buffer, as mentioned before, was chosen to be 32 bits,

resulting in a shadow buffer of 6860800 bytes, or 6.5 MB. The CSM imple-

mentation uses three cascades, each with a 1024 buffer. To match the IASM

implementation, the resolution was chosen to be 32 bits as well, which results

in a total of 12 MB used for the CSM shadow buffer.

Figure 4.1: Cascaded Shadow Maps (left) compared to Ir-
regular Adaptive Shadow Maps (right). In this scene both
algorithms give a similar shadow resolution close to the cam-
era. Small improvements can be noticed with IASM on the
sides where the area is covered by the second CSM cascade
(highlighted).

In the scene depicted by figure 4.1 IASM matches the visual performance

of CSM closely. Near the camera, only minor differences can be seen caused

by slightly different near/far planes for the shadow frusta and the fact that

the CSM cascade covers a differently sized area compared to the IASM tile.

In situations where an area is covered by one of the larger CSM cascades

but falls on a high priority IASM tile, it can receive a higher resolution

compared to CSM, resulting in a more detailed shadow, as demonstrated by

the highlight in figure 4.2.
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Figure 4.2: When using CSM and an area covered by the
second or higher cascade (left) falls in an IASM tile that is
deemed high priority enough (right) the higher resolution of
the tile can improve the resulting shadow.

Both the first CSM cascade and the highest resolution IASM tile have a

buffer of 1024x1024 texels. If the frustum does not differ greatly between the

two, the shadows encompassed by those frusta will be very similar in quality.

There is, however, a weakness in the IASM algorithm due to the way the

camera is moved within the shadow frustum based on its orientation. In

figure 4.3 we can observe the camera field of view relative to the shadow

frustum. It is also easy to identify that whenever the camera is close to one

of the four frustum corners, a boundary where four tiles meet is located very

close to the camera. This is problematic not only because a tile boundary

is now potentially visible, but also because this requires four tiles to have

a high resolution in order to not introduce easily identified artifacts. We

visualize this phenomenon in figure 4.4.

As previously mentioned, the forward renderer finds the near and far

planes for the shadow tile frusta by iterating over all objects to be rendered

and using their bounding spheres to find the shortest and longest distances

to the light source. This same step could be applied to the deferred renderer
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Figure 4.3: A camera orientation that positions it near one
of the shadow frustum corners will result in the boundary
where four tiles meet to be located very close to the camera.

Figure 4.4: When the boundary where four tiles meet falls
close to the camera the variable resolution between tiles is
easily noticed (left, middle). The CSM algorithm does not
have this problem (right).

as well. In order to avoid this extra cost on the CPU, however, a GPU

alternative was explored. Figure 4.5 shows a comparison between CSM and

IASM running the deferred renderer. The near and far plane calculated for

each shadow tile help produce a higher quality shadow in contrast to the

CSM version.

In the same figure, on the far left, we can again see the four tile corner

responsible for the accentuated resolution artifacts. In this situation, the

tile covering the low resolution shadow contains little geometry compared
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Figure 4.5: Cascaded Shadow Maps (left) compared to de-
ferred Irregular Adaptive Shadow Maps (right). The high-
light shows a four tile boundary giving rise to noticeable ar-
tifacts, although the overall shadow quality close to the cam-
era is slightly better compared to CSM, thanks to the tight
per-tile frusta.

Figure 4.6: Pairs of crops from figure 4.5 showing differences
between CSM (left) and IASM (right).

to other adjacent tiles. Even though the geometry is located relatively close

to the camera, the importance heuristics are not enough to promote the tile

to a higher resolution. We discuss possible solutions and improvements to

this artifact in more detail in Chapter 5. Figure 4.7 visualizes the shadow

buffer from this last scene. The bottom right tile is responsible for the low

resolution shadow visible in figure 4.5.

4.3 Performance

The first scene analyzed is the tree scene depicted in figure 4.1 and the

second is the village scene from figure 4.5. Table 4.1 lists the captured times
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Figure 4.7: The per-tile shadow frusta with improved near
and far planes help utilize the shadow buffer precision to a
greater extent.

for both CSM and IASM. The importance data copy is arguably expensive

in this context, yet it is a cost that can be hidden. The framework used

in this research is made up of a simple renderer with very little processing

outside of rendering requirements. The importance data gathered during

scene rendering in frame n, which is the last pass rendered in our test case, is

immediately required for shadow rendering, the first pass rendered, in frame

n + 1. This creates a stall while the CPU is waiting for the GPU to copy

the resource. The copy is asynchronous, however, and if meaningful work

can be found to execute on the CPU at this time, the copy cost disappears.

In a game engine, additional work is usually required for various simulations

that would hide the cost of the GPU data copy.

The deferred renderer has a higher readback cost incurred by the addi-

tional buffers. While the forward renderer only needs the importance data,

the deferred path copies the near and far plane values for the shadow tile

frusta as well. This copy falls under the same time frame as the importance

data copy and, as noted above, it can be hidden by additional work. De-

pending on the scene or engine design, however, this might not be enough.
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Readback Shadows Scene Frame
Trees (CSM) - 7.5ms 2.7ms 15.1ms
Trees (IASM) 4.6ms 6.4ms 2.7ms 18.8ms
Trees (deferred IASM) 7.9ms 6.5ms 2.6ms 22.6ms
Trees (deferred delayed IASM) 0.9ms 7.0ms 2.7ms 15.9ms
Village (CSM) - 5.5ms 2.2ms 12.5ms
Village (IASM) 2.3ms 28.6ms 1.9ms 38.1ms
Village (deferred IASM) 8.5ms 28.9ms 2.0ms 45.0ms
Village (deferred delayed IASM) 0.0ms 28.6ms 1.9ms 36.0ms

Table 4.1: Performance cost of various stages for the two scenes visualized
in figures 4.1 and 4.5.

It is possible to minimize the readback cost by delaying the schedule of the

copy until after the shadows have been rendered. The importance data used

for the tile resolution distribution will, in this scenario, be a frame old, as

will the near and far plane values in the deferred renderer. While no artifacts

were discovered for reasonable camera movement, it is likely the delayed data

could introduce visible glitches if the camera moves a large distance between

frames.

Compared to CSM, the shadow rendering stage performs slightly better

with a cost of 6.4 milliseconds versus 7.5 milliseconds for the tree scene. The

depth information is focused in the center of the shadow buffer, as visualized

in figure 4.8, leading to some tiles not requiring any rendering, resulting in

virtually no cost for that tile. Additionally, some evidence of bad frustum

culling can be found in that same figure. The second tile from the left in

the topmost row has a render cost of 0.24 milliseconds when it is obviously

empty. This is caused by the tree close to the bottom right corner of that tile

failing the frustum culling test and being scheduled for rendering in that tile,

even though it later gets culled during clipping and does not contribute to

the depth buffer at all. A tighter bounding shape, such as an axis-aligned or
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oriented bounding box, would have most likely improved shadow rendering

performance in this scene.

For the village scene the timings look significantly more dire. The total

shadow rendering costs 28.6 milliseconds with each tile taking an average of

1.79 milliseconds. As mentioned before, this scene represents a worst case

scenario that effectively removes frustum culling entirely, causing the whole

scene geometry to be rendered in each shadow tile. This result reveals the

significance of aggressive frustum culling and localized geometry clusters.

0.007ms 0.005ms0.24ms 0.19ms

0.004ms 0.004ms0.15ms 0.16ms

0.46ms 0.61ms1.19ms 1.06ms

0.31ms 0.44ms0.8ms 0.82ms

Figure 4.8: The shadow buffer from the scene in figure 4.1
visualized together with the cost of rendering each tile.
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Discussion

Implementing an optimal shadow rendering solution for an interactive com-

puter graphics system is not a straightforward process, especially as it relates

to computer and video games. There are many different scenarios that give

rise to different shadow algorithm requirements not always orthogonal to

each other. A wide landscape rendered in an engine that allows large visibil-

ity distances can be approached in a different manner than a narrow urban

scene with limited visibility. An open world game allowing the player to

move the camera to any location and viewing shadows from any angle dif-

fers significantly from an ”on rails” game with a deterministic and predefined

camera movement. While this work tests and verifies a very limited subset

of interactive shadow situations, it nevertheless introduces a new, feasible

shadow mapping algorithm.

From the beginning, IASM was designed with adaptivity in mind. One

of the most important decisions the algorithm needs to make is how to

distribute the available shadow buffer resolution between the tiles. One of

the first heuristics chosen to make this decision was to dynamically adapt

the tile resolutions without predefined tile sizes. This meant the importance

data and the memory available would define by how much tile sizes would

33
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increase or decrease. The resulting arbitrary tile sizes introduced shadow

acne and flickering too severe for this approach to be viable. This finding

quickly lead to the final algorithm where tile resolutions are chosen from a

predefined set of acceptable resolutions. It is worth noting, however, that a

solution half way between the above two might perform even better. The set

of predefined tile sizes does not necessarily have to contain only 16 sizes (one

for each tile). Providing tiles with a resolution driven by what is required, as

opposed to what is available, would result in higher quality shadows at the

cost of potential memory spikes when many tiles require a high resolution.

The inverse would also be true; when many tiles are empty, a very low

resolution can be chosen, instead of an available high resolution, saving

memory for that frame in the process.

In the average game utilizing three-dimensional graphics, common scenes

tend to be quite dense. Because of this, shadow tiles with very low resolu-

tion are of limited use, if any. A low resolution is still needed to optimally

use the memory available, but it must be used for geometry far away from

the camera. A tile covering geometry close to the camera, no matter how

little geometry, requires a reasonable amount of resolution to avoid intro-

ducing artifacts caused by perspective aliasing. This is the reason why the

importance data calculated for IASM is heavily based on distance from the

camera.

Using low tile resolutions when appropriate can have other benefits in

addition to saving memory. IASM provides a trivial way to detect when a

tile is empty before even attempting to render any depth values to it. By

using the near and far plane pre-pass results, it can be detected if any object

overlaps the tile frustum. If nothing overlaps, there are no near and far plane

values, meaning nothing will render to the tile. Flagging a tile as empty can

save additional post-processing on a buffer with no meaningful information.

A problematic situation can potentially arise when the tile resolution dis-

tribution is set in such a way that four adjacent tiles cannot have a similarly
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high resolution, as demonstrated in figures 4.3 and 4.4. Here, the camera

ends up pointing directly at the tile boundary where the edges are made

visible by the varying tile resolutions. A different approach to tile place-

ment, relative to the camera location, can diminish this issue. It can also

be observed in figure 4.3 that once the camera is located on any corner tile,

part of the tile area is wasted behind the camera. Once more, this would be

less of an inconvenience with improved tile placement.

There are two major adaptive parts to IASM. The resources available

are moved between tiles to provide the highest resolution where it is needed

the most, usually close to the camera. The other adjustment is made to

the near and far planes of the shadow frusta for each tile and thus further

improves the resulting resolution of the shadow. An extension is possible

by updating the sides of the shadow frustum as well. The frustum sides

have been empirically chosen to encompass all geometry in the scene. More

accurate values extracted from the geometry are likely to increase the shadow

quality even more.



6

Conclusions

There exists a vast array of ideas presented by research in real-time shadow

mapping. Some expand and improve upon previous work while others in-

troduce entirely unique concepts. With computer hardware evolving at an

incredible speed and new features, such as compute shaders, constantly being

exposed, the capacity for new discoveries is larger than ever.

With the research presented in this dissertation, we have endeavored

to produce an alternative shadow mapping algorithm for use in real-time

applications such as games. New features from Direct3D 11 are utilized to

access data in, until now, unorthodox ways and allow for more flexibility in

general.

The IASM implementation focuses on shadows as cast by directional

lights over a relatively wide area. Shadow filtering is considered an algorithm

agnostic extension and was not applied in order to facilitate performance and

quality comparisons between IASM and other algorithms.

Akin to Cascaded Shadow Maps and other partition based algorithms,

IASM strives to save memory and improve execution speed by splitting the

shadow map into tiles and focusing resources where they are most needed.
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In contrast to previous work, however, IASM utilizes structured buffers to

store the shadow buffer as opposed to traditional texture resources. The

structured buffer opens up unique possibilities when it comes to data layout

and access patterns. In addition, scene analysis is applied to make an in-

formed decision when distributing shadow resolution across tiles and when

extracting the data required to create optimal tile frusta.

The partitioning scheme implemented in IASM results in a relatively high

number of tile edges, causing geometry to be rendered multiple times when

it straddles any tile boundary. It becomes evident that aggressive per-tile

frustum culling is required for optimal performance.

For both quality and performance comparisons an implementation of

CSM is used. The test scenes were chosen to demonstrate performance

when draw calls consist of small, localized geometry clusters as well as larger

entities extending across the entire scene. The former performs really well

and is comparable to CSM. The processing cost is spent on tiles where the

most attention is required, generally meaning tiles that cover areas close to

the camera. The latter, on the other hand, benefits very little, if at all, from

frustum culling, resulting in geometry being rendered in every tile, effectively

multiplying the rendering cost by the number of tiles.

Performance of IASM can vary greatly between different scenes, yet with

reasonable geometry design competitive performance can be achieved while

using less memory than other algorithms. With this work we have introduced

a new and feasible shadow mapping implementation with many possibilities

for future extensions.
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