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Abstract—In this paper, we address the problem of smoothing
on Gaussian mixture (GM) posterior densities using the two-filter
smoothing (TFS) strategy. The structure of the likelihoods in the
backward filter of the TFS is analysed in detail. These likelihoods
look similar to GMs, but are not proper density functions in the
state-space since they may have constant value in a subspace of
the state space. We present how the traditional GM reduction
techniques can be extended to this kind of GMs. We also propose
a posterior-based pruning strategy, where the filtering density can
be used to make further approximations of the likelihood in the
backward filter. Compared to the forward-backward smoothing
(FBS) method based on N —scan pruning approximations, the
proposed algorithm is shown to perform better in terms of track
loss, normalized estimation error squared (NEES), computational
complexity and root mean squared error (RMSE).

Index Terms—filtering, smoothing, Gaussian mixtures, two-
filter smoothing, backward likelihood, data association

I. INTRODUCTION

In many sequential estimation problems, such as data as-
sociation problem [1] and glint problem [2] in radar tracking
and synchronization problem in communication systems, the
uncertainties involved in the system are multi-modal and
can be modeled using Gaussian mixtures (GMs). In these
applications, the optimal solutions to the estimation problems
of prediction, filtering and smoothing of GMs have closed
form expressions, which can be obtained using the optimal
solutions for the Gaussian densities [8, 14].

Often the optimal solutions have a complexity that increases
exponentially with time. For instance, in the data association
problem in target tracking, to obtain the optimal solution,
each observed measurement is either associated to a target or
declared as clutter at each time resulting in sequences of data
association hypotheses referred to as track hypotheses. Using
these data association hypotheses during prediction, filtering
and smoothing results in GM posterior densities in which the
number of components grows exponentially with time.

The two main smoothing methods [6] are forward-backward
smoothing (FBS) and two-filter smoothing (TFS). When the
posterior densities are Gaussian, closed form solutions are
available in [11] for FBS and in [7] for TFS. In this paper,
we focus on the TFS method for GMs. The TFS algorithm
works by running two independent filtering algorithms: the
forward filtering (FF) and the backward filtering (BF). The
smoothing density is obtained by multiplying the outputs of
the FF and the BF. Ideally, the two filters are run independently

of each other. The FF is the conventional GM filtering one (eg.
a Multiple hypothesis tracking algorithm [12]). The BF, as the
name suggests, is run in the opposite direction from the last
time step to the start and can be obtained using a recursive
procedure, similar to the FF. The likelihood returned by the BF,
referred as reduced dimension GM (RDGM) in this paper, has
a GM type of structure, but is not normalizable. The problem
is that the traditional GM reduction (GMR) techniques, such
as pruning and merging, cannot be used directly on the RDGM
of the BF, as these techniques work on normalizable densities.
Therefore, design of GMR techniques for the RDGM structure
is necessary for a practical algorithm.

The TFS on GMs is discussed in [8], which provides the
structure of the RDGM, but practical approximation tech-
niques are not discussed in detail. In the particle filter setting
of the TFS problem, the work in [4] proposes using an artificial
prior in the BF, similar to the prior which we use in the FF, to
make the output of the BF a proper density. The conventional
techniques can then be used on the BF’s output to sample
particles. But extending this artificial prior concept to GM TFS
has the problem that it involves division of densities, which
can lead to indefinite covariances.

In this paper, we study the TFS of GM, with focus on
the backward filter. Based on the analysis of the structure
of the RDGM of the BF, we propose strategies where GMR
techniques are used within certain groups of components of
the RDGM. We also present the smoothed posterior pruning
(SPP) method where we show that the filtering density from
the FF can be used to approximate the RDGM. Simulations
for a single target scenario show that the TFS based on pro-
posed strategies outperforms the pruning-based FBS method.
Additionally, the estimates from the TFS are consistent, with
lower track loss and cheaper computational complexity.

II. PROBLEM STATEMENT AND IDEA

We consider a single target moving in a cluttered back-
ground. The state vector z; of dimension N, at time k is
according to the process model,

Tp = Fop 1+ g, (1

where vy, is Gaussian with zero mean and covariance () and is
denoted as ~ N (0, Q). The target is detected with probability
Pp. Measurement set Z;, includes the clutter measurements



and the target measurements z};, when detected. The target
measurement is given by

ZZ = Huxp, + wy, 2)

where wy, ~ N (0, R). The clutter measurements are assumed
to be uniformly distributed in the observation region of volume
V. The number of clutter measurements is Poisson distributed
with parameter SV, where 3 is the clutter density. The number
of measurements in Zj, is denoted by mj. We assume that we
have access to the measurements 2. from time 1 to X where
K > k.

The objective is to compute the smoothing density
p(zx|Z1:x) using the TFS method, which involves running
two filters — the FF gives the filtering density p(x|Z1.x) and
the BF gives the backward likelihood (BL) p(Z+1.x|zk). The
FF is the same as the one in FBS, which is well studied in the
literature. The BL, which is the output of the BF, looks similar
to a GM density function but is not normalizable. Because of
this structure of the likelihood, the traditional GMR techniques
cannot be applied directly. The goal of this paper is to devise
strategies for GMR of the BL to reduce the complexity of the
BE

A. Idea

The BL of the BF has a mixture structure in which the
components are densities in different subspaces of the state
space. This structure is referred to as reduced dimension
GM (RDGM) in this paper. By close investigation, one can
observe that the components in the RDGM can be partitioned
into groups such that the components within each group are
density functions in the same subspace. Consequently, this
grouping allows us to use traditional GMR techniques within
each group. The details of how the intragroup approximations
are performed are covered in Section IV. We also discuss the
limitations of these intragroup methods.

Besides the intragroup approximations, the availability of
the filtering density from the FF can be used to reduce the
number of components further in the RDGM of the BF. That
is, based on the components in the smoothing density, further
GMR can be performed on the RDGM, as will be shown in
Section V.

III. BACKGROUND

In this section, we present a background to the TFS method
for GM densities. The conceptual solutions to the FF and the
BF in the TFS are provided. The solution to the FF and BF
of GM is described using a graphical illustration.

A. Two-filter smoothing

The goal of smoothing is to compute the smoothing pos-
terior p(x|Z1.x). The TFS method computes the smoothing
density, at each k, according to

p(xk| Z1:1) < p(@k| Z1:)D(Zis1: K | 8- 3

The filtering density p(zk|Z1.x) and the BL p(Zgi1.x|Tk)
are obtained as outputs of the FF and the BF, respectively.

It should be pointed out, that the counterpart of TFS in the
factor graph world is the belief propagation algorithm [10],
where the filtering steps are termed as message passing.

1) Forward Filtering : The FF involves two steps, namely
the prediction and the update step, which are performed
recursively from time £ = 1 to k¥ = K. The prediction step
computes the prediction density,

(K| Z1k-1) = /p(ka—1|Z1:k—1)f($k|$k—1)d$k—1 4)
followed by the update step to compute the filtering density,
p(xk| Ziik) o< p(@k| Zv—1)p(Zi|2k). (5)

For the assumptions made in Section II, it can be shown
that the filtering density is a GM and has the form

M
Pkl Zin) = 3 wl N (mk; ul P;;’}) (6)
i =1

1=

where N (mk; ,ui,i, P,i 1) represents a Gaussian density in

variable x; with mean ui , and covariance P]{ , and w]{ , is the

corresponding weight. The weight w,f , in (6) is the probability
Pr{#] .,|Z1.4} of the hypothesis ] , which corresponds to
a sequence of measurements or the missed-detection associa-
tions from time 1 to k. Kalman filtering under H£,¢ gives the
mean ,u£ , and the covariance P,f 5

The number of components in the filtering GM is the
product of the number of measurements observed over time.
So, the number of components grow exponentially with time.
Therefore, the number GMs have to be reduced using GMR
techniques, such as pruning and merging. GMR techniques
such as pruning and merging are used for practical imple-
mentations of FE. A few pruning methods to mention are
gating [3], N—scan pruning, M-best pruning and threshold-
based pruning. For merging algorithms, one can refer to [9],
[13], [16] and [5]. The merging algorithms presented in these
papers preserve the moments, i.e., the mean and covariance of
the GM before and after merging are the same.

2) Backward Filtering: The BF in TFS also involves recur-
sive steps, similar to the FF, from time k = K —1to k = 1.
The first step is the update step given by

P(Zks1:x|Th41) = D(Zisr1| T4 1)D(Zhr i |Thg1),  (T)

followed by the retrodiction step to obtain the BL,

P(Zpsi1:x|Tk) o /P(Zk+1:K|$€k+1) f(@pq1|zr) dopga.
(®)

For the assumptions made in Section II, similar to the FF,
the BF can also be interpreted as running filtering operations
under data association hypotheses. In the BF, each hypothesis,
denoted ’Hb’ ;» corresponds to a sequence of measurement or
missed-detection associations made from time K until time
k+ 1, where k < K.

Assuming that there are only pruning approximations made
during FF and BF, the TFS can be illustrated using graphical
structures as shown in Fig. 1. Two hypothesis trees (to be



precise, the BF needs a graph illustration, as there is not
one root), one for each filter, are shown in where the nodes
represent the components in the GM of p(x|Z1.;)- The details
of the structure of the output of the BF and how the proposed
algorithms can be used to make approximations in the BF are
presented in the Sections IV and V.

Forward Filtering Backward Filtering
1 2 3 4 5 1 2 3 4 5
t t t t t t t t t

O Retained components . Pruned components

Figure 1: Ilustration of TFS: The nodes correspond to the GM compo-
nents in the filter outputs. The ‘blue nodes’ represent the pruned nodes
and they are not propagated further. At each time instant, the smoothing
density is obtained as the product of the GMs, corresponding to all the
nodes in the two filters.

IV. INTRAGROUP APPROXIMATIONS OF THE BACKWARD
LIKELIHOOD

In this section, we analyze the details of the BL in the BF
that has the RDGM structure. We discuss why the conventional
pruning and merging strategies are not always suitable for the
BL. Based on the analysis of the RDGM structure of the BL,
we show that the components in the RDGM can be grouped
and that the traditional GMR techniques can be used within
the groups. It will also be shown that the number of groups is
polynomial in the lag K —k, and that this can be a limitation of
the intragroup GMR strategies, especially when the lag K —k
is large.

A. Structure of the backward likelihood

Under the assumptions made in Section II, starting with the
likelihood of the form

=Bro+ Y BrmN (

m=1

p(Zk|ek) Hzg; zxm, R)  (9)

at time K and evaluating the update and retrodiction recursions
in (8) and (7), the BL can be written in the form,

i}

P(Zps1:k|Tr) = wZ,() + ZwZ,jN
=1

(Hp jaowspmp 5, P ;) (10)

for any k& < K. The parameters in (9) and (10) can be
obtained using the extended observation model described in
Section 3 of [8] or from Section II-C of [15]. Note that the
term w,l; o 1s zero if the probability of detection is one. The
expression in (10) which 1s the RDGM, is similar to a GM,
with weights wk7 ;> means uk,7 ; and covariances Pk7 ;- However,

the terms A/ (H}j STk g gy PP j) are not generally densities

in xj and are not guaranteed to be normalizable since the
integral [ N (H,l; STk ,uzj, P,i’j) dzy, may be infinite.

B. Normalizability of the BL and intragroup approximations

Similar to the GM filtering density in the FF, the number
of terms M? in the RDGM in (10) of the BF grows expo-
nentially with time. Thus, GMR approximations are necessary
to reduce the complexity. The catch is that the conventional
GMR techniques mentioned in Section III-A1l are developed
for GM density functions and cannot be applied directly to
RDGMs. For instance, the conventional pruning strategies are
applied to GMs that are normalized, in which the weights
of the components define the relative sizes of the Gaussian
components. So, the weights of the components can be com-
pared and the ones with insignificant weights can be removed.
However, in the RDGM 1in (10), it is possible that a component
with the smallest weight w,’g ; 1s in fact among the largest
components. So, the components in the RDGM cannot be
compared based only on the weights unless the components
N (H ,g,jxk; [LZJ, P£7j) are normalized. Similarly, the con-
ventional merging strategies applied to GMs involve moment
matching, and to compute the moments, the components
should be normalizable densities. In the trivial case, when
the components in the RDGM are normalizable, i.e., when
rank (H? j) = Ng, it is possible to rewrite the components in

the RDGM Zw N (H,’;Jmk, 13 s ij) into the GM form

Zw N (xk, 1y 5 P,QZ-) to which the GMR techniques can

be applied.

The RDGM is in general not normalized, like in the data
association problem, and the normalizability depends on the
structure of the matrices H? .. AS will be shown in Section
IV-B1, in the RDGM, groups of components have identical
H? »; matrices. Thus, if the matrices Hy b k,; are also of full row
rank in a group, then it is possible to compare the components
within the group, and so, one can apply the GMR technique
to that group.

Let I, be the index set that contains the indices j of the
components in a group g that have the same matrices, i.e.,
H}; = H, for j € I, and let rank(H,) = mg. Using this
notatlon the RDGM in (10) can be written as

Zzwka

g=1j€l,

P(Zisvix|o) (Hgw; py, 5, PLy) (A1)

where Ng is the number of groups. The functions
N (H Tk; ,uk 4 P
row space of the matr1x H,, and have constant values in the
null space of H,. The idea is that the GMR can be applied

to approximate the group Z wp N (H Tk 1] P,i’j) of
je

) are scaled Gaussian functions in the

components in this row space and that no approximation

needs to be performed in the null space, as the values of the

components are constant in the null space. An interpretation

of this can be obtained using a change of basis matrix, say
H, .

A, = [ 9 | in RN=,

g9 — HgJ_

where the matrix H ; is such that the



columns and rows of A, span R+, Let us define a variable
Yy = Agxy with respect to the new basis in RN=, Using

this variable y,, the function wy} ]J\f (H Th; ,u,”, P,”>

written as w) N (yg [1:mygl; pf 55 P2 ), where yg [1:my)]
denotes the first m, elements in the vector y,. Clearly,
the functions A (yg [1:mgl; 1}, Plf’j) are Gaussian in
the variable y,[1 : m,|. These functions are not integrable
in ygmy + 1 N,.], but are constant (or uniform) in
that variable. This observation allows us to treat the group

> w;i,j/\f (yg [L:myl; /‘ka P
JjElgy

yg[l : my]. So, pruning and merging can be applied to
approximate this mixture as a function of y,[1 : my] = Hyxy.
Overall, within each group g, the GMR can be applied as

ZZ%

) as a GM in the variable

yg [1:mgl; Mk e Pb,j)

g=1j€l,
~ b
~ ZZ% (yql myl; /‘ka,’)
g=1jel
_ ZZU} (Hx b PP ) (12)
k,j 9Tks Pk,jr £k,j
g=ljel;

where [ 5’7 refers to the index set corresponding to components
in group g after GMR. From (12), it can be noticed that after
the intragroup approximations, the number of components in
the RDGM is at least the number of groups, Ng.

1) Grouping: As discussed earlier in this section, the
grouping of the components in the the BL in (10) is key in
being able to apply the GMR techniques to approximate the
RDGM. In this section, with the data association in target
tracking as an example, we discuss why the grouping is
possible. For this example, we also analyze how the number
of groups grows with time to point out the limitation of the
intragroup GMR methods.

By investigating (9) and (10) for the DA problem, one
can see that many of the components in (10) have the same
o ,’3] matrices. It turns out that if two DA hypotheses, sz
and ’Hz’ ;» are such that they have measurement associations
and missed-detection associations at the same time instants,
then H ,?71- = H,l;’ ;- This observation allows us to partition the
components in the RDGM into groups of components that
have the same H? x,; matrices.

Consider the constant velocity model, in which the state
contains the position and velocity components, and assume
that only the position components are observed. One then
needs measurements from at least two different time instants
to estimate the velocity components. This implies that under
the corresponding DA hypotheses 'Hz’ ; in the BE, which have
at least two measurement associations across time, the state
can be estimated with finite covariance. So, the correspond-
ing components N (H,i”jxk; uz’j, P,f’j) in the BL will be
normalizable and therefore, the ranks of the corresponding
matrices H}; ;s Ny = dim(xy). These normalizable com-
ponents will form one group. Additionally, there will also
be components with Hp ; such that rank(Hy ;) < N, which

correspond to the hypotheses sequences ’H},; ; that have less
than two measurements associations across time.

We will now analyze how the number of groups grows
with time. Let us assume that the matrices H and F' in the
motion model (1) and measurement model (2) are such that
measurements from at least M different time instants (not
necessarily consecutive) are needed to estimate all dimensions
of the state zy, i.e., to ensure that the corresponding compo-
nent in the BL is normalizable. Using this parameter M and
the time lag K — k, the number of groups can be analysed.
As discussed for the constant velocity model, the components
corresponding to the hypothesis sequences that have at least
M measurement associations across time will be normalizable
and form a group. Components that have hypothesis sequences
with exactly ! (I < M) measurement associations at the same
K-k

l
ways of assigning [ measurement associations in K — k time
steps for each [ = 0,1... M — 1. Thus, in total, the number

of groups is given by
M—1
EDS (*7%)

which grows in the order of O ((K - k)Mfl) as a function
of the lag K — k.

One can see that using the intragroup approximations, the
number of components in the RDGM cannot be reduced to less

time instants belong to the same group. There are

Ne(k,K) = (13)

than the number of groups, which grows as O ((K — k)M_l
with the lag K — k. Hence, these intragroup approximations
are not sufficient to reduce the complexity due to the RDGM
structure of the BL. It is therefore essential to present a sound
manner to compare components across groups in order to
enable us to reduce the complexity further. In the next section,
we present the smoothed posterior-based pruning with which
the components in the BL can be compared and pruned.

V. SMOOTHED POSTERIOR-BASED PRUNING

In this section, we show that it is valid to compare com-
ponents across groups in the BL based on the smoothing
probabilities of the corresponding hypotheses in the BF. Sur-
prisingly enough, using these probabilities, large components
or even groups of components can be pruned from the BL and
propagated, without affecting the smoothing densities at any
time instant. The smoothing probabilities of the hypotheses in
the output of the BF can be calculated using the FF densities.
We also show how this idea can be generalized for pruning
components from the FF as well.

A. Posterior-based pruning

The main objective is to compute the smoothing posterior
density given in (3). The two terms in the right-hand side of (3)
are the filtering density and the backward likelihood, whichs
are the outputs of the FF and BF, respectively. The filtering
density is reduced using traditional GMR techniques. The BL
can be reduced using the intragroup approximations discussed
before, but that may not be enough due to its limitations



discussed in the previous section. We propose (and later prove)
that the filtering density of the FF in (3) can be used to
prune components in the BL of the BF, in regions where
the smoothing posterior density is small, and therefore is not
affected by this pruning. Fig. 2 shows an illustration of this
strategy, referred to as smoothed posterior pruning (SPP), for
one time instant. The GMs are in 2D and the curves shown
in the figure are the contour plots of the GMs involved. More
importantly, we can propagate the pruned version of the BL
backwards in time without affecting the smoothing density at
any other time instant.

Number of components in likelihood: Before pruning = 5 --> After pruning = 3
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Figure 2: Illustration of SPP: The green and the red curves, which
represent the posterior density before and after the approximation of
the likelihood, are very close to each other. This shows that the shape
of the corresponding (smoothing) posterior is unaffected by the posterior
pruning of the likelihood. Also, parts of the blue curve and black curve,
which represent the likelihood before and after pruning, are very close
to each other.

The SPP idea can also be used the other way around. That is,
it is possible to approximate the FF based on the BL. The BL
of the BF, when available, can be used to prune components
in the filtering density of the FF in the regions where the
smoothing density is small. The bottom line is that the SPP
idea presented in this section can be generalized to both the
FF and the BF, depending on what functions are available to
compute the posterior. In this section, we discuss the SPP idea
for the FF, but the same arguments hold for SPP of BF as well.

For the pruning step in the SPP, any of the pruning strategies
mentioned in Section III-A1 can be used, once we know
the weights of the components to be compared. Note that
the weights relate to the probability of the data association
hypothesis sequence Hg.i (cf. Section III-Al). In SPP, as
stated before, we want to perform the pruning based on the
smoothing posterior. So, we do not use the filtering probability
Pr{’H?AZL i} of the hypothesis. Instead, we use the smooth-
ing probability Pr{?—l'}: ;| Z1.x} of the hypothesis. As we will
show in the following broposition, if the smoothing posterior
probability Pr{?—l,’: JZ1.x} is zero, then the M Gaussian
component can be ’pruned from the filtering density, without
affecting the smoothing posterior distributions. The intuitive
reason is that the smoothing probabilities of the offsprings
of the pruned component, if it was propagated, would also be
zero, which means that they would not influence the smoothing
densities at later times either. In the following proposition, we
also provide the mathematical justification for the same.

Proposition 1. Suppose that the objective is to compute

the smoothing density p(x)|Z1.x) for I = 1,... . K. If

Pr {’H,’;AZLK =0, then the it" component can be pruned
from p(xg|Z1.;) and propagated to time k + 1 during FF
without affecting the smoothing density p(x;|Z1.x) for | > k.

Analogously, ifPr{”szj |Z1.5c} = 0, then the j*" component
can be pruned from p(Zy11.x | x) and propagated to time

k — 1 during BF without affecting the smoothing density
p(x1|Z1.x) for 1 < k.

Proof: In the following, we sketch the proof for the first
part of the proposition, i.e., for SPP on the FF. It is possible
to derive an analogous proof for SPP on the BF.

Let us first consider how the suggested pruning of compo-
nents in the FF affect the smoothing density p(:ck’ZL Kx) at
time k. At time k, the relation between the smoothing density
p(xk|Z1.x ) and the smoothing probability Pr {7—[£7i|Zl:K} is
given by

plalZuk) = > pler|Ziw, HE,) Pr{H] | Zukc X14)

o Z Pr{H£’i|Z1;k}p(xk|H£7i, Z1.%)

XP(Zit1:K|Tk) (15)

where the product Pr{’}—[,’;i|Zl:k}p(xk | ng Z1.x) is the ith
component in the filtering density GM p(zx|Z;.x ). Clearly, the
ith component in the summation of (14), is due to the product
of the ith component of the filtering density p(zx|Z71.k)
and the BL p(Zii1.x | zx) as in (15). We note that the
Pr {H£7i|leK = 0, for some value of ¢, implies that the ith
component can be removed from the filtering density without
affecting the smoothing density p(xy|Z1.x) at k.

We are now left to prove that the suggested pruning tech-
nique does not affect the smoothing density p(x;|Z;1.x) for
l=k+1,... K. To this end, we use the fact that

PI{H'};AZLK}: Z Pr{H'l’ij|Z1;K}

JESk—1,i

(16)

where the summation is over the set Sj;_,;; that contains the
indices of the components j at time [ which are offsprings

of the component i at time k. So, Pr {7—[‘};1-\21:;(} =0

<~— Pr {Hlf’]|Z1K} =

did for pruning the ith component from p(xg|Zy.;) at time

k, we can show that the components j € Sy ; with

0Vj € Sipi,i Arguing as we

Pr {Hlfj|Z1;K} = 0 can be pruned from p(x;|Z;.;), without
affecting the smoothing density p(x;|Z1.x). [ ]

The smoothing probability of a hypothesis ’H,];i in the FF
can be evaluated from the weights of the components in the
smoothing density using (15):

PT{H};,HZLK} = /Pr{Hi,i\lek}p($k|H£i,Zl:k)

P(Zpt1:x |78 ) dy,



/wk 1N ("Ekﬂuiﬂpgz)
b
szk,jN(

J
b .
= Sk, [N (wind, L)
J
<N (H};’jxk; u%j, P,g’j) dxy,
= ZWIf,in,j
J

T
xN (H£7jui,i;uz,j’H/g,ng,ing,j+P£7j)' (17)

b ..b b
HY s 1y, Py ;) do

The product of the three terms in the summation of (17) is
indeed the weights of the components in the smoothing density
p(zx|Z1.x ), obtained as the product of the i component in
the filtering density and the BL. Similarly, the smoothing prob-
ability for the hypothesis ’Hb during BF can be calculated
from the smoothing posterior den51ty as

Pr {Hz,j\ZLK} = Zwﬁﬂwﬁg x
1

N (b juf s by Y PLHYS + PES) . (8)
Note that the summation is over the index 7 of the filtering
density. Analogously, the product in the summation gives the
weights of the components in the smoothing density obtained
due to product of the j th component in the BL and the filtering
density.

VI. ALGORITHM

In this section, we present the algorithmic description of
the TFS algorithm performed in this paper. The computations
can be divided into two parts — the FF and the BF. The FF
algorithms are well studied in the literature. Therefore, only
the algorithmic details of the BF are explained in this section
(cf. Algorithm 1). The intragroup approximations described in
Section IV and the SPP described in Section V are included in
the BF algorithm. The smoothing density will be obtained as
part of the SPP performed in the BF as in step 5 of Algorithm
1. We assume that at each k, the output of the FF will be the
parameters of the filtering Gaussian mixture: weights w}sz,

means ,uk and covariances Pf Let M ,f s Mk and M, be the
number of components in the output of the FF, BF and the
smoothing density respectively.

VII. IMPLEMENTATION AND SIMULATION RESULTS
A. Simulation scenario

As mentioned before, we consider the problem of tracking
a single target moving in a cluttered environment. The model
used for simulation is the constant-velocity model where the
state vector contains the positions and velocities along x and y
dimensions. The target is assumed to be a slowly moving target
with acceleration noise standard deviation of 0.07 m/s?. The
trajectory is generated for K = 40 time steps with a sampling
time of 1s. The clutter data is generated in the whole volume
of the track.

Algorithm 1 Backward filter of the TFS

Input: Likelihoods: S ;, H, 21 and R for i =0, ...
k=1,... K.
Initialize £ < K — 1

my, and

b

wlI}J 1, H}’(J <[, pg; <[] and

Pp i« [] for j = 0.
Repeat
1) Update: for every 4, j, compute 71, = 5k’+1,iwz+1,j’
H Zk+1,i
Ukt1, :{ b ] Y410 = { b and
Hypy g M1,
0
Grt1,0 = b
0 Py,
a) If rank(Ug411) = Ny, then set mpy1; =
7@&1&::1)’ Yit1,1 U;;rluil}kﬂ,l, Giy1, =

U,;leGkHJU,;TM, and Upy1; = In, end

2) Grouping: If components /; and Il are such that
Uk+1,;, = Uk41,,, then the components belong to the
same group.

3) Intragroup approximation: Within each group, the
traditional pruning and merging are performed.

4) Retrodiction: Set w} ; = N1, ph; = Yrr10, HY ;=
Upy1F and P) ) = Upy11QUL  + Gryr

5) Smoothing density: For every ¢ and j, compute wy, ;,
Py, and P, same way as in the Update step 1 with
k=k—1, Brt1,: = w;fl H=1In,, zxt1, = ﬂil and
R = P,i ;- Note that the rank calculated will always be
N, for this case.

6) SPP: Calculate wz‘fj = Zw;‘;l according to (18), for
1

every j. Remove component j from the BL based on
the weights, w?* °; and renormalize.
7 k+—k-—1
until £ =1

The values for the measurement noise R, the probability of
detection Pp and the clutter intensity /3, are varied for the
simulations. The measurement noise R is set to 50 x [ and
150 x I. Pp is either 0.7 or 1. The values used for 3 are
0.0001 and 0.0002. Thus, there are 8 sets of parameters for
which the simulation results are compared.

The TFS algorithm is compared with FBS based on an
N —scan pruning algorithm where the FF is performed using
N —scan pruning and Rauch-Tung-Striebel algorithm is used
on each branch in the filtering hypothesis tree.

B. Implementation details

In both the FF and BF of TFS, to reduce the complexity,
extra gating is performed in addition to the conventionally
used ellipsoidal gating. This extra gate is rectangular, with
dimensions based on the measurement noise covariance and
the center at the prediction density mean. The gating proba-
bility Ps and the pruning threshold P}c, for the FF are set as
(1 —107°) and 10~* respectively.

The merging algorithm in FF is a cheaper variant of
Salmond’s algorithm [13]. The original Salmond’s algorithm
looks for the minimum merging cost across every pair of com-
ponents in the GM. Therefore, it has a quadratic complexity



in the number of components. So, to reduce the complexity
involved, instead of looking for the minimum cost, we use a
heuristic algorithm in this paper. Starting with the components
that have the least weights, we compute the cost of merging
pairs of components, and if the cost is lower than a threshold
(0.001 x state dimension), then the components are merged
and replaced in the GM. The procedure is continued with the
new reduced GM until there are no pairs that have costs lower
than the threshold.

In the BF of the TFS, both the intragroup approximations
and the SPP are used to reduce the components in the BL.
The intragroup pruning is based on the maximum weight
in the group. The components that have weights lesser than
1/100™ of the maximum weight in the group are pruned. The
intragroup merging is based on the variant of the Salmond’s al-
gorithm discussed above. To employ the SPP method followed
by these intragroup approximations, first the smoothing density
has to be computed. This involves taking the product of the
filtering density GM and the RDGM BL which is an expensive
operation. So, to reduce the number of operations involved
in computing this smoothing density, we reduce the filtering
density GM to a single Gaussian, and compute the smoothing
density using this reduced filtering density and the BL. Then,
using this interim smoothing density, SPP is employed to prune
components from the BL.

In case of N—scan pruning in the FBS algorithm, the
parameter N for the various settings is chosen to be the largest
possible N such that the complexity (run-time) for a single
run is within the threshold of 2 s. The rectangular gating and
ellipsoidal gating are also used here.

The performance measures used for comparison are root
mean squared error (RMSE), normalized estimation error
squared (NEES), complexity and track loss. A track is con-
sidered lost if the true state is more than three standard
deviations (obtained from the estimated covariance) away
from the estimated state for five consecutive time steps. The
computational complexity is calculated as the average time
taken during MATLAB simulations to run each algorithm on
the entire trajectory of 40 time steps. The graphs are obtained
by averaging over 1000 Monte Carlo iterations.

C. Results
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Figure 3: Track Loss performance: Every odd point on x-axis (1, 3, 5,
7) is for low clutter intensity 5 = 0.0001 and every even point (2,4,6,8)
is for high 8 = 0.0002. The order of the eight scenarios is the same
also for the others plots in Fig. 4, Fig. 5 and Fig. 6.
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Figure 4: NEES performance: Compared to the FBS, the values of the
NEES for the TFS are very close to the optimal value of 4 in all the
scenarios.
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Figure 5: Computational complexity: The TFS algorithm with intra group
approximations and SPP is computationally cheaper compared to the FBS
with N —scan.

The results of the simulation are presented in Fig. 3 to 6. It
can be seen that the TFS performs significantly better than the
FBS with N —scan for most of the scenarios. From the Fig. 3
for track loss performance, one can notice that the performance
gain is higher for TFS compared to FBS when Pp is low
and the measurement noise R and the clutter intensity 3 are
high (point 6 on the x-axis in Fig. 3). The reason for this
is that in these scenarios, the number of components in the
filtering GMs before approximations is quite large. To limit the
number of components, the pruning during FBS can be quite
aggressive resulting in the undesirable ‘degeneracy’ problem
in the FBS. The impact of this degeneracy problem can also
be observed in the NEES performance plot in Fig. 4 (point
6 on the x-axis). In the degeneracy case, the uncertainties
are underestimated, i.e., the estimated covariances are smaller
compared to the optimal, resulting in a larger value for the
NEES compared to the expected value of 4. In addition to
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Figure 6: RMSE performance: The results are very similar for the TFS
and the FBS.



the better track loss and NEES performance, TFS based on
intragroup approximations and SPP offers a computationally
cheaper solution compared to the FBS based on N —scan
pruning as can be observed in Fig. 5. However, the RMSE
performance of the TFS and FBS are very similar in most
scenarios as seen in Fig. 6.

VIII. CONCLUSION

In this paper, we present how two-filter smoothing can be
performed when the posterior densities are Gaussian mixtures
(GMs). GM reduction (GMR) techniques such as pruning
and merging are used in the forward filter of the two-filter
smoothing method. The structure of the backward likelihood
at the output of the backward filter is a reduced dimension GM
(RDGM). GMR techniques are also applied within groups of
components in the RDGM. Since this strategy has limitations
in the reduction, we have proposed the smoothed posterior
pruning, where components in the backward likelihood are
pruned based on the smoothing posterior weights of those
components. The proposed algorithm is shown to have better
track loss, root mean squared error, normalized estimation
error squared as well as lower computationally complexity
compared to a forward-backward smoothing algorithm based
on [N—scan pruning.
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