
Chalmers Publication Library

Supplement for the paper entitled “A BDD-Based Approach for Designing
Maximally Permissive Deadlock Avoidance Policies for Complex Resource
Allocation Systems”

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Citation for the published paper:
Fei, Z. ; Miremadi, S. ; Åkesson, K. (2014) "Supplement for the paper entitled “A BDD-
Based Approach for Designing Maximally Permissive Deadlock Avoidance Policies for
Complex Resource Allocation Systems”".

Downloaded from: http://publications.lib.chalmers.se/publication/198974

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/198974


1

Supplement for the paper entitled “A BDD-Based Approach for Designing Maximally Permissive

Deadlock Avoidance Policies for Complex Resource Allocation Systems”

Zhennan Fei, Spyros Reveliotis, Sajed Miremadi and Knut Åkesson

Abstract

This electronic document provides some supportive material to the paper entitled “A BDD-Based Approach for Designing
Maximally Permissive Deadlock Avoidance Policies for Complex Resource Allocation Systems” that has been submitted to IEEE
Transactions on Automation Science and Engineering (T-ASE).

I. MODELING A GIVEN RAS INSTANCE Φ BY THE CORRESPONDING EFA E(Φ)

This section provides a formal statement of the procedure for obtaining, for any RAS instance Φ coming from the RAS class

that is considered in the aforementioned paper, the corresponding EFA E(Φ). This procedure is called DevEFA(RAS Φ), and

it is detailed as follows:



2

Procedure DevEFA(RAS Φ)
Input: A RAS instance Φ = 〈R, C,P,A〉
Output: An EFA E(Φ) that models the (resource allocation) dynamics of Φ

1 /* Define the resource variables based on R and C */
foreach Ri in R = {R1, . . . , Rm} do

define vRi : {0, . . . , Ci} where Ci = C(Ri)

mark the value Ci as the initial and marked values of vRi

end
foreach Jj in P = {J1, . . . , Jn} do

2 /* Construct the EFAs modeling the sequential logic of each processing type in P */
build an EFA Ej with only one location named `j
mark `j as the initial and marked location of Ej

foreach Ξjk where k ≤ l(j) in Sj do // recall that Jj = 〈Sj ,Gj〉
if Ξjk is a non-terminal processing stage then

define vjk : {0, . . . , θjk} where:

θjk = min
i
{
⌊ Ci

Ajk[i]

⌋
: Ajk[i] > 0}

mark the value 0 as the initial and the marked values of vjk
end

end
foreach stage Ξjk corresponding to a source node in Gj do

build a self-loop transition tr labeled by the event 〈Jj loading, Ξjk〉 and add it to Ej

attach the action vjk := vjk + 1 to tr
end
foreach e = 〈Ξjk,Ξjk′〉 in Gj do

build a self-loop transition tr labeled by the event 〈Ξjk, Ξjk′〉 and add it to Ej

attach the guard vjk ≥ 1 to tr
if Ξjk′ is a non-terminal processing stage of Sj then attach the action
vjk := vjk − 1; vjk′ := vjk′ + 1 to tr

else attach the action vjk := vjk − 1 to tr // no instance variable defined for a terminal stage
end

3 /* Augment Ej with {vR1, . . . , vRm} to represent the associated resource allocation */
foreach transition tr of Ej do

let σ denote the labeling event of tr
if σ is 〈Jj loading, Ξjk〉 then // allocate the associated resources required at Ξjk

append vRi ≥ Ajk[i] to the guard of tr for all i s.t. Ajk[i] > 0

append vRi := vRi −Ajk[i] to the action of tr for all i s.t. Ajk[i] > 0

end
else // i.e., if σ is a process-advancing event 〈Ξjk,Ξjk′〉

if Ajk′ [i] > Ajk[i] then
append vRi ≥ (Ajk′ [i]−Ajk[i]) to the guard of tr

end
if Ξjk′ is a terminal processing stage then // just deallocate the resources used at Ξjk

append vRi := vRi +Ajk[i] to the action of tr for all i s.t. Ajk[i] > 0

end
if Ξjk′ is not a terminal processing stage then

append vRi := vRi − (Ajk′ [i]−Ajk[i]) to the action of tr for all i s.t. Ajk′ [i]−Ajk[i] 6= 0

end
end

end
end



3

II. A COMPLETE CORRECTNESS ANALYSIS FOR ALGORITHM 2

To prove the effectiveness of Algorithm 2 w.r.t. the penultimate objective of the implementation of the maximally permissive

DAP through the one-step-lookahead scheme that was outlined in the earlier parts of this manuscript, we need to show that (i)

the algorithm terminates in a finite number of steps, (ii) the returned set χFB contains all the feasible boundary unsafe states,

and furthermore, (iii) χFB does not contain any feasible safe state. The finiteness of Algorithm 2 depends on whether the

backward search performed in Lines 6-15 can terminate in a finite number of iterations. We notice that the termination of this

search is determined by the set of the new unsafe states, χUnew
, computed at each iteration; if χUnew

is empty, the backward

search terminates. We also notice that the set χUnew will finally be empty during the search, since the set of states in ∆A is

finite. Hence, Algorithm 2 terminates in a finite number of steps. In the following, we focus on establishing the correctness

of the algorithm, by establishing items (ii) and (iii) in the above list. In the paper, these two items are addressed by Theorem

IV.1. However, that manuscript provides only a sketch of the corresponding proof. Here is provide a complete treatment of the

relevant results.

We begin with some lemmas that are necessary for the derivation of the final result.

Lemma II.1. The characteristic function χFD that is obtained from the symbolic operations performed in Lines 1-4 of

Algorithm 2 identifies correctly the feasible deadlock states in the transition set ∆E w.r.t. the process-advancing events of this

set.

Proof. First we notice that, by its construction, the set χD contains only states that are deadlocks w.r.t. the process-advancing

events of ∆E, and therefore, the same is true for its subset χFD. Furthermore, the states contained in χFD are feasible

deadlocks since χFD is obtained from the filtration of χD with the characteristic function χF .

Next we show that χFD contains all the feasible deadlock states w.r.t. the process-advancing events of ∆E. This part can be

proved by contradiction. Let us assume that there exists a transition (s, s′) in ∆E where s′ is a feasible deadlock state that is

not identified by the computation that is performed in Lines 1-4, i.e., s′ /∈ FD. Since s′ is the target state of (s, s′), which is

a transition in ∆E = ∆A ∨∆L, state s′ must be in the set T . By the working assumption, state s′ /∈ D after the computation

at Line 3, since in that case it would have been retained in FD (being a feasible state). Knowing that s′ /∈ D, s′ ∈ T and

s′ 6= s0, state s′ can only be in the state set E. But this contradicts the definition of deadlock states, since states in E enable

process-advancing events.

Lemma II.2. For every transition (s, s′) of the EFA ∆E, feasibility of the target state s′ implies also the feasibility of the

source state s.

Proof. We prove the contrapositive of the above statement, i.e., every transition (s, s′) of the EFA ∆E with an infeasible

source state s has also an infeasible target state s′. Infeasibility of state s implies that there exists some resource Ri with

vRi +

n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = d 6= Ci,

for the values of the variables vRi and vjk, j = 1, . . . , n, k = 1, . . . , l(j)− 1 that define state s. But it can be easily checked

that every forward-advancing transition from state s preserves the invariant

vRi +

n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = d,

and therefore, it cannot restore feasibility w.r.t. to the implied allocation of resource Ri.

Lemma II.3. All states entering the sets U and χFB during the execution of Algorithm 2 are feasible.

Proof. This lemma is an immediate implication of Lemmas II.1 and II.2, and of the fact that all the elements of these two

sets are obtained by starting from some feasible deadlock state in χFD and backtracing upon some transitions in ∆E.



4

Lemma II.4. The set U that is computed by Algorithm 2 contains all the feasible unsafe states in ∆E.

Proof. By Lemma II.1 and Line 5 of Algorithm 2, U contains all the feasible deadlocks. Next we will show that U also

contains all the feasible deadlock-free unsafe states of the considered RAS.

Let us consider any such feasible deadlock-free unsafe state û. The finite and acyclic nature of the paths that define the

execution logic of the various process types in the considered RAS class, imply that the subspace that is reached from state

û following only transitions in ∆A has a finite, acyclic structure. This remark, when combined with the presumed unsafety of

state û, further implies that every path in ∆A that emanates from state û is an acyclic path that terminates at some feasible

deadlock state. Let ζ denote the longest length of these paths, where the length of a path is defined by the number of the

involved transitions. Next, we will show, by induction on ζ, that state û will enter the state set U that is maintained by

Algorithm 2 before the termination of the iteration in Lines 6-15.

First we consider the base case of ζ = 1. Then, all the transitions emanating from û lead to a feasible deadlock state in

χFD, and therefore, they will be contained in the set ∆U computed during the first iteration of the algorithm. Hence, state û

will not be in the set χNU that is computed at that iteration, and therefore, it will be correctly included in the set χcur and,

eventually, in χU .

Next, let us suppose that all the feasible unsafe states with a maximal path of length ζ − 1 from the feasible deadlock states

of χFD will be correctly identified and entered in set U by Algorithm 2. Since the target state of each process-advancing

transition that emanates from state û has a maximal path leading to χFD of length less than or equal to ζ − 1, each of these

states will be eventually identified by the algorithm. Let us consider, in particular, the iteration where the last of these states,

let’s say ul, enters U . In the next iteration, ul will be in χUnew
and, therefore, û will be in χSÛ . Furthermore, û will not be in

χNU since all of its emanated transitions will be either in ∆Û or in ∆Ûpre
. Hence, û will be included in χUcur

and eventually

into χU .

Lemma II.5. The set U that is computed by Algorithm 2 contains no feasible safe states of ∆E.

Proof. We prove this result by induction on the number of iterations performed by the algorithm. The base case of zero iteration

is covered by Lemma II.1. Next, suppose that the statement of Lemma II.5 is true for the set U constructed during the first n

iterations. This assumption when combined with Lines 7 and 14 of Algorithm 2, further imply that the transition set ∆Ûpre

contains only transitions with target states in the already constructed state set U . But then, Lines 7-10 of the algorithm implies

that the state set χNU that is constructed at iteration n+ 1 contains all the safe states that can be reached from the current set

χUnew by backtracing on some transition of ∆A. Hence, the set χcur constructed at the n+ 1 iteration, at Line 11, contains

no safe states, and the addition of this set to state set U , at Line 13, does not introduce in U any safe states either.

A complete proof of Theorem IV.1

Proof. Property 1 was established in Lemma II.3.

In view of Lemma II.4, to prove Property 2 we just need to show that the construction of the set FB in Lines 16-18 of

Algorithm 2 retains all the boundary feasible unsafe states in U . But this can be easily checked from the facts that (a) the

transition set ∆B contains all the transitions with target states in set U , while (b) the transition set ∆SB is obtained from ∆B

by removing only transitions with source states in U (and therefore, unsafe, according to Lemma II.5).

Property 3 is also inferred from the construction of the set ∆SB from the set ∆B through the removal of all those transitions

with source states in U , upon noticing that U contains all the feasible unsafe states of ∆E (according to Lemma II.4).

Finally, Property 4 results from Lemma II.5 and the fact that all the transitions in the set ∆B have target states in U .



5

III. ALGORITHM 3 AND ITS CORRECTNESS ANALYSIS

Algorithm 3: Symbolic computation of the minimal boundary unsafe states
Input: χFB , {∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)} and {∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)}
Output: χFB

1 ∆EQ := ∆=(ṽ1, v1) ∧ . . . ∧∆=(ṽK , vK) // ∆EQ represents the set of pairs, which represents each state 〈v1, . . . , vK〉
// by respectively using the Boolean variable sets X̃D and XD;

2 ∆GE := ∆≥(ṽ1, v1) ∧ . . . ∧∆≥(ṽK , vK) // ∆GE represents the set of pairs, which associate each state 〈v1, . . . , vK〉
// represented X̃D with its equal and dominant states, represented by XD;

3 ∆GT := ∆GE ∧ ¬∆EQ // ∆GT is the set of pairs where each state is associated with its dominant states;

4 ∆BGT := χFB [XD → X̃D] ∧∆GT // ∆BGT collects the pairs in ∆GT with the first elements as

// the feasible boundary unsafe states;

5 χGB := ∃X̃D. ∆BGT // χGB collects the states that are larger (component wise) than the states in χFB;

6 χFB := χFB ∧ ¬χBG // remove from χFB all the non-minimal states, which belong to the set χBG;

Algorithm 3 presents a way to compute the characteristic function of the set FB from the characteristic function χFB

obtained in Eq. (8) of the main document. Before we proceed with the discussion of this algorithm, we need to introduce two

auxiliary BDD sets, collectively denoted by {∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)} and {∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)}, which will

be useful for identifying state dominances, according to Eq. (9) of the main document, by the proposed algorithm. Each pair

∆=(ṽk, vk) and ∆≥(ṽk, vk) pertains to the corresponding instance variable vk, and it can be constructed as follows:

∆=(ṽk, vk) :=
∨

∀vk∈Dk

(
X̃Dk(vk) ∧XDk(vk)

)
(1)

∆≥(ṽk, vk) :=
∨

∀vk∈Dk

(
X̃Dk(vk) ∧

∨
∀v′

k≥vk

XDk(v′k)
)

(2)

In (1) and (2), X̃Dk(vk) denotes the symbolic representation of the value of k-th variable vk using a new set of Boolean

variables denoted by X̃Dk , while XDk(vk) and XDk(v′k) denote the symbolic representations of the values vk and v′k, of the

same instance variable, using the set of the Boolean variables XDk that represent the instance variable vk in the original BDD

∆E. From a conceptual standpoint, ∆≥(ṽk, vk) associates each value vk with all those values v′k ∈ Dk that are greater than

or equal to vk while ∆=(ṽk, vk) merely associates each value vk with itself.

Taking as input the feasible boundary unsafe state set χFB and the aforementioned auxiliary BDDs, the symbolic com-

putation of the minimal feasible boundary unsafe states is formally expressed by Algorithm 3. Specifically, in Lines 1-2,

Algorithm 3 constructs two BDDs, respectively denoted by ∆EQ and ∆GE , by performing the conjunction operation on

{∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)} and {∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)}. The characteristic function ∆EQ associates each state

〈v1, . . . , vK〉 with two different symbolic representations using the Boolean variable sets X̃D and XD, while ∆GE associates

each state 〈v1, . . . , vK〉, represented by X̃D, with a set of states, represented by XD, which are larger than or equal to

〈v1, . . . , vK〉. Subsequently, the symbolic computation performed at Line 3 of Algorithm 3 removes all the associations of

∆EQ from ∆GE and the resulting set is denoted by ∆GT . Line 4 of Algorithm 3 computes the characteristic function ∆BGT

which associates each state in χFB with the corresponding dominant states, and, subsequently, Line 5 extracts all these dominant

states into the set χGB . Finally, the set of minimal feasible boundary unsafe states, χFB , is obtained in Line 6 by removing

from χFB the states in χGB .

Next, we prove the correctness of Algorithm 3.

Theorem III.1. The characteristic function χFB returned by Algorithm 3 recognizes correctly the minimal elements of χFB .



6

Proof. First we show that Algorithm 3 does not miss any minimal element of FB. For this, let us assume that there exists a

minimal feasible boundary unsafe state u ∈ FB that is not identified by Algorithm 3, i.e., u /∈ FB. Hence, state u is contained

in the state set GB that is removed from FB. By the computation performed at Line 5, we know that the states of GB are the

second elements of the relation that is encoded by set BGT , which is a subset of GT . According to Lines 1-3, GT associates

each possible state 〈v1, . . . , vK〉 with its dominant states (as the second elements). Then, it can be inferred from Lines 4-5

that, since u ∈ GB, there exists a state u′ ∈ FB such that the pair (u′, u) is in set BGT . Therefore, we have u′ < u, which

contradicts the working assumption of the minimality of u.

Next, we show that Algorithm 3 does not include any non-minimal element of FB. For this, let us assume that there exists

a non-minimal boundary unsafe state u′′ ∈ FB. Hence, by the working assumption, there exists a minimal boundary unsafe

state u ∈ FB such that u′′ > u. But then, state u′′ must be in the set GB that is computed in Lines 3-5, and it should be one

of the states removed from FB through the computation of Line 6.

Based on the above arguments, it is concluded Algorithm 3 retains in set FB all the minimal elements of FB, and it

excludes from this set any non-minimal elements of FB.


